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Summary

Information Theory is an important element in many sciences and technologies. The aim of this
research is to investigate the application of Information Theory as a method of analysing aspects of
music with the purpose of developing models of selected characteristics in compositions.

The candidate developed computer software to apply the principles of Information Theory to analyse
pitch distribution, interval distribution, rhythmic content, and a combination of pitch and rhythm.
Results obtained with the analyses were applied to develop statistical and graphical models of music.
The programmes comprise three independent programmes: a graphical interface for entering the
information, a second programme calculates the entropy values by applying analytical routines to the -
musical information. A third programme generates the tables and graphical models from the
information obtained with the analyses programmes, in a variety of formats. Although each
programme may be used independently, they are mainly designed for use as a single application in
which the individual programmes are totally transparent.

Twenty-two compositions, categorised into three stylistic groups, were analysed with the computer
programmes. The three groups are Contemporary Popular songs, Classical Art songs and Art songs
of the twentieth century. The selection of the first two groups was based on their continued popularity
ratings as indicated by the availability of recordings. In the case of the Contemporary Popular songs
the availability of printed scores was also a criterium. Unfamiliar songs were selected for the third

group.

After the generation of the entropy values of the songs, a combination of the resultant entropy values
was compiled in both tabular and graphical formats.

Each of the individual songs generated unique entropy and stochastic values — an indication of their
unique characteristics. To obtain the average, and maximum and minimum values for each group of
compositions, the entropy and stochastic results for the individual compositions in each group were
combined to develop further tabular and graphical models. The minimum and maximum entropy and
stochastic values differ significantly for each of the groups. The contemporary popular songs show
the largest numbers of stochastic orders and the highest redundancy values; the contemporary art
songs generated the lowest number of stochastic orders and the lowest redundancy values. With one
exception — Franz Schubert's Ave Maria — the classical art songs generated entropy values and
stochastic orders that, with some overlapping, fall between the highest value of the contemporary
popular songs and the lowest values of the contemporary art song group. Ave Maria, which has found
considerable popularity as a contemporary popular song, generated values that overlap with both that
--of the popular song group as well as that of the classical art song.

This research shows that statistical models of specific compositions as well as music styles may be
generated with Information Theory. Using the methods described in this dissertation the
characteristics of individual compositions may be compared with models representing specific
musical characteristics and styles.

analysis, computer, information, intervals, melody, model, music, pitch, popular, predictability,
rhythm, statistics, style, unpredictability
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Opsomming

Informasie Teorie het noodsaaklike toepassings gevind in vele tegnologieé en wetenskappe. Met
hierdie navorsing word die toepassing van Informasie Teorie, om sekere aspekte van musiek te
analiseer, ondersoek. Die doel is om vas te stel of modelle van kenmerkende aspekte van musiek
daarmee ontwikkel kan word.

Rekenaarprogrammatuur is deur die kandidaat ontwikkel om die beginsels van Informasie Teorie op
analise van toonhoogtes, intervalle, en ritmiese inhoud, asook n kombinasie van toonhoogte en ritme
van musiek toe te pas. Die resultate van die toepassing is gebruik vir die skep van statistiese en
grafiese modelle. Die programmatuur bestaan uit drie selfstandige rekenaarprogramme: ‘n grafiese _
koppelvlak, waarmee die musikale inligting in die databank van die rekenaar gevoer word, ‘n tweede
program bereken die entropiewaardes deur die toepassing van die analitiese algoritmes op die
musikale inligting. Die derde program is verantwoordelik vir die daarstelling van die tabulére en
grafiese modelle in ‘n verskeidenheid formate. Die genoemde programme kan onhafhanklik gebruik
word, maar is ontwerp om hoofsaaklik as ‘n eenheid gebruik te word.

Twee-en-twintig komposisies, wat aan drie verskillende stilistiese groepe behoort, is gebruik vir die
ontleding met die rekenaarprogrammatuur. Die drie stylgroepe is: hedendaagse populére musiek,
kunsliedere uit die Klassieke tydperk, en kunsliedere van die twintigste eeu. Die seleksie van die
eerste twee groepe was volgens populariteit soos aangedui deur die aantal opnames op plaat en CD
wat daarvan beskikbaar is. In die geval van die hedendaagse populere musiek is die beskikbaarheid
van gepubliseerde musiek ook in ag geneem. Die derde groep is algemeen onbekende werke.

Nadat die entropiewaardes van elke komposisie bereken is, is dit in tabulére en grafiese formaat
saamgestel.

Elk van die individuele komposisies het unieke entropie-resultate gelewer. Om die gemiddelde,
maksimum, en minimum waardes van elk van die groepe te verkry, is die entropiese en stochastiese
waardes van die individuele komposisies in elke groep, gekombineer en verdere tabulére en grafiese
modelle geskep. Die minimum en maksimum entropiese en stochastiese waardes van elk van die
groepe verskil kenmerkend van mekaar. Die hedendaagse populére musiek toon die hoogste aantal
stochastiese reekse met die hoogste oortolligheidswaardes; die groep hedendaagse kunsliedere het
die laagste aantal stochastiese reekse gegenereer asook die laagste oortolligheidswaardes. Met een
uitsondering — Franz Schubert se Ave Maria — het die Klassieke kunslied stochastiese reekse en
- entropiewaardes getoon wat, met ‘n mate van oorvleuling, tussen die hoogste waardes van die
hedendaagse populére group en die laagste waardes van die hedendaagse kunslied-groep €. Ave
Maria, wat ook baie bekendheid verwerf het as populére musiek, het waardes getoon wat oorvieuel
“met die waardes van beide die hedendaagse populére groep en die Klassieke kunslied.

Hierdie navorsing toon aan dat statistiese modelle van individuele komposisies sowel as van
musikale style met behulp van Informasie Teorie ontwikkel kan word. Die toepassing van die metodes
wat in hierdie dissertasie beskryf word, maak dit moontlik om stylkenmerke van individuele
komposisies te vergelyk met modelle wat spesifieke karaktertrekke van musiek verteenwoordig.

analise, informasie, intervalle, melodie, model, musiek, onvoorspelbaarheid, populér, rekenaar, ritme,
statistiek, styl, toonhoogte, voorspelbaarheid,
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INTRODUCTION

1.1 Music analysis and musicology

Since ltalian scholars began studying musical style during the early years of the seventeenth century,
music analysis has become the backbone of musical study of many different kinds. Guido Adler (1855
- 1941) formulated the modern idea of style analysis about 100 years ago and it has become an
_integrated part of most branches of musicology. Analysis is an invaluable tool by means of which
music can be assimilated, stylistically classified and identified, learned, and its techniques under-
-stood. The results of analytical studies are the subject of countless books on harmony, form,
intérpretation, composition, and music history. In more recent times music analysis has also become
an important aspect of comparative musicology. It is an effective method of learning and describing
the style and characteristics of one musical tradition by comparing it with another. Most people will be
able to recognise that there is a difference between a composition by Bach and Mozart, or between a
work by Schoenberg and a Zulu song, but to describe such differences it is necessary to use a proc-

ess of analysis, even if this is done mentally.
The Harvard Dictionary of Music defines musical style as follows: -

In a musical composition, 'style' refers to the methods of treating all the
elements — form, melody, rhythm, etc. In practice, the term may be applied
to single works; ... to composers; ... to types of compositions; ... to media; ...
to methods of composition; ... (Apel: 1983, pp. 811-12)
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The products of musical analysis are those measurable elements that contribute to the specific char-

_acteristics of musical style. For many years most stylistic analyses have been analogous, which
means that descriptive models are established that in turn may be used for rough comparisons and to
develop a descriptive terminology to label the results of subsequent analyses. The use of models and
vague terminology (usually idiosyncratic to music) often leads to misuse or is often inadequate. The
results of such research is sometimes vague and misleading, especially when applied to contempo-
rary music. To overcome these problems various researchers have endeavoured to devise and
develop new methods, of which the Schenkerian system of analysis and Hindemith's classification of
chords are only two examples. Some of these attempts were more successful than others but all pale
by the progress made in other fields of scientific research with the help of modern technology.

1.1.1 The role of technology in music analysis

During the last twenty years electronic technology has forged ahead at an intimidating pace. It seems
that mainly creative musicians were able to keep up — and only just — by incorporating the most up
to date technology in the creative process. Many composers and performers have at their disposal all
the benefits of the increasing powers of synthesisers and computers and the music industry has
thrived equally. It therefore seems peculiar that analytical musicologists seemingly have progressed
little further than the use of recording equipment and word processors, and continue to rely exclu-
sively on traditional, and often archaic, methods of stylistic analysis. Except a handful of progressive
researchers — who are often regarded with some degree of suspicion — musicology has virtually
been left behind. This is, however, not always due to a lack of interest among researchers but is
mostly the result of a lack of training in néwly established and innovative avenues of research. Very
often, institutions that train musicologists and researchers, are themselves not properly equipped, or
lack the necessary trained personnel to broaden the horizons of research methodology.

[n those cases where computer technology is being used for research in stylistic analysis, there is a
'ten'dency to base the research on established traditional methods. Computers are merely applied as
an aid and for the sake of expediency. As a result, those aspects of analysis that may still benefit
from a degree of subjective interpretation — for the purpose of scholarly discourse — become devoid
of any interpretation. Obviously, a degree of subjective interpretation can be incorporated by the
programmer which would provide a degree of predetermined subjectivity to the results.

Some experiments that involve music have been done to make better use of the computer's ability to
process information very rapidly and effectively. These include the application of fractal principles,
and several statistically derived calculations, all with varying degrees of potential for practical appli-
cation. Although these experiments have shown varied results most of them have not found any real,
substantial or wide, acceptance, mainly because of the lack of co-operation between musicologists

and technologists. Since the first generations of personal computers were mainly graphically or text
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orientated rather than sound orientated (most are unable to produce more than a basic beep), music
_applications require that the elements of music (pitch, rhythm, etc.) are first translated into graphical
symbols or numbers. This requires a sound knowledge of the intricacies of computer graphics. Many
of the more innovative music applications therefore require a good knowledge of music as well as
proficiency in computer programming. More recently computer designers and software developers
have begun to integrate extensive sound and graphical capabilities as basic components of standard
computer equipment and at prices that are within the reach of most musicians. The improved acces-
sibility of computers, in both a technical and material sense, now allows for increased research and

applications of computers to music.

1.1.2 Information Theory

The essential assumption of Information Theory, as applied to Communication Science, is that it
provides statistical information about recurring structural elements in any form of communication. In
most forms of communication as well as other applications, the application of Information Theory has

become a very complex but effective tool with many uses.

Information Theory has been applied to many different fields of study and, as shall be shown in the
following chapters, it has also been applied to music. However, during the 1850s to 1970s, when most
of the experiments with music were done, only mainframe computers had the computational power
required for the calculations, and only a few researchers had access to these — many with a limited
background in music. As a result the research was time-consuming and often costly and could hardly
be pursued extensively. With the event of the greatly improved and faster personal computers and
simplified computer languages, the possibility has arisen for non-computer specialists to make use of
these facilities to a greater extent. Most personal computers today have a greater capacity and oper-
ate faster than earlier mainframe computers. Because they are also relatively inexpensive most

serious researchers now have computers at their disposal.

Early experiments with Information Theory and music were limited to using single elements such as
pitch counts or rhythmic values. These elements are the most obvious and may readily be counted
manually. However, calculations done by hand with hand-held calculators are time consuming and
prone to errors. To apply Information Theory most effectively and to obtain more interesting and
significant results, it is desirable to apply it extensively to as many structures of music as possible. As
an analogy of this process the following example may be used: counting single notes in a melody
exclusively and establishing the stochastic processes involved will give only a limited amount of
information about the melody. Alternatively, if ever increasing groups of notes (melodic units, semi-
phrases, phrases and periods) are statistically compared, the outcome will provide much more infor-
mation about the music. Furthermore, it is also important that the collection of information and
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subsequent calculations are as accurate as possible, as even slight errors will produce erroneous

_ results.

1.2 Aims of this study

With this research the candidate aims to show that, by means of specifically developed computer
programmes, the principles of Information Theory may be applied to elements of music that were not
previously included in research with Information Theory. Most of the research done in the past was
limited to single dimensions of music, such as pitch or rhythm. In this dissertation, the analysis is
extended to include interval sequences, rhythmic sequences and a variety of multi-dimensional
combinations. Due to computational limitations of the past, analyses of subsequent structural ele- -
ments were usually limited to the second or third order'. With the computer programmes developed

for this research all the possible orders may theoretically be generated.

The information obtained by the analyses are combined in graphs to show that it is possible to pro-
duce models of particular music styles or characteristics. Using models of music analysed in this
manner the proposed hypothesis is that particular music or music that exhibits specific characteristics
should therefore also generate similar results or that the results should at least be confined to specific

limits.

Furthermore, the results of the analyses are used to establish whether the information content of
music has a possible bearing on its popularity with the listening public. The candidate's hypothesis is
that there is a direct link between the propensity of music to become generally popular and the en-
tropy (information content) of the music. As the entropy of music increases, its general popularity or
tendency to become generally popular should therefore decrease. Conversely, this implies that repe-
titious music with regular and repeated rhythms and within conventional tonal harmonic constraints
would be less entropic (more redundant or predictable) and will therefore produce higher order values

and should therefore be more popular or should at least have a greater propensity to become popular.

Intuitively most people would agree that certain types of music are more accessible or more popular
thén others. For examhle, why would Beethoven's Symphony No. 5 be singled out for popularisation
above any of his other compositions, by adding rock beats and other devices to it? Similarly many
listeners would prefer to repeatedly listen to an aria of a 17th century opera, than to a recitative. Why
is it that certain composers are more popular amongst the general public than others (e.g. Tchaik-
ovsky vs. Stravinsky). Often ardent lovers of 'classical' music argue that J. S. Bach's music is too
‘heavy' while they would endlessly listen to the ballet music of Tchaikovsky. The most obvious ele-
ments that may be an indication of relative popularity are the repetitious quality of certain elements,

such as motives and phrases. Rock musicians of the last 'thirty to forty years have extensively ex-

' The term ‘order’ refers to the length of the structural elements. For example, a rhythmic sequence comprising 5 note values is of

the 5th order.
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ploited the element of repetition to popularise their music. Certain melodic phrases (hooks’), are
_ repeated endlessly, over a basic and standard harmonic pattern, very often with little or no variation
and often with even less lyrical content. Added to this is the steady, rhythmical drumbeat, emphasised
by the bass guitar. This is only interrupted by 'breaks’, usually between repeats or at the end of major

phrases.

Record producers who know what ingredients are necessary to make a record 'successful’, will con-
sciously or subconsciously, select those ‘songs' which will appeal most to their purchasing public.
Admittedly, there are probably many factors that influence the success of a 'hit', including promotional
finesse, a group's image and fame, current public preferences, and other socio-economic factors.
This candidate's argument is, however, that their selection is to a large extent based on the informa- .

tion content of such a piece of music.

This study will attempt to show that the information content of music, with specific reference to mel-
ody, is an important underlying factor in the popularity of music.

1.3 Research methods

The first four chapters of this dissertation deal with the methods, history and background of Informa-
tion Theory. These chapters provide a background to the second half of the thesis that contains
detailed descriptions and interpretations of the analyses. Chapter five is a technical discussion of the
computer programmes developed for the analyses of the music in this dissertation. Chapter six is a
detailed discussion of the results of the analyses of the music selected for this research. The latter is
summarised and interpreted in Chapter seven while the final conclusions are made in Chapter 8. All
the data values obtained with the analyses are collected in the appendices at the end of this volume
and are presented in tabular as well as in graph format. '

Research for this dissertation began with research in the principles, history and methods of Informa-
tion Theory. This was followed by investigating the applications of Information Theory, not only as it
__had been applied to music but also how it is currently applied to a variety of sciences and fields of
reéearch. In the procesé of this research three basic hypotheses were formulated. These are:

1. Information Theory allows for the generation of statistical models that reflect the characteris-

tics of specific elements of music.

2. The general popularity of music directly relates to its redundancy (predictability) and is re-
flected by the amount of information as reflected in the statistical models.

3. Statistical models of music may be used as basic criteria for the selection of music that needs

to be applied for specific purposes or is required to conform to typical characteristics.

Twenty-two songs, in three categories, were selected to form the basis for the analyses. For the
purpose of comparison the songs had to be of different character, style, and composed during differ-
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ent periods. One set of songs was selected from the modern popular repertoire and the criteria for
_ their selection was consistent popularity; the number of recordings that were made of them over a
period of twenty years, and whether they were published as scores. The second group of songs were
selected from the Art song tradition of the Classical period. Again the songs’ popularity was decisive
in their selection and the eight most frequently recorded songs (obtained from recording catalogues)
were chosen. To provide adequate contrast, the third group of songs were selected from the twentieth
century Art song repertoire and the criterion for their selection was that they had little or no proven
record of general popularity. There is a detailed list of all the individual songs in Chapter 6 and a

complete set of the scores of the melodies of the songs in Appendix .

To obtain the desired data to confirm (or negate) the hypotheses discussed above, a number of .
computer programmes were developed by the candidate to generate the entropy values for a variety
of musical aspects. They are: the entropy values for the melodic elements, pitch, intervals, rhythm,
and a combination of pitch and rhythm. Due to the complexities involved the development and testing
of the software proved to be rather time consuming. To keep up with improved hardware and software
the programmes required continuous upgrading to suit the more powerful processors and expanded
memory capabilities of the computers applied for this research. Since the actual calculation of the
er{tropy uses extensive processing time, it was deemed preferable to regularly upgrade the pro-

grammes to faster machines as they became available.

After extensive testing of the programmes for accuracy and efficiency, the information of the selected
music was fed into the database. The results were compiled and subsequently interpreted.

As a final note it should be mentioned that there is an abundance of current sources available about
Information Theory as a statistical method. There are also many books and articles about the applica-
tion of Information Theory to a large variety of other sciences. However, published results of research
done with music dried up during the late 1970s. Although aspects of Information Theory are taught at
some Universities in the USA and Great Britain, it would seem that little if any progress has been
made to expand the application of Information Theory to music. This would explain why so little has
“been written about the subject during the last 20 years.
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Information Theory as a science emerged from studies and research aimed at increasing the efficacy
of communication channels. It is primarily concerned with finding answers to what information is, how
it can be measured and how communication devices could be designed to transmit information most
efficiently. Chapter 2 surveys the research and events that lead to Information Theory becoming an
independent study. This chapter mainly deals with music as a communication process and the most

important elements involved.

The term ‘information’ has various connotations and is commonly used as a synonym for facts. In the
context of this study, however, the term information refers to the quantifiable parameters of the car-
rier of a message, or the signal. In other words, it is a measurement of the mode by which information

is conveyed rather than its semantic substance.

The measured quantity of information in a message is referred to as Entropy. As the quantity of in-
formation in a message increases, its entropy also increases. In a perfect communication system’ —
in which the encoding is optimal—the entropy of the received message will always be the same as the

entropy of the message before transmission.

Most systems of communication, however, are not that efficient and do not transmit messages that
are free of interference. Such systems tend to increase the entropy of the received message. Due to

4y perfect communication system is a system in which the received message is exactly the same as the original message, without

interference from an outside source.
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imperfections in a system, the effects of noise and interference has a disruptive influence on the re-
_.sulting message, thereby increasing the entropy.

2.1 Music as communicative process

Music, like other forms of art, is a rather complex communication system by which a composer com-
municates musical information to the listener by means of a musical performance. The processes
involved satisfy the requirements of the classical model of a unidirectional communication process
involving a source, channel and a receptor:

TRANSMITTER CHANNEL RECEIVER

(Audience)

(Composer) [ 4 (Performer)

Y

Figure 2-1. Unidirectional communication model

The model above is a simplified representation of music as communication medium. The model does
not reflect several interactive factors and restrictions that are inherent in musical performance and
that are significant to the effectiveness of the transmission process. The latter ultimately affect the
outcome of the musical message by increasing its entropy, or unpredictability. Three of the more im-
portant components of a musical performance that may have an important influence on the outcome
of a performance are:

1. Notation, the customary method by which composers of the Western world communicate
ik or imply their creative intentions. Inherent limitations in the notation system as well as
printing and editorial errors may contribute to the masking of the original idea of the com-
poser. In societies where music is transmitted from memory through generations of mu-
sicians, the ultimate musical results may be considerably different from the originally
conceived musical idea. It would therefore potentially have maximum entropy.

2. Interpretation, the contribution of the performer to the creative process in which knowl-

edge of style, experience, mood, and musical ability normally plays an important role.

3. Acoustical conditions, which may act as an important element of modification in the mu-
sical communication process. The sounds produced in a performance may be signifi-
cantly changed by the time it reaches the audience.
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Below is a discussion of the more salient features of the components listed above, as well as the way
_ they may affect the outcome of a performance.

2.1.1 Notation as musical code

Composers of Western Music normally use the symbols of music notation to represent musical
sounds and other directions on paper. There are also musical traditions that have no tradition of no-
tated music and in which music is transferred purely by rote from one individual to another. Whatever
the method used to transmit music, the onus usually rests with the performer to have a sound knowl-
edge of the specific style of the music to present an effective performance. Improvised Jazz is an
example where a basic melody or harmonic progression is known, often without any notation and that
is then used by the performer for extemporisation according to his perception and understanding of
the stylistic framework within which he is working.

Music notation can rarely indicate every conceivable detail of a musical work or of the composer’s
intentions. Individual notation symbols are shorthand signs, many of which represent comprehensive
concepts, of which the meaning should be known to both the composer and the performer. An exam-
ple is the figured bass that is frequently found in music of the Baroque period. To extemporise a fig-
ured bass effectively, an extensive knowledge of the harmonic implication as well as other perform-
ance principles is required. Merely taking the bass line and melody at face value, without prior knowl-
edge of what the figuration actually means and how it should be interpreted‘, will inevitably result in a
distorted rendition.

2.1.2 The role of the performer

Whereas a composer or editor uses music notation to encode a musical work, a performer has to de-
code it again to realise the music into actual sounds. The interpreter, which in terms of Communica-
tion Science, is an active element in the transmission process, is limited by the completeness of the
provided code, the extent of his knowledge and understanding of the period style of the music, as well
as the meaning of the codes with which he works.

Frequently, the performer himself is also part of a bi-directional and interpersonal mode of communi-
cation involving the audience which may itself also be susceptible to prevailing conditions and influ-
ences. Consequently, it is quite likely that during coding and decoding, the resulting product may dif-
fer from that which the composer originally had in mind. Because of the interpretative role that the
performer has to fulfil, he normally contributes — by virtue of his own understanding of, and interpre-

tative disposition to the music — additional information to the original message. A secondary process
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is thus set in motion in which the composer's original intentions may be modified by to the performer's
_ mood, technical ability, and understanding of the style. In terms of the originally notated score the
performance of a composition can subject it to interference thereby increasing its entropy and causing
the musical message to become unclear or distorted in other words unpredictable in terms of the

original score.

2.1.3 Performance interference and its effect on the transmitted message

Several additional factors that may be classified as interference, tend to affect the outcome of a mu- .
sical performance. These include acoustical conditions, geographical location, instrumentation, also
the psychological orientation of both the performer and the audience. What an audience normally
hears is a combination of the composer’s intention plus the various influences referred to. In Com-

munication Science this is called noise.

Most communication models, especially those referring to electronic media, allow for the effect of
noise on the message. As far as music is concerned, factors such as notational and interpretative
obfuscation and the effects of acoustic conditions may be regarded as interference factors that could
mask the original message as conceived by the composer. These factors are included in the adapted

communication model below.
A l B
Transmitter | i Transmitter lI
— encode <
(Composer) (Performer) 4

Interface
: Intefaction
c Acou§t|cs Transmission
P Location - (Performance)
Psychaology
Etc.
v
Receiver
(Audience)
A+B+C

Figure 2-2. Model for music as communication channel

The model illustrated in Figure 2-2, is an expanded version of the original communication model

(Figure 2-1) to allow for the dual role of the performer as channel between the composer, as well as
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his role as secondary transmitter of information. Also shown are other noise factors (C) over which
- neither the performer nor the composer has any control.

From the above certain conclusions may be drawn:

a) In music, as with any other transmitted message, the amount of information (entropy) con-
tained therein always tends to increase and become less predictable — it can never become
more predictable or contain less information than the composer had intended. It is significant
that in this respect music as communication is analogous to the laws of electronic message
transmission.

b) More authentic results should be obtained if a message is studied as close to its origin as
possible and before many interference factors have had effect. In the case of a musical mes-
sage this would be the score, preferably before any editing has been effected.

Most analyses by musicologists are therefore based on scores that allow the most authentic details of
the musical elements to be readily and visually available.

2.2 Music as temporal art

According to Abraham Moles, music in sound (as opposed to music in score) is a modulation of dura-
tion and thus a temporal art as opposed to the spatial messages of the visual arts (Moles: 1968, pp. 8-
8). Moles further classifies messages according to dimensions and classifies speech—and by impli-
cation music—as temporal messages with one dimension. This may perhaps be true of monodic mu-

sic but in homophonic, heterophonic or polyphonic music more than one dimension is present.

When music comprising more than a single melody is written down in notation the multidimensional
character becomes obvious. One may then readily distinguish between all the various aspects of the
music such as melody, harmony, bass line, rhythm, dynamics and any other that may be present.

Moles does not explicitly state whether he regards notated music as spatial or temporal but one may
deduce that if a written line of text is spatial—in relation to speech that is temporal,—then notated
music is also a spatial representation of sound. This is further implied by the process of scanning, a
term used by Moles to describe the manner in which a large spatial area is observed in order to take

in a visual message as a whole:

Scanning gives the key to an unknown alphabet at the time of learning ...
One must consider scanning, on the one hand, and integral apprehension,
on the other, as dialectical dipoles of the perceptual process. Scanning,
which transforms a spatial message into a temporal one, establishes an
equivalence between the two types of messages. (Moles: 1966, p. 9)

In other words, Moles implies that a temporal message could be represented spatially but because of
the necessity of scanning to learn its contents, it remains temporal, even if in a visual form. Since the

?  Chapter 3 contains a more detailed description of these principles.
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score has until recently been the most common method by which a composer could permanently
- store and transmit his work to the performer, it should contain a large number of components of his
musical style. As such, a score is a carrier of direct or implied information about the stylistic features
of that music.

2.3 Music notation as source of information

In general terms, and as shown earlier in this chapter, a message is transmitted from the sender to
the receiver by means of codes, the structure of which should be known to both sender and receiver
to make it intelligible. Examples of information codes include hand signals, structured sounds (e.g.

language and music), electrical impulses, writing and notation.
The structure of a message is its source of information and is defined by Jagjit Singh as follows:

It produces messages by successively selecting discrete® symbols from a

given stock such as letters of an alphabet, words in a dictionary, notes on a

musical scale, colons in a spectrum, or even the mere dash-dot twin of te-

legraphy. In other words, the message actually transmitted is a selection

from a set of possible messages formed by a sequence of symbols from its

own repertoire. (Singh: 1967, p. 12)
The value of the score as a source for analytical and stylistic study has always been regarded as in-
dispensable by scholars. It is the most convenient and often the most accurate means of representa-
tion of music. This is shown by the fact that even in ethnomusicological research continuous attempts
are made to modify traditional notation so that music may be graphically presented. Even when tradi-
tional notation is totally inadequate, new graphical systems are designed with the principal purpose of

producing a visual representation of the music.

A musical score therefore serves as the coded form of the musical message as transmitted by the
composer and as such should contain most of the stylistic information as well. However, the score of
a composition usually implies more information than that which is immediately available from the no-
tation itself. The date of a Baroque composition, for instance, also implies the kind of ornamentation
-tvhat should apply, while the country of origin could indicate how notes inégales should be performed.
Consequently, the conclusion may be drawn that the stylistic information of a composition primarily
involves two distinct sources: the information embraced by the notation itself; and historical or cir-
cumstantial information that is largely interpretative and often based on erudition or intuitive deduc-
tion.

2.4 Semantic and aesthetic information of music

Of the two types of information discussed in the preceding section, the information provided by nota-
tion is usually fixed and therefore more reliable for stylistic evaluation than interpretative information

*  The term 'discrete’ means separate or individual.
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that may be eccentric and subjective and possibly vary from one performance to another. The many
~ recordings and performances of compositions by different performers, that differ in interpretation
without necessarily being incorrect, shows that interpretative information may vary greatly but that the

information provided by the notation remains unaffected.

Referring to the two types of information mentioned above, Abraham Moles distinguishes between

semantic and aesthetic information and defines the two categories as follows:

(a) Semantic information, having a universal logic, structured, articulable,

translatable into foreign language, serves in the behaviourist conception to

prepare actions. (b) Instead of to a universal repertoire, esthetic information,

which is untranslatable, refers to the repertoire of knowledge common to the

particular transmitter and particular receptor ... One may liken it to the con-

cept of personal information. (Moles: 1966, p. 129)
Those elements in music that are dictated by conventions and that are common to a genre, style pe-
riod, or specific composer, constitute semantic information because they are translatable into another
language (for example, technical terminology), and are normally not subjected to interpretative varia-
tions®. Semantic information also includes those attributes in a composition that are inherent to the

composer's personal style and that distinguishes one composition from another.

Those elements that are subject to influence by personality, mood, acoustical surroundings, quality of
instruments and size of ensemble constitutes aesthetic information. A significant portion of aesthetic
information, Moles points out, is made available by the limitations of the score and the manner in

which music is written down, (Moles: 1966, p. 138), while ...

Above all, there are the differences or latitudes in interpretation which arise
from the instrument (or orchestra) and the performer (or conductor). In the
case of the ... orchestra, the latitudes can attain such fantastic values ... that
it is impossible to speak of a symphonic work without at least referring to a
particular performer, if not a particular performance. (Moles: 1966, p. 139)
Although Moles only mentions the orchestra, the same argument is obviously true of any musical

performance.

Tu;ro of the more obvious sources of aesthetic information are that of tempo and volume, while ele-
ments such as attack, tone colouring and instrumentation are further examples. All these elements
are subject to fluctuations not only because of the performer’s interpretation but also because of envi-
ronmental conditions such as the size of a concert hall, acoustical properties, size and type of audi-

ence, temperature and geographical location.

The distinction between semantic and aesthetic information has important implications for this study,
as semantic information is measurable or, in other words, quantifiable. Aesthetic information usually

Twa keyboard players will probably perform a figured bass differently but stylistically correct, each providing their own instinctive
aesthetic information to the performance. However, should the actual chord progressions be changed in the process of extemn-
porisation, perhaps out of character for the period, composer or specific piece, the semantic information is changed.
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does not allow translation into quantifiable units and is normally too mutable for accurate measuring.5
- However, the fact that these elements are not quantifiable by virtue of their variability and indetermi-
nacy does not necessarily exclude them from a stylistic study, especially when they specifically have
a bearing on, or are an inherent part of the musical style. It is imperative that such elements are in-

cluded or kept in mind. However, this is predominantly the domain of traditional analysis.

The relationship between semantic and aesthetic information in music is never fixed or constant and
may depend on the style period, composer, individual composition and may even differ between sec-
tions of the same work. In essence it depends on the ratio between those musical elements that are
fixed (for a style period, composer, or composition) and those that are left optional for a specific per-
formance. For instance, the interchangeability of instruments of some Baroque instrumental composi- .
tions, increases the aesthetic information of such works because it adds to those elements that are
uncertain. In a work written for a specific instrument this knowledge is included with semantic infor-
mation. Whether semantic or aesthetic, the information provided (or not provided) by the composer
tells one something about his intentions, be they dictated by period convention or personal choice.

Generally semantic information is largely dependent on those elements in music that are fixed by
convention, the composer, or is present in a specific work. Serial or synthesised music by a twentieth
century composer could include more fixed and controlled elements, such as tempo, volume and en-
velope shape that would result in a greater amount of semantic information than in a composition in
which these elements are subject to the many performance influences described above. As such, the
ratio between semantic and aesthetic information is an important factor that should be kept in mind in
a statistic study of music.

2.4.1 Originality of musical information

The information content of a musical message is directly related to the degree of originality® con-
““tained in the composition. A composition that contains a greater quantity of original material will also
contain more information. The reason for this is that a smaller portion of the information is reduced to
basic sets therefore generating a greater number of sets. In works that contain less original informa-
tion there will be fewer sets of larger dimensions. For example, the harmonic information of a piece of
music with a regular and repeated harmonic structure will contain more redundant (repeated) infor-
mation than a piece of the same length in which harmonic progressions are not repeated. Aleatoric
music in which only a limited number of parameters are fixed, for instance, could contain a high de-
gree of aesthetic information with near maximum originality. The semantic elements will be those re-
strictions that are fixed by the inventor although the results themselves could be totally unpredictable.

®  The modern technique of digital recording in which sounds are represented by number sequences may present new possibilities

for analysis.



University of Pretoria etd — Koppers M H A (1995)

2 : MUSIC AS COMMUNICATION MEDIUM 29

A serial composition, on the other hand, in which almost all the parameters are subjected to serial
- treatment could have a high originality factor with a high semantic content as well as a low predict-

ability factor.

