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Chapter 2

The Model Hamiltonians

In this chapter we introduce the general Hamiltonian which spans the entire
class of non—adiabatic systems considered here. We discuss the two special
cases of the general model whose analysis forms the remainder of the thesis.
The symmetries associated with these systems are of particular interest, and

these are discussed in detail.

2.1 The general model Hamiltonian

The most general form for the fully quantized Hamiltonian describing a two-
level fermion interacting with two independent bosonic field modes in the

dipole approximation is given by
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l
H = 5&)0 o + wi 5151 + woy b;bg

+m (bl +b1) 0" — 2 (B} +82) 0, (2.1)

where wq is the fermionic level splitting, w; and w, are the frequencies of
the two modes and 1; and 7, the corresponding dipole coupling constants
linking the bosonic modes to the fermion and thus indirectly to each other.
The operators by, by and bL b;ﬂ are boson annihilation and creation operators,

respectively, satisfying the standard commutation relations

[b1,0]] = [b2,8]] =1

[b,b2] = [b],08] = [b1,b}] = [bsb]] = 0, (2.2)

and o%, 0¥, 0% are Pauli matrices which form a convenient basis for the two—
dimensional fermionic subspace of the full Hilbert space relevant to the
Hamiltonian (2.1). The origin of the fermionic energy scale has been cho-
sen such that the lower (upper) fermionic state corresponds to energy —%wg
(3wo), and the constant zero point energy jwi + jws of the field modes has
been neglected. For convenience, we employ units such that 2 = 1. A deriva-
tion of the general model Hamiltonian (2.1) in the context of quantum optics

is given in Appendix A.

There is a parity symmetry associated with the Hamiltonian (2.1). We

define an operator

1
N =blb; + blb, + - (e% +1) (2.3)

which counts the number of bosonic and fermionic quanta (excitations) and
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introduce the parity operators (with eigenvalues +1)

I, ‘= ekip {m 115, + %(ay + 1)]} — —exp {inblty} o,
II, = exp {z'fr -beg - %(orJE - 1)]} = —exp {iwbgbz} T
I = —ILI, -
= exp {i'fr -bJ{bl + biby + % (0. + 1)]}
= —exp {iﬂ'bibl} exp {iwbgbg} a; - (2.4)
Then
[H,IL] = ikwy exp{irblb,} o,
[H,1;] = —ihwy exp{inbib,} o,
[H,II] = 0, (2.5)

where we have used the relevant identities from Appendix B. The eigenstates

of the Hamiltonian (2.1) may thus be chosen to be states of definite II parity.

2.2 Special cases of the general Hamiltonian

2.2.1 The Rabi Hamiltonian

The dipole interaction between a two-level atom with level-splitting wy and

a single electromagnetic field mode of frequency w may be modelled by the

Rabi Hamiltonian

Hpani =

1
iwgaz + wbdlb 4+ g (bT-I—b)O'I
1

w0 o + wbb + 2g (bT + b) s (2.6)
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which is the simplest non-trivial realization of the general model Hamiltonian
(2.1), obtained by setting w; = w,w, = 0, and with the coupling convention-
ally relabelled via n; = n = 2¢,7, = 0. This model was originally employed
in the context of nuclear magnetic resonance [Ra37, Ra54], and is of topical
interest in quantum optics [Sh93, Mi91]. The Hamiltonian (2.6) conserves
the parity

HRani = exp {irr [bTb + % (o + 1)]} . (2.7)
It is important to note that the Rabi Hamiltonian is not a continuous limit
of the general model Hamiltonian (2.1), since it operates in a fundamentally
different Hilbert space where the additional degrees of freedom corresponding

to the second bosonic mode are absent.

2.2.2 The linear F ® ¢ Jahn—Teller and pseudo Jahn—

Teller Hamiltonians

In the case of degenerate bosonic modes (w; = wy; = w) equally coupled
(m = n2 = n) to a fermionic system, the general Hamiltonian (2.1) reduces

to the linear £ @ e pseudo Jahn-Teller (PJT) model

1
Heyp = Zwoo® +w biby + w blb,
+n (bl +b1) 0 — 5 (b} +b2) 0¥ . (2.8)

If, in addition, the fermionic levels are degenerate (wy = 0), then we obtain
the (pure) linear £ @ e Jahn-Teller (JT) Hamiltonian Hjr. These models
are of relevance not only in quantum optics, but also in quantum chemistry

(Berb], where they describe the non-adiabatic vibronic interaction between a
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two—fold degenerate or quasi-degenerate electronic level (E£) and a doubly-
degenerate nuclear vibrational mode (e). The designation “linear” indicates
that the vibronic interaction terms, expanded in powers of the nuclear con-

figurational coordinates, have been truncated at first order.

There is another symmetry, besides the parity symmetry (2.4), associ-
ated with the PJT Hamiltonian (and therefore also with the JT Hamilto-

nian) which is not obvious from the form (2.8). If we perform the canonical

transformation
a; = 1 (by + 1b2) al = L (bJ{ = Ebg)
V2 2
1 . 1 )
(]',2 = E (b]_ —_ sz) G-E = _2 (b‘{ + Zbg) L] (29)

which preserves the commutation relations (2.2), then the Hamiltonian (2.8)

and parity operator (2.4) become

Hpyr = §w0 o® + waial 4 wagaz
+ v (a1 + ag) ot + v (aJ{ - (12) o~ (2.10)
. 1
IIp;r = exp {zvr [a{al-l-agag-l—i(az—{-l)]} : (2.11)

where v = 17/+/2. In the form (2.10), it is readily seen that, for arbitrary w,

Hpjr commutes with the operator

1
J = elai~alas + -2~Jz ; (2.12)

The transformation (2.9) and the symmetry [Hpyr,J] = 0 have a simple
physical meaning. In the quantum optics context, Equations (2.9) corre-
spond to a transformation to field modes of circular rather than linear polar-

ization, with aJ{ (a%) denoting an operator which creates a photon of positive
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(negative) helicity. The operator J then represents a conserved angular mo-
mentum component. Since J also commutes with the parity operator (2.11),
the eigenstates of Hpjr (and Hjr) need thus only be sought amongst those

states with definite Ilp;r and J.
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