
SCHEDULING COAL HANDLING

PROCESSES USING METAHEURISTICS

by

David Gideon Conradie

Submitted in partial fulfilment of the requirements for the degree of

MASTER OF ENGINEERING (INDUSTRIAL ENGINEERING)

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND

INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

PRETORIA

SOUTH AFRICA

April 2007

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Executive Summary

SCHEDULING COAL HANDLING

PROCESSES USING METAHEURISTICS

by

David Gideon Conradie

Supervisor: Johan W. Joubert

Department: Department of Industrial and Systems Engineering

Degree: Master of Engineering (Industrial Engineering)

The operational scheduling at coal handling facilities is of the utmost impor-

tance to ensure that the coal consuming processes are supplied with a constant

feed of good quality coal.

Although the Sasol Coal Handling Facility (CHF) were not designed to perform

coal blending during the coal handling process, CHF has to blend the different

sources to ensure that the quality of the feed supplied is of a stable nature. As

a result, the operation of the plant has become an extremely complex process.

Consequently, human intelligence is no longer sufficient to perform coal handling

scheduling and therefore a scheduling model is required to ensure optimal plant

operation and optimal downstream process performance.

After various attempts to solve the scheduling model optimally, i.e. with exact

solution methods, it was found that it is not possible to accurately model the

complexities of CHF in such a way that the currently available exact solvers can

solve it in an acceptable operational time.

Various alternative solution approaches are compared, in terms of solution qual-

ity and execution speed, using a simplified version of the CHF scheduling problem.

This investigation indicates that the Simulated Annealing (SA) metaheuristic is

the most efficient solution method to provide approximate solutions.

i

Executive Summary ii

The metaheuristic solution approach allows one to model the typical sequential

thoughts of a control room operator and sequential operating procedures. Thus

far, these sequential rules could not be modelled in the simultaneous equation

environment required for exact solution methods.

An SA metaheuristic is developed to solve the practical scheduling model. A

novel SA approach is applied where, instead of the actual solution being used for

neighbourhood solution representation, the neighbours are indirectly represented

by the rules used to generate neighbourhood solutions. It is also found that the

initial temperature should not be a fixed value, but should be a multiple of the

objective function value of the initial solution. An inverse arctan-based cooling

schedule function outperforms traditional cooling schedules as it provides the re-

quired diversification and intensification behaviour of the SA.

The scheduling model solves within 45 seconds and provides good, practically

executable results. The metaheuristic approach to scheduling is therefore suc-

cessful as the plant complexities and intricate operational philosophies can be

accurately modelled using the sequential nature of programming languages and

provides good approximate optimal solutions in a short solution time. Tests done

with live CHF data indicate that the metaheuristic solution outperforms the cur-

rent scheduling methodologies applied in the business.

The implementation of the scheduler will lead to a more stable factory feed,

which will increase production yields and therefore increase company profits. By

reducing the amount of coal re-handling (in terms of throw-outs and load-backs

at mine bunkers), the scheduler will reduce the coal handling facility’s annual

operating cost by approximately R4.6 million (ZAR).

Furthermore, the approaches discussed in this document can be applied to any

continuous product scheduling environment.

Keywords: Scheduling, Simulated annealing, Metaheuristics, Approximation

algorithms, Multiple-objective programming, Stochastic programming, Industry

application, Coal handling, Coal blending, Coal homogenization

Nomenclature

Bleed-in Coal from strategic stockpiles thrown on live heaps with stackers.

Blend The planned heap composition referring to the percentage of coal from each

mine required on that heap (to ensure a good quality coal composition).

Blending The process of stacking and reclaiming coal in such a fashion that

the different qualities of coal is mixed with each other to form a combined

product with a homogenous composition.

Bypass Coal from strategic stockpiles fed directly to the factory (via the factory

belts).

Cooling schedule The combination of the initial temperature, the number of

iterations and the temperature reduction function that governs diversification

and intensification.

CHF The Sasol Coal Handling Facility studied.

CVC The Coal Value Chain which includes coal handling, processing and gasifi-

cation.

FEL Front End Loaders are used for manual coal handling processes.

GA The Genetic Algorithm is a metaheuristic based on evolutionary principles.

GP Goal Programming aims to achieve certain goals by minimizing the amounts

by which these goals are not achieved.

Homogenization See Blending.

Incumbent solution The best solution found to date.

iii

Nomenclature iv

MES Manufacturing Execution Systems are information systems that control,

plan track and/or assist with manufacturing activities.

Metaheuristic A high-level strategy to guide heuristic methods to find approxi-

mate optimal solutions.

Mixing See Blending.

Neighbourhood of solutions Solutions closely related to the current solution,

which are generated by changing only one aspect of the current solution.

Prop-chute Coal from mine trajectories sent directly to the factory, bypassing

the stacking and reclaiming processes.

Reclaiming Picking up coal stacked on heaps and sending it to the factory belts.

SA The Simulated Annealing metaheuristic solves optimization problems with

principles analogous to the physical annealing process of materials.

Throw-out When a mine’s bunker is full, any mine production tons are thrown

out on a stockpile next to the mine’s bunkers.

Stacking Throwing mine production tons onto heaps on one of six stockpiles.

TS The Tabu Search metaheuristic solves optimization problems by preventing

cycling back to previously visited solutions.

Contents

1 Research Problem 1

1.1 Coal to Liquid Fuel Scheduling . 2

1.1.1 Coal Handling . 4

1.1.2 Coal Processing . 7

1.1.3 Gasification . 7

1.2 Research Design . 7

1.3 Research Methodology . 8

2 Literature Review 10

2.1 Problem Classification . 10

2.1.1 Scheduling Problem . 10

2.1.2 Conflicting Objectives . 13

2.1.3 Stochastic Elements . 15

2.2 Solution Approaches . 19

2.2.1 Exact Solution Approaches 20

2.2.2 Approximation Techniques 22

3 Choosing a Solution Approach 27

3.1 Exact Solution Attempts of the Problem 27

3.2 Simplified Model . 28

3.2.1 Incorporating Multiple Objectives 34

3.2.2 Incorporating Stochastic Elements 36

3.3 Exact Solution as a Benchmark . 39

3.4 Approximate Solution Evaluation 40

3.4.1 Simulated Annealing . 40

v

CONTENTS vi

3.4.2 Tabu Search . 41

3.4.3 Genetic Algorithm . 41

3.5 Selecting the Most Appropriate Approach 42

4 The Simulated Annealing Approach 44

4.1 Annealing Analogy . 45

4.2 The Basic SA Algorithm . 46

4.3 Applying SA to Solve Problems . 48

4.4 SA for Scheduling Coal Handling 53

4.4.1 Continuous Time Points in a Discrete Environment 56

4.4.2 Neighbourhood Solutions . 57

4.4.3 Cooling Schedule . 60

4.4.4 SA Objective Function . 63

4.5 Coal Handling Solution Generation 67

4.5.1 Reclaiming . 70

4.5.2 Stacking . 74

4.5.3 Bunkers . 81

5 Algorithm Customization and Implementation 84

5.1 Input Variable Refinement . 84

5.1.1 Comparative Fractions Used for Evaluation 85

5.1.2 Number of Iterations (N) 86

5.1.3 Time of Temperature Reduction (w) 90

5.1.4 Speed of Temperature Reduction (k) 93

5.1.5 Initial Temperature (τ(1)) 95

5.2 Business Process Integration . 95

5.2.1 Model Output Display . 96

5.2.2 MES Integration . 96

5.2.3 Tracking . 97

5.3 Evaluation of the Developed Approach 97

6 Conclusion and Review 101

6.1 Conclusions . 101

6.2 Suggestions for Future Work . 103

6.2.1 Scheduling of Coal Handling Processes 104

6.2.2 Real-Time Scheduling . 104

6.2.3 Solution Method Selection Guidelines 105

A Variable Definition Notes 112

B Executing the CHF SA Scheduler 115

C Model Outputs 119

C.1 Log Output . 119

C.2 Output Graphs . 120

C.3 Detail Stockpiles Picture Output 121

List of Figures

1.1 The effect of consumption and production rates on inventory levels 3

1.2 Simplified coal handling facility . 4

1.3 A stockpile yard . 5

1.4 Blending process . 6

2.1 Push-pull system classification of scheduling problems 12

4.1 Traditional SA algorithm . 47

4.2 Temperature reduction function τ(t+ 1) = ατ(t) 49

4.3 Step-wise temperature reduction function 50

4.4 Constants based temperature reduction function 50

4.5 Log-based temperature reduction function 51

4.6 Elements included in the SA model of the coal handling facility . . 54

4.7 SA approach used in this application 55

4.8 Creating continuous time points using discrete time buckets 57

4.9 Temperature τ reduction over iterations t 60

4.10 Temperature τ reduction with varying k 61

4.11 Temperature τ reduction with varying w 62

4.12 Probability of acceptance with varying delta for τ(1) = 100, 000 . . 62

4.13 Acceptance probability with varying delta for τ(1) = 15, 000 63

4.14 Initial solution logic . 69

4.15 Reclaiming logic . 71

4.16 Stacking logic . 75

4.17 Source 6-7 and Source 5 staking possibilities 78

4.18 Bunker logic . 82

viii

4.19 Source 6 and Source 7 operations 83

5.1 Average objective function values for SA parameter combinations . 87

5.2 Average $ for SA parameter combinations 88

5.3 Detail of average $ for increasing τ(1) with varying w and k 91

5.4 Average $ for increasing τ(1) with varying w and k 91

5.5 Average $ for increasing k with varying τ(1) and w 92

5.6 Average $ for increasing w with varying τ(1) and k 92

B.1 Process to run the SA scheduler . 117

B.2 Objective function over iterations 118

C.1 Stockpiles picture output . 123

List of Tables

2.1 Multiple objective optimization solution approach comparison . . . 14

2.2 Solution approaches of scheduling problems 21

3.1 Simplified case demand distributions 38

3.2 Solution method comparison . 42

4.1 Analogies between annealing and optimization 45

4.2 Schedule development rules . 58

4.3 Practical case demand distributions 66

5.1 Example of calculating the comparative fraction ($) 86

5.2 Iteration limit determination . 89

5.3 Average $ for increasing w with varying τ(1) and k 93

5.4 Average $ for increasing τ(1) with varying k 94

5.5 Average $ for increasing k with varying τ(1) 94

5.6 Average $ for increasing τ(1) . 95

5.7 Selected SA input parameter values 96

5.8 Evaluation of first scenario algorithm performance 98

5.9 Evaluation of second scenario algorithm performance 99

Chapter 1

Research Problem

In industry, coal is mostly used to generate electricity or to produce liquid fuel

products (Collings, 2002). In the liquid fuels industry, processed coal is gasified

to produce gas that is then transformed into fuel. Coal quality varies at every

source, and also between sources. Since a stable quality coal mix is required for

the gasification process, the scheduling of coal arriving from the sources is an

intricate challenge for management.

The processes that consume coal are sensitive to the quality of the supplied

coal as well as the variance in the quality of the coal feed. As coal from different

sources have varying qualities, the different sources are homogenized (blended) in

order to provide coal with consistent qualities to the consuming processes (Hydro,

1983:4-2; Collings, 2002). Zhong et al. (2005) define a coal blend as the required

coal quality mix for optimal gas and fuel production.

A complex scheduling problem results when one attempts to optimize gasifica-

tion yields by blending and processing coal correctly. According to Longwell et al.

(1995) and Van Dyk et al. (2006), the benefits associated with good coal blending

and processing are:

1. Maximizes the probability of success in any proposed gasification venture.

2. Optimizes the operation (increases efficiency) and profitability (reduces gasi-

fication operating cost).

3. Minimizes the variance in ash content and the diameter of the coal provided

as these variables affect gasification efficiency.

1

Coal to Liquid Fuel Scheduling 2

4. Prevents breaks in coal feed that amounts to significant losses.

5. Prevents stoppages in coal production that impacts the mine’s profitability

negatively.

The importance of properly scheduling coal handling, processing and gasifica-

tion should not be underestimated as a minor problem in the input side of liquid

fuel production will often cause major disruptions in the supply of petrol, diesel

and jet-fuel. As demonstrated during the South African fuel crises at the end of

2005, fuel shortages do not only cause major inconveniences to the public, but

also has a significant impact on business; and therefore the country’s economy

(Furlonger, 2005:24–25).

1.1 Coal to Liquid Fuel Scheduling

The combination of coal handling, processing and gasification is often grouped

under the term Coal Value Chain (CVC).

Traditionally, the coal handling processes are used to transport coal over vast

distances and to build inventory supply buffers. The coal handling processes ex-

tract coal from mine bunkers and move the coal to stacking locations. Thereafter,

the stacked coal is reclaimed from the stockpiles and conveyed to the coal process-

ing area. The coal handling facility may also be used to perform coal homogeniza-

tion (mixing or blending).

The coal processing facility removes coal particles that are too fine to be used

in gasification. Fines restrict the flow through the gasifier which lowers production

rates. The diameter of the coal let through during the wet sieve processes, as used

in coal processing, is one of the variables that critically affects the efficiency of the

gasification process.

During gasification, the coal is gasified under pressure in the presence of oxygen

and steam. The gasification process is sensitive to the fine coal fraction and to the

quality parameters such as total carbon, ash, sulphur, nitrogen, hydrogen, oxygen

and moisture content.

The challenge in the CVC environment is to provide the gasification process

with a continuous good quality feed of coal, given the erratic supply of coal from

Coal to Liquid Fuel Scheduling 3

mines. The gasification process runs 24 hours a day and 7 days a week, but the

mines produce at different rates for 18 hours a day during the week and 9 hours on

Saturdays. These production rates and their effect on the coal handling facility’s

inventory levels are shown in Figure 1.1.

0

50

100

150

200

250

300

350

400

450

500

0 24 48 72 96 120 144 168

Hour in week

P
ro

du
ce

d
(i

nd
ex

ed
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

In
ve

nt
or

y
le

ve
ls

 o
r

co
ns

um
pt

io
n

(i
nd

ex
ed

)

Consumed Produced Side 1 stockpiles inventory Side 2 stockpiles inventory

Figure 1.1: The effect of consumption and production rates on inventory levels

Coal has to be stockpiled during the periods that the mines produce so that

the gasification process can be supplied with a 24 hour, 7 days a week feed. Any

stoppage of feed to the gasification process shuts down the entire downstream

process. To start up all the processes takes a few days, during which the company

experiences losses in the order of millions of dollars (US) per day. These losses

are due to loss of sales and depletion of inventory. The petrol, diesel and jet-fuel

supply to the country will also be disrupted during this start-up period.

Mine production may also not be stopped as this has a negative impact on the

mining company’s profitability. As the mining company can only sell a certain

amount of coal, costs have to be kept at a minimum and the maximum amount

of time must be spent on production. A mine stoppage therefore represents a

Coal to Liquid Fuel Scheduling 4

permanent loss in sales as it is not possible to catch up the lost production. Mine

stoppages occur when the inventory buffers (mine surface bunkers and stockpile

space allocated to the specific mine) are full.

As current approaches are not able to successfully address the coal scheduling

need, this dissertation will develop and apply a model for scheduling the coal

handling processes. This model will ensure minimum disruptions in the gasification

process and mine production, whilst also minimizing the variance in the quality of

the supplied coal. The coal processing and gasification processes are considered,

but will not be scheduled as their operation depends on the actual real-time process

values of the factory.

1.1.1 Coal Handling

Various collieries (coal mines) supply coal to the coal handling facility, which then

combines and blends the various coal sources. The coal handling facility must act

as a supply buffer between the collieries (which exhibit variable production rates)

and the factory (which requires constant blends and exhibits uncertain demand).

A simplified coal handling facility layout is shown in Figure 1.2.

Colliery 1's
bunker

Colliery 2's
bunker

Colliery 3's
bunker

Colliery 4's
bunker

Colliery 5's
bunker

Colliery 6's
bunker

Mixing area 1

Mixing area 2

Yard 1

Yard 2

Yard 3

Factory 1

Yard 4

Yard 5

Yard 6

Factory 2

Coal handling facility

Figure 1.2: Simplified coal handling facility

Coal to Liquid Fuel Scheduling 5

Each colliery feeds its production into a surface bunker. Coal is then pulled

from the bottom of the colliery’s surface bunker to the coal handling facility, where

the coal is conveyed to a coal storage area. This area is often referred to as yards,

stockpiles or heaps (Swart, 2004:4).

A more detailed illustration of one of the yards in Figure 1.2 is shown in

Figure 1.3. In this example there are two heaps on the yard. There can be

between 0 and 5 heaps per yard. Each yard has both a stacker and a reclaimer.

Stackers are used to stack (throw in layers) coal onto the heaps in the stockpile

area. Reclaimers then pick up the stacked coal and send it to the coal processing

facility (factory). The combination of the stacking and reclaiming processes are

responsible for the blending of coal.

Back and forth

S
ta

ck
er

R
ecl.

One way

A A

Figure 1.3: A stockpile yard shown with two heaps, a stacker and a reclaimer

Figure 1.4 illustrates the simplified blending process, by showing a heap being

stacked and reclaimed, from cross-section view A–A (as indicated in Figure 1.3).

Figure 1.4(a) shows a stacker creating a heap by throwing various layers of coal

onto each other in a specific area on the yard. These layers are thrown from side

to side with different coal sources, as the stacker moves backwards and forwards

along the length of the heap, until the heap is full. The heap’s blend is enforced

by throwing a certain number of layers, and fractions of layers, of each source.

When these layers have been stacked, the heap will exhibit the required blend

when it is fully stacked (see Figure 1.4(b)). The contribution of each source to a

fully stacked heap must be within ±3% of the heap’s planned contribution for the

respective colliery’s coal. Once a stacker has filled up a heap, it will either start a

new heap or fill up a heap that is not fully stacked.

Only when the heap has been completed (fully stacked) it can be reclaimed.

Coal to Liquid Fuel Scheduling 6

A
A

A C
C
C

C

(a) Heap being stacked in a lay-

ered fashion with coal from mines

A and C

A
A

A C
C
C
C

C E
EB

B
B

(b) Fully stacked heap with coal

from mines A, B, C and E

A
A

A C
C
C
C

C E
EB

B
B

Blend
reclaimed

(c) Blending performed by re-

claimer slicing heap

A
A

A C
C
C
C

C E
EB

B
B

(d) Heap being reclaimed further

Figure 1.4: Blending process performed by stacking horizontal layers and reclaim-

ing vertical slices as seen from cross-section A–A

Reclaiming is done using a large rake, which is angled at the same angle as the edge

of the heap (as illustrated in Figures 1.3 and 1.4(c)). Because horizontal layers

are stacked and vertical fractions are reclaimed, the reclaiming process actually

performs the blending. Note that in practice a large number of thin layers are

thrown on the heaps. Therefore, layers consisting of different sources will not have

such a large impact on the reclaimed blend as it might seem in Figure 1.4(c) (as

in this figure it might seem that source make-up of the first slice reclaimed differs

drastically from the source make-up of the last slice reclaimed).

Figure 1.4(d) shows a heap of which 20% has already been reclaimed. The

reclaimer will move through the heap until all the coal in that area of the yard

has been reclaimed. The reclaimer can then either continue in the same direction

or turn around to start reclaiming another fully stacked heap. If no fully stacked

heap is available for reclaiming, the reclaimer must wait until the heap is full.

Two reclaimers at a time must be reclaiming simultaneously to ensure that each

Research Design 7

of the factories is supplied with enough coal. Therefore, only one reclaimer may

be waiting per factory at a time.

1.1.2 Coal Processing

The coal processing facility receives the reclaimed (blended) coal, washes it and

splits this stream into three parts (Maree, 2006):

• Fine coal

• Normal coal

• Large coal

In the liquid fuel industry, the fine coal is discarded as it reduces the gas yield.

However, some of the fine coal can be used for electricity generation.

The large and normal coal is fed to gasification. The way in which these two

streams are placed on the conveyors has been found to impact gas yields, as it

influences the gasifiers’ efficiencies.

1.1.3 Gasification

The processed coal is dumped into gasifiers. The gasifiers react coal with steam

and oxygen in a pressure vessel at a high temperature. This approach, called

Sasol-Lurgi fixed bed dry bottom gasification, produces crude gasses CO and H2

(Van Dyk et al., 2006) as well as ash sludge (Collings, 2002:24). The crude gas

is then turned into liquid fuels and chemicals via downstream Fischer-Tropsch

processes.

