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Chapter 4

The Rabi Hamiltonian

In this chapter, we discuss the analytic limits of the Rabi Hamiltonian,
and benchmark the numerical diagonalization results for the Rabi spectrum
against known analytic results. We investigate the physical nature of the
Rabi ground state, and present a review of some existing results for the
ground and first excited states obtained via many-body methods other than

the CCM.

4.1 Discussion of the Rabi Hamiltonian

The Rabi Hamiltonian

Haap = %wo oF + wblb + n (b?—}-b) o’
= %wo 0% + wblb + g'(bT-i—b) (a"’—i—a') i (4.1)
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where 7 = 2g, and its conserved parity
] 1
Mray = exp {irN}, N = b'b+ =(e*+1]) (4.2)

were introduced in Cha,pter' 2. Given that most recent interest in the Rabi
Hamiltonian is in the field of quantum optics, we present our analysis of the
Hamiltonian in this context. In typical optical applications, the coupling
g is small, and the so—called counter-rotating terms g (b*a"‘ - ba‘) in the
Hamiltonian (4.1), corresponding respectively to the processes where a pho-
ton is created as the atom makes an upward transition and where a photon
is annihilated as the atom makes a downward transition, may to good ap-
proximation be neglected. This rotating wave approximation (RWA) results

in the well-known Jaynes-Cummings Hamiltonian [Ja63]

1
Hic = 5o o + wblb + gblo™ + gbot. (4.3)

In the Jaynes—Cummings model [Hjc, N] = 0 and the model is exactly sol-
uble, since we may diagonalize Hjc in each subspace labelled by a fixed
number, say n, of quanta. For n = 0, there is only one state, namely the
product state |0)| ), where the first ket refers to the field mode in the oc-
cupation number (Fock) representation and the second denotes the atomic
state with the atom in its lower level, corresponding to energy E3C = —Liwg
where the notation is convenient in what follows. For n > 1, the states |n)|])

and |n —1)|1) form a basis for the subspace corresponding to a given n, and

one may diagonalize the resulting set of 2 x 2 matrices to obtain

Bz =uw (”‘ %) i%\/(w—wo)2+16ﬂ92 (n>1). (44)

Since E}9 > 0> E3€ V n > 1, the ground-state energy of Hjc is given, at

each value of the coupling g, by the smallest element of the set {E;LC_, n >0}
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The corresponding eigenstates are often referred to as “dressed” states in
quantum optics, where they are utilized in the study of, amongst others, the
time development of the system given particular initial conditions for the
atom and field [Mi91, Sh93], and the quasiperiodic recurrence phenomena of

collapse and revival which characterize the Jaynes—Cummings model [Na88,

Ge90, Mi91, Sh93].

The more general Rabi Hamiltonian (4.1), which extends the Jaynes—
Cummings model beyond the RWA, is of interest for a variety of reasons.
Given that quantum optics experiments are nowadays being performed with
ever-increasing field intensities [An94], there is considerable agreement (see,
e.g., [Cr91, Fe96, Lo98]) that the full Rabi Hamiltonian merits investigation.
Furthermore, it is known (see [Mi83] and references therein) that quantum
chaotic behaviour does not occur in the RWA. Although there is no consensus
as to whether the Rabi Hamiltonian does exhibit chaotic behaviour [Gr84a,
Ku85, Ei86, Mi91], it is clear that the counter-rotating terms are essential if
the possibility of quantum chaos is to exist. Finally, Hamiltonians similar to
(4.1) occur in the theory of vibronic interactions [Berb] and in the analysis
of a quantum tunneling system under the influence of a phonon bath [Le87],
as well as in the study of the two-site polaron Hamiltonian in solid state

physics [Mah].

The strict limitation of the fermionic subsystem of the Rabi model to
two levels represents an idealization which, from a physical point of view,
may generally only be regarded as realistic for wy ~ w. For large atom—

field detuning, one might reasonably expect that effects due to the multilevel
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nature of the true atomic system would be at least as important as those due
to the non-rotating terms included in (4.1); in most of what follows we will
therefore focus on the case of resonance. It is then convenient to scale out
the w-dependence by setting w = wg = 1, and we will refer to the resulting

Hamiltonian as the scaled resonant Rabi Hamiltonian.

4.1.1 Exact limits of the Hamiltonian

The Rabi Hamiltonian is analytically soluble in two limits, namely that of
zero coupling (g = 0), and that of degenerate electronic levels (wg = 0). For
zero coupling and nondegenerate atomic levels (wy > 0), the exact ground
state assumes the form |0)|]), and the corresponding ground-state energy is
given by Eg=° = =32. Note that, in this case, the ground state is unique and

of positive parity.

The case of nonzero coupling and degenerate atomic levels is important
because, as we will demonstrate below, the Hamiltonian with a finite value
wp =0

for wg approaches this case as g =+ 0o. For wy = 0, [HRabi ,0‘”] = 0, so that

the eigenstates of Hi°r" may be taken to be eigenstates of 0%, and we obtain
Hy? =wblox2g (61 +0) (4.5)

where the upper (lower) sign refers to the choice of the upper (lower) eigen-
state of ¢”. The Hamiltonian (4.5) represents a shifted harmonic oscillator,

as is easily seen by performing the canonical transformations (see e.g. [Hak])

be bl BLo=bte 2 (4.6)
w

w
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which preserve the bosonic commutation relations, to yield

o 2
H=0 = o BB, — 29 (4.7)
w
For the ground state |¥) of H:,
" 29
bWy =0 = B¥) =FZ|0). (4.8)

Thus the (normalized) degenerate ground states |Wq;) and |¥gq) of the Rabi
Hamiltonian for wy = 0 are the (normalized) coherent bosonic states
30 = Pon[Ftfio =Y Ty )
n=0 '

with ¢ = 2¢/w, multiplied by the corresponding eigenfunctions of o

\/iéexp [2o*/2)l0h = S= () £11)) (4.10)

SI

and may thus be written as [Gr84b],

Vo) = —sl=ahexp /2] 1)
9 %/ o [-%"-w] 10) (14) + 1))
|We) = %Lx)e}cp [—0+/2]|¢>

_ %/ exp [ 23] 10) (14 -11)) (4.11)

with the ground-state energy in both cases given by Eg°=° = —4¢?%/w.

