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Chapter 3

The Coupled Cluster Method

We present here an overview of the CCM. For a more detailed exposition of
the CCM, including a comprehensive list of references and a discussion of
the treatment of excited states and dynamics in the CCM, see, e.g. [Bi91a],
[Ar83a], or [Ar87]. A simple introduction to the CCM is also given in [Bi87].

The basic ingredients of the CCM are the so—called model state |®), to-
gether with a set of mutually commuting (independent) multiconfigurational
creation operators {C’}} defined with respect to the state |®). The model
state plays the role of a reference state or “vacuum?”, so that the state C}|®)
may be thought of as a multiparticle cluster configuration obtained by intro-

ducing [ “elementary excitations” on |®).

The CCM model state and corresponding creation operators must satisfy
two essential requirements. Firstly, the state |®) should not be orthogonal

to the exact ground state. Thus one must ensure that the model state in-
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corporates the underlying statistics and other symmetries of the many—body
Hamiltonian. Furthermore, the creation operators {C}} must be chosen such
that the set {C}r@)} spans the relevant many-body Hilbert space, i.e. such
that {CH@)} is complete.

Besides these formal requirements, the choice of |®) and {C’}} is in prin-
ciple arbitrary [Bi91al. It is clear that a judicious choice should lead to more
rapid convergence of the CCM results, and this consideration should govern
the choice of S and |®). In practice, due to the complexity of the CCM calcu-
lations, the choice of the model state and cluster operator is often the simplest
possible one satisfying the essential requirements listed above. There is no
evidence in the literature that this choice has ever led to physically spurious

predictions.

Although not essential, 1t is furthermore convenient for computational

purposes if the creation operators are chosen such that

Crl®) =0=(d|C] V I#0 (3.1)
and

(®|C;CHR)=0 V¥ J#I. (3.2)

The first condition ensures that the Hermitian adjoint operators {C;} annihi-
late the model state, and the second that the states {Cﬂ@)} form a mutually
orthogonal set. Unless stated otherwise, we will assume in what follows that

this is the case.

To obtain a size—extensive result for the ground-state energy of a many-

body system, the effective many-body Hamiltonian must be separable when
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the system is separated into subsystems which are then removed sufficiently
far from each other in configuration space (the so-called cluster property).
In diagrammatic perturbation theory, Hugenholtz [Hu57, Tho| showed that
linked (connected) diagrams always give contributions to the ground-state
energy with the correct dependence on the extent of the system. Thus, in
order to obtain results for the ground-state energy which obey the cluster
property at any level of approximation, the energy must always be calculated
as a sum over linked diagrams only. In the CCM, this is achieved by making
the following ansatz for the ground-state wave function |U):

[Ih=ae™( B ¢ 1 SN e 5 (3.3)

I#0

The exclusion of the identity operator C§ = 1 from the cluster correlation

operator S leads to the intermediate normalization condition
(0|T) = (®|®) =1, (3.4)

provided that (3.1) is satisfied. The operator S, being additively separable,
corresponds to a sum over linked diagrams, and therefore ensures the size—
extensivity of the CCM ground-state energy at any level of approximation.
The exponential form (3.3) also ensures the correct counting of all possible

correlated /-body excitations from the model state.
In the CCM, the ground-state energy is now determined by rewriting the
ground-state Schrodinger equation H|¥) = E,|¥) in the form
e S He’|®) = Eo|®) . (3.5)
The inner product of (3.5) with the model state |®) yields
Eo = (®le " HeS[@) (3.6)
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which determines the ground-state energy E, as a function of the cluster
correlation coefficients {s;}. In turn, these coefficients are determined via
the coupled equations

(®|Cre™"He®|®) =0, (3.7)

obtained by taking the inner product of (3.5) with the set {CH(I))} I # 0.
The similarity transformed Hamiltonian e ™ He® can be expanded via the

Hausdorff (nested commutator) expansion
1
e ®He’ = H+[H, S+ E[[H’ 818 Lues s (3.8)

Provided that, as is the case for the model systems considered here, the
many-body Hamiltonian contains a finite number of destruction operators
defined with respect to the model state |®), the nested commutator expansion
(3.8) either terminates naturally at finite order or is resummable to closed

form without approximation.

The CCM formalism as presented above, and in particular the ansatz
(3.3) for the ground-state wave function, is in principle exact. However, in
general the cluster correlation operator S must be summed to infinite order
to obtain the exact solution. Therefore, in the application of the method,
approximations are introduced since the operator S must be truncated in
order to render the CCM equations (3.14) tractable. The truncation of S at
finite order, say N, is referred to as the SUB-N approximation scheme, and
has a physically intuitive and appealing meaning, namely that all /-body
correlations on the model state |®) up to / = N have been included in the
CCM approximation to the exact ground-state wave function. Although it is

thus possible to systematically increase the order N of the SUB-N approxi-
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mation scheme, there is however no guarantee that the corresponding results

converge uniformly towards the exact results.

The determination of the ground-state expectation value A of an arbi-
trary operator A via the CCM requires, in addition to the CCM ground-state
ket introduced above, also the ground-state bra. If the bra is simply taken
as the Hermitian adjoint of the ket, then

((D|€StA€S|‘I)>
(®|eS'e5| D)

AHermitian =

= (9] ("' 4¢%)  |@) (3.9)

where the suffix £ denotes a sum over linked diagrams. However, when
expanded in powers of S and ST, the unitary (rather than similarity) trans-
formed operator €5’ Ae® does not in general terminate after a finite number of
terms, and it is not possible to write down an explicit expression for Apermitian-
Also, if the operators S and ST are approximated by truncation at finite or-
der, then Agermitian 1S no longer calculated from the same set of diagrams as
for the energy [Tho], and therefore does not satisfy the requirements of the

Hellmann-Feynman theorem [He35, Fe39].