1.2 Research Design

This project will investigate the conjecture that complex, highly constrained schedul-

ing problems can be successfully solved using metaheuristics. Based on Page

and Meyer (2000:5), Mouton (2001:176) and Manson (2006:159), this then sug-

gests that this project deals mainly with theory-building research, although some

Research Methodology 8

theory-testing research will also be required to prove the validity of the theory and

methods developed.

The problem statement of this dissertation is formulated as a research question

to help focus the problem (Mouton, 2001:53).

Can a metaheuristic be developed to efficiently (i.e. solution time of

less than two minutes) provide a schedule to minimize blend devia-

tions without disrupting either demand or supply, whilst considering

multiple-objectives, stochastic variables and the highly constrained en-

vironment?

Mouton (2001:56) states that the research design focuses on the deliverables of the

research by summarizing what kind of study is planned to address the research

questions adequately. To answer this dissertation’s research question, the following

research design is formulated:

• Based on the existing metaheuristic theories and literature, metaheuristic

theory needs to be adapted to address complex, highly constrained, contin-

uous product scheduling problems.

• To determine whether the developed theory is efficient, it needs to be applied

in industry.

Based on Manson (2006:158)’s approach, the research design indicates that

research into Operations Research (OR) is executed to advance the practice of OR

as this dissertation will:

• Develop an improved model for the coal scheduling problem.

• Present a new methodology for choosing solution approaches for complex

problems.

• Apply an improved solution approach.

1.3 Research Methodology

The research methodology communicates the steps of how the research process was

undertaken (Mouton, 2001:56; Manson, 2006). As it focuses on how the research

Research Methodology 9

is executed, the document structure represents the research methodology of this

dissertation.

To start addressing the research goal, the next chapter provides a literature

review. It firstly attempts to classify the scheduling problem faced. As this is a

practical problem, some guidelines on how to model applicable practical challenges

are included. To provide a basis for determining which solution method should

be used to solve the scheduling model, including the practical considerations, an

overview of various solution methods is also given.

Chapter 3 provides an overview of all the solution approaches that have been

used to solve the applicable scheduling problem. As all these methods have failed,

an approach for choosing solution methods is suggested. This approach is then ap-

plied by setting up a simplified, yet representative, problem of the full-size schedul-

ing problem. The simplified model is solved exactly to provide a benchmark for

other solution approaches. Various approximate solution methods are applied to

the same simplified model. The most appropriate solution method is identified by

comparing both solution approach effectiveness (quality of solution) and efficiency

(speed of execution).

A more detailed discussion of the chosen technique is given in Chapter 4. The

basic version of the selected algorithm is then adapted into a solution approach to

solve the studied scheduling problem.

In Chapter 5, the conceptual algorithm developed is applied to the practical

scheduling problem. The algorithm’s behavioural variables are adjusted to ensure

the best possible performance of the developed algorithm in this application. A

brief discussion of how the algorithm was practically implemented and integrated

with the company’s business processes is then given. The quality of the devel-

oped approach is evaluated by comparing the algorithm’s output with the outputs

generated by the previous manual approach applied in industry.

Chapter 6 concludes the document by summarizing the research done and its

successful practical application. Finally, various suggestions for further research

are discussed.

Chapter 2

Literature Review

To further investigate the scheduling problem faced, it is necessary to determine

where this specific problem instance fits into the current scheduling body of knowl-

edge. As a practical instance of this problem need to be solved, some practical

modelling challenges must also be investigated. Once the problem has been clas-

sified and enhanced to consider practical challenges, one must determine how this

model can be solved efficiently.

2.1 Problem Classification

2.1.1 Scheduling Problem

Scheduling, in its widest sense, is concerned with the allocation of scarce resources

to tasks over time (Rardin, 1998:602; Dorigo and Stützle, 2004). The large schedul-

ing body of knowledge entails various different applications; including workforce,

timetabling, project and production (machine and shop) scheduling (Winston,

1994; Rardin, 1998; Taha, 2003).

Production Scheduling

Various different types of production scheduling models exist. The simplest schedul-

ing problems in this category are single machine scheduling problems (Potts and

Kovalyov, 2000; Allahverdi et al., 2006). Additional series machines can then be

added to the single machine to form a multi-stage scheduling problem (Little and

10

Problem Classification 11

Hemmings, 1994). Model complexity further increases as identical parallel ma-

chines are added to a single machine (Potts and Kovalyov, 2000).

Flow shop problems further enhance parallel machine problems by allowing

one or more machines at each stage in production (Little and Hemmings, 1994;

Linn and Zhang, 1999; Allahverdi et al., 2006). Open shop problems consider

environments where each job must be processed by every stage of production, in

any order.

When each job can has a different route through the production facility, the

problem is known as a job shop problem (Little and Hemmings, 1994; Allahverdi

et al., 2006). In a job shop environment, a specific job is not necessarily processed

by all machines and may be processed more than once by the same machine.

The coal handling scheduling problem has multiple stages and includes non-

identical series and parallel “machines”.

The majority of research in the scheduling environment assumes that setup

time is either negligible or included in job processing times (Potts and Kovalyov,

2000; Allahverdi et al., 2006). Although this assumption simplifies the scheduling

model, it adversely affects the solution quality in environments where setups play

a more important role. Research considering setup times started emerging in the

mid-1960s, with a larger interest in this area in the past 10 years (refer to the

10 recent applications discussed in Allahverdi et al. (2006)). The coal handling

scheduling problem requires explicit attention to setup times (in the form of mine

trajectory, stacker and reclaimer change-over times) as these downtimes reduce the

time available for pulling mine coal, stacking coal or sending coal to the factory.

Where most scheduling problems are aimed at satisfying the outbound (or in-

bound) needs by determining when which inbound (or outbound) products should

be procured and processed (as applied by Rardin (1998), Chunfeng et al. (1999),

Potts and Kovalyov (2000), Sabuncuoglu and Bayõz (2000), Winston and Venkatara-

manan (2003), Chen and Chao (2004), Joubert and Conradie (2005), Allahverdi

et al. (2006) and Bellabdaoui and Teghem (2006); amongst others), in the coal

scheduling environment one cannot influence either inbound or outbound product

delivery (Swart, 2004; Coetzer and Harmse, 2007). The coal handling processes

become complex to schedule as one has to satisfy both the outbound needs and the

inbound deliveries (production). The difference between typical scheduling prob-

Problem Classification 12

Business processes
scheduled

Schedule to
fulfill orders

Scheduling
determines

inputs
OrdersDeliveries

Influenced by internal schedule or business processes
Influenced by

external factors
Influenced by

external factors

(a) Typical pull system (backward) scheduling problems

Business processes
scheduled

Uncontrolled
deliveriesDeliveries

Influenced by internal schedule or business processes
Influenced by

external factors
Influenced by

external factors

Orders
Produce when

materials
are received

(b) Push system (forward) scheduling problems

Business processes
scheduled

Schedule to
fulfill orders

Schedule to
receive all

inputs
OrdersDeliveries

Influenced by internal schedule or business processes
Influenced by

external factors
Influenced by

external factors

(c) Studied push and pull scheduling problem

Figure 2.1: Push-pull system classification of scheduling problems

lems and the problem concentrated on in this dissertation is illustrated in Figure

2.1.

Given all the problem variations discussed, the coal handling scheduling prob-

lem can be more or less classified as an enhanced job shop-type problem (although

it is not a pure job shop problem), including setup times in a push-pull environ-

ment. The candidate therefore agrees with Linn and Zhang (1999), who state that

“it is apparent from the literature that there is a gap between theory developed

and practice applications”.

Static and Dynamic Scheduling

Scheduling problems can be split into two categories, namely static and dynamic

scheduling models (Suresh and Chaudhuri, 1993; Goddard, 2006). Static schedul-

ing models are models that provide a strict schedule for a certain period of time.

Problem Classification 13

When in practice one deviates from this schedule, the entire scheduling model is

run again with new input values. A disadvantage of this approach is production

instability as the schedule provided by the new scheduling run may differ vastly

from the previous run’s schedule (Aytug et al., 2005).

To address this potential problem and to prevent having to wait for the entire

model to be run again, dynamic scheduling systems are used. Dynamic scheduling

models adjust the current schedule as soon as deviations from the planned schedule

occur (Suresh and Chaudhuri, 1993; Sabuncuoglu and Bayõz, 2000). The candidate

suggests that static scheduling models can also provide stable solutions by adding

constraints to the static model that will ensure that the current schedule being

executed is changed as little as possible in the new run.

Having reviewed scheduling problems, some practical considerations with re-

gard to scheduling need to be considered. Allahverdi et al. (2006) state that both

multiple objective and stochastic problems have received less attention in studies

since they are more difficult than single objective and deterministic problems re-

spectively. As multiple objectives and stochasticity are often found in practical

problems, these practical considerations are further investigated.

2.1.2 Conflicting Objectives

When modelling a problem, it is not always possible to define its goal as a single

objective function. For example, some problems are aimed at finding a solution

that provides a good balance between multiple conflicting objectives (e.g. maxi-

mizing return, whilst minimizing risk), instead of only maximizing or minimizing

a single objective (Ramesh and Cary, 1989; Rifai, 1996). Allahverdi et al. (2006)

state that this is especially the case when dealing with practical problems.

In multiple objective optimization models it becomes difficult to identify the

feasible solution that is best at addressing all of the objectives (Ehrgott, 2005).

Especially since a feasible solution may be very good at addressing one of the

objectives, but may be extremely poor at addressing the other objectives.

To be an “optimal” solution in a multiple objective optimization model, the

feasible solution should not be able to be improved in any of its objective function

values without decreasing one ore more of the other objective function values. This

Problem Classification 14

kind of feasible solution is known as an efficient point (Rardin, 1998:379; Tamiz

et al., 1998). As multiple objective problems can have numerous efficient points,

the collection of efficient points is known as the efficient frontier.

When solving multiple objective optimization models, the optimal solution

should be one of the efficient points on the efficient frontier. To determine which

efficient point on the efficient frontier is the optimal solution to a multiple ob-

jective problem, various ways of solving multiple objective problems are possible.

Each method has different advantages and disadvantages. Table 2.1 compares the

different multiple objective solution methods (based on Tamiz et al. (1998) and

Rardin (1998:384–400)).

In Table 2.1, note that GP is the acronym for Goal Programming. When

using GP to address multiple objectives in a problem, the model does not optimize

(maximize/minimize) the objective directly, it attempts to minimize the deviations

between desired goals and the realized results (Rifai, 1996). Goals are expressed

as equations (i.e. soft constraints) and a deficiency variable is assigned to each of

these; the aim is now to minimize the deficiency for each goal. This leads to the

following provisional objective function and soft constraints.

Table 2.1: Multiple objective optimization solution approach comparison

Approach Optimal solution efficient?

Pre-emptive Yes

Weighted sums of objectives Yes

Weighted deficiencies with GP No

Pre-emptive GP No

Pre-emptive GP with weighted deficiencies No

Modified GP Yes

Report all efficient solutions Yes

The pre-emptive approach solves the problem with the most important objec-

tive. Then it puts the first objective’s value into the model as a constraint and

solves for the second objective and then repeats this process. Consequently, the

disadvantages of this approach are:

Problem Classification 15

• It places too much emphasis on the first objective

• All the solutions obtained are alternative optima of the first stage solution

Reporting all feasible solutions will provide feasible solutions, but proves te-

dious in practice, as too much information needs to be reported and more involved

user intervention is required.

Given these disadvantages of pre-emptive and reporting all efficient point ap-

proaches, either weighted sums of objectives or modified GP should be used to

solve multiple objective problems. Although the weighted sums of objectives ap-

proach is mostly used (Choobineh et al., 2005), the final decision between these two

approaches depends on the specific application as some sources state that weighted

sums of objectives might work poorly for certain problems (Ehrgott, 2005:98).

2.1.3 Stochastic Elements

Most OR practitioners use average values of the processes they are modelling as

input values to their optimization models (Little and Hemmings, 1994; Chun-

feng et al., 1999; Linn and Zhang, 1999; Potts and Kovalyov, 2000; Chen and

Chao, 2004; Conradie and Joubert, 2004; Jansen and Mastrolilli, 2004; Swart,

2004; Choobineh et al., 2005; Bellabdaoui and Teghem, 2006). This approach

proves popular for two reasons:

1. In most OR courses, single deterministic input values are assumed to be

sufficient.

2. It is, in most cases, difficult to get hold of information (and even more

difficult to get reliable information) in practise. With this difficulty, the

“average value approach”1 proves valuable as it is the best information one

has about the system.

Although nearly all processes will exhibit some variability, the “average value

approach” often does prove to be sufficient if the variability of the process is of

1The mode of the distribution is also sometimes used as people familiar with the process are

often asked what the typical value would be.

Problem Classification 16

such a nature that the solutions suggested by the optimization model are still

practically executable or better than previously available solutions.

When one has knowledge about the distribution of the variable parameter, the

reliability of the “average value approach” solution can be calculated. This is

done using the suggested solution in conjunction with various realizations of the

parameter distribution. The percentage of instances where the suggested solution

is still feasible without requiring unplanned corrective actions (recourse), given the

different distribution realizations, is known as the reliability of the solution. The

reliability of solutions can be seen as a measure of feasibility, or the probability of

being feasible (Kall and Wallace, 1994:12,13).

The theoretical reliability of deterministic average value optimization models is

in the order of 25% and varies from application to application (Kall and Wallace,

1994:12). This indicates that working with deterministic estimates of the input

parameters could produce solutions that would not be fully executable in 75% of

cases (as recourse would be required).

One could use the worst case values of input parameters in optimization models.

This approach provides a solution that is rather safe, and is often referred to as

a “fat solution”, but that will be extremely costly in practical applications. This

approach also does not apply optimization over the variability of input parameters,

but sees them as hard constraints.

In some instances the inherent system variability has a major impact on the

type of solutions that would be feasible in practice and/or executable without

recourse (i.e. the reliability of deterministically determined solutions would be

low) (Ramesh and Cary, 1989; Suresh and Chaudhuri, 1993; Kall and Wallace,

1994; Birge and Louveaux, 1997; Sabuncuoglu and Bayõz, 2000; Aytug et al.,

2005; Joubert and Conradie, 2005; Morison, 2005; Philpott, 2006; Henrion, 2006;

Coetzer and Harmse, 2007). In these cases, extra time and effort should be spent to

gather enough information about the critical process so that a probability density

function can be used to consider variance in the model.

Simulation modelling is often used to determine what the effect of variability

will be on the current solutions or actions (Suresh and Chaudhuri, 1993; Little

and Hemmings, 1994; Sabuncuoglu and Bayõz, 2000). This impact of variability is

compared using alternatives supplied by the user. Although this process may prove

Problem Classification 17

valuable, the two-phase approach only considers variability; it does not specifically

include it in the alternative generation or optimization stage.

There are two approaches that can be used for optimization that considers the

variability of the input parameters in a single model.

Robust Optimization This approach is used when the varying parameter values

are only known within certain bounds (Philpott, 2006). The goal of robust

optimization is to find a solution that will be feasible for any realization

of the parameters in the given bounds, whilst trying to ensure that the

solution is close to optimal for all the different realizations. In a scheduling

environment this means that Robust Optimization focuses on “creating a

schedule which, when implemented, minimizes the effect of disruptions on

the primary performance measure of the schedule” (Aytug et al., 2005).

Stochastic Programming This is a modelling approach used to model opti-

mization problems that need to consider the effect of variability (Philpott,

2006). Practical optimization problems are most likely influenced by some

kind of uncertainty and in Stochastic Programming the known (or estimated)

probability density function is included in the optimization process; rather

than seeing it as a constraint, which would provide a “fat solution”.

To understand how Stochastic Programming maximizes the expectation of a

function of both the suggested decisions and the applicable probability distribu-

tions, the two different ways of implementing Stochastic Programming should be

considered.

Two-Stage Recourse Programming

Two-Stage Recourse Programming is the most popular Stochastic Programming

technique and is often referred to as the “classical Stochastic Programming mod-

elling paradigm” (Birge and Louveaux, 1997:155; Philpott, 2006).

In practice there is often the opportunity to take some corrective actions, or

recourse, when the effect of variability has become known (Sen and Higle, 1999:38).

For example, in a situation with variable productivity it might happen that not

enough units for an order have been produced in the planned production time,

Problem Classification 18

forcing the production facility to reactively start working overtime to finish order

production in time (i.e. they take recourse).

For different realizations of a distribution, different amounts of recourse may

be required (Birge and Louveaux, 1997:54). In the above example, if productivity

is high, no recourse would be required as production will be completed before

the order is due. Only a little recourse (i.e. overtime) will be required if the

productivity was slightly lower than planned. However, large amounts of overtime

will be required if productivity happens to be much lower than expected. As each

realization of a distribution has a different probability of occurring, the probability

of the amount of recourse required for different realizations is known.

When using recourse one ensures that, given any combination of the applicable

distributions’ realizations, the provided solution is feasible. However, recourse

programming requires the costs of recourse (compensating decisions) to be known

(Henrion, 2006), as recourse programming typically minimizes the sum of total

first-stage costs and the cost of the expected recourse (Kall and Wallace, 1994:10;

Birge and Louveaux, 1997:155).

When continuous probability functions are used, the problem becomes large

and non-linear (i.e. difficult to solve). Therefore, the distributions are approxi-

mated by their discrete counterparts. Given these discrete approximations, Kall

and Wallace (1994:31) show that recourse programs are convex under mild as-

sumptions (i.e. easier to solve than the continuous non-linear models).

Chance Constrained Programming

In Chance Constrained Programming (CCP), also known as Probabilistic Con-

strained Programming, a certain probability of the optimal solution being feasible

(reliability level) for all distribution realizations is achieved, rather than achieving

feasibility for all realizations as in stochastic recourse programming (Birge and

Louveaux, 1997:103; Sen and Higle, 1999:46; Philpott, 2006).

Chance Constrained Programming uses an approach where a solution is seen

as feasible (in a CCP stochastic sense) when the solution is feasible with a high

probability and only a low percentage of distribution realizations cause the solution

to be infeasible (lead to constraint violations) (Henrion, 2006). This approach

is based on the fact that it is almost impossible to plan for unexpected extreme

Solution Approaches 19

situations; especially since the solution would be extremely expensive (have a poor

objective function value).

CCP is often useful when only a certain level of adherence to a certain con-

straint is required (Sen and Higle, 1999) or when one needs to ensure that con-

straint violations do not occur too frequently (Birge and Louveaux, 1997:35). For

instance, when a target of satisfying 95% of customer demand is enough to main-

tain the customer base (Kall and Wallace, 1994:14).

Method Comparison

Recourse models transform the variability into an expected parameter, but CCP

“deal[s] more explicitly with the distribution itself” (Kall and Wallace, 1994:xi).

Consequently, CCP models might be more difficult to solve, but they deal with

more of the information contained in the probability distribution.

In practice, neither method is “better” or more valid than the other (Kall

and Wallace, 1994:xi). The method that is most appropriate is therefore solely

dependent on the application itself.

Now that the complexities of modelling scheduling practical problems have

been reviewed, the next section investigates how one can go about solving these

practical problems.

2.2 Solution Approaches

Due to the nature of scheduling problems, many scheduling problems require the

use of a large number of integer and/or binary variables, making these problems

more difficult to solve. It is consequently important to also consider the solution

approach to be used for scheduling models. The different schools of thought with

regard to the solution of scheduling problems can be categorized based on the level

of optimality that the solution method attempts to achieve. These categories are

as follows:

Focus on optimality The typical Operations Research approach used in schedul-

ing is to apply exact optimization techniques to optimally solve scheduling

problems. This approach should be used when the size of the scheduling

Solution Approaches 20

model and the number of integer variables enable one to solve the model op-

timally within the time limit provided by the specific practical application.

Conradie and Joubert (2004) and Joubert and Conradie (2005) successfully

applied this approach to practical problems, whilst Bellabdaoui and Teghem

(2006) successfully applied this approach to a simplified practical problem.

Swart (2004) and Coetzer and Harmse (2007) could not successfully apply

this approach to the practical problems they attempted to solve.

Focus on feasibility Even simple scheduling problems, such as problems that

assign various tasks on identical parallel machines, are known to be NP-hard

problems (Jansen and Mastrolilli, 2004). Given this complexity of scheduling

models, the notion of focussing on feasibility rather than optimality when

solving these problems has proven to be “very fruitful”. As approximation

algorithms ensure feasibility, but not necessarily optimality, they are often

used to perform optimization in scheduling environments in an acceptably

short time. As most scheduling problems need to be solved in an operational

environment, the short time allowed for problem solution also supports the

use of approximation techniques.

The following two sections deal with exact solution methods (which focuses on

optimality) and approximation techniques (which focuses on feasibility), respec-

tively.