Having obtained the solution (4.11), we now demonstrate that the equiv-
alence of the limits wy — 0 and g — oo, although not formally proven, is at
least consistent with this form of the solution. Heuristically treating the set

of states {|Wo1),|Wo2)} as a basis for the full Rabi Hamiltonian (4.1) with
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wg > 0, we obtain the matrix representation

ik _%woe—ngfwz
) (4.12)
_%woe_s.qz/wz _é.g_

w

for Hpapi. For finite g, the Hamiltonian couples the states |Up;) and |Wgy)

via the off-diagonal terms, and the diagonalization of (4.12) yields the two

eigenenergies
By = By=F une™0'1 (413)
with corresponding eigenfunctions
1
4) = 75(“1’01) + [Woz))
1
v_) = E(N’m) — |Woa)) . (4.14)

As g — oo with wg finite, the off-diagonal elements of the matrix (4.12)
vanish exponentially. In this limit, the eigenfunctions (4.14), which are lin-
ear combinations of the states (4.11), thus become degenerate with energy

B = EB3°=° and the wy = 0 solution is reproduced. Furthermore, since
HRani|Wo1) = [Yo2) , MRabi|Vo2) = |Pa1) , (4.15)

we may write the states (4.14) in the form

¥4) = 75 (1+ M) o)
) = %(1-Haabi)|wm>. (4.16)

Given that II§,,; = 1, the states |¥,) and |¥_) are therefore of positive
and negative parity, respectively. Also, the bosonic coherent states | +2¢/w)
reduce to the bosonic vacuum [0) at g = 0, and the state |¥y) (|T_)),
although not the exact ground (first excited) state at finite g, is therefore the

analytic ground (first excited) state at g = 0.
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4.1.2 Juddian solutions and the configuration—interaction

(CI) method

Several attempts at an analytically exact treatment of the Rabi Hamiltonian
have been made. There is very strong numerical support for the conjecture
of Reik et. al. [Re86, Re87] involving generalized spheroidal wave functions,
but a formal proof of the integrability of (4.1) is still missing (note here
the work of Szopa et. al. [Sz96]). As demonstrated in the introduction
to this chapter, the Jaynes-Cummings model, i.e. the Rabi Hamiltonian
within the RWA, is analytically soluble. This result may also be obtained
via a unitary Holstein-Primakoff mapping of both the fermionic and bosonic
aspects of the Jaynes—Cummings Hamiltonian into a system composed of
two ideal boson modes, where the resulting bosonized Hamiltonian may be
solved exactly [Ci98] *. This success of this bosonization approach, however,
depends crucially on the fact that Hjc commutes with the number operator

N introduced in (4.2), while [Hgabi, N] # 0.

However, isolated analytic solutions for some of the higher lying states in
the spectrum of the Rabi Hamiltonian are known. These solutions were first
obtained for a class of Jahn-Teller systems by Judd [Ju79], who established
explicit finite order equations for the isolated values of the coupling at which
the Jahn-Teller eigenvalues can be determined analytically, and these isolated
exact solutions are thus known as Juddian solutions. Subsequently, Reik

et.al. [Re82] showed that the Juddian solutions for the Rabi Hamiltonian

1Gee also the non-unitary Dyson boson mapping technique employed in [Ca87], albeit

to a different Hamiltonian.
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may be obtained as a special case of those for the linear £ ® e pseudo Jahn-
Teller model. A fuller discussion of the approach taken by Reik et.al. is
thus deferred to Chapter 7. Here we simply point out that the values of the
coupling g for which Juddian solutions for the Rabi system occur are given
[Re82] by the solutions of

Ay + By =0 (4.17)

where N € {0,1,2,...}, and Ay and By are determined recursively via

B, My M B,
o [ B R n=01,2..,N—1 (418)
An+1 M21 M22 An
with
24° 2¢* 1
B — A = S e e e N
2 w? ’ 4 w? 4 5+2
2¢% /1 N
My =~
H w? (4 2)
R i
Ma = -5 (3-8+n-3)
262 5 NY (1 N 2
o = (+irorn-3) G-+ 3)-Hosn
2¢° 5 N\ /1 N 2g*
My = (%‘l‘g‘f‘(g“'n—?)(Z—6+n_?)_%(n+l)
Wy —w
6 = !
- (4.19)

For a given value of N, the sum Ay + By is a polynomial of degree N in
g%, and (4.17) thus yields N solutions for g?. The positive square roots of
the positive g? solutions to (4.17) yield the values of the coupling for which
Juddian isolated exact solutions exist, and the energies corresponding to

these couplings then lie on the Nth so-called baseline, defined by

. 4q?
EBaseline _ 7, % . (4.20)

30



University of Pretoria etd — Van der Walt, D M (1999)

For N =0, Ag+ By = —i—é, which is independent of the coupling g, and
(4.17) is then only satisfied in the special case § = —i, which corresponds
to wg = 0 i.e. degenerate atomic levels. It is then clear from (4.20) that
the Juddian solution for N = 0 and wy = 0 yields the wy = 0 solution
(4.11) presented in Section 4.1, which is a degenerate ground-state solution
analytic for all couplings. This two—fold degeneracy is a generic feature of
the Juddian solutions for the Rabi Hamiltonian for all N, and indicates that
these solutions always occur at points where two energy levels simultaneously

cross the Nth baseline.

For N = 0 and wy # 0, isolated exact solutions do not exist for any
value of the coupling g. In fact, at least at resonance (wg = w or equivalently
4 = 0), no Juddian solutions occur for either the ground or first excited states
of the Rabi system for any value of the coupling [Re82]. For N > 0, however,
isolated analytic solutions corresponding to higher lying states of the Rabi
Hamiltonian may be found at particular values of g, and these Juddian so-
lutions then provide a useful benchmark against which approximate results

may be checked.

Although in this thesis we focus mainly on the coupled cluster method,
it is of interest for purposes of comparison to analyze the Rabi system using
other many-body techniques. In particular, we consider here techniques
which yield quasi—exact numerical results. The configuration-interaction
(CI) method (also known as the Rayleigh-Ritz method or simply diagonaliza-
tion), is generally regarded as such a method, and entails the diagonalization

of a Hamiltonian in a subspace of the full many-body Hilbert space. For any
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given range of values of the coupling g, care must be taken to ensure that
the dimension N of the subspace is large enough so that the calculation may
be deemed to have converged at each value of g in the given interval. This
typically requires N ~ 100, so that the diagonalization has to be done nu-
merically. We construct a typical subspace as the span of a basis consisting
of products of bosonic occupation number states and two-level atomic states.
Since the Rabi Hamiltonian (4.1) conserves the parity (4.2), the matrix rep-
resentation of (4.1) blocks into even and odd parity sectors, simplifying the

numerical calculation.