The model below is an adapted model based on one by Moles (Moles: 1966, p. 141) and shows how
the relationship between semantic and aesthetic information and the possible degree of information
(entropy) and banality (redundancy) of a composition may be illustrated. The rectangle on the left in-
dicates semantic information content, while the rectangle on the right represents the aesthetic infor-
mation content. Portions above the horizontal line show the originality factor for both the aesthetic as

well as semantic information of a composition:

AESTHETIC

Original

Banal

SEMANTIC

Figure 2-3. Mole’s model of semantic and aesthetic Information

The example shows that the ratio between aesthetic and semantic information may change depend-
ing on the number of parameters that are fixed. It also shows that the ratio between the predictable or

banal elements of each may vary as well.

Of the two aspects of music, aesthetic and semantic, this study is primarily concerned with the meas-
urable part or semantic information of the model above—in effect the ratio between originality and
banality of the musical message. Some confusion could arise, however, because of the term

‘semantic’ and some clarification is required.

2.4.2 Semantic information and meaning in music

Normally the word 'semantic’ is a linguistic term that refers to ‘meaning’ in language. In the context in
which the term is used here, there is no attempt to attach any connotation of meaning to music.

In terms of music, ‘meaning’' remains an elusive and controversial subject. As a form of expression,
music nevertheless embodies much information that is normally described and discussed in musical
terminology such as, tonality, metre, genre, period, form, monophony, polyphony, and homophony. In

respect of these parameters, the information contained in music does have a degree of semantic

®  The term ‘originality’ is here used to describe the degree to which new material is introduced in a composition, and does not refer
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meaning but mainly by the inherent processes the terminology describes. These processes imbue a
.- composition with its stylistic characteristics. Music thus contains ‘meaning’ purely by virtue that it em-
braces those elements that provide information about the style that characterises it.

2.5 Expectation and information in music

By merely listening to an unknown piece of music it is possible to identify the style period, genre or
even the composer; some people are even able to identify the conductor or performer. Through con-
tinuous listening and studying, those elements that are stylistically idiomatic to a period, composer or
performer are learnt and assimilated. This is made possible by the information that is made available

to the listener, thus allowing him to make an intelligent guess.

Having listened to part of an original melody, most musicians would also be able to complete it in the
same style. A mental analysis of the melody is made and the music completed according to parame-
ters previously learnt. Leonard Meyer describes the process in terms of mental conditioning:

...the expectation which results from the nature of human mental processes

are always conditioned by the possibilities and probabilities inherent in the

materials and their organization as presented in a particular musical style.

(Meyer: 1957, p. 44)
The mental processes involved are beyond the scope of this study but a less obvious implication of
the phenomenon of recognition is the probability or predictability element that is often taken for
granted. To identify a composition or the style of a melody it is necessary to assume that it would
continue in the style that it began. If this were not so, all music would be totally disparate in structure
and style and it would be impossible to distinguish genres and forms or even vaguely categorise
them. The fact that some entertainment musicians sometimes dress up a trivial tune in a variety of
styles such as that of Bach, Liszt, and Jazz, supports the idea that musical style is a source of infor-

mation that conforms to expectation.

2.6 Elements of musical information

Musical terminology abounds with nomenclature that provides information about music and that im-
plies elements of predictability. An extreme example of predictability in music is the concept of scales
that consist of a fixed and predetermined sequence of intervals. It would, for instance, be inconceiv-
able to consider a major scale that does not comprise two identical tetrachords each with two whole
tones and a semitone and there is 100% certainty that all major scales will have the same predictabil-
ity value. Therefore, in some situations (for example the major or minor scale) musical terminology
implies maximum redundancy. More often a degree of unpredictability is implied, however. Some
musical forms fall in the latter category: a piece in sonata form deviates from the theoretical model

to the artistic merit of a work.
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but is nevertheless classified as a sonata form because there are general similarities to the prede-

_.termined model.

Much of what is referred to today as ‘general musicianship’ is no more than the assimilation and dis-
semination of musical information. Traditional music analysis — be it harmonic, melodic, or structural
— is a process of gathering information about music and frequently demands a measure of interpre-

tation to allow for the limitations of musical terminology.

The nomenclature used in musical analysis serves as carrier of information about a composition and
simultaneously is an indicator of the conventions that may apply to the music. John Fiske explains
that ...

We are always checking the accuracy of any message we receive against
the probable; and what is probable is determined by our experience of the
code, context and type of message, in other words, by our experience of
convention and usage. Convention is a major source of redundancy, and
thus of easy decoding. (Fiske: 1982, pp. 11-12)
Fiske uses the word ‘convention’ in reference to information that is already known by previous experi-

ence. As such it excludes originality which is a source of new information and thus unpredictability.

Some confusion may arise about the use of the term information. A natural deduction is that the more
information that is known about a specific composition, the easier it should be to identify it. However,
it is important to realise the difference between information about a composition and the information
inherently generated by a composition. Information about a composition serves to identify a work,
while information contained in a piece of music represents the level of tonal, harmonic and rhythmic
structural organisation. An increase in structural complexity is directly related to the increase in the
level of unpredictability (entropy). For example, a melody that contains only diatonic notes in two
regular and symmetrical phrases, both of which are repeated contains less information and is more
predictable than a through-composed melody of the same length that contains all twelve notes of the

scale and no repeated phrases and therefore contains more information.

The process of reaching a decision based on prior experience may readily be illustrated by the deci-
sion-making tree of Figure 2-4 by which the key of a piece of music with, for instance, two sharps may
be established.



University of Pretoria etd — Koppers M H A (1995)

2 : MUSIC AS COMMUNICATION MEDIUM 2-12

!

4 T
Scale without | NO Flats or sharps in
sharps or flats key signature?
YES
No '
Scale with flats [ Starps n iy
signature?
\,
YES
‘L_“
Scale/mede with SE How many sharps MORE | Scale/mode with
one sharp in key signature? 2+ sharps
7
YES
r
4 N 4 :
Possibly a modal | - Na IsthenoteDa |, ae G# and A# in key
scale focal note? i signature?
\ J \ y,
YES YES
A4
: f 20 ) . -
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Figure 2-4. Decision-making tree

Many musicians, for whom the recognition of a key has virtually become a matter of intuition the
process shown above would clearly seem long-winded and perhaps simplistic. Through continuous
use it becomes an unconscious process; one by which various possibilities are systematically eradi-
cated; a consistent narrowing of choices until a final conclusion is arrived at. The fact that a musician
has the confidence to state a key is in itself an indication that a certain set of circumstances will al-
ways be predictable and generate similar results.

2.7 Music analysis and statistics

Usually, music analysis is more than merely a process of making single decisions and a good deal of
intuition and interpretative judgement is often necessary. Many books on musical style present inter-
pretative information in descriptive phrases and classify musical elements in broad terms that often
allow for a degree of tolerance within specific limitations. The use of the term sonata form has already
been mentioned, and other examples that may be mentioned are: final cadence, ascending or de-

scending melodic curve, and varied repetition, to name but a few.

To make their analysis more relevant and precise some authors endeavour to describe musical ele-
ments in more detail. For instance, two forms of perfect cadence are sometimes referred to as
‘perfect authentic cadence' and ‘imperfect authentic cadence’, to distinguish perfect cadences with

chords in root position from those containing inverted chords.
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Sometimes writers include statistical data in their discussions of stylistic elements in order to give
_their stylistic evaluation a greater degree of precision.

Some random examples of music literature which embody statistical references are cited below. Most
obvious is the first extract in which the author provides actual percentages of the frequency of specific
chords. A student studying Bach's music would, in an attempt to emulate the style, aim for more or
less the same ratios:

Of all the triads found in first inversion in Bach’s chorales the tonic, the first
classification dominant, and the second classification subdominant triads
have the highest frequency. If we consider these triads by themselves, their
respective frequencies are as follows:

Tonic ' 50%
Dominant 30%
Subdominant 20% (McHose: 1947, pp. 72-73)

By converting the chord frequencies into ratios of the total number of chords, McHose has, perhaps
unwittingly, taken a step in the application of Information Theory. In other words, he has statistically
calculated the information of the music.

In the next extract the author, writing about musical form, does not furnish any specific ratios but
provides a measure of predictability or probability by phrases such as ‘often enough’, ‘occur fre-
quently’, ‘unlike’, and ‘unique’;’

Other forms occur often enough to be grouped into other formal categories.
Frequently, however, disclosure of the tonal structure and design of a com-
position results in the discovery that the form is unlike that of other known
compositions. Such pieces are said to have free, or more aptly, unique
forms. Our approach will be to consider those forms that occur frequently
before directing our attention to the unique ones. (Green: 1979, p.5)

Analysis of the following lines by Leon Dallin in his book, Techniques of Twentieth Century Composi-

tion (Dallin: 1875, pp. 6-7), can, with some exceptions, be translated into absolute values:

Stepwise motion is predominant [51% at least]® in the melody, and scale-
line motion in the opposite direction invariably [100%)] follows the descend-
ing fifths. There is a balance [about 50%)] between the notes above and be-
low the starting pitch. A climactic effect is lacking [0%], because the highest
note comes in both the first and third phrases [100% of the two phrases] ...
This device occurs in five of the nine measures [55%)]. In each instance
[100%], besides occurring on different pitches, it is subtly altered ... (Dallin:
1975, pp. 6-7)

ltalics by the candidate
Figures in brackets were added.
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The fact that the information in the three extracts were first gleaned from the music and then in some
_ way or other quantified in order to be represented, either by means of figures or adjectives implying
absolute and relative quantities, is an indication that there are elements in music which are naturally
suitable for the application of the methods of Information Theory.

2.8 Redundancy and musical style

As will be illustrated in the next chapter, redundancy refers to the predictability in a message and in
music refers to the banality or predictability of the stylistic elements. It is inversely related to entropy.
In Information Theory, redundancy, is also used to refer to probability or the structure of a message.
The same argument may be used in music. A composition which adheres totally to a theoretical
model is totally predictable and may be said to have a redundancy of 100% as it provides no new in-
formation.

A composition written according to the style of a specific model — for instance by a student in com-
position — would, by implication show definite similarities. Such a composition will also show certain
characteristics peculiar to the composer and stylistic period. As far as style is concerned, the entropy
value of a composition would thus give an indication of the individual style compared to an overall

model with the fixed elements represented by the redundancy.

One of the nebulous abstractions that is sometimes used in conversations about music is the concept
of ‘understanding’ music, and it would seem that the ‘understanding’ of music is closely dependent on
the amount of information that a composer has vested into a musical work, in other words the rela-
tionship between the redundancy and predictability of music. Pop-songs which have clearly defined,
repetitive rhythms with a steady tempo, employ a limited repertoire of harmonies, and only have one
or two melodic periods which are continuously repeated, clearly have a greater redundancy. Sales
charts show that music with these characteristics have a greater general appeal than most contempo-

rary academic music in which variety and originality of musical information is a major factor.

Redundancy also helps solve problems associated with the audience. If we

wish to reach a large, heterogeneous audience we will need to design a

message with a high degree of redundancy. A small, specialist homogene-

ous audience, on the other hand, can be reached with a more entropic mes-

sage. Thus popular art is more redundant than highbrow art. (Fiske: 1882,

p.12)
This may well be the reason why music by composers such as Schoenberg, Hindemith and so many
other twentieth century composers has found less general acceptance in contrast to music by com-
posers such as Tchaikovsky. It is probably also the reason why specific works of a particular com-
poser are more popular than others and why it often happens that compositions which are less con-
ventional are often surreptitiously included in concert programmes which predominantly include ‘well

known' or popular works with a high redundancy.
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Traditional methods of music analysis make it possible to obtain a generally detailed and total picture
- of a musical work. Usually the various aspects and elements of the music are studied and analysed in
isolation after which the results may then be viewed as a whole. Complete separation of the various
elements is not always possible as there are always interactions at work, for example, a melody and
the harmony which underlies it. By first extracting information from the individual elements and then
studying the results in relation to each other, a descriptive understanding of the work becomes avail-
able. The results are usually loosely worded descriptions referring to form, melodic shape, harmonic
complexity, textures, and other musical elements contained in the analysis. A description of this kind
is useful in discussing the style of a composition by itself or in comparison with other works, but has
major shortcomings when a single model is to be devised which could represent most of the salient as )
well as the less obvious aspects of the music. By no means does this imply that it would be of any
value to attempt to reduce the style of a composition to a single numerical value. This would merely
mask the significance of the stylistic qualities of each element which contribute to the uniqueness of
the composition. Not only would important stylistic elements be lost, but by combining the various
aspects into a single value, those that are peculiar to a specific style would be obscured.

A single element also serves very little purpose in classifying a complete work stylistically. Deryck
Cooke provides a number of clear examples in his book, The Language of Music, in which he classi-
fies melodies according to their sequential intervals and continues by giving each melodic pattern an
emotive value (Cooke: 1958, pp. 113-167). Cooke recognises sixteen different kinds of melodic pat-
terns and it is significant that each pattern represents melodies selected from a repertoire spanning
more than five hundred years. One of Cooke's examples is the descending stepwise minor melody
starting on the tonic, 8-7-8-5 (minor), for which he lists eighteen examples by composers which in-
clude Ockeghem (c 1480) to Benjamin Britten (b 1946). (Cooke: 1859, pp. 163-164) If these melodies
were only to be judged by the sequence of the pitches they embrace, it would be virtually impossible
to classify them stylistically. However, when the rhythmical and harmonic properties of such selected
sections are taken into account, two additional dimensions or stylistic indicators are added to the
study, thereby making it possible to obtain a clearer idea of the stylistic properties of the work. As the
musical dimensions are increased in an analysis so the identification of the stylistic elements are
given greater depth and become more accurate. However, the number of elements that can be taken
into account may vary greatly and depend on the style of music in question.

2.9 Conclusion

Music as a form of human communication shares a number of similarities with other forms of com-
munication. Of primary importance in the study of musical style is the fact that composers through the
years have imposed certain restrictions and points of refere'nce on their music which makes it recog-
nisable. Most of these structural elements, be they harmonic, melodic, rhythmic or formal, can be
measured and expressed in terms of numerical data— usually by way of ratios. For the purpose of the
application of Information Theory this is ideal because it can only be applied to quantifiable elements.

2044195
313028
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As a communication medium, music is more complex than many other forms of communication, es-
- pecially when a performer contributes to the artistic rendition of the composer's creation by way of
aesthetic information. Other factors also have an influence on the final product the listeners hears and
which will add or subtract from both aesthetic and semantic information. It is for this reason that the
score is the best source for entropy analysis because it presents the semantic information of the mu-

sic in its purest form.

Before the application of the statistical principles of Information Theory is demonstrated, the next
chapters will cover the mathematical concepts and historical background of Information Theory.
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INFORMATION THEORY: DEFINITIONS AND
HISTORICAL BACKGROUND

3.1 Towards a theory of information - a historical survey

Although the statistical principles applied in Information Theory are similar to those applied to the
relatively older science of thermodynamics', which dates back to the middle of the nineteenth century,
it took nearly a hundred years before these principles were actually developed into a theory to meas-

ure modes of communication.

As far as the measuring of information in a communication system is concerned, some initial research
was done by H. Nyquist (1924), R. A. Fischer (1925), and R. V. L. Hartley (1928). The science of In-
formation Theory is, however, mostly indebted to the work of V. A. Kotel'nikov (1947), N. Wiener
(1948) and C. E. Shannon (1948). Shannon with his publication, A Mathematical Theory of Communi-
cation," is regarded as being responsible for establishing the foundations of Information science as it

is known today.

In the following pages a short historical survey of Information Theory is provided. First the develop-

ment of the concepts of entropy in physics and thermodynamics is discussed. This is followed by a

' Bell Systems Technical Journal, Vol. 27, pp. 379-423, 623-656. Republished in collaboration with W.W. Weaver as The

Mathematical Theory of Communication, Urbana: Univ. of llinois, 1948.
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more detailed account of how similar theories were subsequently employed in the development of the

-~ science of communications and telecommunications.

3.1.1 Entropy, disorder and the movement of heat molecules

In 1854, the German scholar, Rudolf J. E. Clausius (1822-1888) published a scientific paper2 in which
he formulated what has since become the second law of thermod),fnamics.3 In essence the formula-
tion states that in an isolated system

... N0 process is possible whose sole result is the transfer of heat from a

colder to a hotter body. (Kendall: 1973, p. 59)
The above law is closely allied to the first law of thermodynamics which states that when two bodies
with unequal temperatures are brought into contact, a process of equalisation will take place. Entropy,
which is the measure of disorder in a system, reaches its maximum value as the system reaches
equilibrium. According to these two laws heat can only transfer from a hotter body to a colder body
until the temperature of both is equal. Entropy or disorder in an isolated system can, in other words,

only increase and never decrease.

According to Kendall the British physicist, James C. Maxwell (1831-1879), was one of the first to ap-
proach the concept of entropy from a probabilistic point of view. (Kendall: 1973, p. 59) Maxwell formu-
lated an equation by which the distribution of velocities of gas molecules may be calculated®.

Further research in the statistical properties of gas molecules and heat was undertaken by the Aus-
trian physicist Ludwig Boltzmann (1844-1906):

It was he who linked the thermodynamic concept of entropy with the statisti-
cal concept of disorder. (Kendall: 1973, pp. 59 -60)

In his book, Vorlesungen lber die Gastheorie,” Boltzmann provides a formula which expresses the

“logarithm of the resulting probabilities of the distribution of molecular velocities as a ratio of:
Equation 3-1. Boltzmann's formula
nlog, n

This has since become an important component of statistical physics but one which will also recur

frequently in this discussion on the application of Information Theory to music.

Clausius subsequently published his findings in a book: (1864) Abhandlungen tber die mechanische Wémmtheorie,
Braunschweig: Friedriech Vieweg.

A branch of physics which describes the physical properties of matter and energy.

Funk & Wagnalls, 1983: vol. 17, James Clerk: ‘Maxwell’.
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Further research with the concept of entropy and statistical physics continued to be done by a number

_ of investigators such as J. von Neumann and L. Szilard.

It was during the late 1920s that several communication engineers began investigating the possibility

of applying the concepts of entropy to communication.

3.1.2 Entropy and communications

The first public telegraph line was installed in Britain in 1843. The ltalian, Guglielmo Marconi (1874-
1937) announced the disc:m.fer),f‘5 of wireless telegraphy in 1895. Nearly twenty years before, in 1876, ’
Alexander G. Bell's invention, the telephone, had successfully transmitted human speech. But none
of these systems were yet perfect and during the first decade of the twentieth century continuous re-

search relating to the problems that still plagued electronic communication was conducted.

Distortion, signal noise, and inter-symbol interference necessitated techniques to overcome these
difficulties and ensure transmission of intelligible messages. This research was predominantly done at
the Bell Telephone Laboratories in America where H. Nyquist (1924, 1928) and R.V.L. Hartley (1828)
were actively working on these problems. Most of their findings were published during the 1920’s in
articles such as Hartley's ‘Transmission of Information’.” More or less at the same time, similar re-
search was done by Norbert Wiener who specialised in the biological application of the transmission

of information as, for example, in the nervous system. (Shannon: 1949, p. 3)

3.1.2.1 R.V.L. Hartley

From the sources® on the subject it would appear that of the research done at the Bell Telephone
Laboratories, it was Hartley's work that stimulated further thought on the application of the concept of
entropy in Information and Communication Science the most. In fact it was in the article mentioned

"above that Hartley expressed the theory that the quantity of information could be measured. Hartley
based his theory on a principle simultaneously formulated by Nyquist and the German, Kopfmuller in
1924 which ...

... states that for transmitting telegraph signals at a given rate a definite—
frequency bandwidth is required. (Reza: 1961, p. 11)

®  Leipzig: Barth, 1896.
The U.S.A. Supreme Court prenounced in 1943 that Nikola Tesla was the inventor of the radio (Cheney: 1881, pp. 176-184).
7 1928, Bell System Technical Journal, vol. 7, pp. 535-564.

A more detailed account of the historical background of information theory is provided in E.C. Cherry's article, "The Communica-
tion of Information’', American Scientist, October, 1852.
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Nyquist and Kopfmuller's work was further refined by D. Gabor (1946) and D. M. Mackay (1948),

whose contribution to the measurement of information was important to Hartley's work. (Reza: 1961,
p. 11)

Hartley's theory is founded on the concept that the information content of a message depends on the
successive selection of symbols from a specific set of symbols. In terms of music the seven notes of
a diatonic major scale may be used as an example. In an imaginary melody of eleven notes the notes
may occur in 7' (7 to the power 11) different ways. In more general terms, where N is the number of
notes in a melody with length L, there are N possible different combinations in which the notes could

occur.

Furthermore, Hartley continues by showing that the information in a message needs to be calculated
from the actual symbols used in a message against the capacity of the system which transmits it and
not from the total possible symbols available. (Kendall: 1961, p. 61) If the imaginary melody is again
taken as example, this means that the melody of eleven notes in length, represents the capacity of
the melody. If this melody should comprise only five different tones out of the possible seven of the
major scale, the selected five represent the capacity of the melody, and not the seven notes of the

scale.

3.1.3 Quantifying information.

The formula that Hartley arrives at to express the maximum information of a set with n symbols and

with K being a constant, is:
Equation 3-2. Maximum information of a set of symbols
I=Klogn

To demonstrate how Hartley arrives at this equation the seven notes (n = 7) of a major scale may
again be used. Presuming that a random generator generates one note at a time and with equal prob-
ability, the seven notes may be represented as the set, {X1, X2, X3, . . . X7}, €ach of which has an
equiprobable chance of being heard next. The amount of information that the selection of a particular
note generates may be expressed as a function of the seven notes, thus:

Equation 3-3. Information of a single note from a set of seven notes
I(n)=rf (l)
=; 7

where | is the information content and n, any one of the seven notes in the set. One of the possible
ways of expressing the function above is by using logarithms, thus the amount of information associ-
ated with each element in the set is:
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Equation 3-4. Information of a single note of seven using logarithms
I(n )= —Iog(%)
X 7

thus:
I(n,) =1o0g(7)

3.1.4 Calculation of information with logarithms base two

Hartley’s original suggestion was to calculate information using logarithms on base ten. Nevertheless,
calculations of information are often done with logarithms with a base of two, in which case the
amount of information is expressed as bits®. The following paragraphs illustrate why binary units® are

often preferred for calculations of information contents.

The fact that-a single element can be expressed with two equal possibilities (i.e. on/off, sound/silence,
yes/no), and as such is the minimum amount of information a system can generate,10 makes the use
of binary counting especially appropriate. As an example the choice of playing a note on a musical
instrument may be used: at any moment a performer is presented with the choice of playing a note or
not playing a note, a set of two possibilities. The silence may be represented by the number ‘0’ for a
note not played (state not true), or ‘1’ for a played note (state true). At any subsequent moment this
possibility is repeated, thus the performer is continuously confronted with a situation of two possibili-
ties with a 50% (0.5) probability. In base ten notation the calculation of the information will be:

Equation 3-5. Information of a single element using natural logarithms

1(x) = ~log(3)
= log(Z)
=0.3010

When natural base logarithms are used the units of information are expressed in nats, when base ten is used the information
content is expressed in Hartleys.

In contrast to the decimal system which uses ten as its base, the binary system uses two as its base. Compare the following
decimal numbers and their binary equivalents:

DECIMAL: 1 2 3 - 5 6 7 8 9 10
BINARY : 01 10 1 100 101 110 111 1000 1001 1010

As with the entropy of thermodynamics which can never have a negative value, a communication system can never have a nega-
tive information value - it is impossible to have a value smaller than zero.
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However, if base two Icg:-lritt'lms12 are used the result of the same calculation is:

_. Equation 3-6. Calculation of information using binary logarithms

!(X) = —logz(%)
=1log,(2)
=1

The parity of the information content for a single note on a score, as a rudimentary system, may thus
be expressed as a single binary unit, customarily contracted into the word ‘bit’. Using binary logs as

base, Hartley’s calculation for x number of symbols is written as:

Equation 3-7. Information for x number of symbols in Hartley’s

[max = —logz X

=—log, x™'
=log, x

All the calculations thus far are based on the premise that at any given moment each symbol of a
system is equally probable. Such static systems are also called systems without memory—
memoryless. Communication systems, including music, are rarely all that simple as there are usually
structural principles involved. In music, for instance, various conventions dictate the use of subse-

quent chords or their inversions in a chordal progression.

According to Kendall, Hartley’s formulation had little impact, at first, outside the realm of electronic

communication and it was not until ...

... Shannon took it up and extended it in a paper (1948) which may be re-
garded as the effective starting-point of the current interest in the subject.
(Kendall: 1973, p. 62)

"~“This was also the point at which the concept of Information Theory as an independent field of investi-
gation began. Since its relatively recent genesis, Information Theory has become an important and
active component of Communication Engineering and Cybernetics.13 The latter refers to the manner
in which information is moved, controlled and responded to by living organisms and machines. Be-

cause of its extensive and successful application in these sciences it has found extensive application

Conversion from a logarithm of a base ten number to the logarithm of a base two number is done with the formula (where n rep-

resents the number of elements): log, n = log n
3 log 2

Cybernetics emerged as a science in the late 1840's. The auto-pilot of an airliner is an example of the application of Cybernetics.
(Longman Dictionary: p. 275)
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in other disciplines as well, and has since become an autonomous mathematical science of commu-

nication.

3.2 Claude Shannon and the stochastic process

In 1948 Shannon, who at the time was mainly concerned with cryptographic systems, conceived a
formula based on the one by Hartley which allows for the unequal distribution values of elements from
a discrete source™ (as apposed to a continuous source) with a finite set of elements. He referred to it
as a stochastic process, and it is expressed as a ratio of maximum entropy. (Shannon & Weaver:

1949, p. 179) A discrete source implies a limited set of symbols and is described by Shannon as:

...as systefn whereby a sequence of choices from a finite set of elementary

symbols S1 . . . Sn can be transmitted from one point 0 another ... We can

think of a discrete source as generating the message, symbol by symbol. It

will choose successive symbols according to certain probabilities

(Shannon: 1948)
According to Reza an important but independent contribution to the formulation of Information Theory
was made by N. Wiener with his two books, Cybernetics'® and Extrapolation, Interpolation, and

Smoothing of Stationary Time Series'”. Reza writes:

N. Wiener was one of the first scientists who clearly described the stochastic

nature of communication problems. Wiener put in focus the fact that com-

munication of information is primarily of a statistical nature. That is, at a

given time a message is drawn from a universe of possible messages ac-

cording to some probability law. At the next moment another message from

this universe will be transmitted. (Reza: 1961, p. 375)
The Stochastic process Reza refers to, indicates some important differences in the concepts of Har-
tley's thedry and that of Shannon and Wiener. Whereas Hartley conceived his theory on static sys-
tems with any symbol of a set occurring at any given moment with equal probability, Shannon worked

with dynamic systems with memory which allows for,

1. the presence of a formal structure in a message in which certain successions of symbols may
be excluded, limited or required; and

2. the possibility that each symbol may occur with different relative frequencies (Kendall: 1973,
p. 62). This may be explained using a melody as an example in which

3. the appearance of a specific interval may according to convention or choice, preclude it to be
followed by another specific interval; and certain intervals will be more predominant than oth-
ers.

Shgnnon also identifies continuous systems, in which the message is treated as a continuous function, and mixed systems,
which is a combination of a discrete and continuous system. (Shannon: 1948)

Cambridge: Technology Press. 1948.
New York: John Wiley. 1949.
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3.2.1 The Markov'’ process

Point no. 3 above is a special case or subclass of the stochastic process and is known as a Markov
chain or a dependent stochastic process. The theory that serves as the basis of the Markov chain is
that the occurrence of a symbol in a time-dependent message depends on the previous symbol or
that certain symbols may dictate or exclude the use of certain other symbols. Shannon explains the

process as follows:

A system which produces a sequence of symbols (which may, of course, be

letters or musical notes, say, rather than words) according to certain prob-

abilities is called a stochastic process, and the special case of a stochastic

process in which the probabilities depend on the previous events, is called a

Markoff process or a Markoff chain. (Shannon: 1968)
In other words, the Markov chain refers to the application of ‘rules’ or conventions in the inherent
structure of a message by which it is made coherent, and makes allowances for the relationship be-

tween symbols and not only their individual ratios.

Markov processes are also found in conventional music practices, for instance in melodic construc-
tion where certain intervals or chords, according to convention, require to be succeeded by other
specific intervals or chords or, conversely, preclude certain subsequent intervals or chords. Even in
some of the more current musical systems the stochastic process, and especially the Markov chain is
strongly in evidence. An example is strict serial music in which the elements of a complete series are

dependent on and dictated by preceding elements.

Through the years composers and theorists have continuously relied on systems or conventions to
serve as the basis for their compositions. The traditional system of harmony is one example in which
the | - IV - V - | chord progression is only too familiar. Arnold Schoenberg's dodecaphonic technique is
another example in which preconceived limitations and so-called ‘rules’ play an important role. For a
melody to make sense, its note sequences are usually bound and influenced by structural and tonal

elements complemented by idiosyncrasies of convention and 'style’.

Common examples of traditional melodic theory that are essentially stochastic in character include
the tendency of the leading tone to resolve to the tonic, or for a melodic leap to be followed by a note
within the leap; consecutive leaps in tonal melodies tend to outline specific chords and melodies tend
to outline harmonic progressions. Many similar examples may be cited which tend to indicate limita-

tions or precepts of the choice of notes and intervals imposed by convention or so-called ‘rules’.

7 This is a phonetic spelling, the name is also spelled Markoff.
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3.2.2 Ergodic processes

Perhaps a more difficult concept is the ergodic process, a distinct form of the Markov chain. Weaver

describes it as follows:

Although a rigorous definition of an ergodic process is somewhat involved,
the general idea is simple. In an ergodic process every sequence produced
by the process is the same in statistical properties. Thus the letter frequen-
cies, digram frequencies, etc., obtained from a particular sequence, will, as
the length of the sequence increases, approach definite limits independent
of the particular sequence. (Shannon and Weaver: 1986, pp. 45-46)

In simple terms the ergodic process hypothetically means that the relative redundancy values of sec-

tions of a message approaches or has the same value as the message as a whole.

Starting with the frequency distribution of single elements in a message, Information Theory, also al-
lows for the calculation of the relationship between the various elements and the manner in which
they are organised. Its most valuable application to music is that it calculates those aspects that are
conventionally or stylistically fixed as a ratio of the maximum number of possibilities that such a sys-
tem allows. A composer imposes his personal choice in selecting, a) the parameters such as rhythm,
and chromaticism, and, b) allows himself artistic freedom within the chosen system and parameters.
This means that the ratio between entropy or redundancy and maximum redundancy can actually rep-
resent a measure of the style of music. Hence Entropy is a measure of the creativity and originality

applied in a composition within a stylistic framework.

3.3 Entropy

Using Hartley’s equation, Shannon demonstrated that the quantity of information produced by a
Markov process can be measured, and referred to this quantity as entropy:
The quantity which meets the natural requirements that one sets up for

‘information‘ turns out to be exactly that which is known in thermodynamics
as entropy. (Shannon: 1968, p. 16)

According to Shannon the quantity of information can only be stochastically measured if certain
conditions are met. Stochastic entropy is represented by the formulation H{p:, p2, . . . ,pn) where p; is

the probability of the i-th element. The conditions are'®:

1. Continuity of H in the p;. If the probabilities of the events change slightly, the measure of

information (H) should similarly vary slightly.

*  Based on Shannon's paper, ‘A Mathematical Theory of Communication’, 1948, and Reza's An Introduction to Information Theory,

1961, pp. 80-81.
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2. Symmetry of the H function in every px. This means that a change in the order of events

should not result in a difference of measurement, or

Equation 3-8. Symmetry of the H function in every px«

H(p,, s> p,) = H(piy, iz, Piy)

where is ,i, ... , in is any permutation of 1, 2, ... , n

3. Extremal properties. When the probabilities of an event are equal, the H function should
have its maximum value for that set. In other words, when all events are equally probable

there is maximum uncertainty:

Equation 3-9. Extremal properties

Hm“(pl,p:,"',p”)ZH(%,-:;,---,%)

4. Additivity. In a system which contains a choice which itself comprises two choices, the origi-

nal value of H is equal to the weighted sum of the H values of the individual possibilities.

The formula that Shannon arrived at and which satisfies the above criteria is:

Equation 3-10. Shannon’s formula for information in a stochastic process

H= —]\’i p, log p;

=1

Figure 3-1 illustrates the entropy value in bits for probabilities of p (shaded areas) and 1-p (white ar-
eas); note that as the probability of either p or 1-p reaches its maximum value—meaning that the
outcome of a choice becomes more certain—the entropy tends towards 0. When both p and 1-p are

equally probable, the entropy reaches its maximum value of 1 bit.
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Figure 3-1. Entropy for a set of two symbols with changing probabilities

An important implication of a set with total parity is pointed out by Singh:

For when all choices are equally probable and none prevails over any other,

a person is, of course, completely free to choose among the various alter-

natives. As soon as one or more messages become more probable than any

other, the freedom of choice is restricted and the corresponding information

measure ... must naturally decrease. (Singh: 1967, p. 17)
The same principle applies to a set with a greater number of elements with varying probabilities. A
message comprising four elements (p1, p2, p3, p4) with varying probabilities is demonstrated in
Figure 3-2. Note how the summated entropy changes from maximum entropy when the four elements
are equally probable to continuously lower entropy values as the probabilities become more unequal
with some elements becoming more probable and others less probable. The first bar in the graph rep-

resents equal probability for the four elements, which become progressively more unequal.
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Figure 3-2. Entropy for a set of four symbols with varying illustrative probabilities

When the four elements of the example above are equally probable their entropy is at the maximum
(2) and the quantity of information is at its maximum. As soon as the probability of some of the
elements increases (reducing that of the other elements) the quantity of information they contain is
reduced. Minimum information is generated as soon as one of the elements of the four has a
probability of 100%.