2.2.1 Exact Solution Approaches

Allahverdi et al. (2006) reviewed 227 scheduling articles relating to different types

of machine-type scheduling problems. The most popular exact solution method ap-

plied is the branch-and-bound algorithm (42% of the articles). However, Winston

(1994:526) states that this technique requires large amounts of computer time. In

operational scheduling problems one does not have large amounts of time available

for problem solution and consequently practical scheduling models are often not

solved using branch-and-bound. For a detailed discussion on branch-and-bound as

well as branch-and-cut as applied in mixed integer scheduling or planning models,

the reader is referred to Pochet and Wolsey (2006).

Solution Approaches 21

Dynamic Programming was applied in 20% of cases. The problems where

Dynamic Programming were applied are the simpler scheduling problems. One

should also be aware that the size of the Dynamic Programme drastically increases

as model size increases. This attribute causes Dynamic Programming to be too

computationally expensive for problems of moderate size and complexity (Winston,

1994:1041; Winston and Venkataramanan, 2003:785,797); and is known as the

“curse of dimensionality” (Goldberg, 1989:5; Taha, 2003:425).

A total of 33% of the problems used unspecified exact mathematical program-

ming solution methods, whilst 5% of cases were solved using other miscellaneous

solution techniques.

The various articles reviewed by Allahverdi et al. (2006) also include approxi-

mation approaches. Their findings, with regard to solution methods, can be sum-

marized as follows in Table 2.2.

Table 2.2: Solution approaches of scheduling problems

Scheduling problem Exact Approximation % exact

Single machine non-batch setup time 7 12 36.8%

Single machine batch setup time 29 14 67.4%

Parallel machines non-batch setup time 7 25 21.9%

Parallel machines batch setup time 6 19 24.0%

Flow shop non-batch setup time 15 43 25.9%

Flow shop batch setup time 5 16 23.8%

Open shop 0 3 0.0%

Job shop 5 12 29.4%

Table 2.2 lists the studied scheduling problems in increasing order of complex-

ity. As complexity increases, exact solution approaches are used in fewer applica-

tions. One may therefore conclude that, in the scheduling environment, approxi-

mation approaches are mostly used when model complexity increases beyond that

of simple theoretical problem instances.

Scheduling problems often exhibit multiple-objectives, which makes the prob-

Solution Approaches 22

lem more difficult to solve. This also supports the reason why so many applications

use approximation solution techniques. Solving stochastic programming models

also requires more effort than solving deterministic models. Stochastic models are

consequently often solved using approximation approaches.

2.2.2 Approximation Techniques

When using approximation techniques to solve a problem, one estimates the op-

timal solution by using efficient heuristic rules to attempt to produce a solution

that is close to the global optimal solution.

The various different types of approximation techniques are now reviewed.

Heuristics

Various complicated models are solved with heuristics. Winston (1994:526) defines

a heuristic as a method to solve a problem by trail and error when an algorithmic

approach is impractical. Goldberg (1989:2) claims that heuristics can be divided

into three categories. The first two categories are classified as follows (Conradie,

2004:24-25):

Calculus-based These methods have been studied in depth. This class of heuris-

tics finds local optima by moving in the direction which has the steepest

increase in objective function values. Problems with a single peak are easily

solved by the “hill climbing” approach of calculus-based methods. A major

problem with calculus-based methods is that they tend to “get stuck” at

local optima instead of finding the global optimal solution. These methods

would find any one of the peaks as its solution, not necessarily the highest

peak. The peak that will be produced as the heuristic’s answer depends on

where the search started, i.e. the initial solution provided to the heuristic.

Enumerative Here the objective function value of each and every point in the

solution space is analyzed. The highest value is then produced as the global

optimal answer, as this method considers all solution points and consequently

cannot “get stuck” at local optima. The problem with this method is its lack

of efficiency due to the enormous amount of computations that need to be

Solution Approaches 23

done. Even for moderate size problems, this approach loses its possibility for

practical application.

An additional category employs intelligent random-based techniques to search

the solution space to avoid getting stuck at local optimal solutions. These methods

are referred to as metaheuristics, which can be defined as “master strategies which

uses intelligent decision making techniques to guide algorithms to find global opti-

mal solutions” (Conradie, 2004:26); by allowing the algorithm to move to solutions

that will temporarily decrease the objective function to ensure that the algorithm

does not converge to local optimal solutions.

A short review of each of the most popular metaheuristics is given below.

Tabu Search

Winston and Venkataramanan (2003:815) state that Tabu Search (TS) is a meta-

heuristic procedure based on intelligent decision making strategies. Intelligent

decision making emulates the rules that humans use in daily decision making.

The Tabu Search algorithm temporarily forbids moves that would generate

recently visited solutions. It is therefore a memory-based search algorithm as it

keeps a Tabu list of certain forbidden moves in the solution space. This Tabu

list prevents cycling between possible solutions and helps to find global optima

by moving away from local optimal solutions (Rardin, 1998:687–688). To ensure

that TS finds high-quality solutions, aspiration criteria are defined to override the

Tabu list as required. An aspiration criterion evaluates the quality of possible

moves in the solution space and is consequently used to guide moves made by the

TS metaheuristic.

To find good solutions, TS is highly dependent on the quality of initial solu-

tions (Chunfeng et al., 1999; Van Breedman, 2001; Chen and Chao, 2004). TS

has previously been successfully applied in various situations to arrive at good

approximate solutions.

Simulated Annealing

Simulated Annealing (SA) is rooted in the resemblance between the physical an-

nealing of solids (formation of crystals) and combinatorial optimization problems

Solution Approaches 24

(Morison, 2005:41). In the physical annealing process a solid is first melted and

then cooled very slowly going through an array of temperatures, spending a large

amount of time at low temperatures, to finally obtain a lattice structure that

corresponds to the lowest energy state (Busetti, 2005).

In the annealing process, the temperature of the metal is firstly increased and

then gradually reduced. Increasing the temperature randomly scatters atoms by

breaking down the atomic matrix structure of the atoms. With randomly posi-

tioned atoms, the metal is at its highest energy state. By lowering the temperature

of the metal, the atoms gradually settle down into a certain stronger matrix-like

order (Rardin, 1998:690). The “better” the order in which the atoms settle, the

lower the energy state of the metal will be. By reducing a metal’s energy state,

its yield strength is increased.

The optimality of a solution is analogous to the energy state of the metal. With

the temperature of the metal used as the objective function value, the temperature

of the metal is gradually reduced at each stage of the heuristic. The temperature

reductions cause SA to randomly search for better solutions in the current solu-

tion’s surroundings (Winston and Venkataramanan, 2003:805). Possible solutions

are represented by the order in which atoms settle. This order is tested to deter-

mine whether its associated energy state (i.e. level of optimality) is lower than

others. The energy levels of solutions are determined by a formula referred to as

Boltzmann’s function.

According to Michalewicz (1992:16), SA eliminates most of the disadvantages

of hill-climbing solution methods in that:

• SA is not highly dependent on the quality of initial solutions (unlike TS).

• Solutions found by SA are usually closer to the global optimal solution.

Genetic Algorithms

Living organisms adapt to their changing environments through biological evolu-

tion. These organisms have chromosomes that contain their genetic information

(with each chromosome consisting of various genes). The way in which the genes

are ordered and re-ordered within chromosomes is seen as a key factor in the sur-

vival of the species of organisms (Winston and Venkataramanan, 2003:808). The

Solution Approaches 25

natural phenomenon of survival of the fittest and natural selection also play an

important part in the successful evolution of organisms.

These concepts are used by Genetic Algorithms (GA) to solve optimization

problems. Holland (1975) initiated the ground breaking work in the field of GAs by

applying the principles of a population of chromosomes, mating based on natural

selection, production of offspring by applying crossover to the parent chromosomes,

mutation (genetic errors to ensure diversity) and survival of the fittest Goldberg

(1989:1–2).

The first step in solving optimization problems using GAs is to find a way

to represent a possible solution in a constant length chromosome string. When

this representation has been determined, the following steps are followed to search

for a good approximate global optimal solution (Winston and Venkataramanan,

2003:809):

Generation Randomly generate various chromosomes to form the initial popu-

lation (generation 1).

Evaluation Determine the fitness (objective function) of each chromosome.

Selection Choose parents from the population for mating. Ensure that the fittest

chromosomes have the highest probability of being selected.

Reproduction Combine the chromosomes of the parents, using crossover, so that

offspring chromosomes are created (each offspring consisting of some parts

from both parents).

Mutation After crossover has been applied, some chromosome genes are ran-

domly altered.

Repeat The Evaluation to Mutation steps are then repeated for a predetermined

number of generations.

GAs, based on the above mentioned principles, have been successfully ap-

plied to scheduling, routing and various other combinatorial optimization problems

(Michalewicz, 1992:15). Additional theoretical proof of GA’s good performance is

provided by the Schemata Theorem and the Minimum Deceptive Problem (MDP),

as set out by Goldberg (1989:27-57).

Solution Approaches 26

The Schemata Theorem provides mathematical proof that GAs are powerful

tools when used to solve optimisation problems by tracking how key parts in the

chromosome will be affected by the GA operators. It proves that short parts of

the chromosome that represent good objective function values will be used in ex-

ponentially increasing fashion in the following generations of a Genetic Algorithm.

To support this mathematical proof, Goldberg (1989:46) formulated problems

which are designed to deceive GAs so that they may not converge to the global

optimal solution. The smallest problems than can deceive GAs are referred to as

minimal deceptive problems (MDP). Goldberg (1989:54) found that GAs are often

not deceived by the MDP.

Having reviewed possible solution approaches for practical problems, the fol-

lowing section shows how the most appropriate solution approach for the coal

handling scheduling model is chosen.

Chapter 3

Choosing a Solution Approach

This section discusses the methodology applied to determine which solution method

should be used to solve the Sasol Coal Handling Facility (CHF) scheduling prob-

lem. It starts with an overview of a method that failed to solve the complex coal

handling scheduling model and then moves on to find an approach that will be

able to solve the problem. The chosen method must be able to solve the problem

within two minutes, as this is the longest time that the control operator can afford

to wait for a new schedule whilst performing his/her operational duties.

3.1 Exact Solution Attempts of the Problem

The original objective of the first CHF scheduling model was to optimize daily

operations by solving a Mixed Integer Non-Linear Programme (MINLP) scheduling

model using continuous time points.

Continuous time points were chosen after a detailed study (Swart, 2004) in-

dicated that, in this environment, deterministic time point models provide much

worse objective function values than continuous time point models.

Swart (2004) developed an MINLP model for the coal scheduling problem with

unit specific continuous time points. However, the model did not solve within 72

hours in an operational scheduling environment where solution times should be

less than two minutes. The model was solved using GAMS 21.1 with the Dicopt

solver (which uses Conopt as a Non-Linear Programme (NLP) solver and Cplex

9.0 as the Mixed Integer Programme (MIP) solver).

27

Simplified Model 28

Thereafter the model was improved by using Special Ordered Sets of Type 1

(SOS1) variables. The SOS1 variables reduce the number of binary variables in

the model. Restructuring of the continuous time and duration constraints was also

done to further simplify the model.

The non-linear equations were linearized using approximate linearization tech-

niques. The approximate linear model is solved first. The solution to this model

then acts as the starting point for the proper non-linear model.

After reducing the scheduling horizon to 4 hours and not considering all the

CHF infrastructure complexities, the model solved within two minutes. Although

this solution time might be acceptable in practice, the too short scheduling horizon

and simplifying assumptions make the model impractical.

Swart (2004) concludes that the “unit specific event based MINLP continuous

time formulation method . . . is not robust enough to be applied to an operational

industrial sized scheduling model such as the CHF problem”.

The candidate and Marinda Swart (see Swart (2004)) attempted to make the

MINLP model both practical and solvable by restructuring various constraints.

This process did not achieve significantly better results.

Further attempts to develop a practical model were made by splitting the

scheduling model into daily and shiftly scheduling models. The overall daily sched-

ule is fed to the shiftly scheduler which then performs the actual detailed schedul-

ing. However, neither of these two smaller models solved. The candidate developed

the detail shiftly scheduling model and improved it to use a 24 hour scheduling

horizon. It is found that the highly binary constraints in the model cause the

solution time escalation, even before the non-linear constraints are added to the

model.

Given these unsuccessful exact solution attempts, the next section deals with

the selection of an alterative solution approach.

3.2 Simplified Model

To be able to compare the various solution methods with each other, a simplified

version of the full-scale problem is formulated1. The characteristics of the coal

1Sections 3.2 through 3.5 represent joint work with Leilani E. Morison.

Simplified Model 29

handling scheduling environment is included in the simplified model to ensure

that the simplified model is representative of the full-scale problem. The candidate

also suggests that the major shortcomings of the previous exact solution models

should be included in the simplified model to ensure that the methods used to

address these shortcomings will not cause erratic behaviour and adversely influence

algorithm performance (after a solution method has been chosen based on an

unrepresentative simplified model).

Consequently, the major shortcomings of the previous model are identified.

Operational rules Including all the operational philosophies and infrastructure

constraints into the model makes the model unsolvable using exact solution

methods.

Multiple objectives The previous exact model simply added the different con-

flicting objectives in the objective function. As this does not ensure that the

solution is an efficient point, a different method of addressing the multiple

objectives should be considered.

Stochasticity The previous formulation of the model does not enable one to

consider the entire distribution of input variables when solving the model,

but only an average value or point estimate.

To address the first issue in the simplified model (not in the full-scale model),

the following simplifying assumption is made to ensure that the model will be

optimally solvable and still be fairly representative of the actual case:

Each of the yards is seen as a tank and consequently the model does

not include stockpiles on yards or stacker-reclaimer heap logic2 (this as-

sumption is also made in the operational weekly blend planning model).

Given this assumption, the Mixed Integer Programme (MIP) for the simplified

version of the coal scheduling problem without stochastic demand is formulated

as follows, with:

2Discussed in Section 4.5.2

Simplified Model 30

Input parameters:

capm = Capacity of bunker m, where m ∈ {1, . . . , 6}
finesm = Fraction of fines for mine m, where m ∈ {1, . . . , 6}
ashm = Fraction of ash for mine m, where m ∈ {1, . . . , 6}
trcapm = Trajectory capacity of mine m, where m ∈ {1, . . . , 6}
prodmt = The production of mine m in time t, where m ∈ {1, . . . , 6}

and t ∈ {1, . . . , 24}
lsm = Starting level for bunker m, where m ∈ {1, . . . , 6}
ysy = The starting stock level of yard y, where y ∈ {1, . . . , 6}

Decision variables:
xymt , Tons from mine m to yard y in time period t,

where m ∈ {1, . . . , 6}, y ∈ {1, . . . , 6} and t ∈ {1, . . . , 24}
lmt , Bunker level of bunker m at time t, where m ∈ {1, . . . , 6}

and t ∈ {1, . . . , 24}
tomt , Throw-outs for mine m, in time t, where m ∈ {1, . . . , 6}

and t ∈ {1, . . . , 24}
lbmt , Load-backs for mine m in period t, where m ∈ {1, . . . , 6}

and t ∈ {1, . . . , 24}
otonsmt , Tons outside bunker m at the end of period t, where

m ∈ {1, . . . , 6} and t ∈ {1, . . . , 24}
reclyt , Tons reclaimed from yard y in time t,

where y ∈ {1, . . . , 6} and t ∈ {1, . . . , 24}

activeymt ,


1 if coal from mine m is moved to yard y in period t,

where m ∈ {1, . . . , 6}, y ∈ {1, . . . , 6} and t ∈ {1, . . . , 24}

0 otherwise

isreclyt ,


1 if coal is being reclaimed from yard y in period t,

where y ∈ {1, . . . , 6} and t ∈ {1, . . . , 24}

0 otherwise

Simplified Model 31

Model:

Maximize
6∑
y=1

6∑
m=1

24∑
t=1

xymt (3.1)

Minimize
6∑

m=1

24∑
t=1

otonsmt (3.2)

Maximize
6∑

m=1

24∑
t=1

xymt ∀y ∈ {1, . . . , 6} (3.3)

Minimize
6∑

m=1

24∑
t=1

xymt × ashm ∀y ∈ {1, . . . , 6} (3.4)

Minimize
6∑

m=1

24∑
t=1

xymt × finesm ∀y ∈ {1, . . . , 6} (3.5)

Subject to:

lm,t−1 + prodmt − tomt + lbmt −
6∑
y=1

xymt = lmt ∀m ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.6)

lm0 = lsm ∀m ∈ {1, . . . , 6} (3.7)

otonsmt = otonsm,t−1 + tomt − lbmt ∀m ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}
(3.8)

lmt ≤ capm ∀t ∈ {1, . . . , 24} (3.9)

6∑
y=1

xymt ≤ trcapm ∀m ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.10)

6∑
m=1

xymt ≤ 1, 800 ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.11)

6∑
m=3

3∑
y=1

xymt ≤ 1, 800 ∀t ∈ {1, . . . , 24} (3.12)

2∑
m=1

6∑
y=4

xymt ≤ 1, 800 ∀t ∈ {1, . . . , 24} (3.13)

Simplified Model 32

xymt ≤ 1, 000activeymt ∀y ∈ {1, . . . , 6}, m ∈ {1, . . . , 6},

t ∈ {1, . . . , 24} (3.14)

6∑
y=1

activeymt ≤ 1 ∀m ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.15)

6∑
m=1

activeymt ≤ 1 ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.16)

3∑
y=1

24∑
t=1

reclyt = demand1 (3.17)

6∑
y=4

24∑
t=1

reclyt = demand2 (3.18)

reclyt ≤
t−1∑
u=1

6∑
m

xymu + 0.1ysy −
t−1∑
u=1

reclyu ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}

(3.19)

reclyt ≤ 1, 800 ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}
(3.20)

reclyt ≤ 10, 000isreclyt ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}
(3.21)

3∑
y=1

isreclyt ≥ 2 ∀t ∈ {1, . . . , 24} (3.22)

6∑
y=4

isreclyt ≥ 2 ∀t ∈ {1, . . . , 24} (3.23)

activeymt, isreclyt = {0, 1} ∀y ∈ {1, . . . , 6}, m ∈ {1, . . . , 6},

t ∈ {1, . . . , 24} (3.24)

xymt ≥ 0 ∀y ∈ {1, . . . , 6}, m ∈ {1, . . . , 6},

t ∈ {1, . . . , 24} (3.25)

lmt, tomt, lbmt, otonsmt ≥ 0 ∀m ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}
(3.26)

reclyt ≥ 0 ∀y ∈ {1, . . . , 6}, t ∈ {1, . . . , 24}
(3.27)

Simplified Model 33

The multiple objectives of the model are given in (3.1) through (3.5). Objective

function (3.1) aims to maximize the sum total of all coal stacked on all the yards

from all the mines in all time periods. This will ensure that coal is not left in the

mine bunkers, but is moved to the coal handling facility. The amount of excess

tons produced which is not moved to the stockpiles and for which there is no space

in the mine’s bunker, that will need to be thrown-out at the mine bunkers, are

minimized in function (3.2). The third objective function, (3.3), ensures that coal

is stacked to every yard in near equal quantities to ensure a stock balance between

the two parts of the coal handling facility. Finally, to meet blend requirements,

ash content (3.4) and fines content (3.5) need to be minimized. This will improve

the gasification efficiency of the coal moved to the factory.

Equation (3.6) is responsible for the material balance throughout all of the

time periods. It determines new bunker levels (for each time period) based on

load-backs from outside stock piles, throw-outs to outside stockpiles as well as

mine production and the quantity that is extracted and stacked from the mine

bunker to any of the yards. In (3.7) the bunker levels in period 0 are set equal to

the starting bunker levels. Equation (3.8) represents the material balance of coal

lying outside each of the mine bunkers, by considering the previous amount of coal

outside the bunker, coal thrown out of the bunker in the current period and coal

loaded back into the bunker during the current period. Constraint (3.9) enforces

the bunker capacity for each mine.

Constraint (3.10) ensures mine conveyor capacity for each mine to all possible

yards. The stacker on each yard has a maximum stacking capacity for hour t, this

stacking capacity is enforced by constraint (3.11). Additionally, (3.12) and (3.13)

enforce conveyor capacity on all coal from mines on side 2 going to side 1’s yards

and all side 1 mines going to side 2’s yards, as only two conveyors are utilized

specifically for this cross stacking.

Equation (3.14) ensures that if any coal is stacked from mine m to yard y

during period t, the isactiveymt variable takes on the value of 1. Using equation

(3.15) it is ensured that coal from a mine cannot be stacked on more than one

yard in a time period. Furthermore (3.16) ensures that only one mine can stack

on a specific yard in any time period.

