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Chapter 1

Introduction

Non-adiabatic models of a two-level fermionic system interacting with ei-
ther one or two independent modes of a quantized bosonic field are of topical
interest for several reasons. Firstly, these models serve as generic proto-
types for a wide variety of physical systems. In quantum optics, models of
this form are employed to describe the resonant or near-resonant interaction
of a two-level atom with either a single or two perpendicularly polarized
modes of a quantized electromagnetic field [Sh93, Mi91]. In the case of a sin-
gle electromagnetic mode, the model is known as the Rabi Hamiltonian, or
equivalently as the Jaynes—-Cummings model without the rotating wave ap-
proximation (RWA). In quantum chemistry, models of this form describe the
vibronic coupling between two electronic levels and two degenerate nuclear
vibrational modes in a molecule or crystal. This is known as the linear E® e
Jahn-Teller model in the case where the electronic levels are degenerate, and

as the linear £ ® e pseudo Jahn—-Teller model in the case where the electronic
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levels are non—degenerate [Berb]. The term non-adiabatic arises in the con-
text of quantum chemistry, and refers to the intimate coupling between the
electronic and nuclear motions which occurs when it is no longer possible for
the electrons to adiabatically follow the generally slower displacements of the
more massive nuclei. Yet another realization of these models is provided by
the two—site polaron in solid state physics, describing the interaction of an
electron confined to two sites in a crystal lattice with the quantized phononic

field of the lattice [Mah, Hak].

Judd [Ju77, Ju79] and subsequently Reik [Re87], guided by the results
of early numerical diagonalizations [Lo58, Th68], proved the existence of an-
alytic solutions for the linear £ @ e Jahn—Teller and Rabi Hamiltonians at
isolated values of the coupling. Complete analytic solutions, valid for all
couplings, are however only known for a few special cases of the class of
non-adiabatic Hamiltonians considered here. Given their physical relevance,
these models have therefore been the subject of much theoretical investiga-
tion. Recent many-body analyses of the Rabi Hamiltonian include the use of
time-independent perturbation theory (TIPT) [Gr84b, Ph89, Qi98]. a vari-
ational approach [Qi98], and several methods aimed at finding numerically
exact results for the Rabi spectrum [Lo96, Fe96, Qi98]. Several variational
calculations have also recently been performed for the linear E®e Jahn-Teller

system [Lo91, Hu98].

The theoretical models considered here always represent, to a greater or
lesser degree, an idealized simplification of the real physical system under

consideration. It is in the very simplicity of these models, however, that
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their further utility lies. Besides the isolated analytic solutions, quasi—exact
numerical results for these models are also available, or relatively easy to
obtain. Furthermore, simple Hamiltonians such as these often contain in-
teresting symmetries, and as such are ideal testing grounds for approximate

many-body methods.

Finally, apart from their practical value, these models represent some
of the simplest non-trivial examples of quantum many-body physics. The
straightforward appearance of these models hides a wealth of interesting
quantum behaviour, which is readily contrasted with that of their classical
or semi—classical counterparts [B196]. It is instructive to note that, despite
intensive investigation, a complete analytic description of even the ground

state of the Rabi Hamiltonian has not yet been found.

In this thesis, we therefore analyze several of these Hamiltonians from the
perspective of quantum many-body theory. As a starting point, it is worth
summarizing the characteristics which a good many-body method should

embody:

1. It should be a microscopic or ab initio method, i.e. it should be a
first—principles approach which readily reveals the physical significance
of both its approximation scheme and its results. This requirement is
generally not met by, e.g., a large scale numerical diagonalization, or a

quantum Monte Carlo calculation.

2. A related but different requirement is that the method should always be

exact in principle, i.e., it should reproduce the exact result in the limit
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where the method is applied to infinite order, or equivalently, is applied
without any form of approximation. This excludes perturbation theory,

which fails in this respect when applied to non—perturbative systems.

3. It should be universal, i.e. the method should be applicable, with very

little or ideally no modification of its standard form, to any given many-
body system. This requirement excludes, e.g., the method of canonical
transformation, which generally requires either a lucky guess, a trial-

and—error approach, or an inordinate amount of physical insight.

. The method should be capable of systematic improvement, and should
yield results that converge uniformly as the order to which the method

is applied is increased. In general, this excludes the variational method.

. Finally, the application of the method should be computationally sim-

ple or, at the very least, tractable.

The coupled cluster method (CCM) is one of the few quantum many-

body techniques which can lay claim to satisfying almost all the criteria

listed above. This non—perturbative method, originally developed in nuclear

physics by Coester and Kiimmel [Co58, Co60], has since been successfully

applied in the analysis of the many-body ground-state in quantum chem-

istry [Ci66, Bar78, Pu82, Mo87, No87, No88, Bar89, Wo94, Wo96a], the

electron gas [Bi78, Em84], quantum tunneling in the presence of a phonon

bath [Wo96b], lattice gauge [Bi93, Le93, Ba96, Le98] and continuum field

[Fu87, Ar90] theories, and spin and electron lattice models [Ro90, Bi91b]. An

alternative formulation of the CCM, the so—called extended coupled cluster

method (ECCM) introduced by Arponen [Ar83a], has also been successfully
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applied [Ar83a, Ar83b, Ro89] to the Lipkin-Meshkov-Glick (LMG) model
[Li65] in nuclear physics. This is a particularly important application of
the method, given that the nucleus in the LMG model is known to exhibit
a phase transition from a spherically symmetric to a deformed shape. Both

the normal and extended CCM have also been reformulated in order to study

excited states [Em81, Ar83a, Ar87].