3.3.1 Maximum entropy

From the foregoing examples it is clear that when parity exists between the elements of a set of finite
symbols in a message there is a definite relationship between the number of symbols and the sum of
_the information generated by each. As the number of symbols in a message increases the maximum
entropy also increases. Using Hartley’s formula (Equation 3-2) it is possible to calculate the maximum
entropy a symbol-set is capable of generating and, ignoring any noise that may be present, this value
would also be the capacity of a transmitting system. This value is expressed by the formula Logsn,
where n represents the number of elements. As shown in Figure 3-1, a two-element message set has
a maximum information value of 1 bit, while a four-element message set has a maximum value of 2
bits (see Figure 3-2). As freedom of choice decreases due to disparity of elements, the amount of

information also diminishes and the influence of structural design becomes more prominent.

Shannon makes some important comments in this respec;c which are equally true when Information

Theory is applied to music:
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... The capacity of a channel is to be described not in terms of the number of

symbols it can transmit, but rather in terms of the information it transmits.

Or better, ... the capacity of a channel is to be described in terms of its abil-

ity to transmit what is produced out of a source of a given information.

(Shannon: 1968, p. 16)
A music score, that represents the music by means of symbols is a coded message, and may hence
be regarded as a communication channel of which the maximum capacity to transmit codes is virtu-
ally impossible to measure. The reason being that it tends to adjust its capacity according to the de-
mands of the musical message. If, according to the quotation by Shannon, the maximum capacity of
the channel depends on the actual code that is transmitted, then the code contained in a score is also
a measure of maximum entropy of the musical message, regardless of the theoretical dimensions
and size of the music-symbol palette that may be available to the composer at the time of conception
of a composition.

3.3.2 Relative entropy

The formulae thus far illustrated the calculation of the actual entropy of 2 message as well as the cal-
culation of the maximum entropy that such a message could generate (when all the symbols have
parity value). As such, these independent values merely reflect specific information about the mes-
sage itself as a discrete instance and the results would not be suitable for comparative study because
each different message would produce different maximum entropy values. To make the results more
meaningful and to allow it to be used for comparative evaluation the entropy of the message may be
expressed as a ratio of the maximum entropy of the elements of the set.

The relationship between the entropy and the maximum entropy of a message is expressed as a per-

centage calculated with the following formula, where H denotes entropy:

Equation 3-11. Relative entropy

3.3.3 Absolute and relative redundancy

When the information contents or entropy of a message reaches its maximum value, its predictability

decreases diametrically because the selection of the symbols belonging to the set becomes increas-
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ingly more equal. Whereas entropy refers to unpredictability or information of a message, predictabil-

_ity is referred to as redundancy.

The redundancy of a message is calculated by subtracting the entropy of a message from the maxi-
mum entropy. For instance, if H(x) represents the entropy of a message with n symbols, the absolute
redundancy is:

Equation 3-12. Absolute redundancy

R, =log, n— H(X)

As with relative entropy, if redundancy is to be used for comparative purposes, a common unit base
needs to be used. For this purpose relative entropy is subtracted from 1 to obtain relative redundancy.
(If relative redundancy is expressed as a percentage, relative entropy is subtracted from 100):

Equation 3-13. Relative redundancy

_ log, n-H(2)
er] P log, n
I—H(x)
log, n

As the information set becomes more ordered, it becomes more predictable with an increasingly
smaller information content until maximum redundancy is reached. Any major scale is an example of
an element with maximum redundancy as each subsequent note in the scale is always fixed and fully
predictable, at least as far as subsequent intervals are concerned. Major scales have a maximum
entropy of log,7, or 2.81 bits. However, a melody in a major key would not have equal distribution of

the seven notes of the scale and could be expected to have an entropy value of less than 2.81 bits.
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A HISTORICAL SURVEY OF APPLICATIONS
OF INFORMATION THEORY IN MUSIC

The principles of Information Theory as the statistics of information in communication was formulated
during the late 1940s. Besides Thermodynamics and Communication Engineering (see Chapter 3),
many applications in a diversity of disciplines have benefited from the possibilities Information Theory
presents. Some of the most important applications include cybernetics, psychology, seismology,
oceanography, automation, mathematical logic, neurophysiology, biochemistry, linguistics, computer
science, economics, and artificial intelligence. In some applications, the theory is mainly used to es-
tablish models based on existing data, which in turn may be used to make intelligent predictions.
Other applications use the theory for comparative studies in which specific instances may be com-
pared with global possibilities.

For reasons expressed in the introduction and perhaps, because of the artistic association of music, it
has had relatively little exposure to the methods of Information Theory, especially during the last 25
years. A degree of proficiency in mathematics and computers is obviously required, and because it
means venturing into disciplines traditionally considered to be outside the realms of music, musicolo-
gists have been hesitant to make use of the possibilities it offers. Established methods of analysing
music have for many years proven themselves quite adequate in many respects and alternative

methods are perhaps not regarded as an urgent need.
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Nevertheless, as shown in Chapter 1, music is also a mode of human communication which couid
benefit from the innovations and discoveries of modern technology. Many disciplines such as music
therapy, marketing, broadcasting, and accelerated learning—fields that are not always directly related
to music—apply music functionally. These applications often require music of a specific character or
style that has shown to be suitable to that particular application. Conventional music analysis is rarely
used to select music for these applications and most of the selection is done intuitively or by trial and

error.

Traditional analytical methods, because of the familiar parameters they present, remain invaluable for
the study of music and its properties, technically and artistically. Because of its technical orientation it
is an important method by which the art of music making, interpretation, and composition can be un-
derstood and taught. Traditional methods usually allow for a large measure of flexibility of interpreta-
tion, and is suitable for what is sometimes referred to as ‘fuzzy matching’." In music this kind of im-
precise comparison has proven to be very useful and through the years a complete technical vocabu-
lary has been established which continues to expand. Yet, many of the terms used have a wide mar-

gin of meaning to allow diversity within a basic framework.”

The fact that analysts have resorted to general terminology to describe generic but diverse elements
of music is an indication of the unpredictability of the art and therefore the creative forces that are at
work. But although the traditional methods of analysis have an important role in the academic study
of music, it is also often of a highly subjective nature which allows different analysts to arrive at dif-
ferent conclusions. However, by definition there is a difference between the technical features and the
informational properties of music. If music is required for a specific application, that depends on its
underlying communicative properties, a different approach or method is necessary to illustrate these

properties.

Alternative methods of analysis are from time to time devised, many of which attempt to reduce the
various structural levels of music to more manageable and concise values. The Schenkerian system
of analysis is a good example of a system which, by reducing redundant elements, attempts to arrive
at the underlying structure of a composition. In spite of the obvious merits of such new analysis meth-
ods and the fact that they are often recognised and accepted, they usually remain the domain of the
specialists and are rarely accepted as part of the everyday study of music where the traditional meth-
ods remain firmly entrenched.

Progressive contribution to the knowledge about music very often comes from individuals who have

less than a professional interest in music and whose field of specialisation is the technology which

Fuzzy matching is part of the science of Artificial Intelligence and allows for the comparison of parameters which have a broad
base of structural similarity in general without being identical. Musical form is a common example in which fuzzy matching is ap-
plied in music analysis; theoretically there are a relatively small number of prototypes (sonata form, binary form, ternary form, and
rondo form) to which a large quantity of music may be compared.

In an attempt to be more precise, some authors invent adjectives which qualify specific musical procedures. Robert W. Ottman in
his book Elementary Harmony (Prentice-Hall, 1983) uses the terms Perfect authentic and Imperfect authentic cadence, de-
pending on the chord inversions and voice leading. By using these terms he tries to pinpoint specific characteristic features of
cadences which would otherwise resort under the generic term Perfect cadence.
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they use in the development of their new theories and techniques. This situation also applies to the
research of the application of Information Theory to music which, to date, has mainly been done by
researchers who, although specialists in communication technology or statistics, often have no more

than a basic technical knowledge and a love for music.

Most of the important research done to date by researchers is, with some exception, limited to spe-
cific aspects of music. Usually the aspects that are musically most obvious such as rhythm and pitch
are singled out for analytical treatment with Information Theory. There are some researchers, how-
ever, who have ventured into more complex analyses but who, during the early years, were still ham-
pered by technological limitations. In the Introduction (Chapter 1) it was pointed out that very little re-
search has been done or at least was published since the 1970s. It seems that the ascendance of .
powerful personal computers and the possibilities they offer drew much of the attention of researchers
away from the analytical possibilities. This is shown by the tremendous amount that has been pub-
lished about computer applications in music during the last twenty years, much of which is devoted to
methods of representing information of music in computer languages. The remainder of this chapter

is a synoptic overview of researchers and their work on Information Theory applied to music.

4.1 Music analysis by means of information theory

An early reference to the possibility that Information Theory could be applied to music appeared in
1946 or 1949° when Shannon and Weaver published in their book, The Mathematical Theory of
Communication. Although their treatise was not directly concerned with music the authors inferred the

possible application of Information Theory to music when they stated that:

When we have an information source which is producing a message by suc-
cessively selecting discreet symbols (letters, words, musical notes, spots of
a certain size, etc.) the probability of choice of the various symbols at one
stage of the process being dependent on the previous choices (i.e. a
Markoff process), what about the information associated with this proce-
dure? The quantity which uniquely meets the natural requirements that one
sets up for 'information’ turns out to be exactly that which is known in ther-
modynamics as entropy. (Shannon & Weaver: 1968, p.12)

Shannon only mentions music incidentally as a source of information and continues to describe the
manner in which the principles of Information Theory are applied to information sources in general.

Nearly ten years passed before the validity of Shannon and Weaver's comments were realised. Al-
though not addressing Information Theory as such, an important study of music as @ communication
medium and information source was done in 1956 by Leonard B. Meyer in Emotion and Meaning in

Music. Approaching the subject from a psychological point of view, Meyer expresses the opinion that

> There seems to be disparity about the date of this publication and according to the sources consulted the date of publication of

this book varies between 1946 to 1962. The edition of Shannon and Weavers book used for this research is dated 1968 and is
probably a reprint. A further reprint may be found in a collection of their most important papers on information theory, edited by
David Slepian in Key Papers in the Development of Information Theory, |EEE Press, 1973.
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musical style is part of a predictability pattern which becomes internalised and on which textbooks are
subsequently based. (Meyer 1956: Chapters 1 and 2) He links emotional expectation to musical ex-
perience without venturing further into the province of information content as such. Not only did
Meyer himself use many of the ideas contained in his book as basis for further research in Informa-

tion Theory, but a number of subsequent researchers took note of his ideas.

The first reports about actual analytical studies with Information Theory also appeared during the
1950s. ‘Information Theory and Melody' is the title of an article by Richard Pinkerton published in Sci-
entific American. (1956, pp. 77-87) Pinkerton's research consisted of counting the pitches of thirty-
nine nursery melodies to obtain certain values which he subsequently used as a model to create
melodies of his own. The method he applied to compose the melodies is discussed in the second half

of this chapter.

Meyer continued his discourse a year later with an article, ‘Meaning in Music and Information Theory',
in the Journal of Aesthetics and Art Criticism. (1957, p. 412-424) In this article Meyer links ‘meaning’
in music with the information content of music. He refers to his book mentioned above (Emotion and
Meaning in Music), when he says:

In that [book’s] analysis of musical experience many concepts were devel-

oped and suggestions made for which | subsequently found striking parallels

indeed equivalents in information theory. Among these were the importance

of uncertainty in musical communication, the probabilistic nature of musical

style, and the operation in musical experience of what | have since learned

to be the Markoff process. (Meyer: 1957, p. 412)
In essence, Meyer's article deals with the correlation of musical meaning, value and information and
arrives at the conclusion that these three elements are different but

... related experiential realisations of a basic stochastic process governed by

the law of entropy. (Meyer: 1957, p. 424)
Meyer did not do any analyses himself, and limited his discussion to the arguing of hypotheses and
intuitive concepts. Some two years later, in 1958, Joseph E. Youngblood published the results of his
musical analysis in an article with the title, ‘Style as Information’, in the Journal of Music Theory in
which he also expresses the belief that Information Theory could be suitably used to identify musical
style. (Youngblood: 1958, pp. 24-35)

Youngblood's analysis is tentative as he only works on the pitch distribution of various melodies by
Schubert, Schumann and Mendelssohn as well as four Gregorian chants. Although his work is impor-
tant from a historical point of view, he does confuse information generated by stylistic conventions at

the source (the composer and the score) and information as received by the listener. In his discussion
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of maximum entropy of the chants he rationalises the use of both a base of twenty seven® as well as
twelve notes:

...modern listeners are prepared to respond to twelve divisions of the oc-

tave, and consequently, maximum uncertainty is for them represented by

log12 and not by log27. (Youngblood: 1958, p. 31)
The problem with Youngblood's viewpoint is that he ignores the fact that a composition should be re-
garded as a closed discrete system in which the total number of symbols contained in the message
dictates the maximum amount of information (in this case uncertainty). This was discussed in Chapter
3 and is a basic premise stipulated by Hartley (see page 3-4). What a listener is ready to respond to®
has very little bearing on the inherent style of a composition and the information it generates. Any
limitation or freedom of choice a composer displays in his composition should be seen against the
possible choices that are made available to him by convention, the system which serves as a frame
of reference, and the actual limitation he consciously or unconsciously imposes on himself. Only a
small portion of a very large range of possibilities available to the composer may be present in a
specific composition and only those elements used by the composer represent the information con-
tent of the composition.

In the conclusion to his article Youngblood admits that other factors would have to be brought into

consideration as well but confirms the validity of Information Theory as a method of stylistic analysis:

Most musicians can at present either intuitively or on the basis of certain

vague generalisations identify at least five or six historical styles. It seems,

however, that it would be useful to find a means of identifying and guantify-

ing the characteristic features of style, as well as measuring the differences

between styles, if for no other reason than to provide a basis for understand-

ing and evaluating contemporary music. (Youngblood: 1958, p. 31)
One of the most exhaustive and thorough books on information and the arts was published by Abra-
ham Moles in 1958, under the title Théorie de linformation et perception esthétique.® Addressing
aesthetic information of the arts in general, Moles heuristically explores the role and application of
!nformation Theory to communication from the perceivers point of view. Chapters two and three refer
extensively to Moles’ research and conclusions. Following the publication of Moles’ book, researchers
on the subject were inspired by the ideas propagated by him and often rely extensively on definitions
and descriptions contained in his book. It is unfortunate that the subject about which Moles wrote so
thoroughly has not earnestly been pursued by other writers, and that his treatise which is now nearly

40 years old, remains one of the few extant works on this subject.

Itis not clear why Youngblood refers to 27 notes, neither does he provide any reason. If he refers to enharmonicism, the total
number of notes theoretically available is 35 (5 accidentals multiplied by the 7 diatonic pitch names).

Youngblood's statement seems to be incorrect fundamentally, as he implies that listeners only respond to the twelve chromatic
tones of Western music. He thereby implies that listeners would not respond to quarter tones or smaller intervals.

Translated from French into English in 1965 by Joel E. Cohen as Information Theory and Esthetic Perception (University of
llinois Press).
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‘Information as a Measure of Structure in Music’, is the title of an article by Edgar Coons and David
Kraehenbuehl which was also published in a 1958 edition of the Journal of Music Theory. (1958: pp.
127 -161) Their approach is somewhat different to that of Youngblood in that they calculate the infor-
mation of musical form in relation to human expectation with the general aim of finding a connection

between musical and non-musical symbols:

Once the facts regarding the nature of pattern can be stated rigorously, it

will become possible to develop a general theory of formal process in mu-

sic. Since information is a measure of formal effectiveness that is inde-

pendent of the specific nature of the elements composing the pattern, exact

structural comparisons between musical and non-musical experiences will

become feasible, paving the way to a sound theory of the symbolic proc-

esses in music. It seems reasonable to assume that the musical symbol and

the reality it symbolizes have in common nothing more than their structural

properties. (Coons & Kraehenbuehl: 1858, p.151)
Although hypothetically correct, Coons and Kraehenbuehl's theory is no more than just that; in music
repetitions are seldom identical (except when music is repeated by means of repeat signs). According
to traditional methods of structural analysis, slight variations in musical repetition will have little effect
on the final structure. Information Theory on the other hand will identify such variations as being dif-

ferent rather than mere repeats.

Various scholars, stimulated by the challenges the new research in Information Theory presented,
became involved in the science and presented their findings — usually of a tentative nature — in jour-
nal articles. Analysis with Information Theory, mainly on the rhythmical contents of melodies, was
done by John Brawley in 1959 as part of research towards a Master's thesis at the University of Indi-
ana, while a more general approach was taken by Joel Cohen in ‘Information Theory in Music'.
(Cohen: 1962, pp. 137-162)

However, the most important research during the 1950's and 1960's was done by Lejaren Hiller who
contributed a number of articles and a book in the following years up to 1967. Hiller's main interest
was in the application of Information Theory in composing music, which is treated at greater length
_later in this chapter. His book, Information Theory and Musical Analysis, (1962) is the first extensive
work to elaborate on the application of the theory to music. In co-operation with Calvert Bean an
analysis of four sonata expositions was done and the results published in the Journal of Music Theory.
(Hiller & Bean: 1966, pp. 96-137)

A year later, in 1967, Hiller and Ramon Fuller published the results of an analysis of Webern's sym-
phony op. 21, also in the Journal of Music. (Hiller & Fuller 1967: pp. 60 -115) This work by Hiller and
Fuller is significant because conventional analysis is compared and combined with Information The-
ory analysis in an attempt to show how the two may complement each other. Part of the contents of
this article is based on Fuller's thesis for a Doctorate of Musical Arts at the University of lllinois, An
Information Theory Analysis of Anton Webern's Symphonie, Op. 21. (unpublished: 1965)
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The conventional analysis of Hiller and Fuller's is straightforward and deals mainly with the pitch
structure of the various appearances and transpositions of tone rows, the canonic structure, instru-
mentation, and rhythm. The entropy analysis is more extensive, in fact one of the most comprehen-
sive until then. Four dimensions of entropy analysis are included: pitch, four different types of interval
relationships, rhythm, and pitch and rhythmic combinations. The results of their computations are re-

corded on a large number of graphs.

In 1964 analytical research on Karnatic music was done by Gift Siromoney and K. R. Rajagopalan
and the results published in an article with the title, ‘Style as Information in Karnatic Music'.
(Siromoney & Rajagopalan 1964: pp. 267-272) Applying similar criteria as Youngblood, Siromoney
and Rajagopalan also limited their analysis to the counting of pitches. This analysis could have shown
some interesting results because Karnatic music is based on a completely different tuning system
than that of Western music and provides for seven svaras and twenty-two sruthis to the octave with a

maximum entropy of 2.807 bits and 4.459 bits respectively.
For no apparent reason the two researchers limited the number of notes:

In this paper, we shall however represent the notes of the Karnatic system
by their nearest notes in the Western scale. (Siromoney & Rajagopalan:
1964, p. 268)
The calculations are further incomplete because the particular scales peculiar to each raga type were

not taken into account.

In 1966, L. A. Hiller and C. Bean attempted to solve problems of the analysis of musical structures by
applying Information Theory to subdivisions of larger sections. (Hiller & Bean: 1966, pp. 60-115) The
results of their investigation was published in the Journal of Music Theory, under the title ‘Information

Theory and Analyses of four Sonata Expositions’.

These studies mainly have in common the fact that they have either concentrated on the frequency of
individual pitches or on rhythm only, and that pitch relationships and interval relationships were ig-
_nored. Establishing pitch frequencies is important in musical analysis with Information Theory in order
to obtain an idea of note distribution, but to base an entire analysis only on this aspect of music with-
out regard for any other, contributes little to the analysis of musical style. Pitch names by themselves
merely outline intervals. Musical activity is largely dependent on the movement of intervals. The

characteristics of a melody is therefore dependent on its intervallic structure and not the pitch names.

Some of the problems that Information Theory presents in the stylistic analysis of music were investi-
gated in 1971 by Norman Dale Hessert in a dissertation towards a D. Phil. degree, The Use of Infor-
mation Theory in Musical Analysis. He confirms that pitch_frequencies are less valid by themselves

and believes that interval relationships are more important:
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1. Using twelve melodic intervals from the unison through the major 7th
makes possible a standard alphabet by which to analyse melodies of any
style period.

2. Analysing the interval content of a melody avoids the problems of deter-
mining tonal centres and exact points of modulation.

3. Intervals more clearly reflect the elements of redundancy and entropy
(unity and variety) than do scale degrees. For example, using the scale
as basis of analysis, the repetition of a motive at a different pitch level is
reflected in the numerical results as an element of variety rather than
unity.

4. Analysis at the level of first-order transition probabilities (single notes) is
probably not very meaningful. It would be easy to show that two melodies
which are dissimilar in style can have the same pitch content. (Hessert:
1971, p. 44)

Thus far most of the analytical research has tended to be inconclusive for the following reasons:

1.

Much of the research has concentrated on a single dimension of music such as melodic
pitches, rhythm or form. Musical style is multifaceted and a single element can only represent
one such facet.

Even where multidimensional analysis was done, some researchers have tried to express the
results of the analysis as a single numerical figure, instead as a model of multiple figures, of

which each figure would represent one of the aspects of musical style.

The Markov Process (see Chapter 2), which is important for the indication of the tonal and
structural coherency of musical style, has rarely been applied consistently. This has resulted
in a simplistic application of Information Theory.

The representation of entropy values purely as numbers usually does not allow for a clear
overview of the results and therefore could tend to be meaningless and unfamiliar to many
musicologists.

Hessert concludes his Ph.D. dissertation with the comment that ...

Certainly no application of information theory has thus far been able to re-
flect either the existence or the effects of the Markov process in its numeri-
cal results. And, since it is the Markov process which is the basis of this par-
ticular theory of messages and communication, it would seem that those
who have worked in this area have been unsuccessful in obtaining any
really meaningful results in their application of information theory to the
analysis of music. (Hessert: 1971, p. 85)

Hessert's criticism is concerned with the way Information Theory had been applied and not with the

theory itself. In fact, he specifically refers to the simplistic épplication of Information Theory to single

aspects of music, often with disregard for the interrelationships which exist, not only between the

various aspects, but also between smaller and larger elements of specific aspects. In all faimess it
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should be added that most of the researchers who have laid the foundations of Information Theory
and music were not musicians themselves which may be why they mainly concemed themselves with
the most obvious musical elements; melody and rhythm. Musicians who venture into research with
Information Theory usually did not have access to the technological resources that their colleagues in

the Communications sciences had, and which was a restricting factor on the extent of their work.

Not only has the value of Information Theory been recognised as an analytical tool, there were also a
number of composers — professional and amateurs — who realised that Information Theory could be
applied to the compositional process. The next section discusses some of aspects of composing with
the help of the principles of Information Theory.

4.2 Music compositions based on information theory

Although composition is not the subject of this research some of the technigues used by the compos-
ers mentioned here address some of the arguments that are discussed. Composers have applied a
variety of principles and methods of Information Theory to create their music that tend to support
some the arguments that are expounded in this dissertation. Because of this some of the more impor-

tant composers and their works as well as the principles they applied are discussed here.

Since the 1950s when computers and electronic musical instruments began their fast rise to general
application, a number of composers have been working towards emulating the processes of musical
compositions by using electronic equipment. Artificial intelligence, of which Information Theory is an
important feature, has become an important element in composing music with the aid of computers.
Artificial intelligence attempts to emulate human thought processes but requires that large amounts of
information be programmed into a database which the program has access to. The information re-
ferred to here is synonymous with the ‘rules’ or parameters which need to be applied to sound in order
to create acceptable music. Because computers are very effective for the manipulation of numbers,
the application of Information Theory, which translates conventions into number values, may serve as
an excellent vehicle for ‘musical rules’ to create music with computers.

Music composed with the aid of computers can play an important role in attempts to discover the
factors that make up musical style. An artificial computer composition based on synthesised informa-
tion may be compared with music composed by humans to give an indication of those elements
which are required in the original computer programmes. Stochastic principles offer a method by

which composers of computerised music may incorporate parameters into their compositions.

Pierce and Shannon were among the first researchers to compose music with the help of a computer
which was programmed with information obtained with Information Theory. In 1949, they completed a
chorale-like piece of music by selecting diatonic chords from a preconceived list of chords. However,
the music they created was not yet totally generated by the computer. Besides the list of chords, they
also manually manipulated the phrase structures and cadences. A rule which they included in the pa-
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rameters was that each subsequent chord should have a note in common with the preceding chord
and in the same voice (Pierce & Shannon: 1949) — an example of the stochastic principle at work.

The results were stylistically not very ‘human’ as is evident from Hessert's commentary:

The weaknesses of the composition... are many — the use of second inver-

sion triads, the three consecutive ascending melodic fourths, the impossibil-

ity of root movement by second (sic) — but, in terms of information theory,

the problems are that the probabilities for the occurrence of the individual

chords are not taken into consideration and that the Markoff chain is not part

of the compositional process. (Hessert: 1971, p. 88)
Hessert's observations concern the absence of common musical conventions which could have been
resolved by including additional information in the generating programme. His criticism is therefore
mainly based on his expectancy of a certain style of music in which certain conventions may be
found. There was, in other words, too much entropy or information present in the composition gener-
ated by Pierce and Shannon to satisfy Hessert's preference. It is revealing that Hessert's objections
are subjectively based on well known traditions and conventions. This is an important observation as
far as this research is concerned, since he compares a composition which had been composed ac-
cording to its own inherent criteria to musical style of his own personal preference. This seems to
support the argument that Information Theory is able to extract and make prominent those elements
that are regarded as preferential or necessary for a specific purpose. Pierce and Shannon's music has
a high entropy value with the result that it is too unpredictable to fit within a preconceived style of
music. The parameters which they included in their composition are, in other words, too sparse to

create music of a recognisable style.

Some composers prefer to apply the principles of Information Theory without attempting to incorpo-
rate traditional conventions. Important work in this respect was done by lannis Xenakis whose com-
position, Metastasis (1953-1954) was created according to stochastic principles. In an article of 1966,
The Origins of Stochastic Musicf Xenakis, who is also a mathematician, explains that the creation of,

what he calls probabilistic music in the twentieth century, was a natural outflow of serialism:

.. in 1954 a music constructed from the principles of indetermination was
developed from, amongst other things, the impasse of serial music; two
years later | baptized this music ‘musique stochastique'. It was as a musical
necessity that the laws pertaining to the calculation of probabilities found
their way into composition. (Xenakis: 1966, p.12)

Although Xenakis refers to indetermination in the quotation above, his application of stochastic prin-
ciples, in reality implies a method of composition in which indetermination is controlled by basic pre-

determined factors. In fact his reference to the ‘calculation of probabilities’ confirms that he uses ba-

sic ‘rules’ within which indetermination is allowed to work. The basic techniques and theories on which

7 Thisis a translated and abridged version of the French article, ‘Les musiques formelles’, which was published in Revue Musicale

(no. 253-254:1966). The translator is G.S.N. Hopkins.
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Xenakis based his compositions are contained in a series of articles and essays which appeared in a
variety of French and German journals and a book published between 1855 and 1968.°

Further experiments with musical compositions generated by means of Information Theory, but in
which the Markov chain features to some extent were done by David Slepian in 1851 and Richard
Pinkerton some five years later.

Slepian's technique consisted of letting a colleague listen to the first portion of a bar of music. The
colleague was then required to complete the bar. A second colleague listened to the portion com-
pleted by the previous colleague, and so on until the composition was considered complete. By apply-
ing this method Slepian ensured that each portion of music was always connected to what preceded
it.

Pinkerton's approach differed radically and was based on the analysis of a group of nursery melodies
according to the methods of Information Theory. He calculated the first and second transition prob-
abilities (orders) for the seven notes of the diatonic scale plus an additional symbol which represented
the rest or lengthened note. Using this information in a binary framework in which some notes had to
be followed by others while other notes were followed by a choice of two notes, Pinkerton was able to

conceive elementary melodies.

The most successful composition which incorporated stochastic principles was the llliac Suite for
String Quartet by L. A. Hiller and L. M. Isaacson.’ Composed in 1957 with help of a computer which
was programmed with compositional rules and selections based on the Monte Carlo technique.10
Hiller and Isaacson’s technique was rather complex and they based the suite on a combination of
Hindemith's interval sequence (Series |) and that particular interval's distance from the unison
(proximity value).

The numerical values they obtained are shown in Table 4-1 and were manipulated in a variety of
ways to obtain different results and to ultimately generate the suite. ‘Stylistic' variation in the llliac
Suite was achieved by increasing and decreasing the entropy value of the individual notes in relation

“to the whole.

The journals referred to here include Gravesaner Blatter (1955-1965), La Nef (1967), and Revue d'Esthétique {1968). The book
from which certain portions were used is Musiques Formelles (Richard Masse, 1963).

A copy of the 'llliac suite' was reprinted with corrections in the authors' publication, Experimental Music, (1958, pp. 182-197).
The Monte Carlo technigue is based on the laws of chance by which choices are made from sets of random numbers and made
to conform to statistical controls.
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Interval Interval number  Hindemith Series | Proximity value  Combined value
Vv X Y, Z=X+Y
Unison 0] 13 13 28
Octave 12 12 1 13
Fifth 7 14 6 17
Fourth 5 10 8 18
Maj 3rd 4 9 9 18
Min 6th 8 8 5 13
Min 3rd 3 7 10 17
Maj 6th 9 6 4 10
Maj 2nd 2 5 11 16
Min 7th 10 4 3 7
Min 2nd 1 3 12 15
Maj 7th 11 2 2 4
Tritone 6 1 7 8

Table 4-1. Calculation of the note values for the Ifliac Suite by
L. A. Hiller and L. M. Isaacson

The following examples are extracts of the four movements or ‘experiments’, as the composers re-

ferred to them. A comparison of the first number of bars of each movement gives an idea of the de-

gree of variation that the composers managed to achieve by using the basic range of notes shown in

the table together with a varied manipulation of the stochastic processes.
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Example 4-2. llliac Suite: Experiment I, L. A. Hiller and L. M. Isaacson
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Example 4-3. llliac Suite: Experiment lil, L. A. Hiller and L. M. Isaacson
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Example 4-4. liliac Suite: Experiment IV, L. A. Hiller and L. M. Isaacson

Besides the interval range shown in the table and the examples, virtually no other parameters were
applied that were derived from traditional music conventions. Even though Hiller and Isaacson's ex-
perimental compositions were relatively successful, it was mainly because they made use of
‘conventions’ which were designed specifically for their composition. The work should therefore be

judged on its own merit and within the parameters specifically designed for it.

Another example of stochastic music is shown on the next page and is a composition by James Ten-
ney. When Tenney composed this work called, Stochastic String Quartet (Sonic Art, 1988), during the
years 1962-1963, he worked at the Bell Telephone Laboratories on a sound synthesis programme.
Like the llliac Suite, the music was generated with the aid of computers but, like the Hliac Suite, is
meant to be performed by conventional instruments. The process involved in the composition is not
unlike that used by Hiller and Isaacson, and Xenakis but the composer has exerted more control over
the general structure of the piece as well as over the note values. Like the liliac Suite the texture is

predominantly contrapuntal.
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Example 4-5. Stochastic String Quartet, James Tenney
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4.3 Conclusion

Some of the research applications in music that has been done since the formulation of Information
Theory, were mentioned in this chapter. Little of this research has resulted in any dramatic changes in
the approach to music analysis, neither has it had any marked affect on the traditional methods of
music analysis. Investigation of this science has shown that although many other disciplines have
benefited from the principles of Information Theory, little progress has been made in its application to
music during the last two decades. Some of the applications have had an indispensable and far
reaching influence on the development of technology, to such an extent that Information Theory has
become an important branch of the science of statistics.

Besides the analyses of music that has been described in this chapter, other applications are mainly
limited to composition in which a number of composers have used various aspects of Information
Theory.
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COMPUTER PROGRAMMES FOR STOCHASTIC
MUSIC ANALYSIS

Music analysis with Information Theory requires the processing of large quantities of information and

a computer is an ideal medium for this task. In fact, when large compositions are comprehensively

analysed a computer is indispensable and has some important benefits:

1.

large quantities of information may be stored on a variety of storage mediums which may in

turn be used with different systems and software packages;
access to, and accurate manipulation of information is greatly enhanced,

representation of information and processed data may be extensively varied by using, among

others, numeric, descriptive, and graphic formats;

provided that the application programmes work properly and the information fed into the com-

puter is correct, accurate calculations and results are ensured;

results are relatively free of subjective information, barring those that are incorporated into the

programme; and

provided that the correct information is fed into the computer, experiments will be repeatable,
even by different operators. In other words because of the fixed methodology that the pro-

grammes apply, the results should always be the same.
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For the reasons mentioned above the author used computers and computer software extensively to
collect and process information. All the programmes used for the analyses, calculations and presen-
tation of the entropy values described in this thesis were designed and developed by the candidate.
Although the initial prototypes and test programmes were written in Pascal, the programming lan-

guages used for the final versions of these programmes are a combination of C and Visual Basic®'
The programmes were written with specific criteria in mind:

1. Entry of music data should be as uncomplicated as possible. Preferably by means of a graphi-
cal interface with a pointing device—the use of a keyboard for data entry is more prone to er-

rors.