Equations (3.17) and (3.18) imply that enough coal needs to be reclaimed to

Simplified Model 34

cover an assumed deterministic demand. Constraint (3.19) enforces that only coal

that is actually available (i.e. has previously been stacked on a yard) can be

reclaimed; assuming that only 10% of starting inventory may be reclaimed in any

period. Equation (3.20) further ensures that reclaiming capacity is not violated

for any yard.

Constraint (3.21) ensures that if any reclaiming takes place from any yard y in

a time period t, the variable isreclyt takes on the value of 1. Equations (3.22) and

(3.23) ensure that two or more reclaimers are assigned as active to both side 1 and

side 2. Equations (3.24) through (3.27) define variable types and boundaries.

Although this simplified model shows correspondence to some scheduling prob-

lems investigated in literature (Brucker, 2004; Pochet and Wolsey, 2006), the full-

scale model has very little representation to studied problems as it combines an

extremely complex scheduling problem in a unique setting with batch sizing or lot

sizing (Potts and Kovalyov, 2000; Brucker, 2004; Pochet and Wolsey, 2006) and

blending problems often seen in refineries (Ierapetritou and Floudas, 1998; Jia and

Ierapetritou, 2004; Méndez et al., 2006).

3.2.1 Incorporating Multiple Objectives

MIP’s deal with solving problems based on the optimization of a single objective,

subject to several constraints. Although MIP is used widely in decision-making

processes, it has a major limitation which restricts the users of the technique to

narrowing their problems to a single objective function (Ramesh and Cary, 1989;

Rifai, 1996).

In many modern day optimization problems it becomes difficult to maximize

a well defined utility function as many conflicting interests cannot be reduced to

a common scale of cost or benefit (Rardin, 1998:373). It is thus conjectured that

within this complex decision making environment the aim is rather to attempt to

achieve a set of pre-established targets (or goals) (Tamiz et al., 1998).

To deal with the different objectives as identified for the coal scheduling prob-

lem, Goal Programming (GP) is proposed. GP is an extension of the MIP and

is the preferred method as it reduces complex multiple objective trade-offs to a

standard single objective program (Rardin, 1998:390).

Simplified Model 35

The GP model does not optimize (maximize/minimize) the objective directly,

it attempts to minimize the deviations between desired goals and the realized re-

sults (Rifai, 1996). Goals are expressed as equations (i.e. soft constraints) and

a deficiency variable is assigned to each of these; the aim is now to minimize the

deficiency for each goal. This leads to the following provisional objective function

and soft constraints.

Additional input parameters:

γi = Weight for objective function i, where i ∈ {1, . . . , 5}

Additional variables:
di , Deficiency of goal i, where i ∈ {1, 2}
sdy , Deficiency of stacking goal per yard y, where y ∈ {1, . . . , 6}
ady , Deficiency of ash goal per yard y, where y ∈ {1, . . . , 6}
fdy , Deficiency of fines goal per yard y, where y ∈ {1, . . . , 6}

Multiple-objective model:

Minimize
2∑
i=1

γidi +
6∑
y=1

[
γ3sdy + γ4ady + γ5fdy

]
(3.28)

Additional constraints:

6∑
y=1

6∑
m=1

24∑
t=1

xymt + d1 ≥ 120, 000 (3.29)

6∑
m=1

24∑
t=1

otonsmt − d2 ≤ 0 (3.30)

6∑
m=1

24∑
t=1

xymt + sdy ≥
6∑
y=1

6∑
m=1

24∑
t=1

xymt/6.5 ∀y ∈ {1, . . . , 6} (3.31)

6∑
m=1

24∑
t=1

xymt × ashm − ady ≤ 5, 833 ∀y ∈ {1, . . . , 6} (3.32)

6∑
m=1

24∑
t=1

xymt × finesm − fdy ≤ 5, 833 ∀y ∈ {1, . . . , 6} (3.33)

Objective function (3.28) minimizes the deficiency between the goals for each

of the objectives and their realized values. The goal values used are actual values

Simplified Model 36

based on service agreements in the coal scheduling environment. Each of the

constraints calculates the difference between the realized value and the goal set for

each of the multiple objectives.

The following expression, which includes a small fraction of the sum of the

original objectives, must be added to the objective function value to ensure that

an efficient solution is obtained. The small fraction is chosen small enough that,

for the expression added does not significantly impact on the overall objective

function values.

0.0001

[6∑
y=1

6∑
m=1

24∑
t=1

xymt +
6∑
y=1

24∑
t=1

xymt −
6∑
y=1

6∑
m=1

24∑
t=1

xymt × ashm

−
6∑
y=1

6∑
m=1

24∑
t=1

xymt × finesm −
6∑

m=1

24∑
t=1

otonsmt

]
(3.34)

3.2.2 Incorporating Stochastic Elements

Because varying factory demand has a major influence in the upstream operations

of Sasol’s Coal Value Chain (CVC), the only stochastic variables in the simplified

model are the daily tons consumed by each of the factories.

The Two-Stage Recourse Programming technique is used as it is perfectly ap-

plicable in this environment as corrective actions can be taken after the extent

of the uncertainty is known (Joubert and Conradie, 2005). When the planned

schedule does not send enough coal to one of the factories to meet its demand, the

coal handling business (CHF) needs to take recourse. This means that CHF will

have to load coal back from its strategic inventory sources (dead stockpiles) onto

the conveyor belts going to the factory, which needs more tons than was planned

for in the original schedule. However, this process requires the use of earthmoving

equipment known as Front End Loaders (FELs) which represent additional costs.

The loading back process also generates additional fine coal, which has a negative

effect on both coal processing and gasification.

The coal scheduling problem can be characterized by two stages. The first

stage being the extraction, stacking and reclaiming of coal to and from normal

stockpiles. The second stage is concerned with the corrective action (recourse)

taken to compensate for uncertain customer demand. Corrective action takes the

Simplified Model 37

form of additional load in from “dead” or strategic stockpiles, as discussed earlier.

It is therefore necessary to appropriately model both first stage and possible

second stage actions to provide a robust coal handling schedule. To model the

stochastic nature of demand, equations (3.17) and (3.18) are expanded to (3.35)

and (3.36):

Stochastic input parameters:

ϑj = Stochastic demand for coal at plant j, denoted by ζ̃j,

where j ∈ {1, 2}
R = Number of demand realizations for both plants

ζ1r = Realization r of ζ̃1 at plant 1, where r ∈ {1, . . . , R}
ζ2s = Realization s of ζ̃2 at plant 2, where s ∈ {1, . . . , R}
p1r = Probability of realization r at plant 1, where r ∈ {1, . . . , R}
p2s = Probability of realization s at plant 2, where s ∈ {1, . . . , R}

Stochastic decision variables:

dead1r , Dead stock loaded back as recourse for realization r at

plant 1, where and r ∈ {1, . . . , R}
dead2s , Dead stock loaded back as recourse for realization s at

plant 2, where and s ∈ {1, . . . , R}

Adapted constraints:

3∑
y=1

24∑
t=1

reclyt + dead1r ≥ ζ1r ∀r ∈ {1, . . . , R} (3.35)

6∑
y=4

24∑
t=1

reclyt + dead2s ≥ ζ2s ∀s ∈ {1, . . . , R} (3.36)

Equations (3.35) and (3.36) ensure that every realization of plant demand is met

by either reclaiming from normal, or a combination of normal and dead stockpiles.

Possible reclaiming from dead stockpiles is included in the GP objective function

Simplified Model 38

as follows.

Minimize
2∑
i=1

γidi +
6∑
y=1

[
γ3sdy + γ4ady + γ5fdy+

]

− 0.0001

[6∑
y=1

6∑
m=1

24∑
t=1

xymt +
6∑
y=1

24∑
t=1

xymt −
6∑
y=1

6∑
m=1

24∑
t=1

xymtashm

−
6∑
y=1

6∑
m=1

24∑
t=1

xymtfinesm −
6∑

m=1

24∑
t=1

otonsmt

]

+ 100
R∑
r=1

R∑
s=1

p1r × p2s

[
dead1r + dead2s

]
(3.37)

The third part of (3.37) represents the expected reclaiming value from dead

stockpiles with respect to the distributions of ζ̃j.

The distributions of the random demand variables seen in practise for the two

factories are given in Table 3.1, using notation based on Kelton et al. (2002:585-

598), with N(µ;σ) a Normal distribution (with mean µ and standard deviation σ)

and W (α; β) a Weibull distribution (with shape parameter α and scale parameter

β). These are the distributions that provides the best fit to the actual factory

demand data when represented in histogram format.

Table 3.1: Simplified case demand distributions

Factory j Variable Distribution

Side 1 1 ζ̃1 N(57, 100; 1, 200)

Side 2 2 ζ̃2 51, 100 +W (1.84; 2, 860)

These distributions can be approximated by discrete distributions such that

{(ζ1r, p1r), r = 1, ..., R}, with p1r > 0, and {(ζ2s, p2s), s = 1, ..., R}, with p2s > 0.

To minimize distribution approximation errors, the number of subintervals (R)

should be as large as possible, considering that computational workload drastically

increases with the number of subintervals (Kall and Wallace, 1994:13). A relatively

large R = 15 provides an acceptable compromise in this instance.

Samples are generated for each distribution of the demand parameters ζµj , for

all factories j = {1, 2} and µ = {1, 2, ..., K}, with the sample size K = 10, 000.

Exact Solution as a Benchmark 39

Each distribution sample is partitioned into 15 equidistant subintervals. For each

of these subintervals an arithmetic mean ζ1r and ζ2s is calculated for the sample

values ζµ1 and ζµ2 , respectively, in a particular sub-interval. This arithmetic mean

provides an estimate for the conditional expectation of ζj for factory j (Joubert

and Conradie, 2005).

For each of the subintervals the relative frequency (probability), p1r for ζ1r or

p2s for ζ2s is calculated using

p1r =
k1r

K
, r ∈ {1, ..., R} or p2s =

k2s

K
, s ∈ {1, ..., R} (3.38)

where k1r and k2s denotes the number of values for ζ1r and ζ2s, contained in

the associated subinterval, respectively. These relative frequencies provide the

probability that a specific instance of demand will realize. A specific demand

instance is given by the arithmetic mean of a sub-interval.

3.3 Exact Solution as a Benchmark

The simplified model is solved with GAMS using the Cplex 9.0 solver within 4

seconds with an Intel Centrino 1.86GHz processor with 1GB of RAM. As the

model is a simplified instance of the generic problem, the short solution time is

expected to increase dramatically in the actual practical model.

The reliability of the schedule based on stochastic demand is compared with the

reliability of the deterministic model. Both deterministic and stochastic schedules

are compared against randomly generated demands (based on the demand dis-

tributions given in Table 3.1) to determine if recourse is necessary. The average

number of times that recourse occurs when testing each of the schedules against

the generated demands is calculated. The deterministic schedule, although pro-

ducing a smaller objective function value, has a reliability of only 49.86%, whilst

the proposed stochastic schedule yields a reliability of 91.09%. The increased reli-

ability will eventually negate the smaller objective function value since less crisis

management (i.e. recourse) will be required and this will consequently produce a

lower actual “cost”.

Although the simplified case study solves optimally in a reasonable time, the

aim of this simplified model is to provide a generic platform for large-scale multi-

Approximate Solution Evaluation 40

objective, stochastic scheduling in the real-life industrial environment. With this

in mind solution techniques for larger applications are investigated.

3.4 Approximate Solution Evaluation

The model solved using exact optimization is now solved with three metaheuristic

algorithms. This enables one to compare both solution quality and execution times

in the coal handling scheduling environment.

3.4.1 Simulated Annealing

The SA principles applied to solve simplified model are discussed below:

Neighbourhood The neighbourhood is split into two parts. The first is for stack-

ing and is thus a m × y × t matrix of tonnages to indicate how many tons

is stacked from mine m to yard y in period t. In this case m = {1, ..., 6},
y = {1, ..., 6} and t = {1, ..., 24}. The second part is for reclaiming and is

thus a y × t matrix of tons, where y = {1, ..., 6} and t = {1, ..., 24}, to be

reclaimed from yard y in period t. A value in either matrix is increased or

decreased (with an equal probability) with a specific amount of tons. The

specific amount is the step size, which is an input parameter and is chosen

as 1,000.

Stepping If a tentative move to a random neighbour has been made, the SA

always accepts that neighbour if it has a better objective function value.

However, the SA will also accept a neighbour with a worse objective function

value than the current solution with a probability of p = e
δ

τ(t) , where δ is

the change in objective function value (will be negative for worsening moves)

and τ(t) is the current temperature at iteration t.

Initial temperature An initial temperature of 500 gives the best results for this

specific case.

Temperature reduction The temperature is slowly reduced by t(i+1) = t(i)−
0.5

(
τ(t)
tmax

)
, where t is the current iteration number, τ(t) is the temperature

for iteration t and tmax is the iteration limit (1,000 in the case study).

Approximate Solution Evaluation 41

Ensuring feasibility The SA is only allowed to consider moves that are feasible.

Feasibility is consequently tested for when the SA wants to move to a specific

neighbour.

3.4.2 Tabu Search

The Tabu Search (TS) metaheuristic uses the same neighbourhood representation

as the SA metaheuristic. The TS also uses most of the SA logic. The differences

between the applied TS and the SA are summarized below:

• No temperatures or temperature reductions are included in the TS.

• Each iteration of TS chooses the best of all the immediate surrounding so-

lutions (neighbours).

• The TS metaheuristic is not allowed to move back to recently visited solu-

tions. These forbidden moves represents the Tabu List. The 10 most recently

visited solutions are included in the Tabu List.

• Once a solution (not recently visited) is chosen, this move is accepted irre-

spective of whether it is an improving or worsening move.

3.4.3 Genetic Algorithm

The Genetic Algorithm (GA) is made up of the following major components and

uses the same neighbourhood representation as the SA and TS:

Population Each iteration has a population of various solutions.

Elites The best solutions of the previous iteration are copied to the next genera-

tion.

Generating populations After cloning elites from the previous iteration, the

rest of the population is generated by combining two of the solutions from

the previous iteration.

Selection probability Each solution is assigned a probability for selection; the

better the solution’s objective function value, the higher its selection proba-

bility.

Selecting the Most Appropriate Approach 42

Selection process The two solutions are selected using a biased random method,

giving fitter (better objective function) solutions a better chance of selection.

Crossover Two solutions are combined using a crossover procedure that swaps

the stacking and reclaiming matrices of each solution to form two new solu-

tions (offspring).

Mutation In a population of results, certain randomly selected solutions are ran-

domly altered by changing either the stacking or reclaiming matrices to pre-

vent convergence to local optimal solutions.

3.5 Selecting the Most Appropriate Approach

An Intel Centrino 1.86GHz processor with 1GB of RAM was used to solve the

problem using the solution methods discussed above. The average results are

summarized in Table 3.2 for different problem instances.

Table 3.2: Solution method comparison

Solution approach % above global optimal Solution time (sec.)

Exact optimization 0.00% 3.5

Simulated Annealing 0.19% 13

Tabu Search 0.09% 54

Genetic Algorithm 33.71% 34

Both the SA and TS metaheuristics come close to the global optimal solution.

However, SA solves quicker than the TS. The GA does not provide a good solu-

tion as it is difficult to represent the problem solutions in such a way that a GA

can improve it (refer to Goldberg (1989)’s Schemata Theorem). SA is therefore

identified as the most promising of the metaheuristics.

However, for the case study SA takes more than twice as long as the exact

solution approach. As exact solution time will increase drastically with problem

size, SA is expected to be faster for the real-life model as its solution time is not

expected to increase nearly as much as the exact solution time.

Selecting the Most Appropriate Approach 43

Consequently, the Simulated Annealing (SA) metaheuristic is proposed as the

solution technique for larger applications of the model. According to Silva (2003),

SA is easy to implement and is capable of handling almost any optimization prob-

lem and any constraint. Busetti (2005) states that SA was specifically developed

for highly constrained problems, which makes it applicable to the practical model.

An overview of the SA metaheuristic is presented in the next section to provide

a foundation for the development of an SA algorithm for the CHF scheduling

model. The developed metaheuristic’s design is then presented.

Chapter 4

The Simulated Annealing

Approach

The Simulated Annealing (SA) method is one of the solution approaches that

received a lot of attention in the past two decades. The first major breakthrough

in applying the SA of solids to optimization was published by Kirkpatrick et al.

(1983), who applied the approach suggested by Metropolis et al. (1953). In this

approach the energy state of the metal being annealed corresponds to an objective

function being minimized (Eglese, 1990).

SA is a metaheuristic solution approach for solving complex optimization prob-

lems (Rutenbar, 1989; Eglese, 1990; Silva, 2003; Busetti, 2005) and is often used

to solve NP-hard combinatorial problems.

SA searches through the solution space S , which is a set of all the possible so-

lutions to the optimization problem. The objective function values of the solutions

in S are defined by z, where z = {zi}i∈S . The aim of the SA search is to find

the best possible solution i ∈ S, that minimizes the objective function z over S

(Eglese, 1990), whilst ensuring feasibility of the suggested solution. This solution

of SA is shown in (4.1), with the solution z∗ ∈ z approximating the global optimal

solution.

z∗ ≈ min
i∈S

zi (4.1)

44

Annealing Analogy 45

4.1 Annealing Analogy

The SA algorithm builds on the analogy between the physical annealing process

of solids and the solution of combinatorial optimization problems. The physical

annealing of solids refers to “the process of finding low energy states of a solid by

initially melting the substance, and then lowering the temperature slowly” (Eglese,

1990).

Rutenbar (1989) and Eglese (1990) use an example where a solid is melted by

applying high temperatures. The substance’s particles are randomly scattered in

the molten form. The lowest possible energy configuration of the particles can

be achieved by very slowly cooling the substance (Busetti, 2005). The minimum

energy configuration is typically a perfect crystal, called the ground state of the

solid (Rardin, 1998:690). However, if the cooling process is not done slow enough

the molten substance will not achieve the ground state, but will settle into a

“meta-stable” structure (i.e. only locally optimal), such as glass.

The analogy is further explained in Table 4.1.

Table 4.1: Analogies between annealing and optimization

Physical concept Optimization concept

Different substance structures Feasible solutions

Energy of a structure Objective function

Melting temperature Initial control variable (temperature)

Cooling rate Temperature reduction speed

Rapid quenching Descent algorithm

Ground state Global optimal

Meta-stable structures Local optima

Without allowing worsening moves, the SA becomes a descent algorithm. This

descent algorithm is analogous to the rapid cooling down, or quenching, of the

molten material into a locally optimal crystal structure, but not into the ground

state of the substance.

The Basic SA Algorithm 46

4.2 The Basic SA Algorithm

The traditional, basic SA algorithm is illustrated in Figure 4.1 (adapted from

Eglese (1990)).

The SA algorithm starts by choosing an initial solution, i ∈ S, either randomly

or heuristically. The initial temperature is set to a large value. The SA then

attempts to move to a random neighbour j of the current solution i. The change

in objective function from the current solution to the selected neighbour is then

calculated by δ = zj − zi. If δ < 0 (i.e. the selected neighbour has a better

objective function value than the current solution), the algorithm accepts the

move to solution j and therefore sets j as the new current solution. If δ ≥ 0,

the attempted step to the selected neighbour is rejected if a random number,

0 ≤ r ≤ 1, is less than a certain probability. The worsening move may be accepted

as the current solution if the following equation is adhered to, with Γ the SA

control parameter which is analogous to the current temperature of the annealing

process.

r < e−
δ
Γ (4.2)

The SA is allowed to accept these worsening moves to prevent the algorithm

from being trapped in local optima. Based on inequality (4.2), the SA has a lower

probability of accepting moves that are much worse than the current solution (i.e.

with a large δ). However, moves which are only slightly worse than the current

solution (i.e. with a small δ) have a higher probability of being accepted. The

control variable Γ is gradually reduced as the temperature of the metal being

annealed would start decreasing.

In some applications the denominator in (4.2) (Γ) becomes kBΓ, with kB be-

ing the Boltzmann physical constant (Eglese, 1990; Peyrol et al., 1992). Most

applications customize this constant to suit the specific application.

Some SA algorithms also place a limit on the number of times the internal loop

is allowed to repeat without accepting a move. If the number of repeats is reached

without a move being accepted, the current solution is kept and the algorithm

moves on to the next iteration.