For a system whose observables are represented by a set of Hermitian
operators, the operators obtained via a similarity transform of the members
of this set are in general non-Hermitian. It is always possible to regain a
Hermitian description of the system, i.e. one where the observables have real
eigenvalues and expectation values, via a redefinition of the scalar product
(see also [Sc92]). For the reasons mentioned above, this is not done in the
CCM. Rather, the ground-state bra (¥| in the CCM is parameterized inde-

pendently from the ket state |¥), and is thus not (to any finite order) the
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manifest Hermitian conjugate of |¥) . This non-Hermiticity can lead to
imaginary values for the CCM energy, but, in earlier work, the appearance
of an imaginary part in the energy has always correctly indicated a phase
transition in the system (see e.g. [Ro90, Bi91b]). Also, as a result of the non—
Hermiticity of the method, an approximate CCM result for the ground-state
energy does not necessarily provide an upper bound for the true ground-state
energy, despite the fact that, as will be shown shortly, the method may be
formulated variationally. This loss of the upper-bound property is offset by
the fact that the parameterization of the bra can be done in a manner which
leads to explicit expressions for arbitrary expectation values, and which is
compatible with the Hellmann-Feynman theorem at any level of approxima-

tion. Here we present two such formulations of the method [Ar83a): In the

so—called normal CCM (NCCM),

(¥|noom = (B[S, §=1+3 50, (3.10)
I#0

whilst in the extended CCM (ECCM),
(Ulgoem = (Dlee™®, == > oiCr. (3.11)

Here the bra-state coefficients {37} ({o7}) are regarded as independent pa-
rameters; the Hermitian adjoint relation which formally specifies these pa-

rameters in terms of the ket—state coefficients {s;} is ignored. In both the

NCCM and ECCM, condition (3.1) leads to the normalization

(|0) = (2|0) =1, (3.12)

!To infinite order, the CCM prescription for the ground-state bra is formally identical
to the Hermitian adjoint of the ground—state ket, and this non-Hermiticity disappears. In
the application of the method, however, the cluster operator must in general be truncated

for computational purposes, and this observation is thus mostly of academic interest.
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and the expectation value of an arbitrary observable A is given by A4 = (¥|A|T).

In particular, the expectation value
H = (U|H|T) (3.13)

of the Hamiltonian becomes a functional of the NCCM (ECCM) coefficients

{s1,51} ({s1,01}), which are then determined by the variational conditions
oH 0H (0H oH

—=0=— [([z—=0=—] . 3.14

831 65[ (88[ 60'1) ( )

In both the NCCM and ECCM, the CCM ground-state energy is obtained

by evaluating the energy functional H at the stationary point where the

variational conditions (3.14) are satisfied. In the NCCM, the coefficients

{51} appear only linearly in the functional

-H"NCCM — (@|56_3H63|@> ; (3.15)
so that the conditions
H
8—~ = (®|Cre " He’|®) =0 (3.16)
85;

identically reduce to the previous equations (3.7), and it is clear that the
expression (3.6) for the CCM ground-state energy again obtains. Thus in
the NCCM the coefficients {s;}, and therefore also the CCM ground-state
energy, are determined independently of {37}, and the bra—state coefficients

are only required if other ground-state properties of the system are to be

calculated. In the ECCM, however,
FEGCM = (@|626_5H63|@> (3.17)

and the CCM equations (3.14) for {s;} and {o;} are coupled. Thus both

sets of coefficients have to be solved for simultaneously in order to determine
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the ground-state energy. As before, in the SUB-N approximation scheme,
the operators S, S (S, %) in the NCCM (ECCM) truncate at order N.

To any finite order in both the NCCM and ECCM, an arbitrary ground-
state observable is calculated as a sum over linked diagrams only, and there-
fore exhibits the cluster property. In the NCCM, however, the ground-state
bra amplitude S itself contains unlinked terms. Due to its double exponential
structure, the ECCM has the added advantage that both the ground-state
ket and bra amplitudes are fully linked. As such, the ECCM, although com-
putationally more involved than the NCCM, is capable of describing global
phenomena such as phase transitions [Bi9la, Ar83a]. In the LMG model, for
example, a spherical nucleus consisting of /N nucleons undergoes a transition
to a deformed shape above a region of critical coupling. The transition is only
a true (sharp) phase transition in the thermodynamic limit N — oc with the
density of nucleons held fixed. Arponen [Ar82] has shown that, at least in
low order (SUB-2), the NCCM based on a model state of spherical symmetry
cannot accurately approximate the exact LMG ground-state energy in the
deformed phase. Although no formal proof exists, it has been conjectured
[Ar82] that the NCCM SUB-n results, for a model state of spherical symme-
try, would not be accurate in the deformed phase for any finite n, and that
a deformed model state is thus necessarily required for a successful NCCM
calculation above the critical coupling regime. Subsequently, it was shown
[Ar83a, Ar83b, Ro89| that it is possible, within the ECCM formulation of
the method, to obtain accurate CCM results for the LMG ground-state en-
ergy over the full coupling spectrum, encompassing both the symmetric and

deformed phases, using a single model state.
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