It is important to note that there is no a priori guarantee that the CI
results, even when done to arbitrarily high (finite) order N, are practically
exact (see e.g. [Lo98], where it is demonstrated that this is not the case for the
multiquantum or k—photon Rabi model). For the Rabi Hamiltonian, however,
we may use the Juddian solutions to benchmark the CI results. As shown in
Table 4.1, a CI diagonalization of the scaled resonant Rabi Hamiltonian in a
basis of N > 61 states reproduces the known exact results for the ninth and
tenth excited states at the representative Juddian point g = g* = 0.75824924
to within the limits of numerical precision (< 1071%). In Table 4.1 we also
tabulate the (even—parity) ground state and (odd—parity) first excited state
energies at ¢ = ¢g*. Although there does not appear to be a formal proof
of this, it is reasonable to expect that, in the same order N, the error in
the lower-lying energies should be at most of the same order of magnitude
as that for the higher-lying states, particularly since the lower-lying energy

eigenvalues appear to converge at least as quickly with increasing N as their
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higher-lying counterparts 2. Results of similar accuracy may be obtained
at other Juddian points, and we may thus assert that the CI results are for

all practical purposes exact over the full coupling spectrum.

Table 4.1: Comparison of the results of a CI diagonalization of the scaled resonant
(w = wo = 1) Rabi Hamiltonian in a basis of N states with the Juddian solution
occurring at g = g~ = 0.75824924 for which the ezact energies of the ninth (Eg)
and tenth (Eqo) excited states are given by Eg = E19 = E* = 1.70023235. Clearly
the CI method effectively reproduces the exact Juddian result for N > 61. Also
shown are the CI results for the even-parity ground (Eg) and odd-parity first
ezcited (E;) state energies at the same coupling g*. The converged CI results for

Eqy and E; are clearly well separated at this value of g.

N EM B M. g gt _ms | e | i | g )
11 | 5.40691445 | 7.30537548 | 3.7067x10° 5.6051x10° | -2.2528 | -2.1830 | 6.9734x10~2
21 | 2.36187405 | 2.36800390 | 6.6164x10~! 6.8777x10~! | -2.3361 | -2.3247 | 1.1383x10~2
31 | 1.70942030 | 1.74049648 | 9.1879x10~% | 4.0264x10~2 | -2.3363 | -2.3255 | 1.0753x10~2
41 | 1.70024476 | 1.70027293 | 1.2407x10~° | 4.0578x10~° | -2.3363 | -2.3255 | 1.0753x102
51 | 1.70023235 | 1.70023236 | 7.9560x10~1% | 8.5000%10~° | -2.3363 | -2.3255 | 1.0753x102
61 | 1.70023235 | 1.70023235 | 8.8867x107!2 | 9.8461x10~!! | -2.3363 | -2.3255 | 1.0753x10™2
101 | 1.70023235 | 1.70023235 | 1.8695x10711 | 8.6098x10~!! | -2.3363 | -2.3255 | 1.0753x10~2

2Although theorems such as those on interleaving eigenvalues may in certain cases be

used to bracket the exact eigenvalues, we have not been able to find any useful theorems
relating the rate of convergence (with increasing V) of the higher-lying eigenvalues to that

of the lowest eigenvalues in the literature.
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4.2 Physical characteristics of the Rabi ground

state

Systems similar to the Rabi Hamiltonian are known to exhibit interesting
ground-state behaviour. A case in point is the polaron, consisting of an
electron interacting with the phononic lattice field in a solid [Mah]. It is
well known that there is a crossover from the so—called large polaron regime,
where the electron is essentially free to roam the solid (and the Frohlich
Hamiltonian, which treats the ionic background as a continuum, applies), to
the small polaron regime, where the discrete nature of the lattice manifests
itself and the electron is to a greater or lesser degree localized to a particu-
lar atomic site. The crossover from large to small polaron behaviour as the
electron-phonon coupling is increased does not constitute a phase transition,
but it does signify a drastic change in the character of the polaron ground
state in a reasonably well-defined coupling regime. In fact, an application
of time-independent (Rayleigh—-Schrédinger) perturbation theory (TIPT) to
the Frohlich Hamiltonian yields an infinite effective mass for the electron at
a particular value of the coupling (see [Mah| and references therein), an ob-
viously erroneous result which may however be used to identify the crossover
regime. Similar crossover behaviour is also observed in the study of a quan-
tum particle tunneling between two wells in the presence of a phonon bath
(see [Lo95] and references therein). In this system, which is closely analo-
gous to the Rabi Hamiltonian and which may also be used as a model of
the two-site polaron, there is competition between the localization inher-

ent in the interaction with the phonons, and the delocalization inherent in
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the tunneling. Again, although several variational studies find evidence for
a sharp (discontinuous) transition, the localization—delocalization crossover
which occurs for intermediate coupling between the particle and the phonons
does not consitute a true phase transition, but simply a change in character

in the ground state of the system.

It is thus not surprising to find that a similar crossover regime exists
for the quantum optical system described by the Rabi Hamiltonian. Using
the (essentially exact) CI results for the resonant Rabi ground-state wave
function, we have also determined the expectation value (¢*), which indicates
to what extent the atom may be regarded as being in its upper or lower
state, as well as the fluctuation Ac* = 4/1 — (0%)?, as a function of the
coupling g. The results, which are shown in Figure 4.1, indicate that there is
a marked change in the physical character of the ground-state wave function
in the region where g ~ 0.6. Below this transitional region, the atom is
predominantly in its lower state. Above the transitional region, the atom
is essentially in an equal superposition of the upper and lower states. The
change in character in the ground state also manifests itself in (n), the average
number of photons in the field in the Rabi ground state, as well as in the
fluctuation An in the photon number, as a function of the coupling g. Again
using the CI result for the Rabi ground-state wave function at resonance,
we find that (n) ~ An = 1 at g ~ 0.6, which defines the same transitional

region as before.

The change in character in the Rabi ground state, although marked, is not

discontinuous, and there is thus no evidence for a phase transition. Note that
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the Rabi system has an infinite number of degrees of freedom (the number of
bosons can be infinite), and that, unlike a finite system, it could in principle
display a true phase transition. If such a phase transition were present,
the ground and first excited states would become degenerate at the critical
coupling for the transition. The absence of such a transition is thus also
substantiated by the CI results for the ground and first excited state energies

Ey and E;, which are well separated in the transitional region, even (see

Figure 4.1: The expectation value (¢*) (solid line) and the fluctuation Ac* (thick
solid line) in the ground state of the scaled resonant (w = wg = 1) Rabi Hamilto-
nian, as a function of the coupling g, as determined via a CI diagonalization in a

basis of 101 even—parity states.

0.6 - ]

0.2 - .

(c%),Ac?0
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Table 4.1) at the Juddian point ¢ = g* = 0.75824924 located well above this
region. Even in the limit wy = 0 where the (analytic) ground state is doubly
degenerate for all couplings and there is definitely no phase transition, this

continuous yet marked character change still occurs in the even-parity ground

state W) (see Figure 4.3).