When only improving moves are accepted (by not considering equation (4.2)),

the algorithm becomes a simple local search descent algorithm. The descent al-

The Basic SA Algorithm 47

Choose an initial state

(solution) i є S

Selected an initial
temperature (Γ)

Generate solution state

j, a neighbour of i

Calculate δ = zj - zi

Iteration limit

met (t=tmax)?

Set current solution

i equal to solution j

No

Reduce temperature

Γ = τ (t)

Yes

Approximate optimal

i* = i

Is r ≤ e-δ/Γ?

Is δ < 0
(improving)?

Yes

No

Generate a random

number r

Yes

Set t = t+1

No

Figure 4.1: Traditional SA algorithm

Applying SA to Solve Problems 48

gorithm will get stuck at local optimal solutions, as no further improvement is

possible in any direction from local optimal points.

4.3 Applying SA to Solve Problems

The first important decision required when applying SA to a specific problem is

to decide how the neighbourhood structure will be defined. This is an important

decision as the effectiveness of the SA will depend on the neighbourhood structure.

Eglese (1990) and Fleischer (1995) suggest that, in general, a smooth neighbour-

hood structure with shallow local minima is preferred to structures with many

deep local minima.

A neighbourhood is seen as smooth when the typical steps made from one

neighbour to another does not change the objective function value significantly

(based on the problem context). If big jumps in objective function values occur

between neighbours, many deep local minima will be present. This will require one

to reduce the step size between neighbours or to apply a different neighbourhood

structure.

The second set of choices that has to be made involves the cooling schedule. The

cooling schedule of a SA metaheuristic is defined by determining various parameter

values (Fleischer, 1995):

• Temperature reduction function τ(t), with t the iteration number.

• Initial temperature (τ(1)).

• The temperature for iteration t, given by Γ, is equal to the function value of

τ(t) at point t.

• Number of iterations (N).

The initial temperature is typically chosen large, corresponding to high tem-

perature where the entire material is in a fully molten state (with a randomly

dispersed structure). A high initial temperature ensures that nearly all moves are

accepted during the beginning stages of algorithm execution.

Applying SA to Solve Problems 49

The temperature reduction function is often used as a simple function, where

the temperature of the next iteration is a fraction of the previous iteration’s tem-

perature. For example, τ(t + 1) = ατ(t) (as illustrated in Figure 4.2), typically

with 0.8 ≤ α ≤ 0.99 (Eglese, 1990; Rutenbar, 1989; Kirkpatrick et al., 1983). In

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250

Iteration

T
em

pe
ra

tu
re

α=0.8 α=0.85 α=0.9 α=0.95 α=0.99

Figure 4.2: Temperature reduction function τ(t+ 1) = ατ(t)

some applications, the temperature is fixed for a certain number of iterations be-

fore it is reduced in a stepwise manner (Peyrol et al., 1992), as shown in Figure 4.3.

The function τ(t) = k1
1+tk2

shown in Figure 4.4 has been used to ensure that the

SA performs enough intensification (Eglese, 1990). Note that all k values are con-

stants. Fleischer (1995) suggests a log-based function illustrated in Figure 4.5:

τ(t) = k3
log(1+t)

.

Most of these functions cause large temperature reductions in the earlier it-

erations with low temperature reductions later on. In applications where more

diversification is required, it will be necessary to apply different temperature re-

duction functions to ensure that the temperature stays higher for longer periods.

The number of iterations is chosen so that enough neighbourhood steps are

evaluated and so that the temperature is sufficiently close to 0 at the iteration

Applying SA to Solve Problems 50

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250

Iteration

T
em

pe
ra

tu
re

Figure 4.3: Step-wise temperature reduction function

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 50 100 150 200 250

Iteration

T
em

pe
ra

tu
re

k1=100000, k2=0.5 k1=100000, k2=0.25 k1=200000, k2=0.5 k1=200000, k2=0.25

Figure 4.4: Constants based temperature reduction function

Applying SA to Solve Problems 51

0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250

Iteration

T
em

pe
ra

tu
re

k3=20000 k3=35000

Figure 4.5: Log-based temperature reduction function

limit.

Eglese (1990) states that applying the traditional basic SA methodology, as

discussed up to now, either very long execution times are required or poor solu-

tions are produced if the number of iterations are limited. Various adaptations

of the pure SA algorithm have consequently been implemented, which moves the

algorithm further away from the annealing methodology it is based on, but which

makes the algorithm more efficient. The most important of these modifications

are discussed below.

Incumbent solutions Since the pure SA may accept worsening moves, it is pos-

sible that the solution of the final iteration is worse than a previously found

solution. To address this problem, one simply keeps track of the best ever

solution to date (the incumbent solution) to ensure that very good solutions

are never lost in the SA execution. Glover and Greenberg (1989) claims that

this approach enables shorter execution times as the pure SA algorithm has

to perform a lot of intensification at the end to ensure that a good solution

Applying SA to Solve Problems 52

is reported.

Local optimization After the SA algorithm has executed, local optimization can

be employed to improve the final solution.

Prevention of multiple neighbour visits At the end of the algorithm, a lot of

computational time is spent on trying to improve moves (Eglese, 1990). This

means that the SA starts evaluating moves that have already been evaluated

in the current iteration. To prevent these repeated visits to neighbours, a

rule can be applied that prevents the SA from visiting the same neighbour

twice in one iteration. This approach guarantees that the final SA solution

is at least a local optimal solution if the last n iterations did not provide

improving moves, given a neighbourhood of size n.

Alternative acceptance functions In some applications the traditional proba-

bility of acceptance function, e−
δ
Γ , is customized to suit the application.

Good initial solutions SA is quite sensitive to the quality of the initial solution.

Therefore, many applications start with generating a good initial solution,

rather than simply picking a random starting point. With a good initial

solution, the initial temperature should also be reduced to prevent the SA

from diverging so much that the time and effort spent on generating a good

initial solution is negated.

Parallel computing Parallel computing can be used when multiple neighbours

are evaluated at the same time (Rutenbar, 1989).

Alternative cooling schedules The temperature reduction process is sometimes

customized to fit specific applications (Fleischer, 1995).

Hybrid metaheuristics The most applicable concepts from Genetic Algorithms

and Tabu Search is often combined with SA to create an effective and efficient

hybrid solution method.

SA has various advantages which makes it quite popular (Eglese, 1990; Ruten-

bar, 1989; Peyrol et al., 1992):

SA for Scheduling Coal Handling 53

• SA is easy to implement as the SA part of the algorithm is short (which is

essential when the problem environment is extremely complex). Only the

neighbourhood structure might cause difficulty during implementation.

• SA is widely applicable.

• SA can provide good solutions in reasonable time, given that the neighbour-

hood is properly defined.

• Infeasible solutions may be allowed to ensure easier transition to good areas

in the solution space by using penalty functions.

• SA is efficient when “good” solutions are acceptable and a very good approx-

imate to the global optimal solution is not as important.

One should, however, keep in mind that just as some materials resist annealing,

some problems just cannot be represented in a neighbourhood structure that will

make SA applicable to that problem (Rutenbar, 1989). SA should therefore be

used as one of the various methods to solve difficult problems, not as a universal

tool to solve all optimization problems.

Having reviewed SA theory, an SA algorithm is developed for the CHF schedul-

ing problem.

4.4 SA for Scheduling Coal Handling

The conveyor belt system at CHF that needs to be scheduled, as shown in Fig-

ure 4.6, illustrates the scope of the scheduling model. The scheduling model starts

from the mine surface bunkers at the production mines, all the way through CHF

and into the Coal Processing (CP) bunkers (which form the start of the Synfuels

production process).

The SA scheduler was coded in Microsoftr Visual Basic for Applications

(VBA), which makes it easy to update model inputs using Microsoftr Excel

spreadsheets. Only Microsoftr Office Excel is required for the SA, making it

globally accessible without incurring additional licence costs. The SA together

with inputs and graphical outputs (for easy interpretation) are embedded in one

spreadsheet file.

SA for Scheduling Coal Handling 54

Source 1

Source 2

Source 3

Source 4

Source 5

Source 7

Source 6

Production
mines

Circuler

Trajectories

Source 1

Source 2

Source 3

Source 4

Source 5

Source 6 and
7

Circular
stacker

Circular
reclaimer

Source 6 onto 7

Bypass

Yard

2038 (2 to 1)

2037 (1 to 2)

Transfer
belts

Yard 1

Yard 2

Yard 3

Yard 4

Yard 5

Yard 6

Yards
(5 heaps)

3034 (Yard to 2)

Belt 1

Belt 2

Belt 3

Belt 4

Belt 5

Belt 6

Factory
belts

Side 1
factory

Side 2
factory

Coal
Proccesing

Figure 4.6: Elements included in the SA model of the coal handling facility

Notes on how to access the code of the developed program, along with an ex-

planation of variable definitions and subscripts used, can be found in Appendix A.

The steps required to run the SA scheduler are given in Appendix B.

Most of the input data required for the scheduling model is available on a

live basis. This data is then pulled from the relevant database or process value

historian into the Input rev12.xls input workbook. Other operational rules are also

captured in this input sheet. The Input rev12.xls workbook serves as the master

input file for the SA scheduler as well as for the weekly blend planning model and

the blend validation simulation model used by CHF. Input rev12.xls also includes

various macros to fix and/or validate plant data that might include errors made

by control room operators.

From Input rev12.xls, the information required for the scheduler is pulled through

to the SA scheduler input.xls workbook. All the data pulled from Input rev12.xls

is included in SA scheduler input.xls in the format required by the SA. This file

then serves as the direct input into the SA metaheuristic (Simulated Annealing for

CVC v8.xls).

The typical SA approach is used in this scheduling application. The approach

used in this application is summarized in Figure 4.7.

Firstly an initial solution is generated. Thereafter the algorithm attempts

SA for Scheduling Coal Handling 55

Read input values into
variables

Reset variables

Generate solution with
default rules (0000000)

Calculate objective
function value of solution

Iteration limit met?

Generate solution with
other rules (e.g. 0110100)

Calculate objective
function value of solution

Objective funct.
best ever?

Yes

No

Yes
Log rules with which

iteration solved

No

Yes

Generate a solution with
best set of rules

Generate a solution with
best set of rules

Accept move to
neighbour?

No

Figure 4.7: SA approach used in this application

SA for Scheduling Coal Handling 56

to move to a randomly selected neighbour. If this is an improving move, the

algorithm accepts this move as the next iteration’s solution. However, if the move

is not improving, it may be accepted with a certain probability. This probability

is reduced from iteration to iteration to ensure good diversification at the start of

the algorithm and more intensification at the final iterations.

To compliment the SA overview, it is necessary to explain the manner in which

time points are implemented.

4.4.1 Continuous Time Points in a Discrete Environment

Swart (2004) found that continuous time point scheduling models provide better

objective function values than discrete time points in the CHF environment, hence

the SA scheduler should utilize continuous time points. In a metaheuristic envi-

ronment this is extremely difficult as metaheuristics are typically aimed at solving

combinatorial optimization problems (Eglese, 1990; Rutenbar, 1989), i.e. problems

in a discrete environment.

Continuous time points are often estimated by using very small discrete time

buckets. In the CHF environment, one would require time buckets of less than 5

minutes each. As a schedule is required for a 48 hour horizon, the model would

become extremely large (more than 576 time points, with different usages of these

time points for every piece of CHF equipment). Consequently, alternative ways of

implementing continuous time points using a deterministic environment have to

be developed.

This dissertation suggests the following method of providing a continuous time

schedule using discrete time points. The SA works with hourly buckets (i.e. 48

time points in the scheduling horizon). This would provide an impractically crude

schedule. To overcome this, more than one coal movement should be allowed to

occur within an hour bucket. A change from one movement to another may occur

at any point in the hourly time buckets. This approach will effectively produce

continuous time points (refer to Figure 4.8, illustrating 5 time buckets), although

it complicates the solution generation process drastically.

With this approach, only two movements can occur within one hour. Although

this is a simplifying assumption, it matches CHF practice (as having three move-

SA for Scheduling Coal Handling 57

Hour 0 Hour 5Hour 4Hour 3Hour 2Hour 1

1 3 1 2
Hourly time

buckets

1 3 2 1
Continuous
time points

1 3 2 1
Suggested
approach 3 3 3 2

Figure 4.8: Creating continuous time points using discrete time buckets

ments per hour is unrealistic, since this would cause too small movements in an

environment where the smallest movements are typically more than 2,000 ton -

given typical CHF capacities of 1,800 ton/hour).

To start drilling deeper into the developed SA algorithm, the selected neigh-

bourhood structure is now explained.

4.4.2 Neighbourhood Solutions

A slightly different interpretation of operational scheduling rules will generate dif-

ferent solutions, although these solutions will be closely related. The neighbour-

hood of a solution is therefore seen as a schedule generated by slightly changing

one of the rules used to generate solutions. The rules used to define neighbouring

solutions are shown in Table 4.2, for rule categories ρ̄ = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7}.
The set of rules used by the scheduler is denoted by ρ̄. For example, the default

solution (initial solution) is generated by using rule 0 in all the rule categories, i.e.

ρ̄ = {0, 0, 0, 0, 0, 0, 0}.
The above mentioned neighbourhood structure is decided upon as this structure

is smoother than other neighbourhood structures (such as swapping scheduling ac-

tions around). It is nearly impossible to work with a structure where swapping

is done, due to the effects that a small change in the planned actions have on

the entire system. A neighbourhood defined by swapping will therefore require

inordinate amounts of computational time and will cause various deep local min-

ima. The chosen structure (rules-based) is much easier implemented and provides a

S
A

fo
r

S
ch

e
d
u
lin

g
C

o
a
l
H

a
n
d
lin

g
5
8

Table 4.2: Schedule development rules

Category Category description Rule 0 Rule 1 Rule 2 Rule 3 Rule 4

ρ1 Reclaiming rule Based on quality Based on yard space - - -

ρ2 Bunker level to start new heap 70% 60% 50% 90 % 80%

ρ3 Yard stacking priority Reclaimable tons Space on yard - - -

ρ4 Mine stacking priority Bunker fullness Blend space for mine - - -

ρ5 Split between reclaimers 100% first 75% first 60% first 50% first -

ρ6 Bunker level for over-blending 85% 80% 75% 90 % 95%

ρ7 New heap length factor 80% 90% 95% 70 % 60%

SA for Scheduling Coal Handling 59

smoother neighbourhood with mostly shallower local minima (which Eglese (1990)

states will lead to a more effective algorithm).

Given this neighbourhood, the SA algorithm has to choose a random neighbour

of the current solution. This process is now discussed.

Firstly a random rule category is selected by generating a random number ψ,

with ψ ∈ {1, 2, 3, 4, 5, 6, 7}. Once a value for ψ has been determined, a single step

is taken (in a random direction) within the applicable set (ρψ), where each set

represents all the possible values in each rule category. With ρψ, related to the

categories and rules listed in Table 4.2, defined as follows.

ρ1 ∈ {0, 1}
ρ2 ∈ {0, 1, 2, 3, 4}
ρ3 ∈ {0, 1}
ρ4 ∈ {0, 1}
ρ5 ∈ {0, 1, 2, 3}
ρ6 ∈ {0, 1, 2, 3, 4}
ρ7 ∈ {0, 1, 2, 3, 4}

If the initial solution is generated with ρ̄ = {0, 0, 0, 0, 0, 0, 0}, the next iteration

will be generated as follows. Firstly random rule ψ to be perturbated is selected,

after which a random direction of movement is selected. If ψ = 2 is selected and

the direction chosen is increasing, the value for ρ2 will now increment from 0 to 1.

The following iteration will consequently be generated using the following set of

rules: ρ̄ = {0, 1, 0, 0, 0, 0, 0}.
Once a neighbour for the following iteration (t + 1) has been selected, its ob-

jective function (zt+1) is evaluated. Improving moves (zt+1 > zt) are accepted

and the SA algorithm accepts this neighbour as the following iteration’s solution.

However, non-improving moves (zt+1 ≤ zt) are also sometimes accepted, based on

the probability (κ) calculated in (4.3), with zt representing the objective function

value at iteration t and with τ(t) the temperature at iteration t:

κt = e
−(zt+1−zt)

τ(t) (4.3)

τ(1) is set equal to the initial temperature, as input by the user. The manner

in which the current temperature Γ of iteration t, with Γ = τ(t), is reduced over

iterations is now discussed.

SA for Scheduling Coal Handling 60

4.4.3 Cooling Schedule

The cooling schedules found in literature do not enable the user to control when and

how rapidly the algorithm changes from diversification to intensification and tend

to start intensifying the search too early during algorithm execution. Therefore

this dissertation proposes a new cooling schedule which addresses both of these

shortcomings.

The temperature at each iteration τ(t) is defined by the function in (4.4),

with τ(1) the initial temperature, N the iteration limit, w the time when sudden

temperature reduction starts and k the speed of sudden temperature reduction.

τ(t) =
τ(1)

π

(
− tan−1(w · k ·N − k) +

π

2

)
(4.4)

This function is easier understood in graphical format (with w = 2, k = 6 and

τ(1) = 100, 000), as shown in Figure 4.9 for 150 iterations.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 100 120 140 160

Iteration

T
em

pe
ra

tu
re

Figure 4.9: Temperature τ reduction over iterations t

From Figure 4.9 it can be seen that the temperature suddenly starts declining

half way through the iterations. The speed with which this sudden decrease occurs,

is set by the variable k, as shown in Figure 4.10 (with w = 2, τ(1) = 100, 000 and

150 iterations).

SA for Scheduling Coal Handling 61

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140 160

Iteration

T
em

pe
ra

tu
re k=2

k=4

k=6

k=8

k=10

Figure 4.10: Temperature τ reduction with varying k

The w variable determines at what stage the sudden temperature decrease

occurs. The effect of changing w is explained in Figure 4.11, with k = 4, τ(1) =

100, 000 and 150 iterations.

The variables w, k and the initial temperature have an effect on the temperature

value τ(t) per iteration t. The delta between objective function values also has

an effect on the probability of accepting the worsening move. This is shown in

Figure 4.12, with k = 4, w = 2, τ(1) = 100, 000 and 150 iterations.

It is consequently seen that the initial temperature has to be varied according

to the typical delta values that will occur during execution. With high objective

function values, where the delta value can be as high as 100,000, the initial tem-

perature should be large (see Figure 4.12); typically larger than 100,000 for this

example. However, when smaller objective function values exist, the delta values

will also be smaller. Therefore a smaller initial temperature is required to ensure

that similar probabilities of acceptance are applicable when the delta value is the

same fraction of the initial solution.

With delta values of less than 10,000, the initial temperature will have to be

much smaller. The smaller initial temperature will ensure that the probability

SA for Scheduling Coal Handling 62

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 100 120 140 160

Iteration

T
em

pe
ra

tu
re

w=2

w=4

w=6

w=1.5

w=1

Figure 4.11: Temperature τ reduction with varying w

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Iteration

Pr
ob

ab
il

it
y

of
 a

cc
ep

ta
nc

e

Delta=1000

Delta=5000

Delta=10000

Delta=20000

Delta=30000

Delta=50000

Delta=100000

Figure 4.12: Probability of acceptance with varying delta for τ(1) = 100, 000

SA for Scheduling Coal Handling 63

of accepting moves that worsen the objective function by a certain fraction, is

the same for small delta values in an instance with low objective functions and

for higher delta values (the value is higher, but it is the same fraction of typical

objective function values) in an instance with higher objective function values.

Figure 4.13 shows the same information as given in Figure 4.12, but with an

initial temperature of 15,000.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Iteration

Pr
ob

ab
il

it
y

of
 a

cc
ep

ta
nc

e

Delta=1000

Delta=5000

Delta=10000

Delta=20000

Delta=30000

Delta=50000

Delta=100000

Figure 4.13: Acceptance probability with varying delta for τ(1) = 15, 000

The initial temperature should therefore be set as a multiple of the objective

function of the initial solution (i.e. the solution with ρ̄ = {0, 0, 0, 0, 0, 0, 0}). This

specific multiple value is determined in Section 5.1.

Now that the SA metaheuristic design has been discussed, it is necessary to

determine the model’s objective function value. This is done by discussing how the

SA will incorporate multiple objectives and stochastic elements as these elements

determine the model’s objective function.

4.4.4 SA Objective Function

The CHF operational scheduling environment represents multiple conflicting ob-

jectives. Incorporating stochastic elements into the model adds an additional term

SA for Scheduling Coal Handling 64

to the objective function, as the expected value of recourse also needs to be mini-

mized.

Multiple Objectives

The objective function used in the model is based on the weighted sum of the

deficiency by which each objective did not achieve its goal (i.e. the modified GP

approach, as discussed in Section 2.1.2). The following conflicting objectives are

applicable.