2. The programme should be able to identify as many errors as possible. For example, excessive

note values in a bar.

3. Errors in the database should be easy to rectify and by means of the same graphical interface

as the entry phase.

4. The database should be able to contain the ‘raw' information of the music as well as the re-

sults of the calculation so that these need not be re-entered or recalculated.

5. Results of the entropy calculations should be presented in a number of possible ways, i.e. nu-

merical or graphical.

Although not specifically designed for entropy analysis, many software packages are currently avail-
able that could be used to do basic entropy calculations. However, although these programmes are
sufficient to do the necessary calculations, the basic music information needs to be entered in nu-
meric or'alphabetic format—this is very time-consuming and prone to errors. The most useful type of
programme to use for this purpose is one of the many available spreadsheet programmes, while
some of the database programmes on the market also include the necessary mathematical functions.
Two useful packages that were experimented with are ExceL®, a spreadsheet programme which runs
under winobows®, and which has numerous functions suitable for calculating entropy values, and
access®? a database programme which is capable of interacting with exceL®, but which could also be

used separately.

5.1 The music analysis programme

The programme developed for this research essentially comprises three separate programmes. Al-
though the three programmes are capable of working independently they were designed to work to-

' VISUAL BASIC is a new generation of the older programming language, Basic. This version is predominantly ‘event driven’ and

relies to 2 large extent on graphical elements. VISUAL BASIC is published by Microsoft.

2 Both ACCESS and EXCEL are trademarks of Microsoft.
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gether and to interact seamlessly. In other words each of the programmes is capable of working by
itself without requiring that the other two programmes are loaded. The three programmes are linked
by a number of databases which should be mutually available. The databases are:

Criteria database

This database is transparent® and not editable. It mainly contains all the information required to inter-

pret the notation and in reality consists of various smaller databases.

Composition information

The identifying information of each composition is stored in this database. The fields* contained in
this database are:

Composition identification number

Title of Composition

Composer’s name

Date of composition

Composition category (defined by programmer)

Additional Information (for comments and other information)

Music Information.

All the music information for each of the compositions is stored in this database. The most important
fields for the purpose of this research are (a large number of additional fields contain additional in-

formation used for other applications such as printing):
Composition identification number
Entry identification
Bar number
Pitch representation (numerical/alphabetical format: octave, pitch name, accidental)
Pitch number (allowing for octave range and accidentals)

Note value (note length expressed as a function of 128)

PR transparent program function in the background and is not obvious to the operator.

*  Each field in a database represents a bit of information. A predetermined set of fields make up a record, while a group of records

form the database.
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Entropy Information

The results obtained by the entropy analysis routines are added to this database which has the follow-
ing fields:

Composition Identification Number
Order Number

Entropy - pitch

Entropy - note duration

Entropy - pitch and note duration
Entropy - pitch ratios

Entropy - intervals

It will be noted that the three last databases have one field in common, the Composition identification
number. This field serves as a link between the three databases for any of the compositions and al-
lows the databases to contain the information of more than one composition at a time. To work with
the information of a specific composition, its identification number is entered. Only that composition’s
information is then made available and database management is thus more effective.

The manner in which the three programmes interact and mutually have access to the databases de-
scribed above is shown in the schematic illustration below. The dotted line connecting the three data-
bases represents the composition identification number. The direction of the arrows indicates whether
a programme only has access to data or whether it can also modify data in a particular database. For.
example, the interface for data entry has access to and can modify both the composition information
database as well as the music information database but can only access the criteria and rules data-
base without changing; the entropy analysis programme only has access to the composition informa-
tion database and the music information database but can only modify the entropy information data-
base:
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Composition Identification number

Databases Criteria and Composition Music Entropy
rules Information Information Information

. \‘ »

™~

b

L 4 ‘L‘ - v

Graphical Entropy Entropy
Programmes interface for Analysis presentation

data entry programme and printing

T Y Y

l Front end '

Figure 5-1. Databases and primary programmes for music analysis

The box marked ‘Front end' represents a short controlling routine, or user-interface which calls® the
three main programmes. This routine comprises the main screen of the programme and allows one to
choose the composition for analysis or to enter a new composition. From this main screen the opera-
tor therefore controls the other programmes. The illustration below is a copy of the main screen which
also shows why it is called a ‘graphical interface’—many of the elements are represented by pictures

some of which appear three-dimensional.

Compnsmnns

Changed -

Tllle' ]D as Wandern [M ullerin)

Composer- ]Schubert Franz
o ——{ Recelcustear

Interval
L Orders

! xompile.
lnterva!s

Rhythmj.;._- :
ok Orders o

T ——e.e.

Figure 5-2. Main screen of the analysis programme

: Computer terminclogy used when one computer programme or routine, branches to another programme or routine which then

takes control of the processor.
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The three-dimensional squares represent buttons which are ‘pressed’ by the operator to select the
required action, while the lines connecting the ‘buttons’ merely give an idea of the sequence of the
analysis process. Each of the buttons is selected with the keyboard or with a pointing device. By
pressing a key or clicking with a mouse button on a selected ‘button’ on the screen, the required rou-
tine is automatically called. These functions were added to make the programme less cumbersome

to operate.

All the screens shown in this chapter are in reality coloured which makes it easier to distinguish the

various elements and controls.

5.1.1 Entering musical information

Because most of the calculations are transparent and happen in the memory of the computer, only
two elements of the programme, the entry of information and the presentation of calculation results
are visible. The following illustration shows the screen that is used to enter the musical information
into the database.

As with the main screen, a pointing device or the keyboard is used to select each of the functions on
the screen, a copy of which is shown below. First a pitch is selected, then the octave number and the
accidental, followed by the note value. The note value is selected by pointing at one of the values
shown in the right hand box and the selected symbol then changes colour from black to red. The
small rectangles labelled ‘HRvalue' and ‘Rhythm’' are control boxes that were incorporated at the
testing phase of the programme and shows the converted value for each of the pitches. The list to the
left of the screen is a copy of the database in table format and is also a control. In the final version of
the programme these controls are not visible to the operator (although still present in the back-
ground).

After each entry, or after an entry has been edited the screen is updated to show the number of notes
that have been entered, the currently entered pitch name and note value, as well as a listing of the

entries. By means of cursor keys, the entries may be perused for alteration or insertion.
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Figure 5-3. Data entry screen

5.1.2 Displaying or printing the calculated information

Once all the calculations have been made the analysis programme is activated. These calculations
are also transparent and the only indication that the program is running is a counter which indicates
the programme’s progress. The entropy that has been generated by the analysis programme may be
displayed or printed in a variety of formats. If printed to the screen or to the printer, a choice may be
made to print out the whole calculation process or just a summary in which only the final entropy val-
ues are printed. The following illustration shows a series of entropy values in graph form as it appears
on the screen (in colour) and as it will look in printed form (in grey-scale). Details of the various parts
of the graph and their interpretation is discussed in the next chapter. In addition to the graph, the
screen bhelow also shows the title of the composition, its identification number and the composer of

the work:
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_ Form: Entropy view
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Figure 5-4. Entropy values in graph format

In the example above the straight horizontal lines represent the pitch, pitchratio and pitch-rhythm en-
tropies. Since there is only one entropy value for each of these, the lines are drawn across the graph
purely for the sake of clarity. The curved lines connect the respective entropy values for each of the
orders of the stochastic processes of the intervals and the rhythm. The same formats mentioned
above may be printed to a file on a storage medium such as a diskette or a hard disk in ASCII format.
In this case the information may be incorporated in word-processing packages or, after suitable con-
version, may be accessed by programmes such as spreadsheets from where it may be further ma-

nipulated.

The next illustration shows the same values as those of the previous graph. Note that the values in
the first three columns are the same for all the order values. This ensures that a horizontal line for
each specific value is drawn across the graph. Also note that the last three values (orders 15 - 17) for
the Interval entropies are 100%, these are also automatically included by the programme to allow for

the greater number of orders found in the Rhythm entropies:
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Form: Entropy view - Datasheet

S 1] 0885645 0.864288 | 0.843093
R 2| 0885645,  0.864288 0.872044 0.952258]  0.714624 |
SR 3| 0885645 0.864288] 0.872044 0.972431]  0.796714
i 4| 0.885645 0.864288 0.872044 0.976731)  0.865777 |
pigaay 5| 0.885645] 0.864288 0.872044 0.983460|  0.916271 |
6 | 6| 0885645  0.864288] 0.872044 | 0987422 0.948083]|
g 7| 0.885645 0.864288 0.872044 0.988238]  0.968699 |

8 8| 0.885645 0.864288 0.872044 | 0989175,  0.973416]|
SEga 5| 0.885645 0.864288 0.872044 0.990243,  0.976633 ||
10 10| 0.885645 ] 0864268 0.872044]|  0.991452]  0.980430,
11 -1 11| 0885645 0864288  0.872044]  0.992812]  0.984821
iR i 12|  0.885645 0.864288 0.872044 0.994333|  0.989620
13 | 13|  0.885645 0.864288 0.872044 0.996029,  0.991061]|
14 14| 0885645,  0.864288 0.872044 0997913  0.992465/|
151 15| 0.885645 0.864288 0.872044 1.000000|  0.994047[|

16 16| 0.885645 0.864288 0.872044 1.000000]  0.995819| -
37 17] 0885645 0864288 0872044 1.000000,  0.997798 'y

Figure 5-5. Entropy values in data-sheet view

The database programme that is used to gather the information and calculate the entropy values, is
capable of exporting its information in a variety of formats to other commercially published software
packages. The analysis results which appear in this dissertation were exported in a format suitable for
importation to EXCEL, a spreadsheet programme. EXCEL allows further manipulation of the data for the
creation of graphs and tables, and was used to incorporate the illustrations into this text (see chapter
6 and 7). The benefits of the exporting capability is that none of the data needs to be transported
manually to word processors or other programmes, thereby excluding the possibility of any errors.

5.2 Aspects of computer programming for music applications

Some procedures and methods are explained here as they are common to all the computer pro-

grammes used for the analysis of this research.

To make the most effective use of the capabilities of a computer an important consideration when a
score is translated into numerical information, is that a traditional music score represents sounds in a
symbolic rather than in a logical and graphical manner. A single note represents various bits of infor-
mation and the performer has to establish the pitch, accidental, volume and time value by interpreting
it. Computer applications need to translate all this information into a workable system of numbers and
the programmer needs to find a balance between what should be done manually, and what should be
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left to the computer. Obviously, if most of the calculations are done by the computer the likelihood of
errors is reduced, while otherwise time-consuming calculations are much faster. Entering musical in-
formation by using pitch names and numbers for note length means that the programmer has to do
the translation from music symbols to the numbers the computer uses for its calculations. If, on the
other hand, the programmer is able to enter music symbols by means of a graphical interface, and
the computer does the translation into numbers, the process of data entry should be more efficient

and less prone to errors.

However, to present music graphically on a computer screen requires extensive programming and
large quantities of processing power. Because of the limitations of earlier personal computers the ini-
tial programmes, written in Pascal, required the programmer to translate the notes into a format suit-
able for the calculations. With the arrival of event-driven, graphical programming languages, the
limitations of the older languages were largely eradicated. It, therefore became more efficient to use a

graphical interface for data entry.

In designing the graphical interface many criteria had to be kept in mind. For example, pitch does not
only imply a pitch name, but also an octave range as well as possible key signatures and accidentals.
For a musician it is obvious that the sharps or flats of a key signature affect all of the same notes in
all octaves (unless cancelled by a natural sign). This is, however, not so obvious to a computer and a
great deal of programming is required to arrive at a value that reflects the pitch accurately. A similar
situation occurs when a note is altered within a bar by means of an accidental. Traditional convention
has it that all subsequent occurrences of the same note should be altered with the proviso that the
note does not occur in a different octave. Some editors and composers tend to ignore this convention
which further complicates the process of computer translation. Each time a new note is encountered

either the programmer or the computer has to allow for the implied characteristics of a pitch.

Traditional music theory and convention also imply a distinction between enharmonically equivalent
notes. Most sophisticated music systems allow for thirty-five different pitch names, which accommo-

date the five different pitch configurations that accidentals can generate, for example, Cbb, Cb, C, C#,

and C*. As it should also be possible to apply information theory analysis to other systems, such as

the dodecaphonic technique, and for that matter, also systems that may use quarter tones or smaller,

the programmes had to be designed to allow for as many tuning systems as possible.

A similar situation of symbol interpretation arises concerning note duration and rhythm which, in tradi-
tional notation, is represented by specific notes and rest shapes in conjunction with a time signature
and bar lines. The complexity of the interpretation increases with all additional symbols that affects
the duration of a note. For example a fermata compounds the intricacies of computer interpretation of
a note’s duration. Note values in a score are symbolic representations of ratios of note lengths and
relative accents but require extensive interpretation by a predetermined set of ‘rules’ incorporated in

the conversion programme.
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5.3 Computer representation of musical data

Most computer applications in music aim at incorporating as many elements of music as possible of-
ten seeking to provide for archaic and modern notation requirements as well. Usually the purpose of
these programmes is to give an accurate graphic rendition of the score on the screen or in a printed
format. Very often such programmes are also used as a tool for composition that requires it to be able
to perform a composition with the help of synthesisers and other electronic equipment. This kind of
application would require control over as many aspects of music as possible, including tone colours,
attack, and envelope shape. There are a limited number of such programmes available e.g. Music
WRITER +°, scORe®, PERsONAL coMPoseER®, and FINALE®. Research at many institutions on various
applications of computers in music is being done continuously and a recent addition to the range of

products is sigeLIUs®, currently one of the most powerful programmes available.

The complexity and dimensions of a software programme increases exponentially as the quantity of
information demanded by it to work properly becomes greater. Especially the graphical representation
of music demands intricate calculations and programming routines. Fortunately some of the facilities
that the commercial programmes have, were not needed for the purpose of this research and much of
the computer's resources could be used for the actual calculations. These functions—mainly MIDI
compatibility—could nevertheless be added later.

Pitch and note values were the most important elements that needed careful consideration and the

following sections mainly deal with the calculations of values for these elements respectively.

5.4 Pitch representation

5.4.1 Numerical pitch representation

Each of the pitches of a composition is represented by a single number. Since these pitch numbers
are also used to calculate intervals between two adjacent pitches, the numbering system used for this
purpose is designed in such a way that intervals are calculated by subtracting one pitch number from
another. The pitch representation system developed for this research is based on a system formu-
lated by Walter Hewlett and described by Ann K. Blombach. (ADCIS: 1989, pp. 50-58) Some minor
alterations were made to make the number allocation more suitable to the requirements of the pro-
grammes. The Hewlett system allocates a specific and unique number to each letter name. As shown
in Table 5-1, the value allocated to each of the pitch names was 2 greater than the Hewlett numbers.
The reason for this change is that when a flat or a double ﬂ—at (see Table 5-3) is added to the pitch
name ‘C’, of which the Hewlett number is ‘0", the resulting value, in Hewlett numbering is -1 or -2 re-

spectively. By increasing all the values by two, negative numbers are avoided:
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Pitch Name| Pitch Number | Hewlett Number
(g4 2 0
D 10 8
E 18 16
F 25 23
G 33 31
A 41 39
B 49 47

Table 5-1. Hewlett pitch values

Accidentals are also given a numerical value. The third column of the table below illustrates the value

of each accidental; the second column shows the symbols used for each accidental:

Accidentals Computer symbols Accidental values
double flat << -2
flat < -1
natural space 0
sharp > ]
double sharp >> 2

Table 5-2. Numerical values of accidentals

By adding the value of the accidental that is attached to a note, to the value of the note itself, each

note obtains a unique value, or HR® number:

Pitch | HR | Pitch | HR | Pitch | HR | Pitch | HR | Pitch | HR
e i) " 1
B2 8 D® g
E™ 16 EP 17
Fee 23 F° 24
G™» 31 [cd 32
AT 39 AP 40
B™ 47 B® 48

10 D” 11 D* 12
18 E” 19 E 20
25 F 26 F* 27
33 G" 34 G* 35
41 A7 42 A* 43
49 B* 50 B~ 51

D> |O|Mma|0

Table 5-3. Pitches and their representative HR numbers

Using these values any melody may be represented as an array of numbers, for instance the G major

scale:

Pitch G A B (i D E F# | G
HR number 33 [ 41 49 56 64 72 80 87

Table 5-4. HR numbers for the G major scale

The numbers in Table 5-3 are for one octave only and 54 is added or subtracted from the pitch num-
ber for higher or lower octaves respectively. For example, the G above middle C has an HR value of
33. The number of G two octaves above middle C is therefore 33 + (2 x 54) = 141. To avoid negative
numbers that would be generated by octaves below middle C, the numbering system used for the

®  HRis a mnemonic derived from 'Hewlett System of Pitch Representation’.
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programmes under discussion begin with the C that lies three octaves below middle C. The HR num-
ber of middle C, for the purpose of this research, is therefore 2 + (3 X 54) = 164.

5.4.1.1 Meantone tuning and equal temperament

With traditional theoretical practice in mind, the pitch values described above are ideal as they give a
different value for otherwise enharmonic intervals and pitch representation. Obviously for music that
is not composed according to the theory of the old tuning systems, as for example much of twentieth
century music, alternative methods could be devised. In twelve tone music there are only twelve
tones, as opposed to the thirty five of the older convention, and composers are forced to make use of
the archaic note representation purely because of the lack of viable alternatives and not because of

the possible structural or tonal implications such a note symbol might have.

For a stylistic analysis of this nature, a single procedure in which no allowance is made for the tonal
and harmonic limits, would produce erroneous results. If a true stylistic evaluation is to be achieved, it
should be kept in mind that composers who were active when equal temperament prevailed, worked
under totally different acoustic conditions than those who composed with the acoustical principles of
equal tuning. Equal temperament allows a choice of 12 notes, each of which, because of enharmoni-
cism, can be written in a number of different ways. Meantone’ tuning allows for 35 different tones,
only some of which may be selected depending on the tonal centre, mode and instrument. The dis-
similarity in the basic theoretical principles that underlie the two tuning systems needs to be facilitated
in the stylistic analysis.

A method was devised that allows analysis according to both tuning systems. For equal temperament
thé enharmonic pitches and intervals are simply equalised and a second array created in the data-
base so that each melody is represented by two numerical arrays, one for meantone pitches and in-
tervals and one for equal temperament. Pitch names for the equal temperament array use only the
letter names and accidentals which result in perfect, major, and minor intervals, and in the case of

fourths and fifths, also augmented intervals.

5.4.1.2 Numerical interval representation

The modified HR numbering system discussed above provides a quick and simple method to obtain
numerical values for intervals between two pitches. Interval values are obtained by subtracting the
HR value of the lower note from the HR value of the upper note; the perfect fifth, E® - B, for exam-

ple, has an interval value of 48 - 17 = 31. Negative values are made positive by adding 54. For ex-

7 The fact that there are a variety of ways in which the intervals of meantone tuning may be calculated, is of little significance here.

Only the fact that the meantone differentiates between tones which are enharmonically interchangeable within the system of
equal temperament are of importance.
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ample, the value for the a perfect fifth, B°- F =25-48 =-23. By adding 54 to the latter, the value of
31 (perfect fifth) is again obtained. The following table is a list of the various intervals and their num-
ber values. The order of the intervals in the table is not based on the actual musical sizes but rather

on the numerical value allocated to each interval.

Interval Value Interval Value
unison 0 diminished fifth 30
augmented unison 1 perfect fifth 31
diminished second 6 augmented fifth 32
minor second 7 diminished sixth 37
major second 8 minor sixth 38
augmented second 9 major sixth 39
diminished third 14 augmented sixth 40
minor third 15 diminished seventh 45
major third 16 minor seventh 46
augmented third 17 major seventh 47
diminished fourth 22 augmented seventh 48
perfect fourth 23 diminished octave 53
augmented fourth 24 octave 54

Table 5-5. Interval values derived from HR numbers

It should be stressed that the HR interval values do not reflect, in terms of semitones, the actual
acoustical values of the intervals they represent. They are merely a method by which intervals are
calculated in the computer programmes and have properties which expedite a variety of manipula-
tions. One property which is rather useful is the symmetrical properties of the numbers. An interval
inversion, for example, is calculated with the formula: ABS(interval value - 54)%. For instance the in-
version of a major sixth (39) has a numerical value of 39 - 54 = -15, with an absolute value of 15 — a

minor third.

The system has the added benefit in that each number may be stored as a single ASCII® code in the
database. To simplify the computer programming, ASCII characters were also used for data and
string manipulation. This aspect is described later in this chapter. ASCII codes are a standardised se-
ries of letters, numbers and symbols, each of which has a specific number (0-256). The symbols are
referred to as characters. Since each character always has the same number, it may be used as a

mnemonic to represent number sequences.

5.4.2 Music rhythms

Programmers who write computer programmes for musical application have a variety of approaches

to translating note values and rhythms into computer Ian'guage. The most common approach is to

e . st
. ABS means ‘absolute value’ and converts all numbers to a positive value.

¢ ASCIl is a mnemonic which stands for ‘American Standard Code for Information Exchange’, and ensures effective communica-
tion between different electronic media.
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allocate a number to a specific note value, with the smallest note value being allocated the number 1,
and each successive note value sequentially designated a higher number. Another method, and one
which is often used in computer programmes, is to allocate letter symbols to the various note values.
Two such systems are shown below in Table 5-6; the DARMs'® system makes use of mnemonics while
the MUSTRAN'' system uses numerical representation. (Wittlich, Schaffer & Babb, pp. 20-23)

NOTE VALUE DARMS MUSTRAN
whole note W 1
half note H 2
quarter note Q 4
eighth note 2 8
sixteenth note S 16
thirty-second note 1F 32
sixty-fourth note X 64
one hundred twenty- eighth note Y 128
dot . ;
tie F (prefixed) | F (before second value)
rest R (prefixed) R (after value)

Table 5-6. pARMs and MUSTRAN note duration codes

The DARMS system is the least complicated and very suitable if mathematical manipulation is not re-
quired. However, this approach becomes very complicated when dealing with dotted and double dot-
ted notes, tied notes, and irregular subdivisions such as triplets. For the application of Information
Theory an adapted form of the MUSTRAN system is much more suitable for the calculation of ratios,
i.e. the expression of duration as a percentage of all the note values combined in the section of music
being analysed. By inverting the sequence of numerical values that is allocated to each of the note
values in the table above, algorithmic manipulation becomes relatively easy. The range of available
values allows for 128" notes. The latter is very rare in music but allows for more accurate calcula-
tions.

The values used for the programmes of this research are shown below. Each of the note values is
given a number which is directly related to the actual value of the note expressed as a multiple of
128.

NOTE VALUE MUSTRAN
whole note 128
half note 64
quarter note 32
eighth note 16

sixteenth note

thirty-second note

sixty-fourth note

one hundred twenty- eighth note

=N b0

Table 5-7. Adapted MUSTRAN note value system

10

B The DARMS code was originally called the 'Ford-Columbia’ code and was developed by Stefan Bauer-Mengelberg.

Jerome Wenker developed the MUSTRAN code at the Indiana University for application in ethnomusicological research.
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To obtain the relative note values, each note is expressed as a ratio of the total duration of the com-
plete composition. The latter is obtained by simply adding all the note values together. The bar divi-
sion, which dictates the position of accentuated note gradations, or beats, form the subdivisions of the
overall composition. A piece of music without any bar lines is regarded as comprising a single bar due
to the absence of any regular metrical subdivision of the music. After a note is entered into the data-
base, the note value is converted to a multiple of 128. This means, for instance, that a dotted quaver
has a value of 24 (16 + 8), while a quaver triplet has the value, 21,33. In contrast to the pitch number,
which is stored in ASCII code, the note value is stored as a number because these calculations may
result in fractions as is the case of the quaver triplet. ASCII code cannot be presented by fractions.

Another approach that was considered was to express a note value in terms of real time, in other
words as note value per second or per minute. However, this approach requires that the tempo indi-
cations and variations are constantly kept in mind and that note values are continuously calculated in
relation to the tempo of the music. Unless, as in the case of some types of electronic music, it is ex-
pressly composed with specific real time criteria and limits in mind, using real time as a measuring

unit is not an effective or expedient method.

5.5 The computer algorithms

Each of the main programmes discussed in this chapter comprises a number of different routines,
some of which are not exclusive to a single programme. For the sake of clarity each of the routines

are demonstrated here as if they are totally independent.

In the flow charts that follow the arrows indicate the direction of the flow of the programme and the
branching is done according to basic Boolean logic. The boxes with the light borders represent the
routines where branching takes place, while the rectangles with the heavier borders represent the

functions that are called by the branching routines.

5.5.1 Algorithms for melody analysis

Analysis of the melodic data comprises different steps and can be done according to the following

parameters controlled by the operator:
1. Pitches only
2. Pitches by ratio
3. Pitches and note values combined

4. Stochastic analysis of rhythm
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5. Stochastic analysis of intervals

As the melodic information is stored in an array it is relatively easy to perform string manipulations
and readily allows comparison between various sections of the array. The algorithms for each of the
types of analysis listed above are described below with the flowcharts.

5.5.1.1 Pitch and rhythm analysis

Because of their similarity, the algorithms for the calculation of single pitches and note values are
discussed simultaneously. In principle a shadow array'? is created to hold the various values, be they
pitches or note values. Looping through the codes of the melody, each new character is added to the
shadow-array and a counter’ for the number of different codes (C)'* as well as a counter for that
specific code (SC) is increased. If a code already exists in the shadow-array, only the counter for that
specific code (SC) is increased. For every code encountered a counter for the total number of codes

(TC) counted is increased as well.

I Entry point l

h 4

Increase
melody pointer

-~

Increase
TC
counter
FY

Exit

YES Increase
SC
counter
F'y

h 4

Increase
C
counter

Add CHR# to
shadow array

h 4

Figure 5-6. Flowchart for the analysis of pitch or note values

Once the end of a melody is reached, three different totals become available:

1. The total number of different codes encountered (C);

Shadow arrays are similar to normal arrays but only stay in the computer’s memory temporarily. Once it is no longer needed it is
removed from memeory. Usually it contains duplicate or temporary data for comparison or manipulation.

Counter usually begin with a value of 0 and are increased each time a specific action occurs.

These are mnemonics used as variables in the programme. Variables represent registers which can hold a variety of changing
data.
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2. The number of times each code occurs (SC); and
3. The grand total number of codes in the melody array (TC).

Another algorithm uses these results to calculate the various entropy and redundancy values. To-

wards the end of this chapter the algorithms for entropy calculations are discussed.

5.5.1.2 Pitches combined with duration

The flowchart for the routine to calculate the values of pitches based on their duration values is very
similar to the one that merely calculates the frequencies of pitches. It differs in that duration is used
as the measuring unit in multiples of 128™ notes. Each time a note code is encountered, the note

value associated with it is added to the counter:

| Entry point ]

W

Increase 15
melody pointer

Total = Total +
note value
F
pEs C(n) = C(n) +
» note value
F
Add CHR# to Incrgase
shadow array L o

Figure 5-7. Flowchart for combined pitch and duration analysis

The above routine makes available the following information:
1. The total number of pitch codes in values of 128" (Total),
2. the occurrence of the different pitches, also in values of 128" (TC[n]);

3. the total number of different codes encountered (C).

5.6 Stochastic analysis of intervals and rhythm

The programme routines for the stochastic analysis of melodies are somewhat more complex as the

frequency of increasingly larger portions of the melody have to be counted and compared. In order to
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achieve this a two-dimensional interval array, containing the interval values for both equal tempera-
ment as well as meantone tuning, is created. As with the pitches the intervals are converted to ASCII
codes, which make comparisons easier to manage. The second dimension of the array contains the
direction of the interval and is indicated by a mnemonic; "> for a descending interval, and ‘<’ for an

ascending interval.

In essence the programme consists of various nested loops. In the principal loop the string length for
comparison is continuously lengthened until it has the same length as the melody array. A second
loop, which is nested inside the first loop, runs through the melody array, first compiling the sample
and then counting the frequency of its occurrence by stepping through the melody from beginning to
the end. Other loops in the program are dependent on certain conditions being met.

The variables' used in the programme and flowchart are shown in the following table:

Length of melody array ML
Position of pointer in melody MP
Number of samples TS
Total number of samples compared TC
Length of sample string SL
Frequency of sample in melody SC
Position of array being compared CP

Table 5-8. Variables used in the stochastic analysis programme

Each time a string of a specific length has been extracted from the melody, and its frequency counted
the entropy calculations are made before the string length is increased. The following flowchart illus-

trates the sequences that are followed to obtain the calculations:

15 . . . . ' . . . £ oy .
Variables are labels given to pieces of information. A counter is a variable which is incremented or decremented every time a

condition is met. Fixed variables cannot be changed and usually serve as a mnemeonic for a specific numerical value.
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YES

increase SL Calculate Entropy

FS

-~

NO YES

NO

increase MP

MP = MP + 1 Increase TC

v
h 4

SL+ MP

YES

-

h

Increase SC

h 4

=ML?

NO

Get sample
string length (SL)

Add to sample
array

N Increase TS CP =MP

Figure 5-8. Flowchart for stochastic melody analysis

The flowchart for the stochastic analysis of rhythm is virtually the same, except that it only needs a

one-dimensional array because there is no need to allow for any interval differentiation.

5.6.1 Calculation of entropy values

Once all the necessary data has been collected in the database it may be analysed using some basic
algorithmic calculations. The computer used for the analysis in this research, an IBM compatible per-
sonal computer, is fitted with a mathematical co-processor and has a precision of seven decimal dig-
its and a dynamic range of 10-38 to 10+38. The co-processor increases the speed of calculations and

is more accurate but is not a prerequisite.

One problem that was encountered was that some calculations result in extremely small fractions,
smaller than seven decimal places, operations on these tend to result in an error of < 0.0000001. Be-
cause results of analyses are only calculated to the nearest sixth decimal place, this error has no
significant effect on the results. However, it causes summations which are placed within a continuous
loop, and which can only be exited when two values are the same, to continue ad infinitum. The only

way to overcome this was to round off any number to the nearest sixth decimal place.
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Once the information has been analysed according to the routines shown in the flowcharts above the

programmes makes the following information available:

1. the number of different elements in the set (for instance the number of different pitches found

in a melody);
2. the frequency of each different element in the set; and
3. the total number of elements in the set.

Element refers to any particular aspect of the composition (or message) to which the analysis applies;
this may simply be pitches, note values, or more complex combinations such as series of intervals, or
pitches combined with note values. A set refers to the group of different elements which make up a

specific aspect of a composition. The following sequence of pitch names is used as an example:
CCDEFFGDBBC

The sequence above comprises a total of 11 elements, which may be grouped into 6 different ele-
ments. A summery of the different elements in the sequence of notes above is:

C=3D=2E=1,F=2,G=1,B=2

The above may be described as an array of values representing each of the elements in the se-
quence. An array is thus a summary of the different elements in a set. In computer language the
shown example would be contained in a two-dimensional array — dimensioned as: Array(6, 2) — to

contain:
1. the number of different elements (6 in this case) and
2. the quantity of each specific element in the array.

A table illustrates the structure of the array more clearly:

Counter: 1 2 3 4 5 6
1 Pitch: &5 D E F G B
2 | Quantity: 3 2 1 2 1 2

Table 5-8. lllustrative values in an element array

If the array, represented by A contains the frequency of each element of a set of n elements, the total

number of elements would be expressed as:
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Equation 5-1. Total elements in an array

total elements = A4, +A4,. ...4,

> 4,

With the value of the total set as well as the values of each of the elements now available, the rela-

tive frequencies of each element may be calculated by dividing the value of each element by the total

set value. This is shown in the equation below:

Equation 5-2. Element proportions of total elements

g, o b
g Y )

A simple calculation at this point checks for any calculation error by adding all the relative frequencies

together. If the calculations were done correctly, the summation should add up to 1.

