

Comparative effectiveness of Context-based and Traditional teaching approaches in enhancing learner performance in life sciences

by

Kazeni Mungandi Monde Monica

A thesis submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR (PhD) (SCIENCE EDUCATION)

in the

Faculty of Education, University of Pretoria

SUPERVISOR: PROF. G.O.M. ONWU

MARCH 2012

CERTIFICATION

This thesis has been examined and approved as meeting the required standard of scholarship for the fulfilment of the Degree of Doctor of Philosophy in Science Education.

Prof. G.O.M. Onwu

.....

Date.....

SUPERVISOR

DECLARATION

I, **Kazeni Mungandi Monde Monica**, hereby declare that this thesis for the Doctor of Philosophy in Science Education degree, at the University of Pretoria hereby submitted by me, is my own work, in design and execution, and it has not been previously submitted for any degree at any other university. To the best of my knowledge this thesis contains no material previously published by me or any other person, and that all references contained herein have been duly acknowledged.

.....

Date:

Kazeni, M.M.M

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to all the people who assisted me in completing this thesis. First, I would like to thank Almighty God for giving me the wisdom, courage and strength for this undertaking. Second, I would like to extend my sincere gratitude to the following people for the valuable roles they played towards the completion of my study.

I would like to acknowledge the tremendous financial help provided by Project Sustain, a Norwegian initiative in collaboration with southern countries, without which this study would not have materialized.

My sincerest gratitude goes to my supervisor Professor G.O.M. Onwu, who patiently and tirelessly guided me throughout the study. I appreciate his constant encouragement, motivation and assistance at various stages of the study. His persistent piquing of my intellect and prodding of my thinking led me to a new and deeper understanding of my research. This work would not have been a success without his expert knowledge, valuable suggestions and constructive criticism.

I thank Professor Braun, the Head of the Department, for believing in me, and for according me time, on a number of occasions, to work on my study. His frequent enquiries about my progress encouraged me, and kept me working all the time.

My greatest appreciation goes to my lovely children, Mulai and Given, who sacrificed parental care, guidance and attention, as well as their happiness, to afford me the opportunity of concentrating on my study. Their understanding, unflagging support, unwavering faith in me, and constant love, gave me the determination to carry on.

I am grateful to my dear friend and colleague Marie Botha, who always provided emotional support, whenever I needed it, and without which my journey through my study would have been unbearable. I also greatly appreciate the social support rendered by my colleagues and friends, Batseba Mofolo-Mbokane, Lindelani Mnguni, Kazeem Shonubi, Sunday Ejey, and Gracious Zinyeka. Their encouraging and supporting words contributed to the successful completion of my study.

ABSTRACT

Young people's interest in the study of science-related courses is declining worldwide. In most developing countries, this waning aspiration has been coupled with reports of poor performance in science subjects. Fading interest and poor performance have led to low enrolment rates in science courses in higher institutions of learning, which pose the potential threat of reduced research activity and economic productivity. The methods usually used to teach science subjects in schools - which often involve the transmission of abstract facts and ideas, that are not explicitly relatable to learners - fail to provide learners with the opportunity to see the relevance of studying science. The failure to see the significance of science education could partly account for the lack of appeal and poor performance in the study of science. This study was an attempt to use contexts as a theoretical framework, and applications of life sciences (biology) to develop and implement 'relevant' curriculum materials as a means of motivating learners and improving performance in genetics, a topic which learners consider difficult to learn. The context-based approach was premised on the use of contexts which learners themselves identified as being relevant, meaningful and interesting in the study of genetics, and a five-phase learning cycle. The relative efficacy of the context-based and traditional approaches to the teaching of genetics in enhancing learner performance was assessed. The study was essentially a quantitative research, involving a quasi-experimental non-equivalent pre-test-post-test control group design. Qualitative data were collected using focus group learner interviews and oneto-one educator interviews to complement and triangulate the quantitative data. The study sample comprised 190 Grade 11 learners and six life sciences educators from six high schools randomly selected from the Tshwane South educational district in Gauteng, South Africa. Five instruments were used to assess learner performance in genetics content knowledge, science inquiry skills, problem-solving and decisionmaking abilities, and their attitudes towards the study of life sciences. The findings of the study, based on learner performance and perceptions, and their educators' views, revealed that in comparison with traditional teaching approaches, the contextbased approach was significantly better in enhancing learner performance in genetics content knowledge (F = 63.00; p = <0.0001), ability to formulate hypotheses (F = 33.21; $p = \langle 0.0001 \rangle$, ability to draw conclusions from results (F = 7.70; p = 0.0062), decision-making ability (F = 17.22; p = <0.0001), problem-solving ability

(F = 16.57; p = <0.0001), and in improving learners' attitude towards the study of life sciences (F = 25.04; p = <0.0001). The educational implications of the study are discussed.