• Total throw-outs at all mine bunkers for the 48 hours, with a target of 1,000.

• Total tons prop-chuted during the 48 hours, with a goal of 0.

• 5 times the number of times that 3% over-blending was allowed due to full

mine bunkers, with a goal of 0.

These objectives require the following decision variables to be defined:

dto , Deficiency of the throw-out goal, for all mines in all periods

dpc , Deficiency of the prop-chute goal

d+3% , Deficiency of the over-blending goal

tobt , Throw-out at bunker b in hour t, where b ∈ {1, . . . , 8}
and t ∈ {1, . . . , 48}

pcmt , Prop-chute of mine m in hour t, where m ∈ {1, . . . , 6}
and t ∈ {1, . . . , 48}

ocyhmt , Count of over-blending allow on heap h on yard y of mine m in

hour t, where h ∈ {1, . . . , 5}, y ∈ {1, . . . , 6}, m ∈ {1, . . . , 6} and

t ∈ {1, . . . , 48}

The objective function used to minimize the weighted deficiencies is shown

in (4.5).

Minimize dto + dpc + 5d+3% (4.5)

SA for Scheduling Coal Handling 65

The values of the deficiencies are calculated by including the following con-

straints in the model:

8∑
b=1

48∑
t=1

tobt − dto ≤ 1, 000 (4.6)

6∑
m=1

48∑
t=1

pcmt − dpc ≤ 0 (4.7)

6∑
y=1

5∑
h=1

6∑
m=1

48∑
t=1

ocyhmt − d+3% ≤ 0 (4.8)

To guarantee that this GP approach will produce an efficient solution, a small

fraction of the sum of the different objectives should be included in (4.5). The

model’s objective function, shown in (4.9), is based on the modified GP approach

which guarantees efficient solution points (since the small fraction is included in

the objective).

Minimize dto + dpc + 5d+3%

+ 0.001

(8∑
b=1

48∑
t=1

tobt +
6∑

m=1

48∑
t=1

pcmt +
6∑
y=1

5∑
h=1

6∑
m=1

48∑
t=1

ocyhmt

)
(4.9)

Stochastic Elements

Although both the production from mines as well as the demand from plants are

stochastic in nature, for the purpose of the scheduler only the stochastic demand

will be considered, as mine bunkers are specifically aimed at buffering the fluctu-

ations in mine production. Kall and Wallace (1994) state that stochastic demand

can be appropriately modelled as an uncertain parameter that is characterized by

a probability distribution, assuming that the probability function is known.

The amount of recourse is only calculated for the first 24 hours of the sched-

ule, since CHF reschedules every 24 hours. This is done to reduce the execution

time. Recourse is applied in this model by calculating the total corrective ac-

tions required in the first 24 hours of the schedule, given a specific realization of

daily factory demand and the total planned reclaiming tasks. Both factories have

unique demand distributions and therefore will require different amounts of re-

SA for Scheduling Coal Handling 66

course (given the different demands and different amounts of total coal reclaimed

in the first day, per side).

The same approach as applied in the simplified scheduling model is used to

incorporate stochasticity in this SA application. The only difference is that the

demand distribution is now applied as a fraction of the planned factory demand

(per side). The demand factor distributions are the best-fit distributions to actual

factory consumptions seen in practice and are given in Table 4.3 with N(µ;σ)

a Normal distribution (with mean µ and standard deviation σ) and W (α; β) a

Weibull distribution (with shape parameter α and scale parameter β).

Table 4.3: Practical case demand distributions

Factory j Variable Distribution

Side 1 1 ζ̃1 N(1.0043; 0.0392)

Side 2 2 ζ̃2 0.921 +W (1.55; 0.0805)

Based on these distributions, the probability of occurrence (and the function

value of the distribution at this point) is calculated for 15 realizations, exactly the

same as explained in Section 3.2.2. The value of the distribution at each realization

point is calculated with the formula given in (3.38).

The expected value of the recourse required for both factories, for all possible

combinations of the factory demands, are added to the objective function of this

model. Given the following notation, the model’s objective function now becomes

(4.10).

Input parameters:

p1r = Probability of realization r at plant 1, where r ∈ {1, . . . , R}
p2s = Probability of realization s at plant 2, where s ∈ {1, . . . , R}

Stochastic decision variables:
dead1r , Dead stock loaded back or thrown out as recourse for

realization r at plant 1, where and r ∈ {1, . . . , 15}
dead2s , Dead stock loaded back or thrown out as recourse for

realization s at plant 2, where and s ∈ {1, . . . , 15}

Coal Handling Solution Generation 67

Minimize dto + dpc + 5d+3%

+ 0.001

(8∑
b=1

48∑
t=1

tobt +
6∑

m=1

48∑
t=1

pcmt +
6∑
y=1

5∑
h=1

6∑
m=1

48∑
t=1

ocyhmt

)

+
15∑
r=1

15∑
s=1

p1r × p2s

(
dead1r + dead2s

)
(4.10)

Expression (4.10) represents the model’s final objective function which the SA

optimizes, given the CHF infrastructure and operational philosophy constraints.

The previous sections provide an overview of the SA, its neighbourhood defi-

nition, the cooling schedule used and the objective function of the model. These

elements work together to approximate the global optimal solution. However, the

SA must also generate each of the solutions used in all iterations. The next section

explains how this neighbourhood solution generation process works.

4.5 Coal Handling Solution Generation

The SA provides a set of rules ρ̄ for a specific neighbourhood solution. These rules

are used to generate a feasible solution for that neighbour so that the objective

function value of the neighbourhood solution can be evaluated. The SA then uses

that objective function value to determine which neighbourhood solution should

be considered next. This section describes how the detailed feasible solution asso-

ciated with a set of rules, provided by the developed SA logic, is generated.

For every iteration, the SA algorithm considers a neighbourhood solution. Each

of these solutions is made up of actions scheduled in each of the 48 hourly time

buckets (wherein there can be continuous time points). The combination of the

48 buckets provides one solution, for which an objective function value can be

determined.

Each solution is generated by consecutively developing the continuous tasks

required in the 48 buckets. Much effort is required by the SA solution generation

code to ensure that each bucket considers its impact on other buckets and the

complete final solution.

Coal Handling Solution Generation 68

For each of the hourly time buckets a feasible sub-solution has to be generated.

Each bucket’s feasible sub-solution must link with the other buckets’ solutions

to generate a feasible 48 hour schedule. This section discusses how the hourly

solutions are created. The overview of the solution generation process is given in

Figure 4.14. This process is repeated for every iteration.

The first step in Figure 4.14 performs the calculations for the initial setup

required for some of the Microsoftr Visual Basic for Applications (VBA) input

values.

For the first hour, the time variable is set to 1 and the first set of rules is set to

default, i.e. ρ̄ = {0, 0, 0, 0, 0, 0, 0}. For subsequent hours, the time is incremented

by one and a random neighbouring ρ̄ = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7} is selected.

To start generating the current hour’s sub-solution, the reclaiming part of the

schedule is solved first. The operational rules used for creating the reclaiming ac-

tions are determined by ρ1 ∈ {0, 1} (the rule used to decide which yard’s reclaiming

heap to reclaim) and ρ5 ∈ {0, 1, 2, 3} (the fraction of capacity the two reclaimers

per side is run at). The reclaiming part of the solution generation processes de-

cides which of the six reclaimers (of which there are one per yard) should be run at

which rate to keep the two factory bunkers full to ensure that the liquid petroleum

production process is never interrupted. The reclaiming part also decides which

heaps on which yards should be reclaimed.

Some calculations are then performed to adapt the required variables to the

reclaiming actions decided upon.

The stacking part of the solution generation process decides which mine should

be stacked on which heap, on which yard, at what rate, whilst ensuring that the

blend on that specific heap is adhered to and considering hourly mine production

rates. The effect that the stacking actions will have on the mine bunkers is also

considered to ensure that the mine bunkers do not run empty or overflow (this helps

ensure that one global optimal solution is found by preventing two local optima

from occurring). The stacking actions are then created based on the following

rules:

• Bunker level to start new heap: ρ2 ∈ {0, 1, 2, 3, 4}

• Yard stacking priority (which yard is first stacked): ρ3 ∈ {0, 1}

Coal Handling Solution Generation 69

time = 48?

No

Yes

Perform initial calculations
(IsStackable,

CalcMinHeap,GetQualFractions,
SetOrigPlanTons)

time = time+1

Generate reclaiming solution
for both sides (InitRecl)

Perform interim calculations
(CalcHeapTot,CalcRecl Tot,

IsStackable,SortMines,SortYards)

Generate stacking solution
(InitStack)

Perform interim calculations
(CalcPull)

Generate bunker solution
(InitBunker)

Perform interim calculations
(CalcStackTot,GetQualFractions)

Iteration finished

Figure 4.14: Initial solution logic

Coal Handling Solution Generation 70

• Mine stacking priority (which mine is first stacked): ρ4 ∈ {0, 1}

• Bunker level for over-blending: ρ6 ∈ {0, 1, 2, 3, 4}

• New heap length factor: ρ7 ∈ {0, 1, 2, 3, 4}

Some calculations are then performed to adapt the required variables to the

stacking actions decided upon.

The mine bunker solution determines how the mine bunkers and the CHF

yard bunker must be operated to ensure that the planned stacking actions can be

executed. Additional calculations are performed to adapt the required variables

to the bunker actions decided upon.

This process is repeated until all 48 time buckets have been completed (i.e. all

48 hours have been scheduled). Note that although hourly time buckets are used,

the SA algorithm has been written in such a manner that more than one material

movement can occur within one hour. This ensures that the scheduling model can

provide continuous time point solutions.

The detail of the processes used by the SA metaheuristic to setup the reclaim-

ing, stacking and bunker solutions, for each hour, is now discussed in more detail.

4.5.1 Reclaiming

The approach used to generate reclaiming solutions for an hourly time bucket is

shown in Figure 4.15 and summarizes the InitRecl sub-procedure.

First of all, the rates at which each factory is expected to extract coal from

their respective Coal Processing (CP) bunkers are calculated. These hourly rates

represent the tons that Sasol Coal Handling Facility (CHF) must reclaim, per side,

to ensure that the CP bunker is at the same level at the end of the hour as it was

at the beginning of the hour.

If a CP bunker is not 100% full, the rate at which CHF must reclaim on that

CP bunker’s side is increased slightly to ensure that the bunker is filled up to 100%

within the next one to two hours.

Planned bypass tons (coal loaded onto factory belts from the strategic dead

stockpiles — the recourse required for when factory demand cannot be met using

normal reclaiming) are deducted from this increased rate, as the bypass tons sent

Coal Handling Solution Generation 71

Use CP rate and additional
tons to fill up bunker

Deduct bypass tons from rate
calculated above

Deduct bypass tons from
factory belts

Test if heap that couldn’t be
reclaimed earlier can now be

reclaimed (TestGoTo)

Calculate quality deviation of
heaps that reclaimers are in

Reclaimer rule?

0

Calculate the fullest yards

1

Calculate minimum, medium
and maximum reclaiming

heaps based on rule

Calculate reclaiming capacity
with tons left in heap and time

left after change -over time

Calculate reclaimers required
to meet effective CP rate and

rate of each reclaimer

Calculate prop -chuting
required if reclaimed tons <

effective CP rate

Set rate for both heaps if more
than 1 heap reclaimed per

period

Calculate qualities reclaimed

Calculate mine tons reclaimed
based on actual fraction and

reclaiming rate per heap

Calculate new stock per mine
per heap

Reduce heap lengths and set
start and end meters

Figure 4.15: Reclaiming logic

Coal Handling Solution Generation 72

to factory means that CHF has to fill up the remaining tons demanded. This final

rate is referred to as the effective required reclaiming rate.

The factory belt capacities are also reduced by the amount of bypass planned.

This is done to ensure that the CHF reclaimed tons, together with the planned

bypass tons, do not overload the conveyor belts going to the respective factories.

If a reclaimer is waiting for a heap to be finished stacking so that it can re-

claim that heap, the algorithm tests whether such heaps have been filled up to a

reclaimable level in the previous hour. If such a heap has been fully stacked, the

model is allowed to start reclaiming that heap, if required. Otherwise, the model

may not reclaim such a heap since it has to wait for the heap to be filled up first.

The priority of a yard’s reclaimer is calculated based on the reclaiming rule

(ρ1) applicable to this specific iteration’s solution. The different rules are applied

as follows:

Reclaim based on qualities With ρ1 = 0, the heap with the best quality is

given highest priority and the lowest quality heap is given the lowest priority

(this is done for both sides). This rule is the operational philosophy that

should be applied most of the time at CHF.

Reclaim based on fullest yards With ρ1 = 1, the fullest yard is given highest

priority and the least full yard is given the lowest priority. This is done for

both the side 1 and side 2 three reclaimers. The ρ1 = 1 rule will typically

work well when the stockpiles are quite full, as the fullest yards must then be

reclaimed first to create stacking space for new heaps. That will prevent any

of the mines being stopped (when there is no space on the stockpiles, CHF

cannot pull coal produced by the mines and this will cause mine bunkers

to fill up – which means the mines will be stopped if the bunkers get full).

Stopping a mine has a major impact on Sasol Mining’s profitability, since

the mining environment consists of mostly fixed expenses and depends on

the variable profit (based on produced tons) to recover these costs.

For each side, the reclaiming heap on the highest priority yard is reclaimed

together with the reclaiming heap on the lowest priority yard. The first heap is

reclaimed at a higher rate than the second heap. With ρ1 = 0 this ensures that

coal from the good quality heap offsets coal from the poor quality heap. It also

Coal Handling Solution Generation 73

ensures that heaps with poor quality do get reclaimed (i.e. prevents them from

being left unreclaimed forever).

Each reclaimer’s effective capacity is then calculated. This effective capacity is

based on the following:

Machine rate The actual maximum reclaiming rate (capacity) of each reclaimer

(i.e. 1,800 ton/hour).

Tons remaining on current heap If less tons are left on the heap than the

reclaimer capacity, the effective capacity is the tons left on the heap instead

of the maximum machine rate.

Change-over time If the current heap is finished in this hour and a second heap

can be reclaimed, the change-over time of the reclaimer between the two

heaps is deducted from effective reclaiming rate (i.e. less than one hour is

available for reclaiming). If two heaps lie against each other, no change-over

time is applicable.

Based on the effective capacity of each reclaimer, the number of reclaimers re-

quired per side is determined. As the factory typically uses around 2,500 ton/hour

and the reclaiming rate is 1,800 ton/hour per reclaimer, the situation where only

one reclaimer need to be run at a time will never occur. When two reclaimers are

required on a side, the reclaimer with the highest priority is reclaimed at maximum

reclaiming rate (ρ5 = 0). The remaining required reclaiming tons are then taken

from the lowest priority yard. If the first two reclaimers cannot reclaim enough

coal to meet the effective factory demand, the third reclaimer (with the in-between

priority) is also utilized.

Note that different reclaimer split rules (ρ5) change the reclaiming rate split

between the first two reclaimers. The rate at which the highest priority heap’s

reclaimer is run is set out below. The rest of the required tons are then reclaimed

from the lowest priority heap’s reclaimer.

• With ρ5 = 0, the rate of the first reclaimer is 100%

• With ρ5 = 1, the rate of the first reclaimer is 75%

• With ρ5 = 2, the rate of the first reclaimer is 60%

Coal Handling Solution Generation 74

• With ρ5 = 3, the rate of the first reclaimer is 50%

If all three reclaimers cannot supply the required rate (mostly due to mainte-

nance or the fact that, on some yards, no heaps are reclaimable), the additional

required tons are supplied by prop-chuting (i.e. a mine’s trajectory tons are fed

directly onto the factory belts, in other words, the stockpiling process is bypassed).

Throughout the above mentioned processes, the metaheuristic keeps track of

whether the reclaimer on a specific yard finishes reclaiming that heap in this period

and moves on to start reclaiming the next reclaimable heap on that yard.

Once all the reclaiming movements have been determined, the quality of the

reclaimed coal is calculated. The tons of each mine’s coal reclaimed from the heaps

are also calculated. The reduced number of tons left on the heaps is calculated

per mine. The reduced heap lengths can then be determined.

4.5.2 Stacking

The stacking movements for each hour are created using the process outlined in

Figure 4.16, which also summarizes the InitStack sub-procedure.

First, the bunker level of each mine is evaluated. If this bunker level is above

a certain percentage, as determined by ρ6, coal from the mine is allowed to be

stacked on the current stacking heaps up to 3% above the percentage set out by

the blend plan. The bunker percentage associated with different values of ρ6 is

set out in Table 4.2. This over-blending is used at CHF to prevent throw-outs at

mines and this approach has been agreed upon by the gasification business unit.

The following four subsections deal with the four different stacking processes,

in the order that the SA applies these different processes. Each of these processes

selects a heap on which the applicable mine should be stacked.

When a heap has been selected, the SA attempts to stack on that heap if the

infrastructure, mine bunker level and blend allow it. This process of attempting

to stack a source is explained after the four different stacking processes are dealt

with.

Throughout this section, the reader should keep in mind that as much stacking

as possible must be done at all times. This is to ensure that the mine bunkers do

not fill up. When bunkers are full, any further mine production will be thrown

Coal Handling Solution Generation 75

Set over-blend if bunkers
too full

For all mines and yards,
keep stacking same mine on

same heap if possible

For all yards, try and stack
current mine one the current

stacking heap

For all yards, move stacker
to a heap that requires the

least tons from current mine

Mine bunker full?

Next mine

Yes

No

If still trajectory capacity
available, make new heap

anywhere on any yard

All mines done?

Done with stacking

Yes

Stack mine on new stacking
heap

Stack mine on new heap

No

Figure 4.16: Stacking logic

Coal Handling Solution Generation 76

out at the mine bunkers (which generates additional fines and costs). When no

more space is available for throw-out at the mines, the mine is stopped causing

enormous monetary losses for Sasol Mining.

Continue From Previous Period

The first attempt at stacking is done by continuing the stacking performed in the

previous hour. Each of the mines keeps stacking on the same yard as in the previous

period, starting with the mine with the highest priority. The mine priority is either

determined by bunker fullness (ρ4 = 0) or by the amount of space available for

this mine on the heaps (ρ4 = 1), given the blend plan and the previously stacked

tons.

The model will attempt to stack coal from the selected mine on the same heap it

was stacked in the previous period, only if coal from that mine was being stacked in

the previous hour. This continuation of stacking ensures stability between hours

and stability between scheduler re-runs (which ensures that plant instability is

minimized).

Normal Stacking

During this stacking process, coal from all remaining mines are stacked in their

order of priority. The model attempts to stack coal from the selected mine on

the heap where the stacker is currently positioned, for every yard. Stacking is

attempted on the yards with the highest priority first. This yard priority is either

determined by the least reclaimable tons left on the yard (ρ3 = 0) or by the open

space left on the yard (ρ3 = 1).

Move Stacker

After normal stacking has been completed and coal from the current mine (as

selected in normal stacking) has still not been stacked up to the full hourly stacking

or trajectory capacity, the model attempts stacking on different heaps (i.e. other

heaps than the current stacking heaps – filling up other heaps that have not been

fully stacked). This process starts on the yard with the highest priority and tries

Coal Handling Solution Generation 77

to stack on the heap on this yard that requires the least tons from that mine (as

compared to other heaps on that yard).

Start New Heaps

When the currently selected mine’s bunker is full and the mine’s trajectory is not

fully utilized for the current hour, new heaps are started to accommodate the

selected mine. Once again, the model first attempts to start new heaps on the

yard with the highest priority.

Stacking on the Selected Heap

This section describes the StackPerMine sub-procedure.

When a mine, yard and heap has been selected in the above four subsections,

the model attempts to stack as much as possible from the selected mine on the

selected heap by ensuring that the following rules are adhered to.

• The stacker capacity is adhered to. The stacking amount will be reduced

until the stacker capacity is adhered to.

• Trajectory capacity is enforced. If the attempted stacking amount is more

than the trajectory capacity, the stacking amount is reduced to an amount

that the trajectory can handle.

• The side 1 to 2 and the side 2 to 1 transfer belt capacities are adhered to.

Only one of the mines can be taken across the transfer belts at a time, i.e.

only Source 1 or Source 2 can be taken to side 2 in an hour and only one of

the side 2 mines can be taken to side 1 in an hour.

• Stacker movements between different heap positions cause stacker change-

over times, which effectively reduce stacker capacities.

• Changing the current stacking mine to a different mine on the same heap

causes mine source change-over times, which also effectively reduces the

stacker’s capacity.