The next step is to calculate the entropy values of each of the different elements in the set, A, and
summate them to obtain the actual entropy value, H, of the set as a whole. In order to obtain the in-
formation contents of the set in bits, the binary logarithms of the relative frequencies are weighted

(multiplied) by the relative frequencies, p, and summated:

Equation §-3. Calculation of the entropy of a set of values

H(p.ﬂll. pAs, ..., pAn) = —(pAi log p4, + p4- log p4, +... p4, logpA,,)
or

V=

H = p4, log, p4,

i=1

To achieve the information (entropy) value of the set, a simple loop is set up that operates on the
relative frequencies value of each element and adds it to a variable called entropy_total‘e. The flow-
chart below illustrates the steps the programme runs through to achieve this. As PASCAL has no direct
function to do conversion from logarithms on base 10 to binary logarithms, it was necessary to include
an algorithm in the programme to do this conversion. This algorithm is also shown in the following

flowchart. The variable EV is used to hold the entropy value:

i onger mnemonics for variables consisting of more than one word are connected with underscores.
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Entry point

Exit e
S
PA = A(x)/total EV=EV~PA
b
b4
EV =log PA 3| EV=EViog2

Figure 5-9. Flowchart for the calculation of entropy

Maximum entropy is somewhat simpler to calculate as it requires no loop and the operation is only
done on the number of elements in the set, where N represents the total number of elements in the

array being investigated:

Equation 5-4. Calculation of Maximum Entropy

_ bin N

WA T bin 2

With the entropy value and maximum entropy values in two separate variables a third variable is

used to calculate the relative entropy as a percentage value:

Equation 5-5. Calculation of relative Entropy

Hra! =

A fourth variable is used to hold the redundancy value:

Equation 5-6. Calculation of relatively Redundancy

Rre! = l_HreI

5.7 Conclusion

In the development of the analysis programmes a structured approach was adopted, in which sections
of each of the three main programmes were divided into smaller routines. Each phase was thoroughly
tested to assess the effectiveness and accurateness of each routine and where possible error traps
were included to further ensure accuracy of the results.
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ANALYSIS OF SELECTED COMPOSITIONS

This chapter is devoted to the entropic analysis of a number of selected compositions, the results of
which are summarised in Chapter 7. The first part of this chapter deals with the more fundamental
aspects of entropy calculations—in other words, sets comprising single elements such as pitch distri-
bution. In the second part, compound calculations, those comprising more than one order, are shown
and discussed. These are pitch analyses based on ratio, and analyses based on pitch combined with
note values.

For the sake of reference, a distinction is made between note values and rhythm. When referring to
note values, the duration of a note (or rest) as an independent unit is implied, with the smallest unit
being 128". For instance, a quarter note has a value of 32, while a whole note has a value of 128.
Rhythm refers to the grouping of notes (and rests) according to patterns of note sequences. In other
words, whereas note value refers to a note's temporal property, rhythm refers to its recurrent position
in a linear sequence of notes.

6.1 Selection of the music

The melodies of twenty-two compositions analysed were selected from three categories of music:
seven from the popular repertoire of the last twenty years, eight from the Art song tradition of the 18"
century, and seven songs from the repertoire of Art songs of the 20" century. The reason the Classi-
cal Art song group has one more composition than the other groups is that one composition,
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Schubert's Ave Maria shows characteristics that are similar to those of the Popular Music group. As

will be made clear in the following section, this composition is treated separately.

In the following discussion, tables, and graphs the abbreviations ‘P, *S' and ‘M’ are used to refer to
the categories ‘Popular songs’, ‘Serious Art songs’ and ‘Modern Art Songs' respectively. These labels
are not intended to imply any qualitative attributes to any of the categories, but are merely used for
the sake of expediency and identification. They distinguish between three styles of music which are

different in character, style, and in many ways, in purpose.

Appendix | contains the scores of the melodies of the twenty-two songs.

6.1.1 Popular contemporary music

The selection of the popular music for analysis proved to be more difficult than had been anticipated.
Originally the intention was to request sales statistics from the larger recording companies and pub-
lishers. For many years, weekly or monthly charts were made available by these companies indicat-
ing the ‘Top Ten' or ‘Top Twenty’ most popular recordings for that week or month. Because of the
complex preference for different kinds of music in South Africa, these popularity charts are no longer
made available on a regular basis, the reason being that only sales of Western popular music used to
be represented in these charts, disregarding the popularity and sales of township music which often

exceeds the sales of Western pop music in this country.

A number of record companies were nevertheless prepared to provide the candidate with the sales
figures for 1994, but is was soon realised that by limiting the selection of items from this list would in
reality limit the choice to a specific and limited period. This could mean that a song appeared on the
list of top sellers because of greater promotional efforts by the publishers or exposure by the media.
That an artist may already enjoy a degree of popularity with his audience could have an important
influence on the sales of a new recording. However, many of the songs that appear on popularity lists

do not maintain their popularity for extended periods and are soon forgotten.

An additional problem was that very few of the compositions that appear on popularity lists are im-
mediately available as sheet music. Transcriptions are usually only made available after a piece has
proven its popularity over an extended time, and depending on popular demand. The information
provided by the record companies was of the most popular albums sold during 1994. Sales figures of
record albums do not necessarily give any indication which individual song (or songs) in the collection
is the most popular. The decision therefore was to select songs based on their consistent popularity.
In other words, songs that essentially have become ‘classics! in their own right. That the more consis-
tently popular items usually come out in print, already suggested which items to choose from the rep-
ertoire available. Obviously, the choice had to be limited to only a small selection from this large rep-
ertoire. In a sense, based on the arguments mentioned, the music publishing industry has made the
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selection of popular music possible by its own dynamics'. Periodically, collections of compositions of
the most popular items are being made available in both recorded and printed form. Since these col-
lections are expensive to produce, it is obvious that mainly those compositions that have a proven
record of popularity over a longer period are included in such collections.

A variety of CD catalogues and guides were used to ascertain the most popular recordings and which
appeared most frequently in the recording guides. The sheet music for these items were also readily
available, most often in albums or collections that confirmed the continuing popularity of the chosen

items.

Items included in the popular music selection all became popular during the 1970s and the 1880s and

therefore have a proven popularity history of between one and two decades. They are:

1. Benny Andersson & Bjorn Ulvaeus (music and lyrics), Thank you for the music, London: Bocu

music, 1977. Made popular by the Swedish group, ABBA.

2. Pnhil Collins (music and lyrics), One more night, London: Hit and Run Music, 1984. Recorded
on Virgin Records by Phil Collins himself, and one of the singer's most popular compositions
to date.

3. John Denver (music and lyrics), Annie’s song, London: Winter Hill Music, 1874. Recorded on
RCA Records by the composer.

4. Claudio Gizzi (music), Summer love, Johannesburg: EMI-Brigadiers Music, 1976. Another in-
strumental piece, made popular by the Pan-flute player Zamfir on Philips (TOS 1072). The
cover of the score states that this piece was ‘16 weeks on the Springbok Top 20°.

5. Johnny Pearson (music), Sleepy shores, theme from the BBC TV series Owen M.D., Johan-
nesburg: Bandstand Publications, 1971. This is not a song; it is a piano solo of which the mel-

ody is still very popular today.

6. Stevie Wonder (music and lyrics), You are the sunshine of my life, Hollywood: Stein & van
Stock and Black Bull Music, 1872. Recorded on Tamla Records. This item was made popular
by Stevie Wonder himself and is one of his songs that helped to make him popular.

7. Victor Young (music) and Edward Heyman (lyrics), Love lefters, Woodford Green: Warner
Bros/IMP, 1988. Originally published in 1945. Although this piece was composed fifty years
ago, it was included because of the fact that it was revived during the 1980s. It would there-

fore be interesting to see how it compared with the more recent compositions.

All the items in the list above are by different composers, and were made popular by different artists.
Because of their lasting popularity amongst the general public, these items may be regarded as rep-
resentative of the popular music that appeared over a twenty year period. It seems a fair deduction

' Inthis case Market forces.
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that they therefore contain those elements that are appealing to the listeners.

6.1.2 Classical Art Song selection

Since most art songs are available in print and have been on the market for many years, the popu-
larity of music from the ‘serious music’ repertoire could not be judged by the availability of published
albums. A different method had to be used to establish the popularity of this category of music. Here
the selection was based on the inclusion in The Gramophone Good CD Guide 1994.2 Those Compaosi-
tions that were recorded most frequently by a variety of performers was the primary criterion for the
selection of this list. Performers of this category of music are usually highly professional and know the
preferences of their audiences. Recording companies are also more likely to invest in recordings

that-because of the music or the fame of the performer—ensures maximum financial returns.

The items included in this list are:

1. Johannes Brahms, ‘Nachtigall’, Op. 97, No. 1, 15 Selected Songs, Book Il, London: Alfred
Lengnick, 1931, p. 10.

2. Johannes Brahms, ‘Liebestreu’, Op. 3, No. 1, 75 Selected Songs, Book Il, London: Alfred
Lengnick, 1931, p. 21.

3. Franz Schubert, Die schone Millerin: ‘Halt’, Schubert First Vocal Album, New York: Schirmer,
1895, p. 12.

4. Franz Schubert, Die schdne Millerin: ‘Das Wandern’, Schubert First Vocal Album, New York:
Schirmer, 1885, p. 3.

5. Franz Schubert, ‘Rosamunde’, Schubert First Vocal Album, New York: Schirmer, 1895, p.
292.

6. Franz Schubert, ‘Ave Maria’, Schubert First Vocal Album, New York: Schirmer, 1895, p. 258.

7. Robert Schumann, Dichterliebe: ‘Ich will meine Seele tauchen’, Op. 48, Norton Critical
Scores, edited by Arthur Komar, New York: Norton, 1971, p. 22.

8. Robert Schumann, Dichterliebe: ‘Das ist ein Fléten und Geigen’, Op. 48, Norton Critical
Scores, edited by Arthur Komar, New York: Norton, 1971, p. 31.

One of the items in the list, Schubert's Ave Maria, proved. a particularly interesting choice. It is not
only a well know Arts song, but featured on various popularity charts during the 60s and 70s. In this
chapter, continuous reference is made to this fact and the effects it has on the results of the analysis.

*  Christopher Pollard (Ed.), Harrow: General Gramophone Publications, 1994.



University of Pretoria etd — Koppers M H A (1995)

6 : ANALYSIS OF SELECTED COMPOSITIONS 6-5

This composition is included in the S-group because of its historic placement in the Classical period.

6.1.3 20" Century Art Song selection

Whereas the compositions of the Popular Music group and the Classical Art Song group were se-

lected because of their proven popularity, the 20th Century Art Song group are compositions that

have had relatively little exposure as recordings. That no, or few recordings of these songs are avail-

able on the market, tends to indicate that they are generally unknown and possibly less popular. An

important factor is that these songs all demonstrate contemporary tonal or rhythmic elements, which

distinguishes them from the other two categories as well.

The eight items selected for this purpose are:

i

Alban Berg, ‘Nun ich der Riesen’, No. 3 from Four Songs, Op. 2, Anthology of Twentieth-
century Music, edited by Mary H. Wennerstrom, Englewood Cliffs: Prentice-Hall, 1968, pp.
30-31.

Lennox Berkeley, ‘How love came in', A Heritage of 20" Century British Song, Vol. 2. Boosey
& Hawkes, 1977, pp. 6-8.

Arthur Bliss, ‘Being young and green and green’, A Heritage of 20" Century British Song, Vol.
2. Boosey & Hawkes, 1977, pp. 9-11.

Benjamin Britten, ‘Since she whom | loved’, A Heritage of 20" Century British Song, Vol. 2.
Boosey & Hawkes, 1977, pp. 50-51.

Martin Dalby, ‘Cupid and my Campaspe’, A Heritage of 20" Century British Song, Vol. 2.
Boosey & Hawkes, 1977, pp. 59-61.

Charles lves, ‘In Flanders fields’, Norton Anthology of Western Music, edited by Claude V.
Palisca, New York: Norton, 2nd edition, 1988, pp. 719-721.

Peter Warlock, ‘Whenas the rye’, A Heritage of 20" Century British Song, Vol. 2. Boosey &
Hawkes, 1977, pp. 211-213.

6.2 Entropy analysis

Five elements of each composition in the three groups were subjected to analysis with Information

Theory:

i

Entropy values for pitch distribution. The results for this method are the easiest to obtain and
could be done manually, although it is laborious and prone to errors. In essence each pitch
name constitutes a single element.
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2. Entropy values for pitch distribution and note values combined. For these calculations the
pitches and duration values combined to establish the elements of a set. A single element
therefore has two dimensions, pitch and duration. A quarter note G, for example, is a different

element than an eighth note G.

3. Temporal ratios of pitches. Unlike the two criteria above, which are based on the frequency of
each element expressed as a ratio of the total number of elements, the temporal ratios of
pitches are derived from the total duration that these pitches are heard as a ratio of the total

duration of the music.

4. Stochastic interval values. The principle behind this method is that specific intervals or se-
quences of intervals may influence the selection of subsequent intervals, which in turn may
again influence the next interval or groups of intervals. To obtain these values, a combina-
tion or order of interval sequences of increasing length are isolated as elements. The process

begins with a single interval (order 1).

5. Stochastic rhythmic values. In essence the calculation of these values is similar to those for
stochastic interval values, except that rhythmic values are used for the basis of the calcula-

tions instead of intervals.

The scores of each of the melodies are collected in Appendix | and may be used as reference in the
following discussion. Appendix |l contains a complete summary of all the entropy values, together

with graphs for each of the compositions mentioned.

As mentioned earlier in this chapter, Schubert's Ave Maria, presents a unique situation. Although
composed by a Romanticist, it has become very ‘popular’ and has been recorded by pop musicians
and performers of Art songs alike. In fact this piece of music is one that has become very popular
amongst various popular vocalists and instrumentalists of the last fifty years. The problem was,
therefore, to which category it belonged. Eventually, the decision was made that it uniquely supports
the hypothesis of this thesis. Hence it was treated as an individual item, a decision that proved in-
valuable to link the values of the Popular music group with those of the Serious music group. In the
following tables and graphs the results of the analyses of this item are usually separated from the
other compositions of the S-group and given additional attention throughout this chapter.

In the process of entering data in the database, all note values and pitches were used as they appear
on the score. In traditional methods of analysis, repeats in music that are indicated by repeat signs
are often ignored. For this research all repeats were included in the database, except when a com-
position as a whole is repeated, in which case there would be no change in its entropy. The reason is
that repeats form an essential part of a composition’s overall structure and contribute to the quantifi-
able elements of the music: number of pitches, groups of r.hythmic and interval sequences as well as
overall duration. Since repeated sections are an essential part of the character or style qualities of a

composition it is important that they are included in an analysis of this nature.
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6.2.1 Pitch entropy values

As was pointed out in Chapter 4, the study of Information Theory as applied to music began with the
study of pitch distribution, and since this is also the least complex to calculate, it seems an ap-
propriate point of departure. The following table lists all the pitch entropy values for the three groups
of compositions described above. Column 3 shows the number of different pitches used in each com-

position. Pitch in this sense also refers to silences, in other words rests.

The entropy values of this analysis indicate how the composer chose his pitches. A lower entropy (or
higher redundancy) indicates that is there less equality in the distribution of the pitches or alterna-
tively, that the composer has shown a predilection for certain pitches. Perhaps the similarity of the
entropy values is predictable, since most of the pieces are tonal and would, because of the inherent
characteristics of tonal music, produce a similar pitch distribution in which certain degrees of the scale
have greater tonal weight than others. It is noteworthy that the entropy value of Ave Maria is the low-
est of all the items of the list. Alban Berg's Nun ich der Riesen, a dodecaphonic composition has the

highest entropy.

From the table it is clear that the entropy values for the different groups show relatively little differ-
ence. The S-group shows a higher entropy than the P-group, and the average entropy of the M-group
is slightly higher than the S-group. The difference between the lowest (Ave Maria) and highest entropy

value is nearly 13.08 points.

Group Title Pitches Pitch Entropy
P Annie’s song 9 82.54%
P You are the sunshine of my life 13 83.87%
P Summer love 21 84.40% -
P Love letters 13 85.77%
P One more night ’ 14 87.02%
P Sleepy shores 29 89.11%
P Thank you for the music 17 90.16%

Average 86.12%
S Ave Maria 13 81.42%
S Ich will meine Seele T 84.04%
S Das ist ein Fiéten 11 87.57%
S Liebestreu 19 88.38%
S Halt 10 89.46%
S Rosamunde 11 90.33%
S Das Wandern g 91.90%
S Nachtigall 18 93.02%

Average 89.24%
M How love came in 17 87.76%
M Whenas the rye 23 88.43%
M Cupid and my Campaspe 26 89.06%
M In Flanders fields ’ 13 89.69%
M Being young and green and green 18 91.66%
M Since she whom | loved 21 91.78%
M Nun ich der Riesen 18 94.50%

Average 90.41%

Table 6-1. Pitch entropies for the three composition groups
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As was mentioned in Chapters 2 and 3, calculations based exclusively on pitch names are not suffi-
cient to make any conclusive deductions. Table 6-1 seems to support this argument, especially since
there is so much overlapping among the three groups. This suggests that unless all the notes in the
music are of equal length, pitch quantity by itself does not accurately reflect the true information of
the pitch distribution in a piece of music. For example, the sequence of notes below contains 4 As, 2
Bs and 1 C, a ratio of 57.14%, 28.58% and 14.28% respectively:

thﬁJJ o

If the same sequence is considered according to the total time that each note is heard, in other words
if the temporal properties are also considered, there is a radical change in ratios: A = half note, B =
half note and C = whole note. The ratios then are 25%, 25% and 50% respectively. Since the maxi-
mum entropy for the three notes remains the same, regardless of the type of calculation, it is obvious
that the two calculations would produce widely disparaging relative entropy values. The calculations
that incorporate the temporal values seem to be more accurate since it reflects the actual duration

that each note is heard as a ratio of the duration of the whole piece.

For the sake of comparison and completeness, and where applicable, the tables that follow include

the entropy values for pitches.

6.2.2 Pitch-ratio entropy values

In Communication Science entropy is usually measured in terms of time, it seems logical that the
temporal element should somehow feature in the calculations. Table 6-2 illustrates the entropies of
pitches calculated as a ratio of duration. The last column in the table contains the entropy values of

Table 6-1 to facilitate comparison.

The effect of calculating pitches by their ratios, instead of by merely counting them, is already obvi-
ous by the different position of each of the compositions in the table. For instance, Sleepy shores has
the sixth highest entry for the P-group in Table 6-1 but moves to the position with the highest entropy
for the S-group in Table 6-2. Nachtigall, which has the highest entropy value in the preceding table
now moves to the second position overall. The reasons for these changes were explained in the pre-
ceding section and are confirmed here; the actual period that a pitch is sounded may be much shorter
or longer than might be suggested by the frequency of pitches.

The entropy value of Ave Maria maintains its low position in-the list, and shows an even lower entropy
value than in Table 6-1, confirming that it is not only the most predictable as far as the pitch distribu-
tions is concerned, but also when the entropy of the pitches are calculated in respect of their temporal
values. In fact the temporal pitch entropy suggests a predictability of just under 25% (75.5% entropic).
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Group Title Pitches Pitch ratio Pitch
Entropy only

P You are the sunshine of my life 13 78.42% 83.87%
P One more night 14 82.70% 87.02%
P Summer love 21 83.46% 84.40%
P Annie’s Song 9 83.87% 82.54%
P Thank you for the music 17 85.95% 90.16%
P Love letters 13 86.73% 85.77%
P Sleepy shores 29 88.15% 89.11%
) Average 84.18% 86.12%

S Ave Maria 13 75.70% 81.42%
S Nachtigall 18 83.79% 93.02%
S Liebestreu 19 87.32% 88.38%
S Rosamunde 11 87.45% 90.33%
S Ich will meine Seele 7 88.27% 84.04%
S Das ist ein Fléten 11 88.21% 87.57%
S Halt 10 88.93% 89.46%
S Das Wandern 8 84.21% 91.90%
Average 88.31% 89.24%

M Cupid and my Campaspe 26 83.81% 89.06%
M How love came in 17 84.27% 87.76%
M In Flanders fields 13 87.17% 89.69%
M Whenas the rye 23 88.60% 88.43%
M Being young and green and green 18 88.47% 91.66%
M Nun ich der Riesen 18 80.66% 94.50%
M Since she whom [ loved 21 90.93% 91.79%
Average 87.84% 90.41%

Table 6-2. Pitch ratio entropies for the three composition groups

The difference between the lowest and highest entropy values has now increased to 18.51 points, an
indication that the duration of the pitches has made a dramatic difference to the pitch distribution. On

average, the S-group (excluding Ave Maria) has a slightly higher entropy than the M-group.

A graph illustrates the tendency of higher entropy values for the S-group and the lower tendencies of
the values for the P-group. There is, however, an area where the higher values of the P-group and S-
group overlap with the lower ranges of the S-group and M-group, indicated by the dotted rectangle:

o P group —&— S group ==g===M group

85.00%

+ 90.00%

85.00%

Entropy

80.00% it

75.00%

70.00% 1
Lowest Highest

Figure 6-1. Maximum and minimum ranges for the pitch-ratio entropies
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6.2.3 Pitch-Rhythm entropy values

A third method of calculating the entropy values of pitches is to combine them with their rhythmic val-
ues (in contrast to duration). In other words, a note, C, with the rhythmic value of a quarter note dif-
fers from a C with a value of an eighth note. This approach effectively combines the predictability
(redundancy) of the pitch distribution with that of the first order rhythmic entropy. The entropy values
are shown in the next table. The entropy values shown in Table 6-1, and Table 6-2 are shown again

for the sake of comparison.

Group Title Pitches Pitch/Rhythm  Pitch Ratio  Pitch
Entropy Entropy only

P Summer love 21 82.96% 83.46% 84.40%
P Love letters 13 84.76% 86.73% 85.77%
P Annie's song 9 86.57% 83.87% 82.54%
P You are the sunshine of my life 13 87.22% 78.42% 83.87%
P Thank you for the music 47 88.95% 85.95% 80.16%
P Sleepy shores 29 89.70% 88.15% 89.11%
P One more night 14 90.42% 82.70% 87.02%

Average 87.23% 84.18% 86.12%
S Ave Maria 13 90.81% 75.70% 81.42%
S Ich will meine Seele 7 87.94% 88.27% 84.04%
S Halt 10 88.89% 88.93% 89.46%
S Liebestreu 19 91.32% 87.32% 88.38%
S Das Wandern 9 93.06% 94.21% 91.90%
S Das ist ein Flten i 94.10% 88.21% 87.57%
S Rosamunde 11 94.66% 87.45% 90.33%
S Nachtigall 18 95.42% 83.79% 93.02%

Average 92.20% 88.31% 89.24%
M Since she whom [ loved 21 90.88% 90.93% 91.79%
M Cupid and my Campaspe 26 91.31% 83.81% 89.06%
M How love came in 17 92.24% 84.27% 87.76%
M Whenas the rye 23 93.05% 88.60% 88.43%
M In Flanders fields 13 93.06% 87.17% 89.69%
M Being young and green and green 18 94.88% 89.47% 91.66%
M Nun ich der Riesen 18 97.94% 90.66% 94.50%

Average 93.34% 87.84% 90.41%

Table 6-3. Pitch-rhythm entropies for the three composition groups

Besides the obvious shifting of positions of each compaosition within its group, there is now also a
greater disparity between the P-group and the S-group. Also note the entropy value of Ave Maria that
is now much higher than on the two previous tables. This is an indication that although this particular
piece may be grouped amongst the P-group as far as pitch distribution is concerned, its rhythmic en-
tropy indicates a greater degree of unpredictability. Table 6-4 on page 6-12, which contains the first
order entropies and in which this song’s entropy is amongst the highest, confirms this observation.

Likewise in the table above, it falls within the higher levels 6f the S-group.

The difference between the highest entropy value and the lowest in this case is nearly 16 points. The
following graph illustrates the minimum and maximum values for each of the groups. The dotted rec-
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tangle indicates the area where minimum and maximum entropy levels of the three groups overlap:

=P group =@~ S group ~=si==M group

100.00%

.~ T 85.00%

85.00%

S

80.00%

75.00%

70.00% 1
Lowest Highest

Figure 6-2. Maximum and minimum ranges for the pitch-rhythm entropies

Unlike the graph of Figure 6-1 where the S-group is higher than the M-group, Figure 6-2 shows that
the positions have reversed. From Table 6-2 and Table 6-3 it is obvious that the Popular music selec-
tion (P-group) generally has a higher redundancy rate than the Serious Art music group (S-group), but
that the lesser known 20" century songs (M-group) are essentially similar to the Serious Art song se-
lection. That entropies which take the rhythms in consideration are more redundant in the case of
Popular songs, is an indication that these pieces are rhythmically more stagnant, more repetitive and

less varied; in other words more predictable.

6.2.4 Rhythm entropy values

The difference in the distinct rhythmical character of each of the groups of songs is even more evi-
dent by isolating the rhythms for entropic analysis. The following table only shows the first order of
rhythmic grouping. Later in this chapter all the rhythmic orders are shown.

From the table below it is obvious that the rhythmic coherency or predictability is especially marked in
the P-group and M-group. Important is the fact that—compared to the entropy values for pitches only,
and entropy values for the pitch ratios—the rhythmic entropy values for all the compositions are sig-
nificantly lower. One of the items, Thank you for the music, is below 50%, indicating that its rhythmic
structure is more than 50% predictable. This seems to indicate that rhythmic coherency is an impor-
tant factor in music’s appeal to the listener. The Classical group of songs are rhythmically much more
complex than the Popular group and, to a lesser extent, than the 20" century group.

Group Title Rhythmic
Entropy
P Thank you for the music 48.24%

P Summer love 50.85%
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Love letters
Annie’s song
One more night
You are the sunshine of my life
Sleepy shores
Average

Ave Maria

Halt
Liebestreu
Das Wandern
Nachtigall
Rosamunde
Das ist ein Fldten
Ich will meine Seele
Average

Cupid and my Campaspe
Since she whom [ loved
How love came in
In Flanders fields
Whenas the rye
Being young and green and
green
Nun ich der Riesen
Average

57.66%
61.57%
64.40%
68.07%
68.30%
59.87%

77.89%

54.71%
65.68%
68.33%
71.84%
73.63%
78.08%
81.80%
70.60%

53.73%
59.12%
63.38%
66.56%
70.45%
74.40%

84.63%
67.47%

Table 6-4. Rhythmic entropies for the first order for the three composition groups

The difference between the highest and lowest values in this case is 46.39 points. The graph below

shows the maximum and minimum entropy values for the first order rhythmic entropy values of each

group. The dotted rectangle indicates where there is overlapping of maximum and minimum values:

wessiipernP group

=S group

g~ group

85.00%

80.00%

75.00%

70.00%

Entropy

65.00%

60.00% —
' .4/ g
L 55.00% W ———— e

50.00%

45.00%

40.00%

Lowest

Highest

Figure 6-3. Maximum and minimum ranges for the first order rhythm entropies
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In the discussion of the interval orders later in this chapter, it will be shown that the composers of the
modern pieces have relied more on interval variation, and that they possibly resorted to a greater
rhythmic redundancy to achieve musical coherency. The difference between the pitch entropy and the
rhythmic entropy of Ave Maria, may be a similar balancing factor in which the greater rhythmic en-

tropy compensates for the predictability of the pitch set.

At this stage it is clear that the selected compositions are mainly differentiated in respect of their tem-
poral pitch distribution (Table 6-2), rhythmic entropy and a combination of both (Table 6-3). It has also
been shown that pitch entropy by itself has little bearing on the intrinsic stylistic character of the music
but that pitch-entropy calculations only become effective when note values and rhythm are taken into
account. Considering the tables shown so far, many of the calculations for exclusive pitch distribution
actually contradict the entropies calculated for the combination of pitch and rhythmic values.

The entropy values illustrated in Table 6-2, Table 6-3, and Table 6-4 are summarised in the table be-
low. Although there is some overlapping of values, the averages of the pitch-ratio, pitch-rhythm and
rhythm entropy values already provide a good pointer to the stylistic entropy values of the various
genres. The entropy values for pitch distribution are not included for the reasons already expounded

on earlier in this chapter.

Group Title Pitch ratio  Pitch/Rhythm Rhythmic Average
Entropy Entropy Entropy entropy
P Summer love 83.46% 82.96% 50.85% 72.42%
P Thank you for the music 85.95% 88.95% 48.24% 74.38%
P Love letters 86.73% 84.76% 57.66% 76.38%
P Annie’s song 83.87% 86.57% 61.57% 77.34%
P You are the sunshine of my life 78.42% 87.22% 68.07% 77.90%
P One more night 82.70% 90.42% 64.40% 79.17%
P  Sleepy shores 88.15% 88.70% 68.30% 82.05%
Average 84.18% 87.23% 59.87% 77.09%
S Ave Maria 75.70% 80.81% 77.89% 81.47%
S Haft 88.93% 88.89% 54.71% 77.51%
S Liebestreu 87.32% 91.32% 65.68% 81.44%
S Nachtigall 83.79% 95.42% 71.84% 83.68%
S Das Wandern 94.21% 93.06% 68.33% 85.20%
S Rosamunde 87.45% 84.66% 73.63% 85.25%
S [Ich will meine Seele 88.27% 87.94% 81.90% 86.04%
S Das jst ein Fléten 88.21% 84.10% 78.08% 86.80%
Average 88.31% 92.20% 70.60% 83.70%
M  Cupid and my Campaspe 83.81% 81.31% 53.73% 76.28%
M  How love came in 84.27% 92.24% 63.38% 79.96%
M  Since she whom | loved 80.83% 80.88% 59.12% 80.31%
M In Flanders fields 87.17% 93.06% 66.56% 82.26%
M Whenas the rye 88.60% 93.05% 70.45% 84.03%
M  Being young and green and 89.47% 84.88% 74.40% 86.25%
green
M Nun ich der Riesen 80.66% 97.94% 84.63% 91.08%
Average 87.84% 93.34% 67.47% 82.88%

Table 6-5. Summary of pitch and rhythm entropy values

A graph illustrates the entropic differences between the maximum and minimum values of the three
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groups and shows that there is a degree of overlapping of the maximum values of the P- and M-

groups and the minimum values of the S-group.

wwigs P group —&—5 group =&—M group

85.00%

90.00%

75.00%

70.00% |
Lowest Highest

Figure 6-4. Maximum and minimum range of average entropy values

The results thus far indicate that:

1. both pitch distribution and rhythmic organization is more complex in the Classical Art songs

(S-group) than in the other two groups; and

2. there seems to be a lower entropy limit for both pitch and rhythmic distribution. It appears that
the lower limit for pitch distribution is around 80% while that for rhythm is around 60%. These
figures are approximations and not fixed and may even be lower for other genres of music or
individual pieces. Children's songs and certain types of folk songs, which centre on the penta-

tonic scale would probably have lower limits and lower entropy values.

Intuitively one may suspect that much popular music relies on rhythmic simplicity and repetitiveness
for its popularity. Should the repetitive accentuation of beats, so often found in popular music, be
taken into account along with the indicated redundancy levels, the overall entropy values of this mu-
sic would drop dramatically. Some years ago, various recordings of some of the better known
‘Classics’ were released in which the beats are strengthened by percussion instruments and bass
guitars that enhance the basic harmonic progressions. These recordings became very popular possi-
bly because the entropy of both the rhythm (percussion) and the harmony (reinforced bass line) were

lowered.

It is conceivable that music that generates entropy values below a certain limit may be equally un-
popular as music of which the entropy is too high. Music with entropy values that are too low could
then be described as monotonous and boring, while music with very high entropy values would be
described as being too ‘heavy’. Nevertheless, this is probably a matter of individual preference with

different people having different entropy tolerances.
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6.3 Stochastic music analysis

Although the figures obtained so far have already provided some significant information about the
compaositions concerned, the dynamic interactions® that take place within the various aspects of music

—stochastic processes—are equally revealing.

Most music is composed according to some fundamental framework. This may include tonality, pre-
conceived forms (such as binary, ternary, sonata form), artificial note sequences (for example serial-
ism, or computer generated sequences) and instrumental selections (For example SATB chair, string
quartets, etc.), among others. Many of these sub-structures in music imply that each new musical
event within that sub-structure will probably be followed by a limited number of other and different
events, which in turn will dictate a limited number of subsequent events. In traditional harmony, the
well-known cadential harmonic sequence, I-IV-V-, is an example. To make harmonic sense at each
stage of the progression, a variety but limited number of choices are available; for example, some of
the chords in the preceding progression may be substituted by other chords or variations of the same
chord: I-11-V'-1. If the cadential progression still has to produce the same effect this kind of substitution
of chords cannot be done at random but is controlled by convention. The keyword here is
‘progression’, which in itself implies that there are certain self-generating dynamics within the tonal
system. Even the most rudimentary handbooks on harmony make this abundantly clear. Similar
‘rules’ apply to many other aspects of music, including the progression of melodic intervals, or what is

also referred to as voice leading.

Nevertheless, within the mentioned structures (melodic, harmonic, rhythmic) there is also a factor of

randomness. The mentioned examples have a single common denominator—random selection from

a limited set of possibilities. Amongst Information scientists this is referred to as stochastic” proc-

esses.

6.3.1 Stochastic interval entropy

Stochastic analysis of the interval contents of in music is the next step in the entropic analysis of the
music for this research. To obtain the results shown in the following pages, ever increasing series
(orders) of interval sequences were compared. The results obtained, essentially reflect the frequency
at which specific events—in this case intervals—are followed by other specific events, in ever in-

creasing complexity and expressed as a ratio of the overall number of events of the same order.

The number of orders generated by each composition varies and is specific and directly related to the
complexity of the intervals used. In the charts that follow the generation of orders was halted when

the entropy values reached 100%, or when the order number reached 70. Once the entropy has

*  Structural principles that are inherent in voice leading and rhythmical coherency.