For the Frohlich polaron problem, the large-to-small polaron crossover is
accompanied by a localization of the electronic wave packet in configuration
space. No such localization occurs in the angular wave packet associated with
the angle variable conjugate to o® [Ca68, Za69, Pei], since the even—parity
symmetry constraint on the ground-state wave function renders the angular
probability distribution flat. This is not surprising, since the Rabi Hamilto-
nian is analogous to the two-site polaron problem, where the localization—

delocalization crossover has a similar meaning to that found here.
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4.3 Approximate many—body approaches to

the Rabi Hamiltonian

Historically, the non-rotating terms included in the Rabi Hamiltonian were
considered to act merely as sources of small frequency shifts, the so—called
Bloch-Siegert shifts, with respect to the Jaynes—-Cummings spectrum [Bl40]
(see also [Mi91, Sh93] and references therein). As discussed in Section 4.1,
however, there has been renewed interest in the full Rabi Hamiltonian (4.1),
and recent many-body analyses of the Hamiltonian include, amongst others,
a weak-coupling time-independent perturbative expansion in g [Ph89, Qi98],
a first-order strong coupling perturbative expansion in wy [Gr84b], a calcu-
lation based on a variational coherent state [Qi98], and a path-integral ap-
proach applied in the weak coupling regime [Za88]. Also, numerically exact
(though not analytic) results for the Rabi system have recently been ob-
tained via the operator method [Fe96], via a power series solution [Qi98],
and via a combination of unitary transformations and numerical diagonal-

ization [Lo96].

4.3.1 Time—independent perturbation theory

Consider first the application of time-independent (Rayleigh-Schrédinger)
perturbation theory to the Rabi Hamiltonian (see also [Ph89, Qi98]). We
write

Hrari = Hé&)bi 5 o ng':{abi (421)
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where
A e t
thi — EUJQO- + Lde b 5
Hpgi = (b1+0) (0% +07) . (4.22)

We restrict the perturbative calculation to the even—parity sector, and only
consider wg # 0 . Since the spectrum of ng‘;)bi, the “noninteracting” (g = 0)

Rabi Hamiltonian is simply determined as

nggbilqlir?)) = EO 0O m=20,1,2,...

|m)|l) m even

) =
Im)|1) modd
EQ® = mw-— _21) wo (4.23)

and since furthermore the ground state of ngbi is nondegenerate for wg # 0,
a perturbative ground-state expansion in powers of the coupling g is feasible
and in principle straightforward. To Nth order, we expand the true ground-
state wave function |Uy) and energy Ej as
N N
Vo) = 1¥°) + L g195) = 0)14) + L g'1¥%")
i= i=

N N
(i 1 il
Eo = EQ+Y ¢'B) =—swo+) ¢'Ef . (4.24)
=1 = =1

We express the ith order correction |¥§) to the ground-state wave function

in the basis consisting of the eigenstates of Hl(%cgbi via

. M o
Wy = 5T iy sk iy, LU (4.25)
m=1

where M is a cutoff introduced for computational purposes. The neglect

of the m = 0 term in (4.25) simply results in an overall rescaling of the
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perturbative ground-state wave function [Mer]. Upon substituting (4.24)
and (4.25) into the Schrédinger equation H|¥o) = Eg|¥y), and comparing

terms of equal order in g, we obtain the equations

1 o ) _
(B9 - EP) ) = 2 T i 2 Vit T iy — 2 vim &)
=2
m=19. 0400, i=12...N

EY) = 27V, i=1,2....N, (4.26)

which are to be solved for the required unknowns {c()} and {E{"}. These
equations must be solved for M large enough so that the results are effectively
independent of M, i.e. so that we may safely neglect {c();: = 1,2,..., N}
for all m > M. This calculation, which we shall refer to as weak-coupling
perturbation theory, may be done analytically to arbitrary finite order using
algebraic manipulation packages such as Mathematica [Mat], and the results
at resonance are shown in Figure 4.2. Since the weak—coupling Rayleigh-
Schrodinger perturbation series for the ground-state energy, which at reso-
nance (w = wp = 1) assumes the form

1 41 113
E('j"veak:—~2-—2g2—294—296+6gm+?912+Egl4+... . (4.27)

does not appear to follow a discernably regular pattern, we have not been
able to analytically determine the radius of convergence of this series. It is
apparent from Figure 4.2, however, that the perturbative approach breaks
down at g = 0.6, which defines the same transitional region as described in
Section 4.2, and further highlights the analogy between the Rabi system and

the polaron problem, where a similar breakdown in TIPT occurs.

Since the spectrum of the Rabi Hamiltonian in the limit wy = 0 is known

[Gr84b], it is in principle also possible to analyze the Hamiltonian via strong—
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Figure 4.2: The ground-state energy Eq of the scaled resonant (w = wg = 1) Rabi
Hamiltonian as a function of the coupling g as determined via 12th, 20th and 50th
order weak—coupling TIPT (solid lines), and via first order strong—coupling TIPT
(thin solid line), compared to results obtained via a CI diagonalization in a basis

of 101 even—parity states (thick solid line).

-0.5

Weak 50

-1.5 Weak 12

-3.5 Weak 20
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coupling perturbation theory. This involves a ground-state expansion in
powers of wy (see comment just before equation (4.11). The first order strong—
coupling perturbative correction (which multiplies wp) to the wy = 0 ground-
state energy E(()O) = —4¢?/w is given by

1 1
EWM = (V4507 0y) = —56—892/‘”2 , (4.28)

where |0, ) is the positive-parity wy = 0 ground state introduced in (4.16).

The resulting approximation to the ground-state energy,

42 1
Bt = — et (4.29)

is also plotted at resonance (w = wp = 1) in Figure 4.2. Although the
energy g™ is quantitatively inaccurate for intermediate coupling, it is
at least qualitatively adequate over the full coupling spectrum, and there
is no breakdown in TIPT analogous to that observed in the weak—-coupling
case. This reflects the fact that the state |V, ), which is analytic in both the
limits of zero and infinite coupling, must incorporate at least some of the
features responsible for the change in character in the Rabi ground state in
the transitional region. This is confirmed in Figure 4.3, where the expectation

value (¢*) and the fluctuation Ac?, in the state |¥.), are shown as a function

of the coupling g.