Coal Handling Solution Generation 78

• The amount of tons than can still be stacked from the selected mine on

the selected heap, as determined by the blend plan, may not be exceeded.

However, 3% over-blending may occur if required, as discussed previously.

When all the above rules can be adhered to, a stacking movement is finalized

and the inventory levels and other variables are adjusted accordingly.

Throughout the stacking process, the Microsoftr Visual Basic for Applications

(VBA) Simulated Annealing solution generation code (from hereon simply referred

to as “code”) provides the opportunity for Source 6-7 coal (i.e. coal from the yard

bunker) to be stacked on side 1, side 2 or on both. This is possible because the

yard bunker can be pulled onto two different conveyor belts at the same time –

one to side 1 and one to side 2, as illustrated in Figure 4.17. The code also allows

Source 5 to be stacked with Source 6-7 on either side 1 or side 2. CHF does this to

prevent the small amount of Source 5 tons produced to occupy an entire stacker

on its own.

Source 6-7
 trajectory Yard bunker

Middlings
bunker

Middlings trajectory

Go side 2

Go side 1
Stack side 1

Stack side 2

Pull side 1

Pull side 2

Figure 4.17: Source 6-7 and Source 5 staking possibilities

The Source 6, 7, 5 and yard bunker rules stated in the previous paragraph

simplify CHF operations, but were extremely difficult to include in the SA. The

impact that these Source 6 rules have on bunker operations is addressed later in

Section 4.5.3.

The previous five subsections explain how the model determines the stacking

actions. However, the model needs to consider the impact that the reclaiming and

stacking solutions have on each other. Heap logic rules govern the impact that

these two elements have on each other. These rules are now discussed.

Coal Handling Solution Generation 79

Stacker-Reclaimer Heap Logic

One of the difficulties with the stacking and reclaiming processes is the interaction

between the two. This is referred to as heap logic. CHF must operate the stockpiles

so that they do not block the reclaimer between the end of a yard and a half

stacked heap or between two half stacked heaps (as this means that no tons can

be reclaimed, even though the factory must always be supplied with a continuous

feed of reclaimed coal).

It is ensured that the stacking heaps will never block the reclaimer by limiting

the heap length of newly started heaps. The code ensures that the new heap

lengths are short enough so that the heap can be fully stacked before the reclaimer

on that yard has finished reclaiming other heaps and needs to start reclaiming the

new heap.

When a new heap is started, the reclaimable tons left on the yard is calculated.

Thereafter the last reclaimable heap is determined. It is then determined how

long it will take to reclaim all the reclaimable tons and how long the change-over

time from the last reclaimed heap to the current heap will be. This time is the

maximum time allowed for the heap to be fully stacked. When this time is short,

the model can only start short new heaps to ensure that they can be fully stacked

before they need to be reclaimed.

The maximum allowable heap length of the new heap can be calculated using

equation (4.11), with R the reclaimable tons on the applicable yard, Rcap the

reclaiming capacity for that reclaimer in that specific time period in ton/hour,

Rco the reclaimer change-over time from the last reclaimed heap in hours, Scap the

stacking capacity in ton/hour and St/m the stacking ton/meter amount.

Maximum heap length =

(
R

Rcap

+Rco

)(
Scap

St/m

)
(4.11)

Equation (4.11) is easier understood by means of an example with t for ton, h

for hour and m for meter. Say there are 20,000 tons reclaimable coal on a yard (i.e.

R = 20, 000t) and that the reclaiming capacity of that yard’s reclaimer is 1,800

ton/hour (i.e. Rcap = 1, 800t/h). If it would take the reclaimer 30 minutes to move

from its current position to the heap that needs to be reclaimed, the Rco would

equal 0.5h. The typical stacking capacity is 1,800 ton/hour (Scap = 1, 800t/h)

Coal Handling Solution Generation 80

and the typical stacking ton/meter is 200 (St/m = 200t/m). The maximum heap

length of the new heap can be calculated as follows.

Maximum heap length =

(
20,000t
1,800t/h

+ 0.50h

)(
1,800t/h
200t/m

)
=

(
11.11h+ 0.50h

)(
9m/h

)
= 11.61h

(
9m/h

)
= 104.49m

The reclaiming time calculation assumes that the reclaimer runs at full capac-

ity. However, this is not always the case due to lower reclaimer rates, no tons

being reclaimed off that yard, maintenance and/or change-over times. The stack-

ing time is set equal to the reclaiming time. This stacking time is used together

with the stacking rate to determine how long the new heap can be. The stacking

rate is also assumed to be equal to stacker capacity. However, this is also not

practical due to maintenance, stacker change-over times, mine source change-over

times and stacker idle times. To compensate for these two factors, the maximum

allowed heap length is reduced by a certain factor. This factor is ρ7 and varies

between 60% and 90%, as set out in Table 4.2.

In the previous example, with ρ7 = 1, the factor is 80%. The maximum length

of the new heap is 104.49× 0.8 = 83.59m ≈ 84m.

If the calculated heap length is longer than the minimum allowed heap length

(an input value, typically in the region of 100m), a new heap has successfully

been created. Otherwise, the new heap cannot be started and another position for

starting a new heap has to be found.

The heap logic rules not only ensure feasibility, but also help to obtain reclaim-

ing and stacking solutions that combine to form a good overall solution. Combining

two locally optimal solutions without heap logic rules produces a poor solution and

in the case of reclaiming and stacking solutions, the combination will not even be

feasible (i.e. not practically executable).

The candidate would like to thank Marthi Harmse, from Sasol Technology

— Operations and Profitability Improvement (OPI) department’s Operations Re-

search group, for suggesting this approach. After various people’s attempts to

properly address heap logic failed, her analytic thought process which identified

Coal Handling Solution Generation 81

the root cause of heap logic problems (i.e. that all heap logic problems can be a

avoided by governing new heap lengths) proved invaluable.

4.5.3 Bunkers

This section explains the InitBunker sub-procedure code. The process applied to

generate the bunker part of a solution is summarized in Figure 4.18.

The most difficult part of generating the bunker solutions is to schedule the

Source 6, Source 7, circular stockpile, circular stockpile bypass belt and yard

bunker operations. Figure 4.19 provides the layout of this part of CHF, to en-

able the reader to better understand the reasoning behind this part of the bunker

solution process.

A fraction of the Source 6-7 trajectory must be assigned to each source. If one

of the sources has no production for the current hour, the other source is assigned

the full belt capacity of 2,800 ton/hour. When both sources are producing in the

hour in question, the fraction assigned to the belt for each source is equal to the

fraction of its production fraction of total Source 6 and Source 7 production.

Only if there is enough space left in the yard bunker to pull coal from Source

7 and Source 6, these sources are pulled onto the Source 6-7 trajectory in the

fraction calculated above.

The circular stockpile bypass is assigned a fixed percentage (based on historical

data) of the Source 6-7 trajectory. This percentage is subsequently deducted from

the Source 6 fraction to calculate the tons required from the circular stockpile

(which effectively operates like a normal mine bunker).

All the above mentioned actions consider whether the bunkers have at least as

much coal left as the model wants to pull from it in this hour. If not, the amount

pulled is reduced to the tons left in the bunker. If mine bunkers would overflow,

the tons which the bunker cannot accommodate are thrown outside the bunker.

Finally, all bunker levels at the end of this period (i.e. at the start of the next

period) are determined using material balance equations.

The steps required to run the SA scheduler are given in Appendix B.

As the SA and solution generation logic have been discussed, the customization

and implementation of the metaheuristic will be addressed in the next the chapter.

Coal Handling Solution Generation 82

A
A

A C
C
C
C

C E
EB

B
B

Calculate fraction Source 6
of Source 6 + 7 production

Yard bunker
nearly full?

Pull Source 6 and 7 in
calculated fractions times

trajectory capacity

Yes

Do not pull Source 6 or 7

No

Pull % of trajectory capacity
from Source 6 production via

bypass belt

No

Pull rest of allocated Source
6 capacity from the circular

stockpile

Yes

Pull Source 7 at its allocated
rate on trajectory

Calculate throw outs at all
mine bunkers

Calculate total throw out
inventory

Stop bypass, then circular
stockpile reclaimer then

Source 7 if yard bunker full

Perform planned mine load-
backs if bunkers low enough

Calculate new final bunker
level

Circular stockpile
empty?

Figure 4.18: Bunker logic

Coal Handling Solution Generation 83

Source 7
bunker

Source 7 trajectory

Source 6
circular

stockpile

Source 6-7
 trajectory

Source 6 production

Circular
stockpile

bypass belt

Yard bunker

Middlings
bunker

Middlings trajectory

Go side 2

Go side 1
Stack side 1

Stack side 2

Pull side 1

Pull side 2

Figure 4.19: Source 6 and Source 7 operations

Chapter 5

Algorithm Customization and

Implementation

To customize the SA to this specific application, the SA input variables can be re-

fined to enhance algorithm performance. Once the algorithm has been customized

to its application, it must be integrated with the company’s business processes

to ensure successful algorithm implementation. Once the SA has been integrated

into the business, the performance of the developed approach can be evaluated by

comparing the SA output to previously applied methodologies.

5.1 Input Variable Refinement

To enable successful implementation of metaheuristics, it is required to refine the

metaheuristic parameters input values and to integrate the metaheuristic in the

company’s business processes. These two implementation points are discussed

below.

The SA related input parameters have a major impact on how the SA will

perform. It is necessary to find a combination of these SA input parameter values

that will enable the SA to provide good solutions to any real-life CHF situation

that need to be scheduled (i.e. any possible problem instance).

The SA parameters for which widely applicable values must be found are:

• Number of iterations (N)

84

Input Variable Refinement 85

• Initial temperature (τ(1))

• When sudden temperature reduction occurs (w)

• Speed of sudden temperature reduction (k)

To find the values of these parameters that will enable the SA to provide good

answers for any problem instance, various trial runs for different problem instances

are done. Fixed values that perform well for all problem instances are required as

the CHF scheduler runs in the background and only displays the resulting schedule

on the control room screens (i.e. no user intervention takes place).

5.1.1 Comparative Fractions Used for Evaluation

To find parameter values that will work well for all problem instances, one has

to compare different instances to each other. However, the objective functions of

different instances typically vary between 1,500 and 100,000. Therefore it would

not make sense to simply compare the objective functions of different instances to

each other. To overcome this problem, the objective function values of different

instances are compared to each other using comparative fractions ($). As various

runs with different values of the input parameters are done, the minimum objective

function for a specific problem instance (with any input parameter values) is used

as the denominator in the fraction. The numerator of the fraction is the actual

objective function value for the current run with its specific input parameter values.

For example, consider two different problem instances. Various runs of each

instance have been performed with different combinations of input parameter val-

ues. Table 5.1 shows the objective function values for different runs (shown for

150 iterations).

The bold numbers in Table 5.1 represent the best objective function found

for the specific instance during the various runs. The comparative fractions for

the first line in Table 5.1 are calculated as follows. For the first instance, the

fraction is $ = 5,783
5,312

= 1.089, and for the second instance $ = 16,876
16,152

= 1.045. The

comparative fractions of very different problem instances can now be compared to

each other.

Input Variable Refinement 86

Table 5.1: Example of calculating the comparative fraction ($)

τ(1) k w Instance 1 Instance 2

50,000 2 1.5 5,783 16,876

50,000 2 1.5 5,689 17,293
...

...
...

...
...

100,000 8 4 5,312 17,012

100,000 8 4 5,452 16,152

The $ value therefore indicates how close the SA can get to the best ever

solution for the specific problem instance. The$ value should be as low as possible,

since a $ value of 1 represents the best ever solution for a problem instance.

5.1.2 Number of Iterations (N)

Various runs for each different combination of input parameter values for different

problem instances are required to determine which values will enable the SA to

perform well for all problem instances. The following problem scenarios were used

for trial runs to enable input parameter value refinement:

1. A typical CHF situation with objective function values around 4,000.

2. A more difficult typical CHF situation with objective function values around

10,000.

3. A very good CHF scenario with objective function values in the region of

2,000.

4. A situation where a lot of mine throw-outs will occur with objective function

values around 12,000.

The problem scenarios represent extreme and normal CHF situations and

should be a good representation of all CHF problem scenarios.

Figure 5.1 shows the average objective function value over 5 runs for each of

the 270 combinations of parameter values considered. The following ranges of

Input Variable Refinement 87

0

5000

10000

15000

20000

25000

0 45 90 135 180 225 270

Run

A
ve

ra
ge

 o
bj

ec
ti

ve
 f

un
ct

io
n

Scenario 1

Scenario 2

Scenario 3

Scenario 4

N= 10 N= 100 N= 150 N= 200 N= 350 N= 500

Figure 5.1: Average objective function values for SA parameter combinations

parameter values were used for this specific figure (with z1 the objective function

value of the initial solution):

• N = {10; 100; 150; 200; 350; 500}

• τ(1) = {10, 000; 100, 000; 1z1; 10z1; 20z1}

• w = {0.5; 2; 8}

• k = {1; 10; 20}

To be able to compare different runs to each other, Figure 5.1 is changed to

Figure 5.2 to using average comparative fractions ($) instead of average objective

function values.

In Figure 5.2, runs 1 through 45 represent runs done with N = 10 for different

combinations of τ(1), w and k. The lower comparative fraction values that occur

from runs 46 onwards, represent runs done with N = {100; 150; 200; 350; 500}, i.e.

N ≥ 100. One should therefore use more than 100 iterations, but should consider

the play-off between solution quality and solution time.

Input Variable Refinement 88

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

0 45 90 135 180 225 270

Run

A
ve

ra
ge

 c
om

pa
ra

ti
ve

 f
ra

ct
io

n

Scenario 1

Scenario 2

Scenario 3

Scenario 4

N= 10 N= 100 N= 150 N= 200 N= 350 N= 500

Figure 5.2: Average $ for SA parameter combinations

Although 100 iterations will cause faster execution times, runs with 100 it-

erations vary too much from each other (see runs 46 through 90, in the square,

in Figure 5.2 and refer to the standard deviation of the comparative fraction for

each scenario in Table 5.2). Using 100 iterations prevents the SA from visiting

enough neighbourhood solutions to provide consistently good solutions. With 200

iterations, the SA provides answers that are only slightly better than with 150 iter-

ations. Iterations limits larger than 200 are not considered as these require solution

generation times greater than the time allowed in the CHF coal handling industry.

Table 5.2 compares the standard deviations (σ) of the comparative fractions for

various runs with different iteration limits.

Table 5.2 shows the poor performance of the SA with 100 iterations since too

much variance for runs of the same problem scenario with different w and k values

indicates that the SA will not necessarily always find good solutions in a single run

in practice. The slight difference in performance between 150 and 200 iterations

can also be observed. One therefore accepts 150 iterations as this would lead to

shorter execution times than would be observed with 200 iterations.

Input Variable Refinement 89

Table 5.2: Iteration limit determination

N Standard deviation Solution time

of the comparative (in seconds)

fraction (σ)

Scenario 1

100 0.221 23.9

150 0.214 36.4

200 0.200 45.5

Scenario 2

100 0.170 24.0

150 0.130 36.8

200 0.092 47.3

Scenario 3

100 0.306 20.7

150 0.227 29.3

200 0.177 41.0

Scenario 4

100 0.068 21.4

150 0.050 34.4

200 0.049 42.0

Scenarios combined

100 0.127 22.5

150 0.101 36.7

200 0.101 42.7

Input Variable Refinement 90

5.1.3 Time of Temperature Reduction (w)

Having fixed the iteration limit at 150, the other SA input parameters can be

investigated. To visually identify patterns in the graph, the average comparative

fractions for runs with the same input parameter values are plot against the run

numbers. With N = 150, various runs for the following sets of input parameters

are done.

• τ(1) = {10, 000; 50, 000; 100, 000; 1z1; 2z1; 8z1; 10z1; 20z1}

• w = {0.5; 2; 4; 8; 10; 14}

• k = {1; 4; 8; 10; 15; 20}

The results of these runs provide a busy graph as shown in Figure 5.3. With

the above mentioned input parameter values, the initial temperature changes every

36 runs. No trend of pattern could be identified in Figure 5.3.

To simplify the graph, the average comparative fractions for the different sce-

narios are shown in Figure 5.4, with the average comparative fraction for each step

in τ(1). Once again, no pattern or trend can be observed.

The data used to draw Figure 5.4 is now sorted according to the k input

parameter, i.e. according to the speed at which the change from diversification to

intensification occurs, and is illustrated in Figure 5.5. This is done to determine

whether any patterns or trends associated with k exist. However, no trends or

consistently repeating patterns can be observed.

Sorting the data according to the time at which the change from diversification

to intensification occurs w, yields Figure 5.6. In this figure, a definite decreasing

trend can be observed for all the different scenarios, with all scenarios reaching

their lowest values between w = 8 and w = 10.

From Figures 5.4 through 5.6 one can see that the only parameter that affects

the quality of solutions independent of the other parameter values is w. A specific

value for w can be determined by investigating the data in more detail. Table 5.3

shows the average values for all runs with different τ(1) and k values done for dif-

ferent values of w, with the minimum value for each scenario indicated in boldface.

Additional runs for w = 9 is done as Figure 5.6 shows that the lowest comparative

fractions can be found in the region of w = 8 to 10.

Input Variable Refinement 91

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 36 72 108 144 180 216 252 288

Run

A
ve

ra
ge

 o
f

co
m

pa
ra

ti
ve

 f
ra

ct
io

n

Scenario 1 Scenario 2 Scenario 3 Scenario 4

τ (1)=z 1 τ (1)=2z 1 τ (1)=8z 1 τ (1)=10z 1 τ (1)=20z 1 τ (1)=10,000 τ (1)=50,000 τ (1)=100,000

Figure 5.3: Detail of average $ for increasing τ(1) with varying w and k

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 36 72 108 144 180 216 252 288

Run

A
ve

ra
ge

 o
f

co
m

pa
ra

ti
ve

 f
ra

ct
io

n

All scenarios Scenario 1 init. temp. ave Scenario 2 init. temp. ave

Scenario 3 init. temp. ave Scenario 4 init. temp. ave All scenario init. temp. ave

τ (1)=z 1 τ (1)=2z 1 τ (1)=8z 1 τ (1)=10z 1 τ (1)=20z 1 τ (1)=10,000 τ (1)=50,000 τ (1)=100,000

Figure 5.4: Average $ for increasing τ(1) with varying w and k

Input Variable Refinement 92

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 48 96 144 192 240 288

Run

A
ve

ra
ge

 o
f

co
m

pa
ra

ti
ve

 f
ra

ct
io

n

All scenarios Scenario 1 init. temp. ave Scenario 2 init. temp. ave

Scenario 3 init. temp. ave Scenario 4 init. temp. ave All scenario init. temp. ave

k =0.5 k =4 k =8 k =10 k =15 k =20

Figure 5.5: Average $ for increasing k with varying τ(1) and w

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 48 96 144 192 240 288

Run

A
ve

ra
ge

 o
f

co
m

pa
ra

ti
ve

 f
ra

ct
io

n

All scenarios Scenario 1 init. temp. ave Scenario 2 init. temp. ave

Scenario 3 init. temp. ave Scenario 4 init. temp. ave All scenario init. temp. ave

w =0.5 w =2 w =4 w =8 w =10 w =15

Figure 5.6: Average $ for increasing w with varying τ(1) and k

Input Variable Refinement 93

Table 5.3: Average $ for increasing w with varying τ(1) and k

w Scenario 1 Scenario 2 Scenario 3 Scenario 4 All scenarios

0.5 1.808 1.289 1.363 1.112 1.393

2 1.659 1.215 1.336 1.086 1.324

4 1.562 1.181 1.270 1.069 1.270

8 1.563 1.170 1.240 1.068 1.260

9 1.557 1.195 1.282 1.071 1.276

10 1.582 1.187 1.265 1.071 1.268

15 1.566 1.201 1.356 1.087 1.302

Table 5.3 shows that w = 8 will cause better performance than any other value

of w for most scenarios. Although w = 9 performed the best for Scenario 1, w = 8

performed nearly as well as w = 9. Therefore w = 8 should be used in conjunction

with 150 iterations for the SA scheduler.

5.1.4 Speed of Temperature Reduction (k)

The next two input parameters that need to be refined are τ(1) and k. Table 5.4

shows the performance of the algorithm with N = 150 and w = 8 for varying τ(1)

(z1 is the objective function value of the initial solution).

No specific τ(1) value outperforms all other τ(1) values for the different runs.

Therefore, Table 5.4 is repeated for k in Table 5.5. Additional runs for k = 9 are

included as many of the best values fall in the region between k = 8 and k = 10.