Key words: context-based teaching, traditional teaching, context, relevance, performance, life sciences, genetics.

DEDICATION

This work is dedicated to my lovely children, Dr. Kazeni Mulai and Given

TABLE OF CONTENTS

	Page
Title page	i
Certification: Supervisor	ii
Statement of originality	iii
Acknowledgements	iv
Abstract	v
Dedication	vi
List of tables	xiii
List of figures	XV
List of acronyms	xvi
CHAPTER ONE	1

INTRO	DUCTIO	N	1
1.1	ORIEN	TATION TO THE CHAPTER	1
1.2	INTRO	DUCTION TO THE STUDY	1
	1.2.1	The performance of South African learners in science subjects	4
	1.2.2	Science teaching and performance in science	7
	1.2.3	Context-based approaches to the teaching of science	8
1.3	PROBL	EM OF THE STUDY	10
1.4	PROBL	EM STATEMENT	13
1.5	RESEA	RCH QUESTIONS	13
1.6	RESEA	RCH HYPOTHESES	14
1.7	SIGNIF	ICANCE OF THE STUDY – SCIENTIFIC MERIT	14
1.8	CONTE	EXT OF THE STUDY	15
1.9	DELIMI	TATION OF THE STUDY	16
1.10	MAIN A	SSUMPTIONS	16
1.11	SUMM	ARY	16
1.12	ORIEN	TATION TO FORTHCOMING CHAPTERS	17

CHAPT	ER TWO	18
LITERA		18
2.1	ORIENTATION TO THE CHAPTER	8

2.2	APPR	DACHES	TO THE TEACHING OF SCIENCE	18
	2.2.1	Traditio	nal teaching approaches	18
		2.2.1.1	Traditional teaching approaches and learner performation	nce20
	2.2.2	Context	-based teaching approaches	26
		2.2.2.1	Models for developing context-based materials	28
		2.2.2.2	Development of context-based teaching materials	31
		2.2.2.3	Approaches for implementing context-based materials	33
		2.2.2.4	Implementation of context-based materials in school science	34
		2.2.2.5	Context-based teaching approaches and learner performance	40
		2.2.2.6	Factors affecting the efficacy of context-based teachin approaches in enhancing performance in science	•
	2.2.3	Learning	g cycle instructional approaches	52
2.3	CONC	EPTUAL	FRAMEWORK FOR THE STUDY	48
2.4	ASSES	SSMENT	OF SKILLS ACQUISITION AND LEARNER ATTITUDE.	56
	2.4.1	Assessr	ment of science inquiry skills	57
	2.4.2	Assessr	ment of problem-solving ability	58
	2.4.3	Assessr	nent of decision-making ability	59
	2.4.4	Assessr	nent of learners' attitude	60
2.5	SOME	FACTOF	SAFFECTING PERFORMANCE IN SCHOOL SCIENC	E61
	2.5.1	Gender	and achievement in science	61
	2.5.2	Learner	s' cognitive preferences and achievement in science	62
2.6	CHAP	TER SUM	IMARY	64
CHAP	TER TH	REE		65
RESE	ARCH M	IETHODO	DLOGY	65
31	INTRO		N	65

3.1	INTRO	DUCTION	.65
3.2	RESEA	RCH METHOD	.65
	3.2.1	Quantitative research design	. 66
	3.2.2	Qualitative research method	. 67
3.3	STUDY	VARIABLES	.68
3.4	POPUL	ATION AND SAMPLING PROCEDURES	68