We have attempted to apply a version of perturbation theory similar to
that used for the weak—coupling case in order to extend the strong—coupling
perturbative approach to higher order. A cutoff M was again introduced
in the strong—coupling expansion analogous to (4.25). We have not, how-
ever, been able to obtain numerically stable results, ¢.e. results which are

effectively independent of the cutoff M, using this approach.
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Figure 4.3: The ezpectation value (67) (solid line) and the fluctuation Ac* (thick
solid line) in the even—parity wo =0 ground state |V.) of the scaled resonant
(w = wg = 1) Rabi Hamiltonian, as a function of the coupling g, compared
to the same quantities (dotted lines) determined via a CI diagonelization in a

basis of 101 even—parity states.
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4.3.2 Variational results for the Rabi Hamiltonian

The variational method is a commonly used approach to simple many-body
Hamiltonians when a computationally inexpensive estimate of the ground-
state energy of the system is required. The basis of the method is a postulated

ansatz for the many-body wave function, containing parameters whose values
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are determined by minimizing the expectation value (H) of the Hamiltonian
in the trial state. This minimal expectation value (i.e. (H) evaluated at
the optimal values of the variational parameters) yields an estimate of the
ground-state energy. A considerable advantage of the variational method is
that the approximate energy thus obtained provides an upper bound for the

exact ground-state energy for any choice of the trial wave function.

It 1s possible to obtain very good results from variational calculations for
the Rabi Hamiltonian [Bi99a]. Motivated by the form (4.11) of the exact
ground-state wave function in the limit ¢ — oo, we initially consider a

normalized two—parameter variational ground state

[T (x,y)) = (4.30)

1
+
————|z) explyc™ /2 ;
\/WI ) explyo™/2]|1)
where |z) represents a coherent bosonic state of the form (4.9). The corre-
sponding variational energy E)" assumes the analytic form (see Appendix C)

1

E[\)’a.r = —§UJO ; q < \/wwg/tl
4  ww?
Var 0
E, = _64g2 , g > wwo /4 . (4.31)

These results were previously obtained by Qin et.al. [Qi98], and the energy

Ey?" is plotted in Figure 4.4 for the case of resonance (w = wy = 1).

It is clear that, for a coherent variational state of the form (4.30), the
variational ground-state energy may at best be regarded as qualitatively
acceptable. Furthermore, although Ey" is both continuous and differentiable
(smooth) at the crossover point g = ,/wwg/4 between the two branches
of the variational solution, there is a discontinuity in the second derivative

d?Ey? /dg* at this point. By contrast, a numerical differentiation of the CI
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(large scale diagonalization) result for the Rabi ground-state energy yields
smooth results for both the first and second order derivatives of Eg with
respect to g. We are thus led to seek a variational trial state better capable

of following the character change in the Rabi ground state.

Figure 4.4: The ground-state energy Eq of the scaled resonant (w = wp = 1)
Rabi Hamiltonian as a function of the coupling g as determined via a variational
caleulation based on the mized parity two-parameter coherent state (4.30) (thin
solid line), as well as via an even-parity projection after variation (PAV) based
on the same state (dotted solid line, see (4.35)), compared to results obtained via

a CT diagonalization in a basis of 101 even-parity states (thick solid line).

CI 101 - PAV
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Eq

-14 + at
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The important omission from the variational ansatz (4.30) is that the
parity symmetry Ilgap; of the Hamiltonian has not been taken into account.
We know from the CI (diagonalization) results that the exact ground state

of the Rabi Hamiltonian is of even parity, and it is clear that the state

TV (2, y)) = %mmpwmm
1

o m /272}\/_%,‘ {|~L +y|T>}

does not have good IlRap; parity. There are two possibilities for incorporating

(4.32)

the correct parity symmetry into the variational calculation. In the approach
known as projection after variation (PAV), the optimal values zop; and yops
of the variational parameters @ and y in (4.30) are determined as before, and
one then projects out the positive-parity component |4V} of the resulting
ground-state wave function |UVa"(z,pue, Yops)) via

|“I’PAV) = (1 + Ilrani) |q’var($0pta Yopt))

= |wvar($0pt:yor>t)> T |qjvar(_$0ptv —yapt» ’ (4.33)
where we have used the fact that
HRabi| ¥V (2, y)) = [¥V*(~2, —y)) (4.34)

for arbitrary @ and y. The variational ground-state energy is then given by

pPAV (TFAY | B | 9P 57
0 (QPAVPI;PAV}

Yo
- prentan (5]

yopt
4w :t:Opt [1 — exp ( Qﬂﬁopt) (1 T Opt)]

yoptxopt
(i)}
. 1 + yopt
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The PAV ground-state energy results are also shown in Figure 4.4, and it
is clear that, although there is considerable improvement on the mixed-
parity variational results for large coupling, the PAV approach still fails at
intermediate coupling where the mixed parity variational results are poor. It
is also apparent from Figure 4.4 that the derivative dEf4" /dg (rather than
d*EFAY [dg?) is already discontinuous at the crossover point g = ,/wwg/4,
so that the PAV approach actually accentuates the spurious discontinuity in

the Rabi ground state.

To include the parity in a self-consistent manner, we consider projection
before variation (PBV). We construct (as yet unnormalized) states of good
parity from the mixed-parity two-parameter state |¥V?*(z,7)) (here x and

y are still free variational parameters) by projection:

(% (2,)) o (1 Hpabi) [V (2, y))
= [V (2,y)) £ [¥Y*" (-2, —y))
x {lz}£[-2)}[{) + y {le) F|-2)} 1)
= |2)z[l) +y le)z|1), (4.36)

where

o0 2n

T = |laV+|—2)=2e"/2 2n
lz). = |z)—|—z) =272 1;] __(m[Qn +1), (4.37)

and the upper (lower) sign in (4.36) thus clearly denotes a state with positive
(negative) parity. Thus we obtain, besides the positive-parity state which

approximates the Rabi ground state, also a negative-parity ansatz for the
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first excited state. For numerical reasons, it turns out to be more convenient
to normalize the states |z)+|]) and |z)<|1) individually before constructing
the combination, and we therefore consider the two-parameter variational

states [Bi99a]
[OEPV2(x,0)) = Ay (Asle)|d) + vAzl2)z] 1)) , (4.38)

where as before the upper (lower) sign refers to a state of even (odd) Igrap;

parity, and

A, = (1+v2)—1/2,

A = 2z (4.39)
The minimization of the expectation value
(Hravi)y ' (z,0) = (U5PV*(e, )| Hrani| V27 V2 (2, v)) (4.40)

with respect to x and v yields two equations for the optimal values z,p,¢ and
Vopt Of the variational parameters (see Appendix C). For both the positive-
and negative—parity cases, the equation for v,y is analytically soluble, so that
the variational (PBV) approach based on the two-parameter state (4.38)
only requires the numerical solution of one non-linear equation in the single
unknown z.p. We will denote the positive—parity variational ground-state