In addition to its power and scope, the CCM also yields size—extensive
results for all ground-state observables, including the ground-state energy, at
every level of approximation (the cluster property). This is due to the CCM
prescription for calculating the expectation value of an arbitrary ground-
state observable, which implies that such expectation values are calculated

as a sum over linked diagrams only.

No many-body method is perfect, and the CCM does display some less
desirable features. There is no guarantee of uniform convergence in the CCM,
although this is often the case in practice. Also, the method can sometimes be
computationally expensive, although this is often the result of an injudicious

choice for the model state and cluster correlation operator which characterize

the CCM.

Perhaps the most serious known criticism of the method is that the CCM,
to any finite order, is manifestly non-Hermitian, relying on an independent
parameterization of the ground—-state bra and ket. Although the CCM is a
genuine variational method, this non-Hermiticity implies that an approxi-

mate CCM result for the ground-state energy no longer provides an upper
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bound to the true ground-state energy '.  This loss of the upper—bound
property is offset by the following factors: firstly, the similarity transformed
Hamiltonian which occurs in the CCM formalism is amenable to the Haus-
dorfl expansion, which in most cases either terminates naturally or is re-
summable to closed form without approximation; secondly, at every level of
approximation, the CCM in its purest form is compatible with the Hellman-—

Feynman theorem.

The primary aim of this thesis is to investigate the applicability of the
CCM to the class of non-adiabatic Hamiltonians introduced above. In par-
ticular, we apply the CCM to the ground and first excited states of the
Rabi Hamiltonian and the linear £ @ e Jahn-Teller and pseudo Jahn-Teller

systems.

For comparison, we also consider the application of other many-body
techniques to the Rabi and linear £ @ e Jahn—Teller systems. We present an
operator-based method which simplifies the analysis of the isolated analytic
(Juddian) solutions for the linear E®e Jahn-Teller models, and yields explicit
closed—form expressions for the wave functions at the Juddian points. We also
perform a weak—coupling TIPT calculation, analytic to any finite order, for
the Rabi Hamiltonian, as well as a simple variational calculation which yields
results, for both the ground and first excited states of the Rabi Hamiltonian,

far superior to those obtained by previous methods.

The CCM has previously been applied to the Rabi and linear £ ® e Jahn—

1See also [Sc92] for a discussion of the implementation of a variational principle in
p p

certain non-Hermitian systems.
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Teller systems. Wong and Lo have used the CCM to calculate the ground-
state energy of both the multimode Rabi [Wo96b| and the linear E ® e pure
(as opposed to pseudo) Jahn-Teller Hamiltonians [Wo94, Wo96a]. In both
cases, these authors perform a unitary transformation which destroys at least
two of the symmetries of the Hamiltonian, and then apply the CCM to the
transformed Hamiltonian. For the linear E ® e Jahn—Teller system, where
the fermionic levels are degenerate, they obtain very accurate results over the
full coupling spectrum. For the Rabi and pseudo Jahn-Teller Hamiltonians,
however, the fermionic level splitting is nonzero, and as a result the eigen-
states of these systems are of definite symmetry. Thus the approach of Wong
and Lo yields quantitatively inaccurate CCM results for the Rabi Hamilto-
nian in the intermediate coupling regime, does not readily generalize to the
pseudo Jahn-Teller system, and also does not allow for a CCM calculation

of the first excited state energy.

Our main purpose is to show that it is possible to obtain quantitatively
accurate results for the ground and first excited state energies of the Rabi,
linear £ ® e Jahn-Teller, and linear £ ® e pseudo Jahn-Teller systems within
the CCM by maintaining the correct symmetries throughout the analysis. We
show that this is in fact possible, provided that a CCM model state is chosen
which is also capable of following the change in character which occurs in the

ground state of these systems.

We also demonstrate that, for a naive choice of model state and corre-
lation operator, the CCM fails when applied to the Rabi and linear F @ e

Jahn-Teller Hamiltonians. We show not only that the non—-Hermiticity of the
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CCM can lead to a breakdown in the method, but also that the method may
fail as a result of an essential incompleteness due to the exponential form
of the CCM ansatz for the ground-state wave function. Given the broad
freedom of choice for the model state and correlation operator implicit in the
method, these defects have severe implications not only for the CCM, but

also for other methods which employ the exponential form.

To conclude this introduction, we present here an outline of the remainder
of this thesis. In Chapter 2 we introduce the general class of model Hamilto-
nians under consideration. Chapter 3 gives an overview of the coupled cluster
method. Chapters 4-6 are devoted to the Rabi Hamiltonian, and Chapters
7-8 to the Jahn-Teller systems. In Chapter 9 we summarize the main results

of the thesis, and present conclusions.
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