*  Derived from the Greek word ‘stochos’ which means to aim for or to target.
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reached 100% each order thereafter also has an entropy of 100%. Essentially this means those inter-
val sequences that belong to these orders only occur once and, in other words, have reached maxi-
mum distribution or randomness. The software used to generate these values could not accurately
manipulate character strings that exceeded 256 characters. Since each interval is represented by 3
characters (size, octave and direction) the number of intervals per order was limited to 85. For the
sake of accuracy the number of orders was reduced to 2 maximum of 70. This was not seen as a
major drawback since only four of the compositions used for this study exceeded the 70" order, while

the next highest was 54 orders (Rosamunde).

All the interval orders for the compositions under discussion are shown below:

Group Title Interval
Orders
P Summer love 22
P Love letters 34
P Annie’s song 39
P You are the sunshine of my life 40
P Thank you for the music 70
P One more night 70
P Sleepy shores 70
Average 48.29
S Ave Maria 70
S Nachtigall 4
S Das ist ein Fléten 14
s Das Wandern 15
S Hait 18
S Ich will meine Seele 19
S Liebestreu 25
S Rosamunde 54
Average 21.29
M In Flanders fields 7
M Whenas the rye 8
M Being young and green 3
M - Nun ich der Riesen 3
M Cupid and my Campaspe 9
M Since she whom | loved 9
M How love came in 20
Average 8.43

Table 6-6. Comparative Interval-Order quantities

Keeping in mind that the extent of the interval orders is directly related to the inherent structural ar-
rangement of the intervals of a composition, the table above is rather revealing. The P-group of
songs on average has the largest number of orders with three of the individual items generating more

than 70 orders.

Excluding Ave Maria, the S-group produced orders that are-on average less than half that of the P-
group, indicating a greater overall interval complexity, fewer repeated sequences, and greater vari-
ety—in other words, a lower degree of predictability. Again, Ave Maria, which also produced more than

70 orders, is the exception for the S-group. This suggests that, besides the redundancy of the pitch
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distribution, this song’s popularity may also be ascribed to its predictable interval relationships.

Whereas, the M-group indicated little to distinguish in the comparison of the pitch, pitch-ratio, pitch-
rhythm, and rhythmic entropies, it features far fewer interval orders than the other two groups. This
indicates that the interval sequences of these songs are even less predictable than those of the S-
group, further supporting the argument that the composers of these songs relied more on rhythmic
unity, and—in some instances—pitch distribution to provide musical coherency, and that they used

interval variation to provide musical interest.

However, the quantity of interval orders is not the most important aspect of the interval analysis. Each
order is associated with an entropy value as well. The most convenient manner of illustrating these
entropy values is by presenting them as graphs. The following series of graphs show the curves of the
change in entropy values of each composition in the order they are listed in the table above. Since
the first number orders show the transition between orders most clearly and to ensure similar visual
representation, only the first 15 orders of each of the songs are shown. See Appendix Il for a com-

plete list of orders and entropies for each of the songs.

Interval entropies for the Popular songs

100.00% -
95.00% -
90.00% -
85.00% ¢
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Figure 6-5. Interval entropies for Summer love
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Figure 6-6. Interval entropies for Love letters
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Figure 6-8. Interval entropies for You are the sunshine of my life
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Figure 6-9. Interval entropies for Thank you for the music
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Figure 6-10. Interval entropies for One more night
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Figure 6-11. Interval entropies for Sleepy shores
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Interval entropies for the Classical Art Songs
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.Figure 6-13. Interval entropies for Nachtigall
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Figure 6-15. Interval entropies for Das Wandern
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Figure 6-16. Interval entropies for Halt
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Figure 6-17. Interval entropies for Ich will meine Seele
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Figure 6-18. Interval entropies for Liebestreu
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Figure 6-19. Interval entropies for Rosamunde

Interval entropies for the 20" Century songs
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Figure 6-20. Interval entropies for Cupid and my Campaspe
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Figure 6-21. Interval entropies for Since she whom [ love
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Figure 6-22. Interval entropies for How love came in
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Figure 6-23. Interval entropies for In Flanders fields
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Figure 6-26. Interval entropies for Nun ich der Riesen

To facilitate a sensible explanation of the preceding graphs the

shown in tabular form on the following page.

values for the first fifteen orders are
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Orders 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Sleepy shores 71.68% B83.82% 0154% 94.80% 96.13% 97.16% 07.20% 07.27% 097.37% 97.50% 97.53% 07.62% 97.58% 97.55% 97.51%
Love lefters 74.31% 85.96% 94.01% 9580% 96.37% 96.71% 9696%___ o7.13% 9727% OTA1% S7STh OT.73% 9791% 98.10%
52 65% G463 9550% 08 O6% 06 0% GO 6% 576
Thank you for the music . 80.75% 89.72% 95.42% 96.77% 97.46% 97.76% 97.86% 97, 94% 98.03% 98.12%  98.22% 98.21%  98. 21% 98, 22%
You are the sunshine 8157% 082.00% 92.76% 93.43% 9450% 9521% 0551% 0563% 0581% 0500% 06.18% 96.39% 96.61% 96.83%
Summer love 98.01% 9813% 08.26% 98.40% 9855% 98.72% 98.00% 99.08% 99.24%
Annie's song 03% 91, : ; 97.19% 97.37% 97.60% O7.87% O8.17% 08.49% 08.69%  98.80% 9892%
Average 80.06% 89.33% 93.49% 95.19% 96.61% 96.91% O7.10% 97.25%  O7.43% O7.59% 97.75% 97.88% 98.01% 98.12%
Ave Maria 87.09% 93.80% 97.46% 97.93% 0853% O8.67% 08.62% 0859% 08.50% 098.42% 98.32% 98.23% 08.15% 98.07% 98.01%
“Das st ein Fidten 66.81% 8261% 9243% 96.28% 907.34% 98.01% 98.38% 98.96% 99.21% 99.44% 99.61% 99.70% 99.79% 99.89%
Halt §0.60% 03.05% O4.76% O7.54% O8.41% 98.60% 98.87% 98.98% 99.12% 99.21% 9932% 99.43% 99.56%
Liebestreu " 82.34% 93.80% 96.08% 96.07% O7.05% O7.24% O7.25% O7.29% O7.5% O7.44% 97.56% O7.60% 97.85% 98
Nachtigall 86.32% 94.80% 98.99% 99.68% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100,00% 100.00% 100.00%
Ich will moine Seele_87.88% 89.87% 93.10% 94 as%_ 96.11% 97.39% 98 69% 08.76% 98.35%__ 98.94% 99, 04% ¢
"B8.02% 96.74% 98.86% 99.07% 99.05% 98 7 -
Das Wandemn "89.89% 97.57% 98.22% 98.23% 098.44% 98, 73% 9910% ‘99, 21% 99, 34% 99.48% 99, 64%
Average 83.12% 92.49% 96.07% 97.52% 08.09% 08.38% 98.57% 98.72% 98.79% 9885% 98.90% 98.96% 99.03% 99.10%
in Flanders fields 5 80.89% 89.30% 94.60% 98.03% 99.05% 99.72% 100.00% 00% 100.00% 100.00% 100.00% 100.00% 100.00%
“Whenas the rye 455 82.27% B87.21% 00.01% 94.42% 0583% 97.38% 98.57% O8. 66.25% 60.41% 09.50% 99.79% 100.00% 100.00%
. Being young 74.40% 8557% 93.96% 97.21% 08.31% 00.20% 09.84% 100.00% 100.00% 100.00% 100.00% 100,00% 100.00% 100.00% 100.00%
Since she whom | loved  80.95% B8.99% 94.61% 97.23% 98.43% 99.27% 99.65% 99.79% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
e e G I S To oo, o050 T i
How love came in  83.76% 91.71% 9455% 06.59% 97.31% 07.76% O 3.15%;" 98.55% 08.79% 09.05% ©9.11% ©9.17% 99.24% 99.32% 99.40%
Nun ich der Riesen 91.09% 98.47% 09.79% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Average 77.51% 87.53% 93.46% 06.33% 07.02% OB.64% 99.20% 0954% 09.66% 99.76% 99.79% 99.82% 99.86% 99.90% 99.91%
Differences
P-Group/S-Group 3.06% 347%  2.58%  2.32%  1.98%  1.78%  1.66%  1.62% 1.53% 1.42% 132% 1.21% 1.14% 1.09% 1.07%
S-Group/M-Group 562% -497% -261% -118% -0.16%  026%  063% 082% 087% 091% 088% 086% 0.84% 0.80% 0.72%

Table 6-7. Entropy values for stochastic interval sequences, order 1 - 15




University of Pretoria etd — Koppers M H A (1995)

6 : ANALYSIS OF SELECTED COMPOSITIONS 6-26

Because each of the graphs also represents a different composition, it is obvious that all the curves
would be quite different. This then also confirms the difference in character between each composi-
tion—if the graphs were similar or had appeared similar, they would have sounded the same or simi-
lar as well. The distinctiveness of each of the songs' interval graphs can be used as one component
of a complex graph that identifies each song. Examples of such complex graphs are shown towards
the end of this chapter.

However, if the average figures in Table 6-7 are used in conjunction with the graphs, the entropy
value of the S-group (including Ave Maria) at each order is clearly higher than those of the P-group.
At the first order the difference between the entropies of the two groups is more than 3 points but as
the orders progress the difference in values gradually decreases; at order 5 the difference is nearly 2
points; at order 10 the difference is 1.4 points at order 15 it is about 1 point.

Similarly, there is a difference between the average entropies of the S-group and the M-group but the
order 1 difference is -5.62; order 5 is -0.16; order 10 is 0.91 and order 15 has a difference of 0.72.

To summarise the above, the S-group on average begins with a higher entropy for the stochastic in-
terval values, than both the P-group and the M-group. The S-group maintains its higher values com-
pared to the P-group, but this difference gradually decreases as the order number increases.
Whereas the M-group starts with a lower value than the S-group, at order 5 the entropy value of the
M-group is higher than that of the S-group, reaches its greatest difference at order 10. The difference
gradually decreases as the order numbers increase. The difference in entropy values at each order,
would suggest that the predictability of the interval sequences of the S-group generally reduces faster
than those of the S-group, which in turn reduces faster than those of the P-group. This information
together with the number of orders each composition generates provides the overall predictability of
each composition as well as for each group. The interval entropies of the Popular songs are relatively
low while the number of orders indicates that the structural dynamics of these songs stretch over a

greater length of the music.

In the case of the Modern songs, maximum entropy is reached comparatively fast, hence the steeper
curve. This indicates that the music of the M-group does not rely as much on interval coherency than
either the Popular songs or the Art songs.

6.3.2 Stochastic rhythm entropy

The same methods applied to obtain the stochastic interval entropies are applied to the rhythms of
each of the songs and the values thus obtained may be illustrated similarly. Below is a table of the

number of the rhythmic orders generated by each of the compositions.
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Group Title Rhythmic
Orders

P Summer love 22
2 You are the sunshine of my life 41
P Annie's song 50
P Love letters 69
P Thank you for the music 70
P One more night 70
P Sleepy shores 70

Average 56
S Ave Maria 70
s Nachtigall 13
S Ich will meine Seele 13
S Das ist ein Fléten 15
S Das Wandern 15
S Halt 18
S Liebestreu 22
S Rosamunde 54

Average 21.43

M Nun ich der Riesen 4
M In Flanders fields 7
M Being young and green 7
M Since she whom | loved 11
M Cupid and my Campaspe 12
M How love came in 12
M Whenas the rye 13
Average 9.43

Table 6-8. Comparative rhythm-orders

As with the values obtained for the rhythmic elements of the songs in the first part of this chapter, the
stochastic character of the rhythm — in terms of the numbers of orders generated — again shows a
marked difference among the three groups.

Keeping in mind that those compositions with orders of 70 could possibly generate even higher or-
ders, the average of the P-group and Ave Maria would, in other words, be even higher than shown.
However, the figures provided in Table 6-8 adequately indicate the difference among the three
groups. In essence the relative values indicate how soon the stochastic processes at work in the
rhythms of each group of songs reach maximum entropy. In the case of the pieces under discussion,
the S-group reaches maximum entropy more than twice as fast than the P-group, while the M-group
reaches maximum rhythmic entropy nearly twice as fast as the S-group. The argument stated earlier
in this chapter, that the acceptability of a piece of music by certain sectors of the listening public is
largely dependent on the rhythmic structure, seems to be reinforced by the figures shown above.

The following series of charts illustrate the curves of the rhythmic entropies of the songs to the 15"
order. )
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Rhythm entropies for the Popular songs
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Figure 6-28. Rhythmic entropies for You are the sunshine of my life
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Figure 6-29. Rhythmic entropies for Annie’s song
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Figure 6-30. Rhythmic entropy for Love letters
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Figure 6-31. Rhythmic entropies for Thank you for the music
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Figure 6-32. Rhythmic entropies for One more night
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Figure 6-33. Rhythmic entropies for Sleepy shores

Rhythm entropies for the Classical Art songs
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Figure 6-34. Rhythmic entropies for Ave Maria
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Figure 6-35. Rhythmic entropies for Nachtigall
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Figure 6-36. Rhythmic entropies for Ich will meine Seele
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Figure 6-37. Rhythmic entropies for Das ist ein Fl5ten
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Figure 6-38. Rhythmic entropies for Das Wandern
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Figure 6-40. Rhythmic entropies for Liebestreu
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Figure 641. Rhythmic Entropies for Rosamunde
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Rhythm entropies for the Modern Songs
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Figure 6-42. Rhythmic
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Figure 6-43. Rhythmic
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Figure 6-44. Rhythmic
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entropies for Since she whom [ loved

entropies for Cupid and my Campaspe

entropies for How love came in
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Figure 6-45. Rhythmic entropies for In Flanders fields
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Figure 6-46. Rhythmic entropies for Whenas the rye
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Figure 6-47. Rhythmic entropies for Being young and green
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Figure 6-48. Rhythmic entropies for Nun ich der Riesen

The first 15 orders of the rhythmic entropies are shown on the following page:
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Orders 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Thank you for the music A8 DA% B3 440 T6.14% B4.49% 80.03%  ©0308% 05.16% 96.36% 97.07% 97.54% 97.89% 98.00% 98.07% 98.14% 98.17%
Summerlove ! 50.85% 65.35% 75.31% 8359% 88.81% 90.80% 9311% 94.70% 06.43% O7.85% 98.24% 98. 4_:_3_94,“.__&3:_3_39_%____93gs%_
‘Love letters ) 57.66% 71.02% 80.49% B87.47% 9 94.08% 9401%  ©551% 06.06% 96.56% 96.95% 97.34% 97.62%
“Annie’s song 6157% 74.31% 81.93% 87.04% 89, 9366% 0467% ©5.72% 06.84% 97.80% 98.49% 98.74% 93.?4%
Gne more night 5411% 50,339 85,689 03 49% 05.04% 95.76% 06.04% 96.36% 96.67% O07.01% 97.31% O7A41% O7.66% 97.72% O7.18%
Youare the sunshine __68.07% 81.32% 90.14% 03.48% 9388% 0474% 9550% 9562% 9576% 95.92% 96.11% 96.31% 96.75% 96.99%
Sieepy shores i BB 360, 63 309 68.80% 73.16% 7787% 81.05% 83.15% 8519% 86.85% 8831% 89.31% 90.00% 91.34% 91.97%
Average 59.83% 71.15% 80.26% 86.10% 89.57% 91.46% 92.57% 93.49% 94.38% 9520% 9591% 96.34% 96.96% 97.18%

Ave Maria 77.80% 83.80% B8917% 02.45% 05.44% 97.04% 97.64% 98.26% O8.85% 09.09% 99.14% 99.19% 99.11% 99.07% 99.02%
I s BT A0, 70.97% 80.01% 85, 27”’“.....37-56% 90.08% 9261% 94.65% % 97.41% 9854% 9901% 9939% 0956% 99.74%
‘Liebestreu "65.78% 80.01% - %  84.05% B85.65% 81, 0% 90.11%  O1.48% 02.93% 04.35% 9551% 096.69%
Das Wandern 68.33% 81.86% 90.36% 04, 57% """" 56359 06630 67.70% 68.55% ©9.10% 99.36% 09.49% 09.65% 99.82%
Nachtigall 71 84% B0.00% 84.94% 0037% 03.71% 0539% 06.04% 07.73% 98.39% 99.00% 99.54% 99.76% 99.87% 100.00% 100.00%
Rosamunde % % 9590% 06.85% O7.46% 97.78% 97.93% 97.73% 97.56% 9743% 07.32% 9723% 97.15%  97.09%
7% 500 S a0% 51 a5 G60% 95,15 96 Ga% 57 20% 5765 : N
Jch will melne Seele 81.00% 87 36% 8415 03.46% ~9562% O7.40% OB.34% 98.84% 99.15% 99.39% 99 j : 100.00% 100.00%
Average 70.61% 81.78% 86.09% 89.78% 9194% 93.43% 94.69% 95.69% 96.41% 97.13% 98.10% 08.45% 98.75% 99.02%
% 62,78% ! " 6795% 99.08% 99575 66.74% 9987% 99.93% 100.00% 100.00% 10000%
Since she whom [ love 59.12% 72.17% 82.58% _ G3.74% 06.49% OB.01% 99.04% ~99.69% 99.89% 09.95% 100,00% 100,00% 100.00% 100.00%
How love came in 63.38% 75.60% 84.58% 93850 G5 709 07.28% O8.63% 00.20% 0953% 99.80% 99.90% 100.00% 100.00% 100.00%
In Flanders flelds 86.02% 94.78% 9 5066% 99.79% 99.93% 100.00% 100.00% 100.00% 100. 00% 100.00% 100.00% 100.00% 100.00%

87.78% 93.91% 97. 50 45%  99.6% 00.80%  99.90% 100.00% 100.00% 100.00% 1 100.00% 100.00% _
“Nun ich der Riesen B 630, 07 63% 99.79% 100.00% 100.00% 100.00% 100,00% 100.00% 100.00% 100.00% 100.00% . "100.00% 100.00% 100.00%
Being young 80507 07.00% 0057% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Average 75.46% 84.07% 90.81% 9455% 96.78% 98.19% 99.00% 9952% 99.79% 99.88% 99.94% 100.00% 100.00% 100.00%
Differences

Difference P-Group - S-Group 0785 10.63% 5830 - 3.66%  2.37%  108%  2.12%  2.20%  2.03% 1.92% 1.79% 1.75% 1.75% 1.79%  1.84%

Difference S-Group - M-Group B RO AT AT 4.84%  4.75%  4.31%  3.83% 338% 2.76% 2.24% 1.88% 1.55% 1.25%  0.98%

Table 6-9. Combined rhythmic entropies for orders 1 - 15
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Compared to the stochastic analysis of the interval sequence, the entropies for the rhythm sequences
generally begin much lower. Most of the compositions also indicate a shallower curve toward 100%
entropy. It is also noteworthy that, with some exceptions, the S-group's curve is even shallower. This
is supported by the differences of the values of the P-group and the S-group (see Table 6-8). The
difference starts with 10.78 points, decreases to 2.37 points at the 5™ order and then graduzlly de-
creases to 1.92 points and 1.84 points at the 10" and 15" order respectively.

Two of the gradients of the M-group are very similar, although they begin with different 1% order en-
tropies. Both reach maximum entropy at the 13" order. However, all seven compositions belonging to
the S-group have steeper curve gradients than any of the other songs under scrutiny. Compared to
the S-group, their average is lower with a difference of 4.85 points at the first order. In fact, their be-
ginning entropies are very close to those of the P-group. At the 5" order their average is above that of
the S-group with 4.84 points. It reaches a difference of 2.76 points at the 10" order and a difference
of .98 points at the 15" order.

As was mentioned earlier in this chapter (see page 6-10), and as is now again evident, the greatest
differences in the entropy of the songs are in the rhythmical characteristics of the music. The sto-
chastic entropies of the rhythm are also directly related to aspects of the formal structure of the mu-
sic, such as rhythmic units, motifs, sub-phrases, phrases, periods, as well as larger sections. Lower
entropies with shallower curves indicate a greater rhythmic coherency. Repeats, sequences and
similar devices—even though the pitches and intervals may diffe—all contribute to a greater pre-
dictability (greater redundancy and lower entropy) of a composition.

Some significant rhythmic characteristics need specific mentioning. Sleepy Shores (P-Group, Figure
6-33 on page 6-30) has an interesting curve in which the second order entropy is more that 5 points
lower than the first order, after which it begins its gra'dual upward curve. This indicates a high degree
of rhythmic unity of consecutive rhythmic values. A similar deviation from the general shape of the
curves is found in Liebestreu (Figure 6-40, page 6-32) where the entropy drops by nearly 2 points at
the 3™ order and then gradually rises. The score supports this tendency by the frequently repeated
pattern of two eighth notes followed by a quarter note. Also note the virtually stagnant entropy values
of Rosamunde (Figure 6-41, page 6-32) which, after levelling off at the 7" and 8" order, decreases
slightly in entropy, before it gradually rises again toward maximum entropy at the 50" order (see
complete listing of entropies in Appendix Il). Another song which shows a similar tendency is Ave
Maria (Figure 6-34, page 6-30), in which there is a gradual rise to an entropy of about 99 points at the
10" order, with a gradual decrease up to the 30" order and then a very gradual rise to maximum en-
tropy beyond the 70" order. In this case, however, the curve evens out at a higher entropy level than
that of Rosamunde. It is interesting that these two songs are amongst the best known songs of the

Classical period (S-group).

The results obtained with the stochastic analyses of the compositions indicate that a major factor in all

the songs is the rhythmic coherency. The P-group shows a more pronounced and consistent redun-
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dancy pattern than the other groups. Because the P-group and the S-group were both chosen from
lists that indicate their popularity, it may be argued that the rhythm, or its predictability may be a con-
tributing factor—if not the most predominant factor.

As with all the other analyses demonstrated in this chapter, each of the compositions also has its own
unique graphs, confirming that each of the songs has unique rhythmic characteristics.

6.4 Stylistic models of music

The typical entropy characteristics of the three groups of compositions were alluded to in the discus-
sion of the entropies of the individual songs. It was shown that each of the individual songs of each of
the three groups generated minimum and maximum values that lie within broad limits for the group to
which they belong. This means that graphical models for each of the groups can be developed to il-
lustrate the general characteristic and stylistic features of each group. An example of such a model is
shown as Figure 6-4 on page 6-14 and illustrates the average minimum and maximum entropy values
for all the 1% order calculations for each group. The same principle may be applied to create compos-

ite models containing the averaged extremes of all the analyses that were done.

All the calculations discussed in this chapter are summarized in the three graphical models that fol-
low, one for each of the groups. The average maximum and minimum entropy values for the sto-
chastic processes (intervals and rhythm) are indicated by the curves, while the single order entropy
limits are represented by the rectangles. The horizontal positions of the latter are of no conseguence
and do not indicate any information pertaining to orders; they are merely placed in a clear horizontal
area for the sake of visibility. Note that the number of orders shown are different in each graph; but
that the horizontal axis of each graph has a maximum of 70 to maintain equal visual proportions of

the curves.
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Figure 6-49. Graphical model of the combined entropy values of the P-group
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Figure 6-51. Graphical model of the combined entropy values of the M-group

6.5 Conclusion

A selection of 22 songs, selected according to genres and certain popularity factors, were analysed.

The various aspects of the entropy analyses of the selected compositions generated a number of re-

sults that, although interesting by themselves, are more significant if regarded in a variety of combi-

nations. The results obtained and conclusions drawn are summarised below.

il

Pitch entropy. Of all the different types of entropy analyses applied, these showed the least
variety with a pitch distribution ranging from a minimum entropy of 81.42% to a maximum of
94.50% (see Table 6-1, page 6-7)—a range of approximately 13 points. Compositions that
contain modulations or are atonal generally have a higher pitch entropy than those that re-
main in one key. The P-group as well as Ave Maria, which is a Classical Art song but which—
due to its popularity—may also be grouped as a popular song, generally fall amongst the
lower ranges of the entropy spectrum. The entropy range of the M-group are rather divergent,

overlapping with both the P-group and S-group.

Pitch-ratio entropy. With this analysis the duration of each pitch in the music contributes to
the entropy values obtained. The more equable the combined duration of a specific range of
pitches in a composition is, the higher the entropy would be. Lower entropic results would
therefore indicate that the composer dwelt longer on some pitches than on others. With a
minimum entropy of 75.70% and a maximum of 94.21% (see Table 6-2, page 6-9), the aver-
age difference between the P-group and the S-group increased (18.5 points), compared to
that of the pitch entropy (13 points). The entropies of the M-group proved inconclusive, and
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tended more to that of the P-group. It is significant that Ave Maria also has the lowest entropy
value in this respect, especially in view of the fact of its ambiguous position between the P-
group and S-group.

Pitch-rhythm entropy. As a variation on the pitch-ratio calculations, the pitch-rhythm calcu-
lation is not based on duration but rather on quantity. Because this calculation combines the
entropy for pitches and that of note values—a combination of two independent sets, it was to
be expected that the entropy values obtained with this method is somewhat higher than both
previous methods. The minimum entropy value obtained is 82.96% and the highest value is
85.42% (see Table 6-3, page 6-10), a difference of nearly 12.5 points. In this case there is a
clearer separation between the P-group and the S-group, although there is still some over-
lapping. Like with the other two methods of analysis, the P-group again falls within the lower
ranges.

Rhythm entropy. Rhythm is the most distinctive feature of the three groups. The lowest value
obtained here is 48.24% and the highest is 84.63% (see Table 6-4, page 6-12). Although
there is still some overlapping among the three groups, the separation is now much more
marked. Again the P-group ranks predominantly amongst the lower values and the S-group
amongst the higher values. Interestingly, where the values of the M-group in the three previ-
ous analyses were similar to that of the higher values of the S-group, the rhythmic entropy of
the M-group is now similar to the low values of the P-group. This indicates that the predict-
ability of these pieces is mainly due to their rhythmic redundancy. Ave Maria that, with the
previous types of analyses, ranks amongst the lower values of the P-group, now ranks

amongst the higher values of the S-group.

Combined average of the entropy analyses (Table 6-5 and Figure 6-4, ﬁage 6-14). A combi-
nation of the pitch-ratio entropy, pitch rhythm entropy and rhythm entropy was used to obtain
the average for each of the groups (because of the proximity of the pitch entropies these were
not included). Although there is some overlapping between the average entropy values of the
three groups, the results clearly indicate that the S-group has the widest range and both its
highest and lowest values are higher than the P-group and M-group. The range of the P-group
is somewhat smaller and that of the M-group is the smallest.

Stochastic interval analysis. Since most music is conceived according to inherent structural
patterns (except in the case of intentional aleatoric music), it is to be expected that these
could be quantified by stochastic analysis of certain aspects. Interval analysis is important in
this respect, and for two main reasons; the dynamic:s5 of melodic structures and the dynamics
of tonal orientation. It should be stressed that Information Theory cannot show or measure to-

nality as such, but that it can be used to measure the degree of tonal orientation. Tonality, as

5

The term ‘dynamics’ in this context does not refer to its musical connotation of ‘loudness’ but rather to the movement of the inter-
vals governed by specific conventions and voice leading.
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used here, should be regarded in its widest meaning, including dodecaphony, and other syn-
thesised scales. In other words the degree to which the music adheres to a specific sequence

of predetermined pitches and, by implication, intervals.

Each composition generated a number of entropy values based on the length of sequences,
or orders. The number of orders generated before a composition reaches maximum entropy
indicates the structural predictability. Compositions with a lower number of orders are much
less predictable than a composition that generates a higher number of orders. Of all the re-
sults obtained thus far, the orders of the interval entropy proved the most revealing (see
Table 6-6, page 6-16). Except for Nachtigall (S-group, 4 orders), the seven pieces of the M-
group generated the lowest orders (3) and the P-group the highest (70+). The P-group also
showed the largest number of average of the orders (49.29), while the S-group and M-group
showed an average of 21.29 and 8.43 orders respectively. Again, Ave Maria was an interest-
ing case since it firmly belonged to the P-group with 70+ orders. A graph of the interval en-
tropies of each of the compositions (page 6-17 to 6-23) shows that the rate at which the S-
group reaches its maximum entropy of 100% is higher than that of the P-group. The M-group
has an even higher increase of entropy with each of the orders. The curves of the graphs also
show that each composition has its own unique shape to distinguish it from the other compo-

sitions.

7. Stochastic rhythm entropy. As for the entropies generated by the intervals, the number of or-
ders generated by this analysis, proved equally significant. The highest orders is found in the
P-group where three songs have 70+ orders, while the S-group generated orders between 13
and 54 respectively. Rosamunde, which is a favourite for many listeners generated the 54 or-
ders, which is 32 higher than the next highest in the group. The lowest orders were generated
by the M-group with a range between 3 and 13. The P-group averaged 56 orders, the S-group
21.43 orders and the M-group 8.43 orders (see Table 6-8, page 6-27). Again except for Ave
Maria (70+ orders) the three groups are clearly separated. The curves of the entropy values
for this analysis show that the rate at which 100% entropy is reached is slower than with the
stochastic interval analysis, but as with the latter the rate of change is the highest for the M-
group to a significant degree, while that of the P-group is the lowest. The graphs also show
the unique character of each of the compositions, even more so than is the case with the sto-

chastic interval analysis.

It would appear that entropic and stochastic analyses of single aspects are not sufficient to indicate
the overall characteristic traits of a musical style. The same argument also applies when Information
Theory is used to ascertain those factors in music that could contribute to its general popularity with
the listener. Music is a complex combination and interaction of, amongst others, a variety of pitches,
silences, rhythms, and dynamics. A comprehensive approach is required to identify the entropic and
stochastic elements that may contribute to the popularity or acceptance of a piece of music, and
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therefore contribute to the style of the music as well.

The elements of the music subjected to Information Theoretical analysis, provided sufficient informa-
tion to identify specific characteristics and style elements that contribute to the stylistic nature of the

music and point to the factors that contribute to its accessibility or even popularity.

Accepting that the P-group of songs are generally amongst the most popular pieces of music today,
that the S-group are also popular but among a smaller selection of people, and that the M-group are
virtually unknown—accept amongst connoisseurs, some definite tendencies are evident:

1. Music that generally enjoys greater popularity, generates lower entropy values, especially
rhythmically.

2. Pieces with lower entropy values generally produce a larger number of orders. Stochastically,
the popular pieces reach 100% entropy at a much slower rate than the lesser known pieces.
One piece, Ave Maria, which shows tendencies of both extremes seems to confirm this argu-

ment.

3. The lesser known 20" century pieces essentially have a much shorter order distribution for
the stochastic analyses, and may therefore be less palatable to the general public, even
though they are more predictable as far as pitch distribution is concerned. This indicates that
although pitch and rhythm distribution may be important indicative factors of the acceptance
of a piece of music, they are not exclusive factors. The inherent structural dynamics for inter-
val and rhythmic structure, balanced by the careful selection of pitch and note values, seem
to be important in establishing whether a piece of music has the possibility of being accepted
or even becoming popular or a classic.

The overlapping values between the results of each group tend to support the suggestion that this
type of analysis may be done free from period bias. Especially in the 20" century, music has become
rather eclectic, and there are many composers who compose in any of the historical styles. Further-
more, much of what today is called ‘popular’, shows similarities with some of the older styles of music,
and is often written with just this purpose in mind. To ignore these facts and maintain the traditional
system of historical divisions and classification of music would therefore contradict the aims of en-
tropy analysis which does not claim to provide historical information of any kind. Much of traditional
music analysis, is based on comparative methods for which set and preconceived models serve as
point of departure. Entropy analysis, in contrast, considers the inherent dynamics of music without
any specific reference to outside models. However, entropic analysis is also capable of establishing

the similarities in information content of a specific period of music, or even of an individual composer.



University of Pretoria etd — Koppers M H A (1995)

STOCHASTIC MODELS OF MUSIC AND
THEIR APPLICATIONS

In the previous chapter, aspects of Information Theory were used to analyse music selected from
three different styles. Some of the selected compositions have a proven record of popularity, while
one group is relatively unknown. The aim of the analysis was to discover common entropic factors
within each group. Similarities between the various compositions were used to establish broad norms

and predictability factors common to three different musical styles.

Chapter 6 also dealt with developing models of the characteristics and style of a group of composi-
tions, which may then be compared to find similarities or differences between the various different
styles. However, the range of applications of Information Theory to music may be increased if indi-
vidual pieces can also be compared with such stylistic models that are derived from a large quantity
of music. This chapter deals with the entropy values of an individual piece of music. It shows how the
entropy values of a specific composition may be used for comparison with a stylistic model, thereby
establishing the degree of similarity (or difference) between the selected composition, and style and
characteristics of a pre-determined group of compositions.

Even though there are some significant similarities between the different groups, each compaosition
also has its own unique and distinct characteristics that identify it from the other compositions. The
results of the analysis may therefore also effectively be applied to create a uniquely identifying com-

posite image or model for comparison with a global stylistic model.
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Most of the generated results were illustrated by means of both tables as well as graphs. The latter
are no more than grades on a scale with a maximum of 100, that indicate the contents of information
embodied in a composition. The fact that this scale is based on percentage values, and therefore
implies relative values, makes it an ideal vehicle by which the individual characteristics of composi-
tions may be compared. Traditional methods of comparison in music frequently use comparative
methods whereby a specific piece of music is compared with a theoretical model. An example of this
type of analysis is found in musical form of which examples have been given in earlier chapters.
While many compositions are said to be in sonata form, very few conform completely to the standard
textbook model—usually composers use such a model merely as a general guide, thereby imbuing
their music with creative and artistic elements.