PBV2
Eq

energy thus obtained by , and the corresponding negative—parity first

excited state energy by ETBVZ,

The inclusion of the correct parity symmetry in the variational ansatz
yields a dramatic quantitative improvement in the variational estimate for

the ground-state energy of the Rabi system. -On the scale of our graphs, the
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results for EEBW

are indistinguishable from the diagonalization results over
the full coupling spectrum, and in Table 4.2 we therefore tabulate EJBV?,
together with the optimal values z,,; and Vopts as a function of ¢ for a range

of frequencies. For comparison, we also tabulate the converged CI results

Table 4.2: Comparison of the ground-state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the even—parity two-parameter ansatz
(4.38), EFBV2, with the results of a CI diagonalization in a basis of 101 even-
parity states, Egl. Also shown are the percentage error EEBW - E§I| JES§! x 100,

and the values of the variational parameters tope and vop at the stationary point

of the energy.

wo | w g Eé’BVZ EST % Error Topt Vopt
1.0 | 1.0 | 0.05 | -5.05012x10~! | -5.05013x10~! | 2x10—* 0.071 | -0.050
0.1 | -5.20201x10-! | -5.20202x10~! | 2x10—* 0.142 | -0.101
0.2 -5.83285x107! | -5.83327x10~! | 7x10-3 0.291 -0.208
0.5 -1.14211 -1.14795 5x10~! 0.859 | -0.626
1.0 -4.01580 -4.01693 3x10—2 1.995 | -0.939
2.0 | -1.60039x10! -1.60040x 10! 6x10—4 4.000 | -0.984
5.0 | -1.00001x10? -1.00001 x 102 < 1x10~% | 10.000 | -0.998
1.0 | 2.0 | 0.05 | -5.03334x10~1 | -5.03335%x10~! | 2x10—* 0.041 | -0.033
0.1 -5.13362x10~! | -5.13363x10~! | 2x10—¢ 0.082 | -0.067
0.2 -5.53807x10~! | -5.53809%x10~! | 4x10—¢ 0.164 | -0.135
0.5 -8.51754x107! | -8.51992x10~! | 3x10~2 0.424 | -0.416
1.0 | -2.10416 -2.10825 2x10~1 0.938 | -0.747
2.0 | -8.00798 -8.00855 7103 1.999 | -0.969
5.0 | -5.00012x10! -5.00013x 10! 2x10™1 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.00334 -1.00334 <1x107* | 0.058 | -0.033
0.1 | -1.01345 -1.01345 <1x10™* | 0.116 | -0.067
0.2 | -1.05530 -1.05533 3xio—? 0.237 | -0.138
0.5 | -1.42799 -1.43655 6x10~! 0.699 | -0.430
1.0 | -4.06288 -4.06746 1x10~1! 1.983 | -0.882
2.0 | -1.60156x10! -1.60159x 10! 2x10~% 3.998 | -0.969
5.0 | -1.00002x10? -1.00003 x 10? 1x10-3 10.000 | -0.995
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for the ground-state energy, as well as the percentage error in EFBVY? as
compared to the CI results. The percentage error is less than 1 % over the
full range of couplings and frequencies. Note that the parameters zop; and
Vopt €volve smoothly from their ¢ = 0 values of 0 to their large-g values of
2g/w and —1, respectively, where it is easily seen that they correspond to a

positive—parity solution of the form (4.16).

Table 4.3 contains the analogous results for a two—parameter PBV cal-
culation of the (negative—parity) first excited state energy. The results are
good — the large percentage error in regions where the first excited state en-
ergy is close to zero is artificial, since the absolute error is small in all cases.
The first excited state results are however not in general at the same level
of accuracy as those for the ground state, particularly for small coupling in
the sub-resonant case (wp = 2w). This may be attributed to the absence of
two-boson correlations in the variational ansatz (4.38). For wg much larger
than w, it would be necessary to determine which n—-boson correlations need
to be included in the variational ansatz. For resonance and supra-resonance

(wo < w), however, the calculation presented here is acceptable.

Although variational calculations are useful in determining energies, par-
ticularly due to the upper-bound nature of their results, there is no guar-
antee that the variational wave function itself is accurate. A failure of the
wave function is usually revealed in the calculation of expectation values
of quantities other than the Hamiltonian. To examine the quality of the
(positive—parity) ground-state ansatz (4.38), we have therefore calculated

the expectation values (¢%)FBY2 and (b'b)FBY? in this state. Explicit expres-
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sions for these quantities are given in Appendix C. In Figure 4.5, the results
for (0°)FBVZ at resonance (w = wy = 1) are compared to results obtained
via numerical diagonalization, as well as results based on the mixed—parity

variational ansatz (4.30). The dramatic improvement obtained by the parity

Table 4.3: Comparison of the first excited state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the odd-parity two-parameter ansatz
(4.38), EYBV2 with the results of a CI diagonalization in a basis of 101 odd-parity
states, EYY. Also shown are the percentage error |EYBY? — EFI| JECT x 100, and

the values of the variational parameters zqpy and vopy at the stationary point of

the energy.

wo | w g FEEVE ECI % BError Zopt Vopt

1.0 | 1.0 | 0.05 | 3.96137x10~! | 3.95102x10~! | 3x10~! 0.279 | -0.982
0.1 | 2.84083x10~! | 2.80666x10~! | 1.2 0.401 | -0.964
0.2 | 3.24806x10~2 | 2.33675x10~2 | 40 0.590 | -0.932
0.5 | -9.98782x10~! | -1.01018 1.1 1.067 | -0.885
1.0 | -4.01545 -4.01658 3x1072 1.997 | -0.940
2.0 | -1.60039x10! -1.60040x 10! 6x10~1 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 102 <1x10™% | 10.000 | -0.998

1.0 | 2.0 | 0.05 | 4.90049x107! | 4.90049x10~! | < 1x10~% | 0.070 | -10.050
0.1 | 4.60760x10~! | 4.60758x10~! | 4x10~* 0.140 | -5.098
0.2 | 3.50617x107! | 3.50542x10~! | 2x102 0.270 | -2.864
0.5 | -2.69004x10~! | -2.71650x10~1 | 1 0.595 | -1.355
1.0 -1.96664 -1.97218 3x10-! 1.042 -1.000
2.0 | -8.00764 -8.00821 7Tx10~? 1.999 | -0.970
5.0 -5.00013x 10! -5.00013% 10° <1x%10~% | 5.000 | -0.995