3.5			JUSTIFICATIONS FOR THE DESIGN OF THE ED TEACHING APPROACH USED IN THE STUDY	70
3.6	DEVEL	OPMEN	T OF CONTEXT-BASED GENETICS MATERIALS	72
	3.6.1	Criterior	n for selecting a topic for use in the study	73
	3.6.2	Selectio	n of contexts for material development	74
		3.6.2.1	Development and administration of questionnaire for selecting relevant contexts	74
		3.6.2.2	Scoring questionnaire items	75
		3.6.2.3	Criterion for selecting contexts for use in the study	77
	3.6.3	Organis	ation of content and contexts into learning activities	78
		3.6.3.1	Validation of developed context-based materials	81
3.7	CONT	EXT- BAS	SED TEACHING APPROACH USED IN THE STUDY	82
	3.7.1	Compariso	on of the developed approach and the BSCS 5E learning cyc	cle87
3.8	DATA	COLLEC [.]	TION INSTRUMENTS	88
	3.8.1	Genetic	s Content Knowledge Test	89
	3.8.2	Test of s	science inquiry skills	90
	3.8.3	Decisior	n-Making Ability Test	93
	3.8.4	Problem	n-Solving Ability Test	94
	3.8.5	Life scie	nce attitude questionnaire	96
	3.8.6	Science	Cognitive Preference Inventory	97
	3.8.7	Interview	v schedules	99
3.9	PILOT	STUDY		100
3.10	MAIN S	STUDY		101
	3.10.1	Training	of educators	102
	3.10.2	Pre-test	ing	103
	3.10.3	Adminis	tration of the study - intervention	104
	3.10.4	Field vis	its	104
	3.10.5	Post-tes	ting and interviews	104
	3.10.6	Potentia	I threats to the validity of the study	105
3.11	PROC	EDURES	FOR ANALYSING DATA	105
	3.11.1	Analysis	of quantitative data	106
		3.11.1.1	Science inquiry skills	108
		3.11.1.2	Attitude towards the study of life sciences	108

			Interactive influence of gender, cognitive preferences and reatment
	3.11.2	Analysis o	of qualitative data110
3.12	ETHIC	AL CONSII	DERATIONS110
	3.12.1	Ethical co	nsiderations before data collection111
	3.12.2	Ethical co	nsiderations during data collection111
	3.12.3	Ethical co	nsiderations during data processing and analysis
	3.12.4		nsiderations during thesis writing and dissemination of
3.13	CHAPT	TER SUMM	14RY112
CHAP		JR	
STUD	Y RESU	_TS	
4.1	INTRO	DUCTION	
4.2	QUANT	ITATIVE R	ESULTS113
	4.2.1	skills, dec	on of learner performance in genetics, science inquiry ision-making, problem-solving abilities and attitude towards of life sciences113
		4.2.1.1	Attainment of genetics content knowledge115
		4.2.1.2	Attainment of science inquiry skills116
		4.2.1.3	Attainment of decision-making ability119
		4.2.1.4	Attainment of problem-solving-ability120
		4.2.1.5 I	Learners' attitude towards the study of life sciences121
	4.2.2	Interactive	e influence of gender and treatment126
	4.2.3	Interactive	e influence of cognitive preferences and treatment127
	4.2.4	Interactive	e influence of gender, cognitive preference and treatment128
	4.2.5	•	on of pre-test and post-test cognitive preferences of the ntal group129
4.3	QUALI	TATIVE RE	ESULT129
	4.3.1	Learners'	opinions of the study of genetics130
		4.3.1.1 I	Learners' views on performance in genetics130
		4.3.1.2 I	Learners' views on the approaches used to teach genetics130
		4.3.1.3 I	Learners' views on the relevance of studying genetics131
		4.3.1.4 I	Learners' views on interest in the study of genetics132

	4.3.2		rs' opinions on their learners' performance and the teachi h	-
		4.3.2.1	Educators' views on learner performance in genetics	133
		4.3.2.2	Educators' views on their ability to identify learner preconceptions	134
		4.3.2.3	Educators' views of the methods used to teach genetics	134
		4.3.2.4	Educators' views on the relevance to learners of studyin genetics	0
		4.3.2.5	Educators' opinions on learners' interest in the study of genetics	137
4.4	CHAPT	FER SUM	IMARY	.137
CHAP	TER FIV	E		.139
			JLTS	
5.1				.139
5.2	EFFEC	T OF CC	NTEXT-BASED AND TRADITIONAL TEACHING	
	APPRO	DACHES	ON LEARNER PERFORMANCE	.139
	5.2.1	Learners	s' content knowledge of genetics	.139
	5.2.2	Skills de	evelopment	147
		5.2.2.1	Integrated science inquiry skills	147
		5.2.2.2	Decision-making ability	149
		5.2.2.3	Problem-solving ability	150
	5.2.3	Attitude	towards the study of life sciences	150
5.3		-	NFLUENCES OF GENDER AND COGNITIVE S AND TREATMENT ON LEARNER PERFORMANCE	.153
	5.3.1	Interacti	ve influence of gender and treatment	153
	5.3.2	Interacti	ve influence of cognitive preferences and treatment	154
	5.3.3		ve influence of gender and cognitive preferences, and nt	154
5.4			OF THE CONTEXT-BASED APPROACH DEVELOPED IN	
5.5			/ARY	