Comparison of composed music with an imaginary model requires much description and discourse to
show how and where it deviates or conforms to the model. If two or more similar compositions are
compared with each other, as well as with the model, the increase in quantity of descriptive material

increases likewise.

The method suggested here creates a single model which may include or exclude as many elements
as needed, and which immediately provides one with as much statistical information about a piece of
music as is required. Although the results so obtained may be used to compare different composi-

tions, there is no need for imaginary or synthetic models for reference.

7.1 Creating an entropy model of music
The additive process involved in creating a graphical identification of music is illustrated below.

For this discussion three of the compositions listed at the beginning of Chapter & were randomly se-
lected—one from each group. All the entropic and stochastic values used in this chapter were also

taken from the tables in Chapter 6:
1. Stevie Wonder: You are the sunshine of my life (P-group)
2. Robert Schumann: Das ist ein Fléten (S-group)

3. Benjamin Britten: Since she whom I loved (M-group)

7.1.1 One-dimensional entropy combinations

In Chapter 6, a number of single dimensional entropy values for four related music elements were
obtained for each of 22 compositions. These are in order of complexity:

1. Pitch entropy
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2. Rhythm entropy
3. Pitch - rhythm entropy
4. Pitch ratio entropy

As mentioned before, the easiest element to calculate is pitch entropy; the three entropy values of

each are:
You are the sunshine Das ist ein Fléten Since she whom |
of my life loved
83.87% 87.57% 91.79%

Table 7-1. Entropy of pitch distribution for the three selected songs

The differences among the three compositions are obvious and may effectively be illustrated on a

graph:
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Figure 7-1. Comparison of pitch entropies for three selected songs

The figures shown above clearly show the difference between the pitch distribution of the three com-
positions expressed as relative entropy, and may already be used as part of a comparative study.

Rhythmic entropy is also relatively straight forward to calculate and may now be added to further en-

hance the graphical representation:

You are the Sunshine of Das ist ein Flten Since She Whom |
My Life loved
Pitch 83.87% 87.57% 91.79%
Rhythm 68.07% 78.08% 59.12%

Table 7-2. Rhythm entropy for three selected songs
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Figure 7-2. Comparison of pitch and rhythm entropies for three selected songs

A second dimension has now been added changing the visual impact of the graph, and the differ-
ences among the three compositions are self-evident. Although the pitch entropy of the third song is

much higher than that of the first, the rhythm entropy is considerably lower.

The third element that is added to the graph is the combination of the two previous aspects: pitch and

rhythmic values combined:

You are the sunshine of Das ist ein Fléten Since she whom |
my life loved
Pitch 83.87% 87.57% 91.79%
Rhythm 68.07% 78.08% 58.12%

Pitch & rhythm 87.22% 94.00% 90.88%

Table 7-3. Combined pitch and rhythm entropy for three selected songs
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Figure 7-3. Comparison of pitch, rhythm and pitch-rhythm entropies for three
selected songs
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The pitches and pitch-rhythm entropy values for Since she whom | love are clustered around 90%
and are difficult to distinguish in the graph. When the pitch-ratio entropy is added to the graph it be-
comes even more difficult to distinguish. The last element added to the one-dimensional entropy

chart is the pitch-ratio distribution value:

You are the sunshine  Das ist ein Fidten Since she
of my life whom | loved
Pitch 83.87% 87.57% 91.79%
Rhythm 68.07% 78.08% 59.12%
Pitch & rhythm 87.22% 94.00% 80.88%
Pitch ratio 78.42% 88.21% 90.93%

Table 7-4. Pitch ratio entropy for three selected songs
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Figure 7-4. Comparison of pitch, rhythm, pitch- rhythm, and pitch ratio entropies for
three selected songs

Whereas the rhythm and pitch & rhythm entropies of You are the sunshine of my life is higher than
Since she whom [ love, and the same entropies of Das ist ein Fiéten is even higher, the above table
and graph both illustrate that the pitch entropy and pitch ratio entropy are consecutively higher with
each song. Except for the rhythmic entropy of Since she whom [ love the rest of the entropy values
are fairly close together and can hardly be distinguished on the chart (different colour could be used
to indicate the different entropy values). Except for the similarity pitch and pitch-ratio values, You are
the sunshine of my life shows the largest diffusion between the different values, while Das ist ein
Fléten is fairly evenly distributed. In respect of pitch and pitch-ratio values Das ist ein Fldten and

Since she whom | love also show similarities.
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At first it was considered to add the average of the four values described above. However, since dif-
ferent aspects of the music (especially pitch and rhythm which are quite divergent elements) are be-
ing demonstrated, averaging the values would diminish the distinctiveness of the graphic representa-
tion. It would thus not furnish an accurate assessment (for example if the rhythmic and pitch entropy
values of two songs are 80% and 40%, and 55% and 75% respectively, the average would be 80%

and 65% — not a convincing or significant difference).

For identification or classification of music the basic procedures described so far may be sufficient for
certain applications. However, the graphs shown above have only one dimension. Throughout this
thesis some stress has been placed on the role of the stochastic dynamics in communication. This
applies to many of the arts and speech, and is extensively applied in technologies such as cybernet-
ics and artificial intelligence. In recent times it is increasingly being used to predict future events
(earthquakes, stock market trends, weather, etc.). In music it is an important feature as well, and to
identify a piece of music even more precisely than described above, the stochastic principles at work

in a piece should also be included.

7.1.2 Stochastic entropy combinations

Because the entropy analyses in the first part if this chapter were one-dimensional, only a single, ver-
tical axis was required. In this section the entropy results are two-dimensional—each order with its
particular entropy value—and shown on a vertical and horizontal axis. In essence the values used
here are the same as those in the second half of Chapter 6, except that the complete range of orders
is shown. Because of the software restriction mentioned in Chapter 6, the maximum number of orders
remains 70. However, as will be shown below, the results are adequate to provide a satisfactory sta-

tistical and visual image of the music.

The interval entropy for the orders generated are treated first. The table below shows all the values

generated for the three compositions:

Order | You are the sunshine | Das ist ein Fléten | Since she whom |

of my life loved

1 81.57% 66.81% 80.95%
2 92.09% 82.61% 88.99%
3 92.78% 92.43% 94.61%
= 93.43% 96.28% 97.23%
5 94.06% 87.34% 98.43%
6 94.59% 98.01% 99.27%
7 95.21% 98.38% 99.65%
8 95.51% 98.96%" 98.79%
9 95.63% 99.21% 99.89%
10 95.81% 99.44% 100.00%
1] 95.99% 99.61%

12 96.18% 99.70%

13 96.39% 99.79%
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Order | You are the sunshine | Das ist ein Fl6ten | Since she whom |

of my life loved
14 96.61% 99.89%
15 $6.83% 100.00%
16 97.07%
17 97.32%
18 97.58%
19 97.85%
20 98.14%
21 98.37% 3
22 98.61%
23 88.77%
24 88.93%
25 99.00%
26 99.08%
27 99.13%
28 99.17%
29 99.21%
30 99.26%
31 99.31%
32 99.37%
33 99.42%
34 99.48%
35 99.55%
36 99.61%
37 99.68%
38 99.76%
39 99.83%
40 99.91%
41 100.00%

Table 7-5. Stochastic interval entropies for three compositions

To make the comparison between the curves more clearly visible, the values of Table 7-5 are com-
bined in a single graph below. The lowest starting point of each curve lies above 50%, and the lowest
entropy value has also been limited to 50% to make the curves more distinct. Ultimately each com-
position should be drawn on individual graphs, showing the full range from 0% to 100% and the indi-
vidual curves may be given different colours. Important characteristics of the graph are the starting
point of each curve (order 1 values), differences in the length of the curves (orders), the gradient and
the general shape of each curve.
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Figure 7-5. Interval entropies of the three compositions

The same principle applied previously for the intervals is also applied to the rhythmic values of the

three songs. First

values.

the values are shown in tabular form, followed by a graphical rendition of the same

Order | You are the sunshine | Das jst ein Fléten | Since she whom [

of my life loved

1 68.07% 78.08% 59.12%
2 81.32% 84.78% 72.17%
3 90.14% 85.99% 82.58%
4 93.48% 88.80% 89.45%
5 93.88% 91.35% 93.74%
6 94.74% 93.66% 96.49%
7 95.50% 95.15% 98.01%
8 95.62% 96.68% 99.04%
9 95.76% 97.20% 99.69%
10 95.92% 97.85% 99.89%
11 96.11% 98.31% 99.95%
12 96.31% 98.62% 100.00%
13 96.53% 98.97%

14 96.75% 99.36%

15 96.99% 99.79%

16 97.24% 100.00%

17 97.49%

18 97.76%

19 98.04%

20 98.33%

21 98.63%

22 98.78%

23 98.95%

24 98.98%

25 99.01%

26 99.05%
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Order | You are the sunshine | Das ist ein Fiéten | Since she whom |

of my life loved

27 98.08%
28 99.13%
29 99.17%
30 99.21%
31 99.26%
32 99.31%
33 99.37%
34 98.42%
35 99.48%
36 99.55%
37 99.61%
38 99.68%
39 89.76%
40 89.83%
41 99.91%
42 100%

Table 7-6. Stochastic rhythm entropies for three compositions
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95.00% oo

90.00%
You are the sunshine of my life
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¥ Since she whom | love

entropy

75.00% - ______________________________________________________________________________________ O e o N A R G A U AT e L s Dok i
T0.00GA - ...................................................................................................... T o THoGR S SRS RO GRS S S SR TRy R
65.00% ,__ ................................................................................................. 0. SOy W ». NN U RSy AR - 8

60.00% --

50.00% B B e e IS S B B m S S s s s e m s s e e e B e e e e e e e B S H |
- L] w ~ (=] - - w ~ (=] . « [Tz P~ (=] . 70 [ d uw ~ (=] -
™~ - = - - o~ ™~ o~ o™~ ] © el © ] 2] b s
orders

Figure 7-6. Rhythm entropies of three compositions

The differences between the curves are self-evident, each indicating different rhythmic processes at
work within the structure of the compositions.

However, to demonstrate the unique properties of each of the three compositions, their individual

characteristic entropies may separately be combined into a single graph. This means that the ele-
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ments peculiar to each of the songs are extracted from Figure 7-4, Figure 7-5 and Figure 7-6 and
combined into a single graph. The individual graphs for each song are shown below. To maintain the
same proportions between the graphs, the number of orders on the x-axis has been kept the same
throughout, even where the higher orders have no entropy values. The short horizontal lines repre-
sent entropy values of single dimensions and should, in reality, only be indicated on the vertical axis
as a short line or dot. They were made longer to make them more visible and do not imply any spe-

cific number of orders.
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Figure 7-7. Combined entropies for You are the sunshine of my life



University of Pretoria etd — Koppers M H A (1995)

7 : STOCHASTIC MODELS OF MUSIC AND THEIR APPLICATIONS

7-11

100.00% e A A i e e e e e B S e L T N S I A i b s Al AU vk e s S s s

. o nnh PR T

05,008 ot s
90.00% - L
85.00% -
80.00%-)-

75.00% +-f

entropy

AR AT

70.00% Sl Sy o e R MR SRR S R S b R PR S MR AR e e i S TR e S T TR G AR S R AR AR AR e e serrrssesasssrsseseransesaseniess |nfer\la|3 .......
............Rhythm
65.00% + s Pitch
=== Ditch ratio
6000% et By TRATY R SRR DR D R S e T e e R A R B L T S R R T S TR R R —""‘P|tch/Rhythm ........
55.000/0 s S e n ey e T A e e B R S T S e ST A SR RS R e e A e e S S L S SR RS A L T P P PR e P )
50.00% } } ; F { } } : : t ; } } } |
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16

orders

Figure 7-8. Combined entropies for Das ist ein Fiéten
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Figure 7-9. Combined entropies for Since she whom I loved

A complete set of graphs, together with tables of entropy values, for each of the 22 compositions is

found in Appendix Il.

Even a cursory perusal of the three graphs above, illustrates that each of the compositions is unique
in many ways. Even if two compasitions closely resembled each other, there would still be certain
aspects where differences could be discerned unless, of course, the works were identical. By compar-
ing the graphs of individual compositions, as shown above, with the models for a larger group of mu-
sic, similarities and differences may be identified. Depending on the objectives of the comparison,
this aspect may be applied to single aspects, such as rhythm, or to a variety of combinations of as-

pects.
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7.1.3 Application of entropy models

Each of the compositions exhibits qualities unique to itself. Even if there are similarities of specific
aspects, there are always differences in other aspects. However, in Chapter 6 it was shown that cer-
tain groups of compositions nevertheless may be broadly classified into groups where their entropy

values fall within certain limits.

Having established that compositions—because of inherent uniqueness—generate entropy values that
reflect their uniqueness but that they may also be grouped according to pre-defined parameters, it is
possible to make a study of a specific type of music or of the music used for specific purposes. Con-
sidering the information so obtained, basic models of limitations could be devised that dictate the
qualities of music that will be used for particular applications. Such models would not be as specific
as the results shown above, but would rather provide a range of values or limits, according to which
other music may be selected. Figures 6-49 to 6-51 in Chapter 6 are examples of such models, al-
though they do not represent a specific application but rather the general qualities of music randomly

selected from genre and popularity classifications.

Although the descriptive method of analysis has an important educational function and contributes to
the understanding of the function and interaction of the various elements in music, it has not proven
itself as an effective instrument for commercial use. The methods and results described in this chap-
ter may be of some educational value but it could be a meaningful instrument for the selection of

music in the music industry. Some examples are discussed below.

7.1.3.1 Recording industry

Millions of Rand are yearly spent in an industry that is usually ignored by the musicological fraternity.
The recording industry hés developed a strong infra-structure by which it provides recordings of thou-
sands of popular musicians to the public. In the employment of many of these large corporations are
specialists who know what qualities are required to make a best-seller; which qualities are preferred
for the specific echelon of the population for which they cater. This ability, or ‘feel’ by talent hunters
and promoters is usually acquired by many years of close contact with the types of music in which
they specialise.

It is suggested here that the learning processes involved in obtaining this experience are essentially
an acquired ability to recognise the entropic properties of music—the quantity of information that is
generated and the rate at which it is generated, in other words the predictability of the music. How-
ever, the trial-and-error method is not fail-safe, and thousarnds of recordings are made that never be-
come well known and are quickly forgotten. Few people ever know about these failures, because ac-

tive promotions of such records are quickly ceased to save on the costs.
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To help reduce the number of failures that are produced regularly, the system described in this chap-
ter could be used to develop basic models for specific types of music that have proven to be com-
mercially viable. New additions to the repertoire could be compared to ascertain if they entropically
fall within the set limits indicated by the models.

It is not implied that this is a fail-proof method, since the promotional efforts involved in bringing a
musician or group of musicians to fame is an important factor. Prior popularity of artists also plays an
important role but even the most popular artists regularly produce music that is quickly forgotten. Only
those songs that have the required quality to maintain the public’'s interest eventually become
‘classics’, a quality that can solely be ascribed to the musical characteristics.

7.1.3.2 Copyright controversies and litigation

Every so often, there are controversies concerning plagiarism in the world of popular music. Since the
traditional methods of analysis are often vague and open to interpretative manipulation, conclusive
decisions are rare. Especially when such cases end up in court it often results in costly and inconclu-

sive fiascos.

Information Theory, and particularly the methods illustrated in this thesis, could effectively be applied
to help solve copyright contraventions and controversies about plagiarism; perhaps even before these
reach the courts. The degree of entropic similarity between two compositions may easily be measured
using stochastic analysis. Since certain elements, such as the drum rhythms and chord progressions
are common to many types of popular music, these could be ignored while the essential melodic
qualities are isolated for scrutiny.

7.1.3.3 Specific applications of music

The last fifty years has seen a steady increase in the use of music for specific applications, very often
related to psychological matters. In other words, music is often used to influence, directly or sublimi-
nally, the behaviour of people. Some examples are:

1. Music Therapy: specific types of music used by therapists working with mentally disadvan-
taged children, the depressed; music used by dentists to calm their patients, and many more.
Once a model of the required type of music has been developed additional music, of which
the characteristics fall within ranges specified by the model, may be selected with relative
ease.

2. Accelerated learning: ever since accelerated Iearniﬁg has become popular there is a constant
search for music that conforms to specific qualities. Although much of this research is based
on hit or miss results, stochastic analysis could generate models of the music that has proven

effective for this use and to select music that adheres to the model.
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3. Music in Commerce:; an example of commercial application of music is the music that is sub-
liminally piped through speakers in shopping centres to increase purchasing by the public.
Models of the most effective music may be constructed 'using the methods described herein
and used as model for selection of the most suitable music. Obviously, the kind of music that
is suitable, first needs to be established by research but many marketing institutions have al-

ready done research in this direction.

4. 'Advertising: most television and radio advertisements are accompanied by music to achieve
specific effects or to influence the public somehow by associative processes. The musical
characteristics that are most effective under specific circumstances may be developed as a
statistical model to ensure that the best results are obtained.

5. Market research in broadcasting: broadcasting houses constantly need to asses their ratings
with their listening public. Depending on the kind of broadcaster such market research is often
based on the musical tastes for which they cater. Having established the preference of their
listening public, stochastic models may be devised and the music that is being broadcast

compared with the models.

7.2 Conclusion

Each different composition generates unique entropy values that can be shown in a graph of two di-
mensions. The results so obtained could serve as a kind of ‘finger-print’ unique only to that composi-
tion. In chapter 6 methods were illustrated on how characteristics of stylistically similar compositions
could provide the information to create a model specific to the characteristics of that group. Individual
pieces may then be compéred with the pre-defined model to establish to what extent the piece con-
forms to the group-model.

The process shown is accumulative in that any number of elements may be included in the creation
of an identifying chart and therefore also in the comparison. The simplest aspect being the quantifica-
tion of pitch or rhythm and their factors of distribution. As additional elements are added to the model,

so the model becomes more complete and allows for more precise comparisons.

Having established the possibilities that stochastic analysis offers, it is possible to apply the methods

in commerce and areas where music plays an active role in mood and behaviour modification.
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CONCLUSION

The result of this research shows that Information Theory may effectively be applied to analyse music
by measuring the amount of information it contains and therefore also its rate of predictability. It was
shown that the degree of popularity or appeal of music may be a reflection of the measure of predict-
ability contained in a combination of different elements of music. Different levels of predictability in

music may therefore cater for the preferences of different audiences.

Three groups of songs were analysed and the results compared. Two of the groups of songs were
selected on the basis of their popularity among two essentially different listening audiences. One
group comprises seven songs from the current popular repertoire; songs that have proven to be mod-
ern day classics. The second Qroup consists of eight Art Songs from the Romantic period (Robert
Schumann, Franz Schubert, and Johannes Brahms) and were also selected because of their popular-
ity amongst an audience who generally have a different musical taste. A third group consists of seven
20th Century songs. Few of these have ever been recorded even though some of the composers are

relatively well known.

One of the Classical Art songs, Schubert’'s Ave Maria, proved very useful in support of the hypothesis
of this study. This song was a link between the results obtained for both the Popular and the Classical
“ Art songs. During the last thirty years or so, Ave Maria, has often featured on the popularity charts—
with the help of rhythmic manipulation and additions from the pop-artists—and is often included on

recordings by many different music groups and soloists.
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The results obtained for each of the three groups of songs were significantly different and were dem-
onstrated by means of tables and graphs. Below is a summary of the most important conclusions of

this research:

1. [Each of the three groups generated a characteristic range of predictability levels for six as-
pects of the analysis. Generally the Classical Songs were found to be less predictable than
the Popular Songs. Especially the interval analysis of the Modern songs shows that the pre-
dictability of these songs is much lower than that of the Classical songs.

2. Where the predictability of specific musical aspects of the different groups overlaps, the
overlapping values are usually compensated for by greater differences in the predictability of

other aspects of the music.

3. The aspect in the music that showed the largest differences in predictability, both static and
structural was rhythm. The songs belonging to the Popular group of songs are much more
predictable (about 50%), and are structurally much more repetitive than the Classical songs.
Although the Modern songs showed similar initial predictability as the Popular songs, they

showed to be structurally much less cohesive than any of the other songs in the other groups.

4. Interval predictability was rather lower in all three groups than had been expected. However,
there was also a marked difference among the three groups, with the Classical songs and

Modern songs being noticeably less predictable than the popular songs.

5. A combination of the results obtained showed that the predictability factor of each group fell
within specific upper and lower limits. This information was applied to develop a graphical
model for each of the groups.

6. From the results obtained, it is clear that the melodies which are more predictable, especially
rhythmically more predictable, are predominantly the more popular items (including Ave
Maria and Rosamunde). In the structural analyses (stochastic entropy) these songs also

showed a greater degree of structural cohesion or repetition.

In the last chapter, a proposed approach to developing specific models for music of any kind was
demonstrated. A variety of possible practical applications in the music industry and other fields in

which music features prominently, were discussed.

The results obtained in this research show that Information Theory certainly can practically classify
music in ways that are impossible by traditional methods of analysis. Most of the research done to
date has mainly revolved around the numbers stochastic analysis produces, while practical applica-
tions have largely been ignored. As has been shown, this form of analysis makes many practical and
* beneficial applications possible.
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Appendix | : Melodies of 22 selected compositions
Melodies are listed according to groups and then in alphabetical order.
Popular music (P-group)
ANNie’s 50NG,JONM DBRAVET .....cccenensscomssrieenmnsssseassennssmsnmnss siinssssssrosais ssssnssnissssssnsnssasasssstinmnse A-3
Llove B tters Y Bt O Y O A g e e o eect smverrwt e e nnt Ahmyeaniehi s taan savepazaE s Wesphas A-4
Enemore DighE PRI COIINS e I s sty e iR e s s S R A e A-5
Stcepyshores, JONNDY PEETSON - s rissisirsmsssiisa s s ssmsasasiessbborayasassuers ciaiiunsiadisants A-T
SUMMET IOV, IO G271 2 snernsersrs snisonrrmsnss ssnns ssethessnnssnron e vrad SRR STRE S SIS SRS SR SO T R TR S b e A-8
Thank you for the music, Benny Andersson & Bjorn UIVaeUS ..o, A-9
You are the sunshine of my life, Stevie WONAEr ... A-10
Classical Art songs (S-group)
Ave.Maria, Franz-SehUbert:. ..o oo i et s s eiiza i ms s 53505 as oo mwsiomsnn o Hpasnsis swiesssins A-11
Das ist ein Fl6ten und Geigen, Robert SChumann ... A-12
Das Wanderi, BEranz SCHUDETL...........cocoseesnsfenneeinissss ciassibsisiaimimsds s s mimsiaimss ssasiveisiisssini A-13
7 R el b T T i ol T el st e S ARAAPO PO SRS A o P A-14
Ich will meine Seele tauchen, Robert SChumann ..., A-15
Liebesitet; JORANNES BrAMIMIS  ccciiicsiiissavsnitnmems sesusmesvssmsmmsassmmnsvorsnmnsnmsses vnesnsnss sassssrusspass A-186
Nachtigall, Johannes: Bralms . ... ittt viisn s s satoms s ebusta b essussnnsessannsssnsuanossisssessinss A-17
Rosamunde, Franz SCRUBETL. .o mrisimim st sams s it sis s ssasamivassvsanieves A-18
20th Century Art songs (M-group)
Being young and green, ArthUr BliSS .......cooovriimriiiiiiiiircrrececs s ssni s saanns e, A-18
Cupid and my Campaspe, Martin Dalby ..., A-20
How:loveicame'in, Lennoy BeTKeleY .. i il vt iiliimiiciiinsssns s ramnantsmsesssses saemsassasas snsamaarasee A-21
11 FIANGErS fIEldS, CRAMES IVES ..........oveoooeoveeeeeeeeeeeeeeseeeeeeseeeemseeeesssseeeeeessesseseeseesssns A-22
Nandchider Riesen Alban Berg s e e et es S T T M R s be i e emn et AR b S b A-23
Since she whom | love, Benjamin Britten ...........cociiiiioiiiivmeeiiieemionrnems et eenmncaniens A-24
Wheriasitherye, Peter WAITOCK. . ... coeesrs ssss tessssamss s sessmssssss s EssbEa iR b er s s S e s R R A-25
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Melodies of 22 selected compositions

Appendix |

Annie’s song, John Denver (music and lyrics), London: Winter Hill Music, 1974.
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3

Love letters, Victor Young (music) and Edward Heyman (lyrics), Woodford Green: Warner Bros/IMP,

19888. Originally published in 1945.

Appendix | : Melodies of 22 selected compositions
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A-5

Appendix | : Melodies of 22 selected compositions

One more night, Phil Collins (music and lyrics), London: Hit and Run Music, 1984.
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Appendix | : Melodies of 22 selected compositions A-6
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A-7

: Melodies of 22 selected compositions

Appendix |

Sleepy shores, Johnny Pearson (music), theme from the BBC TV series Owen M.D., Johannesburg:

Bandstand Publications, 1971.
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A8

Appendix | : Melodies of 22 selected compositions

Summer love, Claudio Gizzi (music), Johannesburg: EMI-Brigadiers Music, 1976.
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A-9

Melodies of 22 selected compositions

Appendix | :

Thank you for the music, Benny Andersson & Bjorn Ulvaeus (music and lyrics), London: Bocu music,

1977.
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A-10

Melcdies of 22 selected compositions

Appendix | :

You are the sunshine of my life, Stevie Wonder (music and lyrics), Hollywood: Stein & van Stock and

Black Bull Music, 1872.
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A-11

Melodies of 22 selected compositions

Appendix I :
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‘Ave Maria’, Franz Schubert, Schubert First Vocal Album, New York: Schirmer, 1895, p. 258.
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A-12

Appendix | : Melodies of 22 selected compositions

‘Das ist ein Floten und Geigen’, Robert Schumann, Dichterliebe, Op. 48, Norfon Critical Scores,

edited by Arthur Komar, New York: Norton, 1971, p. 31.
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A-13

Appendix | : Melodies of 22 selected compositions

‘Das Wandern’, Franz Schubert, Die schéne Milllerin, Schubert First Vocal Album, New York:

Schirmer, 1895, p. 3.
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Appendix | : Melodies of 22 selected compositions

‘Halt', Franz Schubert, Die schéne Miillerin, Schubert First Vocal Album, New York
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A-15

Melodies of 22 selected compositions

Appendix | :

‘lch will meine Seele tauchen’, Robert Schumann, Dichterliebe, Op. 48, Norton Critical Scores, edited

by Arthur Komar, New York: Norton, 1971, p. 22.
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A-16

: Melodies of 22 selected compositions

Appendix |

‘Liebestreu’, Johannes Brahms, Op. 3, No. 1, 15 Selected Songs, Book II, London: Alfred Lengnick,

1931, p. 21.
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A-17

Appendix | : Melodies of 22 selected compositions

‘Nachtigall’, Johannes Brahms, Op. 97, No. 1, 75 Selected Songs, Book Il, London: Alfred Lengnick,

1931, p. 10.
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Melodies of 22 selected compositions
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‘Rosamunde’, Franz Schubert, Schubert First Vocal Album, New York: Schirmer, 1885, p. 292,

Appendix | :
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‘Being young and green’, Arthur Bliss, A Heritage of 20" Century British Song, Vol. 2. Boosey &

Hawkes, 1977, pp. 8-11.

Appendix | : Melodies of 22 selected compaositions
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Appendix | : Melodies of 22 selected compositions A-20

‘Cupid and my Campaspe’, Martin Dalby, A Heritage of 20" Century British Song, Vol. 2. Boosey &
Hawkes, 1977, pp. 59-61.
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A-21

Appendix [ : Melodies of 22 selected compositions

‘How love came in’, Lennox Berkeley, A Heritage of 20" Century British Song, Vol. 2. Boosey &

Hawkes, 1977, pp. 6-8.
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Appendix | : Melodies of 22 selected compositions

‘In Flanders fields', Charles Ives, Norton Anthology of Western Music, edited by Claude V. Palisca,

New York: Norton, 2nd edition, 1988, pp. 7198-721.
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Appendix | : Melodies of 22 selected compositions A-23
‘Nun ich der Riesen’, Alban Berg, No. 3 from Four Songs, Op. 2, Anthology of Twentieth-century
Music, edited by Mary H. Wennerstrom, Englewood Cliffs: Prentice-Hall, 1969, pp. 30-31.
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A-24

‘Since she whom [ loved’, Benjamin Britten, A Heritage of 20" Century British Song, Vol. 2. Boosey &

Appendix | : Melodies of 22 selected compositions
Hawkes, 1977, pp. 50-51.
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A-25

‘Whenas the rye’, Peter Warlock, A Heritage of 20" Century British Song, Vol. 2. Boosey & Hawkes,

1977, pp. 211-213.

Appendix | : Melodies of 22 selected compositions
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-26

Appendix Il : Tables and graphs of entropies of 22 Selected
compositions

Compositions are listed according to groups and then alphabetically by titles. Analysis data is shown
in two formats: first in table format followed by a graph representing the same values. The vertical
bars in the graphs indicate the entropy for one-dimensional elements and are not an indication of any
specific orders.