2.0 | 1.0 | 0.05 | -1.01956x10~2 | -1.65009x10~2 | 38 0.173 | -0.102
0.1 | -4.28514x1072 | -6.42075x10~2 | 33 0.340 | -0.212
0.2 | -1.87367x10~! | -2.35841x10~! | 21 0.601 | -0.419
0.5 | -1.11473 -1.15708 3.8 1.079 | -0.706
1.0 | -4.06213 -4.06664 1x10-1 1.986 | -0.882
2.0 | -1.60156x10! -1.60159% 10? 21074 3.998 | -0.969
5.0 | -1.00002x10% -1.00003 x 102 1x10—4 10.000 | -0.995
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projection is clearly seen, and the good—parity variational results, like those
obtained via the CI method, show no evidence for any discontinuity in the
Rabi ground state. The corresponding results for (676)FBV2 are shown in Fig-
ure 4.6, and here the agreement with the CI diagonalization is even better

— the differences between the CI and two—parameter PBV results are not

Figure 4.5: The ground-state ezpectation value of o* for the scaled resonant (w =
wog = 1) Rabi Hamiltonian in the mizved-parity two-parameter variational state
(4.30) (thick solid line denoted by Var), in the two-parameter PBV state (4.38)
(solid line denoted by PBV2), and in the three-parameter PBV state (4.41) (dotted
line denoted by PBV3), as a function of the coupling g, compared to results obtained

via a CI diagonalization in a basis of 101 even—-parity states (thin solid line).
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visible in the plot. Examination of the actual values shows that the varia-
tional values lie slightly below the diagonalization results for g < 0.61, and

slightly above for larger couplings.

Figure 4.6: The ground-state ezpectation value of b'b for the scaled resonant (w =
wg = 1) Rabi Hamiltonian in the mived-parity two-parameter variational state
(4.30) (thick solid line denoted by Var), in the two-parameter PBV state (4.38)
(solid line denoted by PBV2), and in the three-parameter PBV state (4.41) (dotted
line denoted by PBV3), as a function of the coupling g, compared to results obtained
via a CI diagonalization in a basis of 101 even—parity states (thin solid line). On
this scale, the PBV results are virtually indistinguishable from the diagonalization

results.

3.5 |

28 E .

(b'6) 2 F d

Var,
0.5 F CI101/PBV2/PBV3 i

0 | | |
0 0.2 0.4 0.6 0.8 I

33



University of Pretoria etd — Van der Walt, DM (1999)

The quality of the results obtained indicates that the even—parity vari-
ational wave function (4.38) is very close to the exact ground-state wave
function for the Rabi Hamiltonian, and re-emphasizes the importance of in-
corporating the parity symmetry in the variational calculation. In the context
of a quantum tunneling system coupled to several modes of a phonon bath
(see [Lo95] and references therein), variational calculations based on both
a multimode coherent state and a multimode squeezed state ® yield results
which also provide evidence for a discontinuous localization—delocalization
transition which turns out to be nonexistent. These results are thus anal-
ogous to the mixed—parity variational results obtained above for the Rabi
Hamiltonian. Lo and Wong [Lo95] performed a variational calculation for
the quantum tunneling system based on a correlated squeezed state, and
found that the correlations between the various phononic modes resulted in
a significant suppression of the evidence for a discontinuous transition in the
system. We conjecture that, for the multimode Rabi system, the inclusion
of the correct parity symmetry in the variational ansatz will yield results
which closely mimic the localization—delocalization crossover, without pro-

viding any spurious evidence for a discontinuity in the ground state.

It is possible to obtain a three-parameter ansatz for the Rabi ground-
state and first excited state wave functions from the two—parameter ansatze
(4.38) by noting that there is no a priori reason for assuming that the two
combinations (4.37) of coherent boson states should have the same param-

eter x, and we therefore propose the following as a three-parameter ansatz

3A squeezed state is a minimum uncertainty state with a reduction, compared to the

coherent state, in one of the two quadrature components of the phonon mode.
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for the Rabi Hamiltonian [Bi99al:

(UEPY3 (21, 20,0)) = Ay (Arzlzi)z]l) + vAzzlza)%[1))
= A, (Arg{lz) £|—z1)})

+vAgg {|z2) F| —22)} 1) » (4.41)

where as before the upper (lower) sign refers to a state of positive (negative)

IIRan; parity, and

A, = {1 + vz]_I/Z \
Ay = [2 (l Lexp [—21%})]-1/2 5
Ags = [2(1xexp[-203])]7" . (4.42)

We note here that the positive-parity (negative—parity) ansatz (4.41) is
clearly invariant under the replacement z; — —z; (22 — —2») as well as un-
der the simultaneous replacements z; = —z3, v = —v (21 = —z1, v = —v).

For convenience, we consider here only the case z1,z, > 0.

As shown in Appendix C, the minimization of the expectation value of
HRgapi in the state (4.41) again yields an analytically soluble equation for the
optimal value v,p, of the parameter v, and it remains only to solve two coupled
non-linear equations for the optimal values &1 op¢ and 3 opt. Our variational
results for the ground and first excited state energies for the three-parameter
ansatze (4.41) are shown in Tables 4.4 and 4.5, and the percentage error
relative to the diagonalization results is also plotted in Figures 4.7 and 4.8.
It is clear from the values presented that we have obtained very accurate
approximations for both the ground-state and first excited state energies

of the Rabi Hamiltonian with very little numerical effort. The results for
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the ground-state energy agree to within 0.1 % with the CI results over the

full coupling and frequency spectrum, while the maximum error in the first

excited state energy is of the order of 2 % (the same comments as for the

two—parameter case apply here).