CHAPTER SIX	162
SUMMARY AND CONCLUSIONS	162
6.1 INTRODUCTION	162
6.2 SUMMARY OF THE STUDY	162
6.3 CONCLUSIONS	164
6.4 EVALUATION OF THE METHODOLOGY OF THE SYUDY	165
6.4.1. The number of participants	166
6.4.2 Data collection methods	166
6.4.3 The intervention	166
6.4.4 Data analysis procedures	167
6.5 Possible contribution of the study to academic knowledge	168
6.6 RECOMMENDATIONS	170
6.7 SUGGESTIONSFOR FURTHER RESEARCH	172

REFERENCES	 	 173
REFERENCES	 	 173

LIST OF APPENDICES

Appendix I:	Summary of samples involved in the study	193
Appendix II:	Selection of difficult life science topics (concepts)1	194
Appendix III:	Ranking of life sciences topics according to perceived degree of difficulty	195
Appendix IV:	Questionnaire for preferred learning contexts in genetics1	96
Appendix V:	Mean scores and percentages of learners who selected each option1	
Appendix VI:	Examples of context- based lessons1	98
Appendix VII:	Genetics content knowledge test (GCKT)	218
Appendix VIII:	Test of science inquiry skills (TOSIS)2	236
Appendix IX:	Decision-making ability test (DMAT)	245
Appendix X:	Problem-solving ability test (PSAT)2	250
Appendix XI:	Life science attitude questionnaire (LSAQ)2	257
Appendix XII:	Science cognitive preference inventory (SCPI)2	262
Appendix XIII:	Educator individual interview schedule2	266
Appendix XIV:	Learner focus group interview schedule2	268
Appendix XV:	Pilot study results	270
Appendix XVI:	Comparison of pre-test control and experimental mean score (\bar{x}) for LSAQ items according to attitude categories	

Appendix XVII	Summary of post-test statistics on the interactive influence of gender on specific categories of science inquiry skills272	2
Appendix XVIII	Summary of post-test ANCOVA statistics for the interactive influence of cognitive preferences and treatment for the different components of science inquiry skills27	3
Appendix XIX	Summary of post-test ANCOVA statistics for the interactive influence of gender cognitive preferences and treatment on learning outcomes	4
Appendix XX:	Chi-square test for the correlation of pre- and post-intervention cognitive preferences for the experimental group27	
Appendix XXI:	Interview protocols	3
Appendix XXII:	Permission from the University of Pretoria to conduct	
	Research	9
Appendix XXIII:	Permission from the provincial department of education	
	conduct research	0
Appendix XXIV:	Permission from principals of participating schools	2
Appendix XXV:	Letter of consent to participating educators	4
Appendix XXVI:	Letter of informed consent to parents	3

LIST OF TABLES

1.1	Enrolments in SET studies at higher education institutions by race (200	8)3
1.2	TIMSS Average Achievements per Science Content Area (1995, 1999	
	and 2003)	4
3.1	Study variables	68
3.2	Ranking of the top ten most difficult life sciences topics	73
3.3	Examples of items from the questionnaire for selecting contexts	75
3.4	Mean scores for each item statement and percentages of learners who	
	selected each option, per item statement	75
3.5	Instruments used to collect data	89
3.6	Item specification for genetic content knowledge test (GCKT)	90
3.7	Objectives on which items for the test of inquiry skills were based	91
3.8	Item specification for the test of science inquiry skills (TOSIS)	92
3.9	Item specification for the Decision-Making Ability Test (DMAT)	94
3.10	Item specification for the Problem-solving Ability Test (PSAT)	96
3.11	Item specification for the life science attitude questionnaire (LSAQ)	97