Popular music (P-group)

ANHIELS SR I ONTIDETI E IR .5 it s e o ot s sasrica N R A-27
Love letters, VICIOETONN0 s BRNIR . ...c.iussmsvmspimivmssissss i iyssssrssvsss o L et ess s e b A-28
One moreinight SBhIMC Ol iNSEEREE.. ..o rrr s R s e e ST, A-29
Sleepyishores; JoNNNY PBAISONIL . ......coreersmnsnsssenressesasasasssssessosssssssssssesssnnntasnsssssponssrobonsnesores A-30
SUMIMEE IOV, ClAUMIO GUZZIuuu.rnneeoeeeeeeeeeeereseerreessasessssssssssssensssnsnnssssssssssssssesssasssssstenieess A-31
Thank you for the music, Benny Andersson & Bjorn UIVEBUS ......ccovvvvveviievicieieie e A-32
You are the sunshine of my life, Stevie WONAEI ............ooooimeiiiiee e, A-33

Classical Art songs (S-group)

Ave Maria, EranzeSehUuberballatic . v i e s i s e A-34
Das ist ein Fldten und Geigen, RODert SCHUMENM . ...ueeeee e ee e A-35
Das Wandern, Franz SCRUDEIM ...........coocviiiiiii et e e e e eeeeeaae s . A-36
HEN, EaN e SEUBET sl DR BN s s b e S SRS e A-37
Ich will meine Seele tauchen, Robert SChUMaNN ............ooooiiiiiiieeiciiee e A-38
Liebastieton GRme S HE RO ARSN otnie—s oyaumrrrs e it e o Do ST Y B e S e e A-39
Nachtigall, Jehannes BralMS e msssn s it sy A S e R TS Y o s e emm e A-40
RSO ERaRZ IS CIMIBETE . o i i i i ms i s s st 4 GRS ARSI s mmrm o pemen e e s A-41

20th Century Art songs (M-group)

Being young and green, ArthUr BIISS ............ooioeeeeeeeeeeeeeeee e A-42
Cupid and my Campaspe, Martin DalbY ..........cccooouiiiiiiiieeeceeeee e e eeee e e A-43
HoWHeYe Came i e nnoX BeTkelBY: ot i i st s ot e R e T et e e A-44
T T e T e L e oS A-45
Nun ich der-RIESENTAINEN BN v..uuuri s mominmstm i v s i a5 5555050 o h s o ammm s e r e e s A-46
Since. shewhomy Tove, Benjamin BIIEIT i v o ats tfseniomeithen 505 it insmonsmssta ssebsommdansss A-47

e RS e B, PO e T A N B O i inirinsn o pesnsme s oM nresmsnssnbessh e s nnba paren s o men s R s s A-48
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

A-27

entropy

Popular Music Group (P-Group)

Title: Annie’s song
Composer.  Denver, John
Category: P
Entropies
Pitch Pitch ratio  Pitch/Rhythm
84.40% 83.45% 82.96%

[ order [ Intervals | Rhythm | [ order | Intervals | Rhythm |

1 88.03% 61.57% 27 99.31% 98.90%
2 81.65% 74.31% 28 98.35% 98.93%
3 94.02% 81.93% 29 99.39% 98.95%
4 95.18% 87.04% 30 99.43% 98.97%
5 95.92% 89.85% 31 99.48% 99.00%
6 96.51% 92.06% 32 99.53% 99.03%
7 97.19% 92.91% 33 99.58% 99.06%
8 97.37% 93.68% 34 99.63% 838.10%
9 97.60% 9467% 35 99.69% 99.13%
10 97.87% 895.72% 36 89.75% 99.17%
11 98.17% 96.84% 37 89.81% 99.21%
12 88.49% 97.80% 38 99.87% 99.25%
13 98.69% 98.49% 39 99.93% 99.29%
14 98.80% 98.74% 40 100.00% 99.33%
15 98.92% 98.74% 41 99.38%
16 98.97% 88.75% 42 99.43%
17 $8.99% $8.76% 43 99.48%
18 89.02% 98.77% <4 99.54%
19 89.04% S98.78% 45 99.60%
20 99.07% 98.79% 45 99.66%
21 939.10% 98.80% 47 99.72%
22 99.13% 98.81% 43 89.78%
23 99.16% $8.83% 49 99.85%
24 99.20% 98.84% 50 99.93%
25 99.23% 98.86% 51 100.00%
26 99.27% 98.88%

Annie's song

=3 Pitch ratio
<ooo.| i Pitch-rhythm [..........
Intervals

13 15 17 19 21 23. 25 27 '29 31

orders

33 35 37 39 41

43 45 47 49 51
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-28
Titel: Love letters
Composer: Young, Victor
Category: P
Entropies
Pitch Pitch ratio  Pitch/Rhythm
85.77% 86.73% 84.76%

[ Order [ Intervals | Rhythm | [ Order | Intervals | Rhythm |
1 74.31% 57.66% 36 98.78%
2 85.96% 71.02% 37 98.79%
3 91.89% 80.49% 38 98.80%
4 94.01% 87.47% 39 98.82%
5 85.80% 91.48% 40 98.83%
6 $6.37% 92.71% 41 98.84%
7 86.71% 83.46% 42 98.86%
8 96.96% 94.08% 43 98.838%
9 97.13% 9491% a2 $8.90%

10 897.27% 95.51% 45 98.92%
11 97.41% 96.06% 45 98.94%
12 97.57% 96.56% 47 98.96%
13 97.73% 96.95% 48 98.98%
14 97.91% 397.34% 49 99.01%
15 98.10% 897.62% 50 99.04%
16 $8.30% 97.91% 51 99.07%
17 88.51% 98.22% 52 99.10%
18 98.73% 98.37% 53 99.13%
19 98.96% 88.53% 54 99.16%
20 S2.01% 88.69% 55 939.20%
21 93.05% 88.75% 56 99.24%
22 99.10% 98.75% 57 99.28%
23 99.16% 98.74% 58 99.32%
24 99.22% 98.74% : 59 99.36%
25 99.28% 88.74% 60 89.41%
26 89.35% 98.74% 61 99.46%
27 89.42% 898.74% 62 89.51%
28 $9.50% $8.74% 63 99.56%
29 99.58% 98.74% 64 99.62%
30 99.66% 98.74% 65 99.67%
3i 99.75% 88.75% 66 939.73%
32 99.85% 98.75% 67 99.80%
33 99.90% 98.76% 63 99.86%
34 99.95% 88.76% 69 99.93%
35 100.00% S88.77% 70 100.00%

Love letters

:
Sl ot S AR - IO TSSO
z
s: ; ----------------------------------------------------
g £
= g 2l e S
g | EEEEEA Pitch ratio
% - BEEBE Pitch-rhythm |...........
L5 Intervals |
3 seesszens Rhythm
40% +++1 ;liHl:iI%l:E?:il:HE'rlH{i}'rl:}l:::.’ri‘.%f%i}l::i%:l:l“:“i=1'
1 3 5 7 911131517 1921 23 25 27 29 31 33 35 37 30 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-29
Title: One more night
Composer:  Collins, Phil
Category P
Entropies
Pitch Pitch ratio Pitch/Rhythm
87.02% 82.70% S0.42%

[ Order [ Intevals |  Rhythm | [ Order | Intervals |  Rhythm |
1 79.24% 64.11% 36 98.50% 98.60%
2 87.78% 80.33% 37 98.53% 98.63%
3 92.65% 88.88% . 38 98.55% 98.67%
4 94.63% 93.49% 39 98.58% 98.70%
5 95.59% 95.04% 40 98.61% 98.74%
5) 95.96% 895.76% 41 98.63% 98.77%
T 96.20% 96.04% 42 98.66% 98.81%
8 96.45% 96.36% 43 98.69% 98.85%
9 96.74% 96.67% L4 98.72% 98.89%
10 97.01% 97.01% 45 98.76% 98.93%
1 97.23% 97.31% 46 S88.79% 98.97%
12 97.45% 97.47% 47 98.82% 99.01%
13 97.67% 87.66% 438 98.86% 99.05%
14 97.88% 87.72% 49 98.89% 99.10%
15 98.02% 97.78% 50 98.93% 99.14%
16 98.15% 97.85% 51 98.96% 99.19%
17 98.17% 97.92% 52 99.00% 99.23%
18 98.19% 98.00% 53 89.04% 99.24%
19 88.21% 98.09% 54 99.05% 99.25%

20 98.24% 98.14% 55 99.07% 99.26%
21 98.26% 98.18% 56 99.08% 99.27%
22 98.27% $8.22% 57 99.10% 99.28%
23 98.27% 98.24% 58 99.11% 99.29%
24 98.28% 98.26% 59 89.13% 99.30%
25 98.29% 98.28% 60 99.15% 99.31%
26 98.30% 98.30% 61 99.17% 99.32%
27 98.32% 98.33% 62 998.19% 99.33%
28 98.33% 98.36% 63 99.21% 99.34%
29 98.35% 98.39% 64 99.23% 99.36%
30 98.37% 98.42% 65 99.25% 99.37%
31 98.39% 98.44% 66 99.27% 99.38%
32 98.41% 98.47% 67 99.30% 99.39%
33 98.43% 98.50% 68 99.32% 99.40%
34 98.46% 98.54% €9 99.34% 99.42%
35 98.48% 88.57% 70 99.37% 99.43%

One more night

entropy

3 Pitch ratio
ceceeecono.| SR Pitch-rhythm
Intervals

<F-_Ll|Illllll!l!l!_l]!l!ll!llIIIII|!IIIllell!ll'llllllIllf'l
U T 1T rrFrrtrrrerrrrrerr bbbt rrrri

8 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-30

Title: Sleepy shores
Composer:  Pearson, Johnny
Category: P

Entropies
Pitch Pitch ratio  Pitch/Rhythm
89.11% 88.15% 89.70%

[ Order [ ntervals |  Rhythm | | Order [ Intervals |  Rhythm |
1 71.68% 68.30% 36 97.15% 97.13%
2 83.82% 62.30% 37 97.15% 97.13%
3 91.54% 68.80% x 38 97.15% 97.13%
4 94.80% 73.16% 39 97.15% 97.13%
5 96.13% 77.87% 40 97.16% 97.14%
6 97.16% 81.05% 41 97.16% 97.14%
T 97.20% 83.15% 42 97.17% 97.15%
8 97.27% 85.19% 43 97.18% 97.16%
9 97.37% 86.85% 44 97.19% 97.17%
10 97.50% 88.31% 45 §7.20% 97.18%
11 97.53% 89.31% 45 97.22% 97.20%
12 97.62% 90.00% 47 97.23% 97.21%
13 97.58% 80.71% 48 97.25% 97.23%
14 97.55% 91.34% 49 97.27% 97.25%
15 97.51% 91.97% 50 97.29% 97.27%
16 97.48% 92.62% 51 97.31% 97.29%
17 97.45% 93.28% 52 97.34% 97.31%
18 97.42% 93.94% 53 97.36% 97.34%
19 97.39% 94.51% 54 97.39% 97.36%

20 97.36% 95.05% 55 97.42% 97.39%
21 97.33% 95.58% 56 97.45% 97.42%
22 97.31% 96.09% 57 97.48% 97.45%
23 97.29% 86.57% 58 97.52% 97.48%
24 97.27% 96.86% 59 97.55% 97.52%
25 97.25% 97.09% 60 97.58% 97.56%
26 97.23% 97.22% 61 97.63% 97.59%
27 97.21% 97.20% 62 97.67% 97.63%
28 97.20% 97.19% 63 97.71% 97.67%
29 97.19% 97.18% 64 97.75% 97.72%
30 97.18% 97.16% 65 97.80% 97.76%
31 97.17% 97.16% 66 97.84% 97.81%
32 97.16% 97.15% 67 97.89% 97.85%
33 97.15% 97.14% 68 97.94% 97.90%
34 97.15% 97.13% 69 97.99% 97.95%
35 97.15% 97.13% 70 98.05% 98.01%
Sleepy shores

>
o
e
s T
3 Pitch ratio
.| HEREEE Pitch-rhythm | oo
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= Rhythm
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-31
Title: Summer love
Composer:  Gizzi, Claudio
Category: P
Entropies
Pitch Pitch ratio  Pitch/Rhythm
84.40% 83.46% 82.96%
[ Order [ Intenvals |  Rhythm |
1 84.83% 50.85%
2 94.27% 65.35%
3 96.11% 75.31%
4 97.52% 83.59%
5 97.81% 88.81%
6 97.91% 90.80%
7. 88.01% 91.75%
8 88.13% 93.11%
9 98.26% 94.70%
10 98.40% 96.43%
11 88.55% 97.85%
12 98.72% 98.24%
13 98.90% 98.48%
14 99.08% 898.70%
15 99.24% 98.96%
16 99.40% 99.22%
17 89.56% 99.52%
18 89.73% 99.74%
19 89.78% 99.79%
20 99.84% 99.84%
21 $9.89% 99.89%
22 89.94% ©99.94%
23 100.00% 100.00%
Summer love

entropy

essisssnssnasessinsssscsoccso: | RRGRREE PHGR-TNYEAM | s
Intervals
u«(m«-ﬂ.Rhythm
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-32
Title: Thank you for the music
Composer:  Andersson & Ulvaeus
Category: P
Entropies
Pitch Pitch ratio  Pitch/Rhythm
80.16% 85.95% 88.95%
[ Order [ Intervals | Rhythm | [ Order [ Intervals |  Rhythm |
1 80.75% 48.24% 36 98.24% 98.20%
2 89.72% 63.44% 37 88.25% 98.21%
3 95.42% 76.14% 38 98.26% 98.22%
< 96.77% 84.45% 39 98.27% 88.23%
5 87.46% 89.93% 40 98.28% 88.24%
6 97.76% 93.08% 41 88.30% 98.26%
7 97.86% 85.16% 42 88.31% 98.27%
8 §7.94% 96.36% 43 98.33% 98.28%
9 98.03% 97.07% 44 - 98.34% 98.30%
10 898.12% 97.54% 45 98.36% 88.32%
11 98.22% 97.89% 48 $8.38% 88.33%
12 88.22% 98.00% 47 88.40% $8.35%
13 98.21% S$8.07% 43 98.42% 98.37%
14 98.21% 98.14% 43 98.44% 98.39%
15 98.22% 98.17% 50 88.47% 98.41%
16 98.22% 98.20% 51 98.49% 98.44%
17 98.23% 98.24% 52 98.51% 98.46%
18 98.24% 98.23% 53 98.54% 98.48%
19 98.24% 98.22% 54 88.57% 98.51%
20 98.23% 98.21% 55 88.60% 98.54%
21 98.22% 98.20% 56 98.63% 98.57%
22 98.21% 98.19% 57 $8.66% 98.60%
23 98.21% 98.19% 58 $8.69% 88.63%
24 88.21% 98.18% 59 98.72% 98.66%
25 $8.20% 98.18% €0 88.75% 98.69%
26 98.20% 98.18% 61 98.79% 88.72%
27 98.20% 98.17% 62 98.82% 98.76%
28 98.20% 98.17% 63 98.86% 98.79%
29 98.20% 98.17% 64 $8.90% 98.83%
30 98.20% 98.17% 65 $8.94% 98.87%
31 88.21% 98.18% 66 $8.98% 88.91%
32 98.21% 88.18% 67 98.98% 98.95%
33 ©8.22% 98.18% 68 88.89% 98.99%
34 98.22% 98.19% 69 88.99% 98.99%
35 98.23% 98.20% 70 ©9.00% 99.00%
Thank you for the music
95%
20%
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

A-33

entropy

Title: You are the sunshine of my life

Composer:  Wonder, Stevie

Category: P

Entropies
Pitch Pitch ratio Pitch/Rhythm
83.87% 78.42% 87.22%
|__Order [ Intervals [ Rhythm | | Order | Intervals | Rhythm |

1 81.57% 68.07% 22 98.61% 98.78%
2 92.09% 81.32% 23 98.77% 98.95%
3 92.78% 90.14% 24 98.93% 98.98%
4 93.43% 93.48% 25 99.00% 99.01%
5 94.06% 93.88% 26 99.08% 99.05%
6 94.59% 94.74% 27 99.13% 99.08%
1 85.21% 95.50% 28 99.17% 99.13%
8 95.51% 95.62% 29 99.21% 99.17%
9 95.63% 95.76% 30 89.26% 99.21%
10 95.81% 85.92% 31 99.31% 99.26%
11 95.88% 96.11% 32 99.37% 99.31%
12 96.18% 96.31% 33 99.42% 99.37%
13 96.38% 986.53% 34 99.48% 89.42%
14 96.61% 96.75% 35 99.55% 99.48%
15 96.83% 96.99% 36 99.61% 99.55%
16 97.07% 97.24% 37 99.68% 99.61%
17 97.32% 97.49% 38 §9.76% 99.68%
18 97.58% 97.76% 39 $89.83% 89.76%
19 97.85% 98.04% 40 99.91% 99.83%
20 98.14% 98.33% 41 100.00% 99.91%
21 98.37% 98.63% 42 100.00%

You are the sunshine of my life

IR Pitch
Pitch ratio | T
S Pitch-rhythm ..o
Intervals
e Rhythm
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-34
Classical Art Songs
Title: Ave Maria

Composer:  Schubert, Franz
Category: S

Entropies
* Pitch Pitch ratio  Pitch/Rhythm
81.42% 75.70% 90.81%
[ Order Intervals Rhythm | [ Order Intervals Rhythm |
1 87.99% 77.89% 36 97.80% 98.63%
2 93.80% 83.89% 37 97.81% 98.61%
3 97.46% 88.17% 38 97.83% 98.58%
4 97.93% 92.45% 39 97.85% 98.56%
S 98.53% 95.44% 40 97.87% 98.54%
6 98.67% 97.04% 41 97.89% 98.52%
7 $8.62% 97.64% 42 97.91% 98.50%
8 98.59% 98.26% 43 97.94% 98.48%
9 98.50% 98.85% 44 97.97% 98.47%
10 98.42% $9.09% 45 97.89% 98.46%
11 98.32% $9.14% 46 98.03% 98.45%
12 98.23% 99.19% 47 98.06% 98.45%
13 98.15% 99.11% 48 98.09% 98.44%
14 98.07% 99.07% 49 88.13% 98.44%
15 98.01% 99.02% 50 98.17% 98.44%
16 §7.94% 98.98% 51 98.21% 98.44%
17 97.89% 98.94% 52 98.25% 98.45%
18 97.84% 98.90% 53 98.29% 98.45%
19 97.80% 98.87% 54 98.34% 98.46%
20 97.76% 98.83% 55 ©8.38% S$8.47%
21 97.73% 98.81% 56 98.43% 98.48%
2 97.70% 98.78% 57 98.48% 98.50%
23 97.68% 98.75% 58 98.54% 98.52%
24 97.67% 98.73% 59 98.59% 98.53%
25 97.66% 98.71% 60 98.65% 98.56%
26 97.65% 98.70% 61 98.70% 98.58%
27 97.66% 98.68% 62 98.77% 98.60%
28 97.66% 98.67% 63 98.83% 98.63%
29 97.67% 98.67% 64 98.89% 88.66%
30 97.69% 98.66% 65 98.96% 98.69%
31 S7.71% 98.66% 66 89.02% 98.73%
32 97.73% 98.65% 67 99.09% 98.76%
33 97.76% 98.65% 68 99.17% 98.80%
34 97.77% 98.66% 69 99.18% 98.84%
35 97.78% 98.66% 70 99.20% 98.84%
Ave Maria
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-35

Title: Das Wandern
Composer.  Schubert, Franz
Category: S

Entropies
Pitch Pitch ratio  Pitch/Rhythm
91.90% 94.21% 93.06%

[ Order [ Intervals | Rhythm |

1 89.89% 68.33%
2 97.57% 81.86%
3 98.22% 80.36%
4 98.23% 94.57%
5 98.44% 85.87%
6 88.54% 95.99%
i 88.73% 96.35%
8 98.91% 96.93%
9 99.00% 97.70%
10 99.10% 88.55%
1 99.21% 99.10%
12 99.34% 99.36%
13 99.48% 99.49%
14 99.64% 99.65%
15 99.81% 99.82%
16 100.00% 100.00%

Das Wandern

,,ﬂ””“’ o
e e
T
) EEEEEER Pitch ratio i
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orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-36

Title: Ich will meine Seele
Composer:  Schumann, Robert
Category: R

Entropies
Pitch Pitchratio  Pitch/Rhythm
84.04% 88.27% 87.94%

|__Order [ Intervals | Rhythm ]

1 87.88% 81.90%
2 89.87% 87.36%
3 93.10% 89.41%
4 94.86% 93.46%
5 96.11% 95.62%
6 97.39% 97.40%
7 98.18% 98.34%
8 98.47% 98.84%
9 98.56% 99.15%
10 88.69% 99.39%
11 98.76% 99.53%
12 88.85% 99.67%
13 98.84% 99.83%
14 58.04% 100.00%
15 89.16%

16 99.30%

17 $9.45%

18 89.61%

19 $9.80%
20 100.00%

Ich will meine Seele
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

A-37

Title: Das ist ein Fléten
Composer:  Schumann, Robert
Category: R
Entropies
Pitch Pitch ratio  Pitch/Rhythm

87.57% 88.21% 94.10%

L Order [ Intervals [  Rhythm
1 66.81% 78.08%

2 82.61% 84.78%

3 92.43% 85.99%

4 96.28% 88.80%

5 97.34% 91.35%

6 988.01% 93.66%

7 98.38% 95.15%

8 98.96% 96.68%

9 99.21% 97.20%

10 99.44% 97.85%

11 99.61% 98.31%

12 89.70% 88.62%

13 99.79% 98.97%

14 99.89% 99.36%

15 100.00% 89.79%

16 100.00%

Das ist ein Fl6ten

e
P AT
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

Title: Halt

Composer:  Schubert, Franz

Category:

Entropies
Pitch Pitch ratic  Pitch/Rhythm
89.46% 88.93% 88.89%

| Order T Intervals Rhythm |
1 80.60% 54.71%
2 92.05% 70.97%
3 94.76% 80.01%
4 97.54% 85.27%
S 98.41% 87.66%
8 98.69% 80.08%
7 98.87% 92.61%
8 98.98% 94.65%
9 99.12% 96.09%
10 99.21% 97.41%
11 99.32% 98.54%
12 99.43% 99.01%
13 99.56% 99.39%
14 99.65% S9.56%
15 99.74% 99.74%
16 99.84% 99.84%
s 99.89% 99.89%
18 99.95% 99.95%
19 100.00% 100.00%

Halt

| o Pitch
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

A-39

Title: Liebestreu

Composer.  Brahms, Johannes

Category: S

Entropies
Pitch Pitch ratio  Pitch/Rhythm
88.38% 87.32% 91.32%

| _Order [ Intervals | Rhythm
1 82.34% 65.78%
2 93.80% 80.01%
3 $86.08% 78.26%
4 96.97% 80.10%
S 97.25% 82.50%
6 97.24% 84.05%
7 97.25% 85.65%
8 97.29% 87.06%
9 97.35% 88.60%
10 97.44% 90.11%
11 97.56% 91.48%
12 97.65% 92.83%
13 97.85% 84.35%
14 98.03% 895.51%
15 98.23% 96.69%
16 98.41% 97.76%
17 98.60% 98.15%
18 98.79% 98.57%
19 99.00% 99.01%
20 99.22% 99.47%
21 99.45% 99.70%
22 99.70% 99.85%
23 99.77% 100.00%
24 99.84%
25 99.92%
26 100.00%

Liebestreu

| EEEEEA Pitch ratio

HHEEE Pitch-rhythm
Intervals
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

A-40

Title: Nachtigall
Composer:  Johannes, Brahms
Category: S
Entropies
Pitch Pitch ratio  Pitch/Rhythm
93.02% 83.79% 95.42%
[ order [ Intervals | Rhythm |
1 86.32% 71.84%
2 94.80% 80.00%
3 98.99% 84.94%
4 99.68% 80.37%
5 100.00% 93.71%
6 85.39%
7 96.94%
8 97.73%
9 88.39%
10 99.00%
1 99.54%
12 99.76%
13 $9.87%
14 100.00%
Nachtigall

BN Pitch
Pitch ratio

HUE Pitch-rhythm ...

Intervals
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orders




University of Pretoria etd — Koppers M H A (1995)

A-41

Appendix Il : Tables and graphs of entropies of 22 Selected compositions
Title: Rosamunde
Composer:  Schubert, Franz
Category: S
Entropies
Pitch Pitch ratio  Pitch/Rhythm
90.33% 87.45% 94.66%
[ oOrder | Intervals | Rhythm [ Order | Intervals | Rhythm |
1 88.02% 73.63% 30 97.46% 97.55%
2 96.74% 87.47% 31 97.52% 87.63%
3 98.86% 93.65% 32 97.58% 87.71%
o 99.07% 95.90% 33 97.65% 87.80%
5 99.05% 96.85% 34 97.72% 97.90%
6 98.81% 97.46% 35 97.80% 88.00%
7 88.60% 97.78% 36 97.88% 98.10%
8 98.42% 97.93% 37 97.98% 88.22%
9 98.26% 97.73% 38 98.08% 98.33%
10 98.05% 97.56% 39 98.19% S8.46%
11 97.86% 97.43% 40 98.30% 98.59%
12 97.70% 97.32% 41 98.42% 88.73%
13 97.55% 97.23% 42 98.54% 28.87%
14 97.43% 97.15% 43 98.68% 89.02%
15 97.38% 97.09% 44 98.81% €9.18%
16 97.35% 97.08% 45 98.96% ©9.34%
17 97.31% 97.08% 45 99.11% 99.52%
18 97.28% 97.08% 47 99.27% 99.56%
19 97.27% 97.09% 48 99.36% 89.61%
20 97.26% 97.10% 49 99.45% $9.66%
21 97.25% 97.12% 50 99.55% S9.71%
22 97.25% 97.15% 51 99.65% 29.76%
23 97.25% 97.18% 52 89.76% 29.82%
24 97.27% 97.21% 53 99.88% 99.88%
25 97.28% 97.25% 54 99.94% S9.94%
26 97.31% 97.30% 55 100.00% 100.00%
27 97.34% 97.36%
28 97.37% 97.42%
29 97.42% 97.48%
Rosamunde
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-42

20th Century Songs

Title: Being young and green
Composer:  Bliss, Arthur
Category: M
Entropies
Pitch Pitch ratio Pitch/Rhythm
91.66% 98.47% 94.88%

[ order | intervals | Rhythm |

1 89.58% 74.40%

2 97.90% 85.57%

3 99.57% 93.96%

4 100.00% 97.21%

5 98.31%

6 99.20%

7 99.84%

8 100.00%

Being young and green

| e Pitch
U Pitch ratio [
- ¥R Pitch-rhythm
Intervals
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orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-43
Title: Cupid and my Campaspe
Composer:  Dalby, Martin
Category: M
Entropies
Pitch Pitch ratio Pitch/Rhythm
89.06% 83.81% 91.31%
[ order | Intervals | Rhythm
1 - 81.78% 53.73%
2 91.26% 62.78%
3 96.11% 73.84%
< 97.91% 83.19%
5 98.96% 80.94%
6 99.40% 95.68%
7 99.66% 97.95%
8 99.87% S$9.08%
9 99.93% 99.57%
10 100.00% 99.74%
11 89.87%
12 99.93%
13 100.00%
T
| EEZ== Pitch ratio
| 389888 Pitch-rhythm [-.........
Intervals
e R hythm
} t i
11 12 13

orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions A-44
Title: How love came in
Composer:  Berkeley, Lennox
Category: M
Entropies
Pitch Pitch ratio  Pitch/Rhythm
87.76% 84.27% 92.24%

[ order T intervals | Rhythm |
1 83.76% 63.38%
2 91.71% 75.60%
3 94.55% 84.58%
4 86.59% 90.78%
S 97.31% 93.65%
6 97.76% 95.72%
7 98.15% 97.28%
8 98.55% 98.63%
9 98.79% 99.29%
10 99.05% 99.53%
11 89.11% 99.80%
12 $9.17% 89.90%
13 99.24% 100.00%
14 99.32%
15 99.40%
16 99.48%
i Erf 99.57%
18 99.67%
19 99.77%
20 99.88%
21 100.00%

How fove came in

Pitch ratio
#5he Pitch-rhythm |....ooo..
Intervals
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions

Title: In Flanders fields
Composer  Ives, Charles
Category M
Entropies
Pitch Pitch ratio  Pitch/Rhythm
89.69% 87.17% 93.06%
[ Order | Intervals |  Rhythm |
1 86.02% 66.56%
2 94.78% 80.89%
3 98.05% 89.30%
4 99.36% 94.69%
5 99.66% 98.03%
6 89.79% $9.05%
7 99.93% 99.72%
8 100.00% 100.00%

In Flanders fields
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pendix Il : Tables and graphs of entropies of 22 Selected compositions

Title: Nun ich der Riesen
Composer Berg, Alban
Category M
Entropies
Pitch Pitch ratio  Pitch/Rhythm
94.50% S0.66% 97.94%
[ order | Intervals Rhythm
1 88.63% 84.63%
2 97.63% 91.89%
3 99.79% 98.47%
4 100.00% 99.79%

Nun ich der Riesen

orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions
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100% -

Title: Since she whom [ Jove
Composer  Britten, Benjamin
Category M
Entropies
Pitch Pitch ratio  Pitch/Rhythm
91.79% 80.93% 90.88%

| Order [ ntervals | Rhythm |

1 80.85% 59.12%
7 88.99% 7217%
3 94.61% 82.58%
4 97.23% 89.45%
5 98.43% 93.74%
6 99.27% 96.49%
7 99.65% 98.01%
8 99.79% 99.04%
9 99.89% 99.69%
10 100.00% 99.89%
11 99.95%
12 100.00%

Since she whom [ love

S —

T
“| EZEEEE Pitch ratio
....................................................................................................... SR Pitch-rhythm |.....
...................................................................................................... Intervals ¢
== Rhythm
} + + i i t t —
4 5 6 7 8 9 10 11 12

orders
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Appendix Il : Tables and graphs of entropies of 22 Selected compositions
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Title: Whenas the rye
Composer Britten, Benjamin
Category M
Entropies
Pitch Pitch ratio  Pitch/Rhythm
88.43% 83.60% 93.05%
[ Order [ Intervals | Rhythm |

1 87.78% 70.45%

2 83.91% 82.27%

3 97.26% 87.21%

e $8.04% 80.91%

5 $9.45% 94.42%

6 $9.62% 95.83%

7 ©9.80% 97.38%

8 $9.90% 98.57%

9 100.00% S8.97%

10 89.25%

11 99.41%

12 99.59%

13 89.79%

14 100.00%
Whenas the rye

= Pitch ratio

HWR Pitch-rhythm |

Intervals |
: ; t 1
11 12 13
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Appendix Il : Tables of entropy values for P < 1

The two tables below may be used to calculate entropy values. The left hand column (p) is the
percentage value for a set, the right hand column show the weighted entropy value. Once the ratios of
the various sets have been calculated their entropies may be looked up and summated with the help
of this table, Maximum Entropy values may similarly be looked up on the table in Appendix IV.

P log P log.P  P(log: P) P log P logzP  P(logz P)
001 200000 664386  0.06644 051 029243 097143  0.49543
002 169897 564386  0.11288 052 028400 094342  0.49058
003 152288 505889  0.15177 053 027572 091594  0.48545
004 139794 464386  0.18575 054 026761 088897  0.48004
005 130103 432193 021610 055 025964 0.86250  0.47437
006 122185 405889  0.24353 056 025181 083650  0.46844
007 115490 3.83650  0.26856 057 024413 081097  0.46225
008  1.09691 3.64386  0.29151 058 023657 078588  0.45581
009 104576 347393 031265 059 022915 076121  0.44912

0.1 1.00000 332193  0.33219 06 022185 073697  0.44218
011 095861 3.18442  0.35029 061 021467 071312  0.43500
012 082082 305889  0.36707 062 020761 068968  0.42759
013 088606 294342  0.38264 063 020066 066658  0.41994
014 085387 283650  0.39711 064 019382 064386 041207
015 082391 273697  0.41054 065 018703 062149  0.40397
016 079588 264386  0.42302 066 018046 059946  0.39564
017 076955 255639  0.43459 067 017393 057777  0.38710
0.18 074473 247393  0.4453f 068 016742 055638  0.37835
019 072125 239593  0.45523 069 016115 053533  0.35938

02 069897 2.32193  0.46439 07 015480 051457  0.38020
021 067778 225154  0.47282 071 014874 049411  0.35082
022 085758 218442  0.48057 072 014267 047393 034123
023 063827 212029  0.48767 073 013668 045403 033144
024 061979 205889  0.49413 074 013077 043440  0.32146
025 060206 200000  0.50000 075 012494 041504 031128
026 058503 194342 050520 076 011918 039593  0.30091
027 056864 1.88897 051002 077 011351 037707  0.29034
028 055284 183650 051422 078 010791 035845  0.27959
029 053760 178588 051790 079 010237 034008  0.26866

03 052288  1.73697 052109 08 009691 032193 025754
0.31 0.50864 1.68966 0.52379 0.81 0.09151 0.30401 0.24625
032 049485 164386 052603 082 008619 028630  0.23477
033 048149 159946 052782 083 008092 026882  0.22312
034 046852 155639 052917 084 007572 025154  0.21129
035 045593 151457 053010 085 007058 023447  0.19930
036 044370 1.47393  0.53062 086 006550 021759  0.18713
037 043180 1.43440 053073 087 006048 020091  0.17479
0338 042022 139593 053045 088 005552 0.18442  0.16229
033 040894 1.35845 052980 089 005061 016812  0.14963

04 039794 132193 052877 09 004576  0.15200  0.13680
041 038722 128630 052738 091 004096 0.13606  0.12382
042 037675 1.25154 052565 092 003621 012029  0.11067
043 036653 1.21759 052356 093 003152 010470  0.09737
0.44 035655 118442 052115 094 002687 008927  0.08391
045 034679 115200 051840 085 002228 007400  0.07030
0.45 033724 112028 051534 096 001773 005889  0.05654
047 032790 108927 051196 057 001323 004394  0.04263
048 031876 105889 050827 098 000877 002915  0.02856
049 030980 102915 050428 099 000436 001450 001435

05 0.30103 1.00000 0.50000
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A-50

Appendix IV : Tables of entropy values for P >= 1

This table may be used to look up maximum entropy. The value for which the entropy is required is
found in the left column. The second column shows the entropy derived with log base 10, while the
right column provides the entropy derived with log base 2.

P log P
1 0.00000
2 0.30103
3 0.47712
4 0.60206
5] 0.68897
6 0.77815
i 0.84510
8 0.80309
9 0.95424
10 1.00000
11 1.04139
12 1.07918
13 1.11394
14 1.14613
15 1.17608
16 1.20412
17 1.23045
18 1.25527
19 1.27875
20 1.30103
21 1.32222
22 1.34242
23 1.36173
24 1.38021
25 1.39794
26 1.41497
27 1.43136
28 1.44716
29 1.46240
30 1.47712
31 1.49136
32 1.50515
33 1.51851
34 1.53148
35 1.54407
36 1.55630
37 1.56820
38 1.57978
39 1.59106
40 1.60206
41 1.61278
42 1.62325
43 1.63347
44 1.64345
45 1.65321
45 1.66276
47 1.67210
43 1.68124
49 1.69020

50 1.69897

Log2(P)
0.00000
1.00000
1.58486
2.00000
2.32193
2.58496
2.80735
3.00000
3.16993
3.32193

3.45943
3.58496
3.70044
3.80735
3.90689
4.00000
4.08746
4,16993
4.24793
4.32193

4.39232
4.45943
452356
4.58496
4.64386
4.70044
4.75489
4.80735
4.85788
4.90689

4.95420
5.00000
5.04439
5.08746
5.12028
5.16993
5.20945
5.24793
5.28540
5.32193

5.35755
5.39232
5.42626
5.45943
5.49185
5.52356
5.55459
5.58496
5.61471
5.64386

log P
1.70757
1.71600
1.72428
1.73239
1.74036
1.74819
1.75587
1.76343
1.77085
1.77815

1.78533
1.79239
1.79934
1.80618
1.81291
1.81954
1.82607
1.83261
1.83885
1.84510

1.85126
1.85733
1.86332
1.86923
1.87506
1.88081
1.88649
1.89209
1.89763
1.90309

1.80849
1.91381
1.91908
1.92428
1.92942
1.93450
1.93852
1.94443
1.94938
1.85424

1.95004
1.96379
1.96848
1.97313
1.97772
1.98227
1.98677
1.99123
1.89564

Log2(P)
5.67243
5.70044
5.72792
5.75489
5.78136
5.80735
5.83289
5.85798
5.88264
5.80689

5.83074
5.95420
5.97728
6.00000
6.02237
6.04439
6.06609
6.08745
6.10852
6.12928

6.14975
6.16993
6.18982
6.20945
6.22882
6.24793
6.26679
6.28540
6.30378
6.32193

6.33985
6.35755
6.37504
6.39232
6.40939
6.42626
6.44294
6.45943
6.47573
6.49185

6.50779
6.52356
6.53916
6.55459
6.56986
6.58496
6.59991
6.61471
6.62936