Table 4.4: Comparison of the ground-state energy of the Rabi Hamiltonian

obtained from a

(1.41), EFBYE,

PBYV calculation based on the even—parity three-parameter ansaiz

with the results of a CI diagonalization in a basis of 101 even—

parity states, ES'. Also shown are the percentage error prBvs EDCI' JESY % 100,

and the values

stationary point

of the wvariational parameters Ticps, L2.0pt; and Uopy at the

of the energy.
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wo | w g E(I;BVS E‘?I % Error T1,0pt T2,0p1 Vopt
1.0 | 1.0 | 0.05 | -5.05013%10~! | -5.05013x10~! | < 1x10~% | 0.071 | 0.087 | -0.050
0.1 | -5.20202x10~! | -5.20202x10~* | < 1x10~% | 0.142 | 0.174 | -0.101
0.2 | -5.83326x10~! | -5.83327x10~! | 2x10~* 0.292 | 0.351 | -0.208
0.5 | -1.14678 -1.14795 1x10-} 0.856 | 0.942 | -0.618
1.0 | -4.01677 -4.01693 4x10~3 1.987 | 2.003 | -0.935
2.0 | -1.60040x 10! -1.60040%10! <1x10™% | 3.999 | 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 10? <1x10~% | 10.000 | 10.000 | -0.997
1.0 | 2.0 | 0.05 | -5.03334%10~1 | -5.03335x10~! | 2x10~ 0.041 | 0.046 | -0.033
0.1 | -5.13363x10~" | -5.13363x10~" | < 1x 10~* | 0.082 | 0.093 | -0.067
0.2 | -5.53809x10~! | -5.53809x10~! | < 1x 10~* | 0.164 | 0.186 | -0.135
0.5 -8.51976x10~1 | -8.51992x10~! | 2x10—2 0.424 | 0.470 | -0.351
1.0 | -2.10739 -2.10825 4x1072 0.932 | 0977 | -0.738
2.0 | -8.00847 -8.00855 1x10™* 1.995 | 2.003 | -0.967
5.0 | -5.00013x10! -5.00013x 10! <1x10~% | 5.000 | 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.00334 -1.00334 <1x10~* | 0.058 | 0.078 | -0.033
0.1 | -1.01345 -1.01345 <1%x10~% [ 0.116 | 0.155 | -0.067
0.2 | -1.05533 -1.05533 <1x10~% | 0.238 | 0.314 | -0.138
0.5 | -1.43491 -1.43655 1x10~} 0.712 | 0.857 | -0.432
1.0 | -4.06678 -4.06746 2x1072 1.966 | 1.998 | -0.875
2.0 | -1.60159x10" -1.60159% 10! <1x10~% | 3.996 | 4.000 | -0.969
5.0 | -1.00003x10% | -1.00003x102 < 1x%10™* | 10.000 | 10.000 | -0.995
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We note that the ground—state energy is accurately given by the two—
parameter ansatz and that the three—parameter ansatz does not significantly
improve on these results. Furthermore an examination of the variational pa-

rameters for the two ansédtze shows that 1 opt ™ Z2,0pt =~ Zopt- This indicates

Table 4.5: Comparison of the first excited state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the odd-parity three—parameter ansatz
(4.41), EFBY3, with the results of a CI diagonalization in a basis of 101 odd-parity
states, ECY. Also shown are the percentage error |EYBVZ — EFI| JES! x 100, and

the values of the variational parameters T opt, To,0pt; and vVope at the stationary

point of the energy.

wo | w g EFBV:’ EFI % Error Z1 opt 36t Uopt
1.0 | 1.0 | 0.05 | 3.95108x10~! | 3.95102x10~! | 2x10™% 0.119 | 0.316 | -0.956
0.1 | 2.80737x10~! | 2.80666x10™! | 2.5x107? 0.230 | 0.448 | -0.922
0.2 2.39619x10~2 | 2.33675x10~2 | 2.5 0.437 | 0.639 | -0.877
0.5 | -1.00774 -1.01018 2.4x10"1 1.005 | 1.097 | -0.853
1.0 | -4.01643 -4.01658 3x10-3 1.989 | 2.004 | -0.936
2.0 | -1.60040x10! -1.60040x10* <1x10™% | 3.999 | 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 102 <1x10~% | 10.000 | 10.000 | -0.997
1.0 | 2.0 | 0.05 | 4.90049x10~! | 4.90049x10~! | <1x 10~ | 0.055 | 0.071 | -10.050
0.1 4.60758x107! | 4.60758x107! | <1x 1077 | 0.109 | 0.140 | -5.097
0.2 | 3.50544x10~! | 3.50542x10~! | 5x10~* 0.217 | 0.271 | -2.680
0.5 | -2.71436x10~! | -2.71650%x10~! | 8x10~2 0.526 | 0.603 | -1.333
1.0 | -1.97098 -1.97218 6x1072 1.009 | 1.055 | -0.983
2.0 | -8.00813 -8.00821 1x10~% 1.995 | 2.003 | -0.968
5.0 | -5.00013x10! -5.00013x 10! <1x10~% | 5,000 | 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.61742%10~2 | -1.65009%10~2 | 1.9 0.104 | 0.774 | -0.110
0.1 | -6.29720x10~2 | -6.42075x10~2 | 1.9 0.207 | 0.791 | -0.212
0.2 | -2.31762x10~! | -2.35841x10~! | 1.7 0.405 | 0.849 | -0.379
0.5 | -1.14872 -1.15708 7x10~1! 0.966 | 1.147 | -0.658
1.0 | -4.06603 -4.06664 2x10™2 1.969 | 2.000 | -0.875
2.0 | -1.60159x10! -1.60159x 10! <1x10~% | 3.996 | 4.000 | -0.969
5.0 | -1.00003x10% | -1.00003x102 < 1x10™% | 10.000 | 10.000 | -0.995
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Figure 4.7: The percentage error in the ground-state energy of the Rabi Hamilto-

nian obtained from the even-parity three—parameter PBV ansatz (4.41), E§BV3,

compared to the results of a CI diagonalization in a basis of 101 even-parity

states, as a function of the coupling g/w and the two-level splitting wo/w.
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Figure 4.8: The percentage error in the first excited state energy of the Rabi
Hamiltonian obtained from the odd-parity three-parameter PBV ansatz (4.41),
EfBVS, compared to the results of a CI diagonalization in a basis of 101 odd-parity

states, as a function of the coupling g/w and the two-level splitting wo/w. Note

that we have had to truncate the plot in the vertical direction since one obtains an

infinite percentage error when the energy becomes zero.
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that the ground state is a singly peaked function in z-space. The same is
certainly not true for the first excited state where z; opt and 3 op¢ are signifi-
cantly different both from each other and from zpt, and the three-parameter
ansatz is essential to obtain good values for the energy. This suggests that
the first excited state is doubly peaked in z-space. We conjecture [Bi99a]
that the wave function for the n-th state requires in total n + 1 parameters,

where the ground state corresponds to n = 1.

The expectation values of o and the photon number operator b in the
three—parameter variational state (4.41) (see Appendix C) are also plotted in
Figures 4.5 and 4.6. At all couplings, the three-parameter results are in even
better agreement with the diagonalization than the two-parameter results,
and it is clear that the three-parameter wave function is thus extremely close

to the exact ground-state wave function of the Rabi Hamiltonian.

In conclusion, our even—parity two—parameter variational results for the
ground-state energy are already superior to results (see, e.g. [Qi98, Wo96b])
obtained via other approximate many-body techniques. Using the computa-
tionally inexpensive three-parameter variational calculation, we obtain even
better results for both the energies and wave functions of the ground and
first excited states of the Rabi system. This calculation therefore provides a
benchmark of simplicity and accuracy against which other methods, such as

the CCM, may be measured.
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