4.1	Summary of pre-test and post-test descriptive and inferential statistics
	for the assessed learning outcomes (LSAS, GCKT, TOSIS,
	DMAT, PSAT) 114
4.2(a)	Pre-test mean scores (\bar{x}), standard deviations (SD) and ANOVA results
	for genetics content knowledge (GCKT)115
4.2(b)	Post-test mean scores (\bar{x}), standard deviations and ANCOVA results
	for genetics content knowledge (GCKT)116
4.3(a)	Pre-test mean scores (\bar{x}), standard deviations (SD) and ANOVA results
	for science inquiry skills (TOSIS)117
4.3(b)	Post-test mean scores (\bar{x}), standard deviations and ANCOVA results for
	overall science inquiry skills (TOSIS)117
4.4	Summary of pre-test and post-test statistics for the components of the
	Test of Science Inquiry Skills (TOSIS; T1 to T5)118
4.5(a)	Pre-test mean scores (\bar{x}), standard deviations (SD) and ANOVA results
	for decision-making ability (DMAT)119
4.5(b)	Post-test mean scores (\bar{x}), standard deviations and ANCOVA results for
	decision-making ability (DMAT)120
4.6(a)	Pre-test mean scores (\bar{x}), standard deviations (SD) and ANOVA results
	for problem-solving ability (PSAT)120
4.6(b)	Post-test mean scores (\bar{x}), standard deviations and ANCOVA results
	for problem-solving ability (PSAT)121
4.7(a)	Pre-test mean scores (\bar{x}), standard deviations (SD) and ANOVA results
	for attitude towards life sciences (LSAQ)122
4.7(b)	Post-test mean scores (\bar{x}), standard deviations and ANCOVA results for
	attitude towards life sciences (LSAQ)122
4.8	Comparison of post-test control and experimental mean scores (\bar{x}) for
	LSAQ items according to LSAQ categories123
4.9	Summary of post-test statistics for the interactive influence of gender on
	the learning outcomes (GCKT, TOSIS, DMAT, PSAT, LSAQ)126
4.10	Summary of post-test ANCOVA statistics for the interactive influence of
	cognitive preferences on the learning outcomes
4.11(a)	Experimental group's perception of performance in genetics
4.11(b)	Control group's perception of performance in genetics

4.12(a)	Experimental group's opinions of the way in which they experienced	
	The teaching of genetics and how they would like to be taught genetics .13	31
4.12(b)	Control group's opinions of the way in which they experienced the	
	teaching of genetics and how they would like to be taught genetics13	31
4.13(a)	Experimental group's perception of the relevance of the study of	
	genetics	32
4.13(b)	Control group's perception of the relevance of the study of genetics 13	32
4.14(a)	Experimental group's opinions of their interest in the study of genetics 13	32
4.14(b)	Control group's opinions of their interest in the study of genetics	32
4.15(a)	Opinions of educators from the experimental group concerning the	
	learners' performance in genetics13	3
4.15(b)	Opinions of educators from the control group concerning their learners'	
	performance in genetics13	3
4.16(a)	Educators from experimental group's opinions of their ability to identify	
	and address learners' preconceptions13	34
4.16(b)	Educators from the control group's opinions of their ability to identify	
	and address learners' preconceptions13	34
4.17(a)	Educators from the experimental group's views about appropriate and	
	effective ways of teaching genetics13	\$5
4.17(b)	Educators from the control group's views on appropriate and effective	
	Ways of teaching genetics13	6
4.18(a)	Opinions of educators from the experimental group on the relevance	
	of the study of genetics to learners' lives13	6
4.18(b)	Opinions of educators from the control group on the relevance of the	
	Study of genetics to learners' lives	6
4.19(a)	Opinions of educators from the experimental group concerning their	
	learners' interest and participation in genetics lessons	37
4.19(b)	Opinions of educators from the control group concerning their learners'	
	interest and participation in genetics lessons13	37

LIST OF FIGURES

1.1	Comparison of learner enrolment in Sciences, Business and Management,
	and Humanities and Social Sciences in public higher education
	institutions: 2001–20092
1.2	Pass rates in life sciences and physical sciences, in senior certificate
	examinations: 2000–20095
3.1	Symbolic representation of the research design

LIST OF ACRONYMS

American Association for the Advancement of Science

American Chemistry Society
Centre for Development and Enterprise

- CEI Centre for Education and Industry
- DHA Department of Home Affairs
- DoBE Department of Basic Education
- DoE Department of Education
- DoL Department of Labour

AAAS

- EC European Commission
- EIRMA European Industrial Research Management Association
- ESRC Economic and Social Research Council
- HSRC Human Sciences Research Council
- IET Institute of Engineering and Technology
- NRF National Research Foundation
- OECD Organisation for Economic Co-operation and Development
- SBP Small Business Project
- SET Science, Engineering and Technology
- TIMSS Trends in International Mathematics and Science Study