For most of the scenarios, k = 9 performs the best in conjunction with the

previously determined input parameter values. For Scenario 2, k = 8 performs

best and for Scenario 3, k = 10 performs best. With k = 9 being the best for most

scenarios and k = 9 being a good average for the other scenarios, k = 9 should be

used when running the algorithm.

Input Variable Refinement 94

Table 5.4: Average $ for increasing τ(1) with varying k

τ(1) Scenario 1 Scenario 2 Scenario 3 Scenario 4 All scenarios

1z1 1.532 1.122 1.387 1.051 1.252

2z1 1.667 1.205 1.291 1.069 1.303

8z1 1.544 1.142 1.225 1.065 1.229

10z1 1.386 1.212 1.264 1.051 1.236

20z1 1.521 1.200 1.318 1.062 1.268

10000 1.499 1.191 1.272 1.076 1.222

50000 1.521 1.196 1.310 1.098 1.260

100000 1.600 1.175 1.242 1.034 1.253

Table 5.5: Average $ for increasing k with varying τ(1)

k Scenario 1 Scenario 2 Scenario 3 Scenario 4 All scenarios

1 1.505 1.222 1.307 1.077 1.278

4 1.615 1.158 1.242 1.053 1.267

8 1.493 1.141 1.237 1.050 1.230

9 1.359 1.162 1.278 1.036 1.209

10 1.502 1.177 1.190 1.076 1.236

15 1.651 1.185 1.320 1.084 1.310

20 1.613 1.216 1.447 1.067 1.241

Business Process Integration 95

5.1.5 Initial Temperature (τ(1))

The final parameter value that needs to be determined is the initial temperature

τ(1). Table 5.6 shows the average comparative fraction values for various runs

done with N = 150, w = 8 and k = 9 for different τ(1) values (z1 is the objective

function value of the initial solution).

Table 5.6: Average $ for increasing τ(1)

τ(1) Scenario 1 Scenario 2 Scenario 3 Scenario 4 All scenarios

1z1 1.000 1.024 1.091 1.010 1.031

2z1 1.953 1.373 1.081 1.081 1.372

8z1 1.508 1.035 1.068 1.091 1.175

10z1 1.197 1.168 1.480 1.046 1.223

20z1 1.627 1.109 1.475 1.065 1.319

10000 1.304 1.145 1.032 1.039 1.130

50000 1.625 1.088 1.095 1.031 1.210

100000 1.728 1.187 1.066 1.035 1.254

From the low values in Table 5.6 one can see that the previously determined

input parameter values generate solutions very close to the best solution ever found

for each scenario. For most scenarios τ(1) = z1 provides the best performance.

To summarize the variable refinement process, Table 5.7 shows the input pa-

rameter values that will perform well for any problem instance. These values for

the input parameters will produce answers that are on average only 1.1% above

the best possible solution for normal problem scenarios (i.e. Scenarios 1, 2 and 4)

and only 3.1% above the best possible solution for any given scenario.

5.2 Business Process Integration

The following sections shortly discuss how the scheduler is implemented in a prac-

tical environment.

Business Process Integration 96

Table 5.7: Selected SA input parameter values

SA input variable Value

N 150

τ(1) z1

k 9

w 8

5.2.1 Model Output Display

The model writes a log file of the detailed actions required by the incumbent

solution. This log file shows reclaiming, stacking and bunker actions as well as nu-

merous other outputs required to fully understand the incumbent solution. Please

refer to Appendix C.1 for a detailed discussion of this output.

Various output graphs are employed to illustrate specific sections of output

typically reviewed by users. These graphs are explained in Appendix C.2.

The best way for CHF to understand the model output is to see the details

of how the yards change in a stockpile “picture”, as used by CHF during normal

operations. The “picture” is therefore adapted in such a way that the detail

stockpile status for each hour can be displayed. Appendix C.3 provides more

details on this popular output.

5.2.2 MES Integration

Manufacturing Execution System (MES) integration is done to be able to show

the control room operators which tasks they must do and when they must do it.

The approximate optimal solution produced by the SA is therefore fed into the

MES and displayed in a user-friendly manner.

Comma Separated Value (CSV) files, containing the suggested schedule, are

written to a server after model execution. These files are then read by the MES and

displayed in the same program as used by the operators to control coal blending.

Evaluation of the Developed Approach 97

5.2.3 Tracking

When the operators start executing the suggested schedule, constant tracking is

done to compare the actual plant status to the plant status expected by the sched-

uler. This is necessary to determine when it is required to re-run the scheduler

if the variance in mine production, belt rates and factory consumption become

so much that the current schedule become infeasible. Operator errors that cause

large enough deviations will also require rescheduling.

The planned plant status and actuals are compared in the following areas:

• Mine bunker levels

• Factory bunker levels

• Tons on stockpile (for both stacking and reclaiming heaps)

Each 15 minutes the planned bunker and stockpile levels are compared with

the plant actuals and it is then tested whether these differ by more than a prede-

termined threshold. If this is the case, the operator is prompted (and then forced

by the MES if he/she does not react within an acceptable time span) to re-run the

scheduling model with the current plant status as input variables. Note that the

model’s input values are automatically updated via the MES.

The obvious next step to improve this process is to incorporate real-time

scheduling into the model. This will also reduce the differences and step changes

that may occur between two consecutive runs.

The SA logic overview, solution generation process and SA implementation

chapters explain how the SA scheduler for the CHF coal handling problem oper-

ates. Although proper SA logic design and solution generation are required, the

importance of implementing the model and making the developed metaheuristic

practically applicable should never be underestimated.

5.3 Evaluation of the Developed Approach

To ensure that research done in the Operations Research environment adds to

the current body of knowledge, one has to evaluate the quality of the suggested

Evaluation of the Developed Approach 98

approach (Manson, 2006). The developed Simulated Annealing algorithm is eval-

uated to show that it produces good quality solutions.

No CHF solution technique attempted in the previous 5 years has been able to

produce solutions that match the quality of work done by control room operators.

To evaluate the quality of the algorithm, the suggested output for a certain period

is compared with the actual tasks executed by the control room operators without

the use of the model. The following key performance areas are compared:

• Throw-outs at mine bunkers

• The number of over-blending that occurs

• The amount of prop-chuting required

• Recourse required (i.e. tons loaded back from strategic inventory sources)

• Stability of the supplied feed in terms of ash for both sides of the factory

The model output and actual events that took place are compared for two

recent scenarios. Table 5.8 shows performance data for the first scenario.

Table 5.8: Evaluation of first scenario algorithm performance

Performance criteria Model Actual realization

without model

Mine throw-out tons 1,470 1,213

5× 48× 3% over-blending 0 1,680

Prop-chuting tons 0 0

Total 1,470 2,893

Expected recourse (load-back tons) 1,265 0

Quality stability side 1 (% range) 0.75% 1.15%

Quality stability side 2 (% range) 0.55% 0.95%

From Table 5.8 one can see that the model throws out nearly the same amount

as the control room operators did. However, the model manages not to over-blend,

whilst the control operators did over-blend a lot. Less over-blending will result in

Evaluation of the Developed Approach 99

a more stable feed being reclaimed to the factory. The total row indicates that the

model’s suggested scheduled outperformed the control room operators significantly.

The actual recourse experienced was 0, whilst the model had to include an

expected value of 1,265. This is because the actual plant demand was less than

the amount that would have required recourse. The model supplied a much stabler

blend to both sides since the range between the highest and lowest value is lower

than what was seen in practice. The stabler blend supplied by the model will

ensure that the factory can produce at higher production rates than what can be

achieved with the use of manual control room operator scheduling.

The second scenario’s data is summarized in Table 5.9.

Table 5.9: Evaluation of second scenario algorithm performance

Performance criteria Model Actual realization

without model

Mine throw-out tons 2,428 5,258

5× 48× 3% over-blending 1,920 4,080

Prop-chuting tons 1,679 0

Total 6,021 9,338

Expected recourse (load-back tons) 3,436 0

Quality stability side 1 (% range) 0.30% 0.50%

Quality stability side 2 (% range) 0.25% 0.40%

The second scenario shows that the model threw out and over-blended less than

the operators — which will save costs and result in a stabler product being sent

to the factory. The model does perform a small amount of prop-chuting, whilst

in practice no prop-chuting was required. The model therefore sacrifices a bit of

prop-chuting to reduce both throw-outs and over-blending by more than 52%. The

model’s total row is consequently much less than what was seen in reality.

As in the first scenario, the model once again provides a stabler blend (with

a lower range in quality measurements) to the gasification venture on both side 1

and side 2.

From the scenarios analyzed one can see that the developed approach exceeds

Evaluation of the Developed Approach 100

the performance currently seen in the control room. As the control room operators

have an enormous amount of experience (typically more than 15 years) they do

not perform too badly. It is therefore a good feat for the algorithm to meet and

exceed their performance levels, especially as previous models either did not even

consider all the CHF plant intricacies or could not be solved.

Chapter 6

Conclusion and Review

6.1 Conclusions

This dissertation addresses the operational scheduling of coal extraction, stacking

and reclaiming under the added complexity of multiple, conflicting objectives such

as blend requirements (influencing over-blending and throw-outs) and stochastic

demand (influencing prop-chuting). This dissertation presents novel approaches

for both modelling and solving the coal scheduling problem, as previous attempts

at scheduling the coal handling processes were unsuccessful — even though these

attempts did not incorporate all of the complicating practical factors.

A comparative study between solution methods indicates that the Simulated

Annealing (SA) metaheuristic is best suited for this specific model. An SA meta-

heuristic is therefore developed to solve the complex real world scheduling problem.

The metaheuristic solution approach allows one to model the typical sequential

thoughts of a control room operator and sequential operating procedures. Thus far,

these sequential rules could not be modelled in the continuous solution environment

required for exact solution methods (i.e. using simultaneous equations).

Because of the complex coal handling processes, the development of a practical

solution took more than half of the total algorithm development time. It is, how-

ever, only possible to start implementing intelligent metaheuristic improvement

strategies once a practically executable feasible solution can be generated.

Instead of the actual solution being used for neighbourhood solution repre-

sentation, the developed SA indirectly represents neighbours by the rules used to

101

Conclusions 102

generate neighbourhood solutions. Additionally, the cooling schedule is specifically

customized to support larger diversification during the first stages of execution and

better intensification at the final stages. Initial temperatures are determined based

on the objective function value of the initial solution to prevent unfair biases to

diversification when large objective function values are applicable for certain prob-

lem instances.

In Section 1.2, this project’s problem statement is formulated as a research

question:

Can a metaheuristic be developed to efficiently (i.e. solution time of

less than two minutes) provide a schedule to minimize blend deviations,

considering multiple-objectives, stochastic variables, non-linearities and

the highly constrained environment?

This dissertation successfully addresses this research question as an efficient

metaheuristic is developed to schedule CHF operations (whilst considering sto-

chasticity) in such a manner that as little as possible blend deviations occur, whilst

also minimizing throw-outs and prop-chuting (the conflicting objectives). All the

points in the research design, as listed in Section 1.2, were addressed to ensure

that this dissertation successfully addresses the research question.

Various previous attempts at scheduling the coal handling environment over

the past 5 years have not been implemented. This is beacuse they did not in-

clude all the rules and complexities inherent in this environment; which can be

ascribed to the fact that the problem was not properly understood and that the

solution methods used in previous attempts could not solve the intricate schedul-

ing problems in an acceptable time. This dissertation therefore goes beyond the

traditional solution approaches and adapts metaheuristic theory to derive a new

approach that efficiently solves scheduling models including all the rules and com-

plexities excluded in or missed by previous attempts.

As shown by the live tests analyzed in Section 5.3, less over-blending occurs

and more stable qualities are reclaimed. This will ensure that the factory can

produce at higher yields than those previously achievable and will therefore gen-

erate additional profits (which are not quantifiable at this stage). The reduction

in throw-outs will also reduce operating cost of the coal handling facility by ap-

Suggestions for Future Work 103

proximately R4.6 million (ZAR) per annum. Over and above the increased gas

and fuel production and the cost reductions, the recourse risk that the business is

exposed to is also reduced as the scheduled tasks already considers variable factory

consumption and its negative impact on the coal handling business.

With old age and illness, many operators need to be replaced by inexperi-

enced people who cannot schedule coal handling as well as experienced operators.

The model developed in this dissertation therefore also creates sustainability, with

regards to proper coal scheduling, in the coal handling business.

The approaches discussed in this document universally apply to any continuous

product environment. The following points will illustrate that the continuous coal

handling entities used can be directly translated into any continuous (typically

chemical) environment:

Conveyor Pipes transporting fluids (as both moves continuous product).

Bunkers Tanks with simultaneous outflow and inflow points (as coal can be

thrown into and pulled out of a bunker at the same time).

Heaps on stockpiles Tanks that can only be used for either inflow or outflow at

any time (as stacking coal onto heaps (inflow) or reclaiming coal from heaps

(outflow) cannot happen at the same time).

Blending The mixing of raw materials required in chemical environments (chem-

ical reactions, blending or homogenization).

Mine production Outside suppliers or upstream processes with variable rates of

supply (as in essence the mines are merely suppliers).

Factory consumption Any use of continuous product exhibiting a stochastic

nature such as selling to customers or use in downstream production process

(as the factory is CHF’s customer).

6.2 Suggestions for Future Work

The work done in this project provides the following opportunities for future work.

Suggestions for Future Work 104

6.2.1 Scheduling of Coal Handling Processes

Although this work provides the best practical schedules available up until now,

some further attention still needs to be given to the CHF scheduling environment.

During the model implementation, a few programming “bugs” in the model

have been corrected. Further implementation will most probably help identify

any small remaining issues in the model to make it 100% practical. A process of

continuous improvement is currently being setup to address further debugging by

negotiating with Sasol’s Operations Research group. This negotiated process is

also required so that the model can be adapted to future changes in the physical

infrastructure or in the operational philosophies of the business.

If some future techniques enable one to accurately model CHF in a simultane-

ous equation environment, one can initially use exact solution methods (to assist

initial solution generation) or at the end (for further local optimization) of the

metaheuristic.

As hybrid metaheuristics are often used to apply the “best of both worlds” in

solving difficult problems, it should be investigated whether some Tabu Search or

Genetic Algorithm principles can be incorporated into the SA metaheuristic. This

hybrid metaheuristic might be able to efficiently supply even better approximate

global optimal solutions.

6.2.2 Real-Time Scheduling

A major challenge at CHF is to start applying real-time scheduling, as this is

required to enable automatic plant control. The SA metaheuristic can be used as

a foundation when applying real-time scheduling principles. At CHF, real-time

scheduling principles will avoid the need of a full re-run of the scheduler every

time that the actual actions deviate too much from the scheduled actions and will

reduce the number of human (operator) errors. This approach will also improve

with plant stability as full re-runs of the schedule are avoided.

Suggestions for Future Work 105

6.2.3 Solution Method Selection Guidelines

Operations Researchers often battle when a solution method has to be chosen for

a practical model.

This document suggests first attempting exact solution methods. These meth-

ods will start failing rather early in the development process if the model is too

complex for these methodologies. When exact solution methods fail, a simplified

model that is representative of the characteristics of the real problem should be de-

veloped that can be solved optimally using exact solution methods. The simplified

model should then be solved using alternative solution methods. The exact and

alternative solution methods can then compared to each other in terms of quality

of solution, distance from global optimal and solution times.

However, this approach requires an Operations Research expert familiar with

all the different solution methods. This approach also demands time, a luxury not

often available in industry.

A detailed study is required to provide guidelines as to when which solution

methodology should be applied. These guidelines would probably refer to the

number of binary variables, the number of constraints, non-linearity, convexity,

complexity theory analysis of the model, required goodness of solution and allow-

able execution time.

Bibliography

Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. (2006). A survey of

scheduling problems with setup times or costs. European Journal of Operational

Research, Article in press.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., and Uzsoy, R. (2005). Executing

production schedules in the face of uncertainties: A review and some future

directions. European Journal of Operational Research, 161:86–110.

Bellabdaoui, A. and Teghem, J. (2006). A mixed-integer linear programming

model for the continuous casting planning. International Journal of Production

Economics, 104:260–270.

Birge, J. R. and Louveaux, F. (1997). Introduction to stochastic programming.

Springer-Verlag, New York.

Brucker, P. (2004). Scheduling Algorithms. Springer, Berlin, fourth edition.

Busetti, F. (2005). Simulated annealing overview. In

http://www.geocites.com/francorbusetti/sa. Accessed 04 April 2005.

Chen, M. and Chao, D. (2004). Coordinating production planning in cellular man-

ufacturing environment using tabu search. Computers & Industrial Engineering,

46:571–588.

Choobineh, F. F., Mohebbi, E., and Khoo, H. (2005). A multi-objective tabu

search for a single-machine scheduling problem with sequence-dependent setup

times. European Journal of Operational Research, Article in press.

106

BIBLIOGRAPHY 107

Chunfeng, W., Hongyin, Q., and Xien, X. (1999). Optimal design of multiproduct

batch chemical processes using tabu search. Computers and Chemical Engineer-

ing, 23:427–437.

Coetzer, R. L. J. and Harmse, M. F. (2007). Report on the research project

regarding scheduling technologies in Sasol. Research report, based on work by

Conradie, D.G., Morison, L.E., Swart, M., Langley, I.J. and Kotze, L. Sasol.

Collings, J. (2002). Mind over matter: The Sasol story, a half-century of techno-

logical innovation. Sasol (Pty) Ltd, Johannesburg.

Conradie, D. G. (2004). A genetic algorithm for vehicle routing problem with

multiple constraints. Final year project, Department of Industrial and Systems

Engineering, Faculty of Engineering, Built Environment and Information Tech-

nology, University of Pretoria, Pretoria, South Africa.

Conradie, D. G. and Joubert, J. W. (2004). Workforce sizing and scheduling

for a service contractor using integer programming. South African Journal of

Industrial Engineering, 15(2):133–139.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press, Massa-

chusetts.

Eglese, R. W. (1990). Simulated annealing: A tool for Operation Research. Euro-

pean Journal of Operational Research, 46:271–282.

Ehrgott, M. (2005). Multicriteria optimization. Springer, Berlin, second edition.

Fleischer, M. (1995). Simulated annealing: Past, present and future. In Allex-

opoulos, C., Kang, K., Lilegdon, W., and Goldsman, D., editors, Proceedings of

the 1995 Winter Simulation Conference, pages 155–161.

Furlonger, D. (2005). Clean switchover fueled the chaos. Financial Mail, 23 De-

cember 2005:24–25.

Glover, F. and Greenberg, H. J. (1989). New approaches for heuristic search: A

bilateral linkage with artificial intelligence. European Journal of Operational

Research, 39:119–130. Referenced in Eglese (1990).

BIBLIOGRAPHY 108

Goddard, S. (Accessed: 30 August 2006). Real-time systems: Introduction.

http://www.cse.unl.edu/goddard/Courses/RealTimeSystems.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, USA.

Henrion, R. (Accessed: 6 October 2006). Introduction to chance-constrained pro-

gramming. http://stoprog.org/.

Holland, J. A. (1975). Adaption in natural and artificial systems. University of

Michigen Press, Ann Arbor.

Hydro, B. C. (1983). Hat Creek project: 800MW coal preparation report. Hat

Creek, Canada.

Ierapetritou, M. G. and Floudas, C. A. (1998). Effective continuous-time formu-

lation for short-term scheduling. 2. Continuous and semi-continuous processes.

Industrial & Engineering Chemistry Research, 37(11):4360–4374.

Jansen, K. and Mastrolilli, M. (2004). Approximation schemes for parallel ma-

chine scheduling problems with controllable processing times. Computers &

Operations Research, 31:1565–1581.

Jia, Z. and Ierapetritou, M. (2004). Efficient short-term scheduling of refinery

operations based on a continuous time formulation. Computers and Chemical

Engineering, 28:1001–1019.

Joubert, J. W. and Conradie, D. G. (2005). A fixed recourse integer programming

approach towards a scheduling problem with random data: A case study. ORiON

(Journal of the Operations Research Society of South Africa), 21(1):1–11.

Kall, P. and Wallace, S. W. (1994). Stochastic Programming. John Wiley & Sons,

New York, first edition.

Kelton, W. D., Sadowski, R. P., and Sadowski, D. A. (2002). Simulation with

Arena. McGraw-Hill, second edition.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220:671–680. Referenced in Eglese (1990).

BIBLIOGRAPHY 109

Linn, R. and Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers

& Industrial Engineering, 37:57–61.

Little, D. and Hemmings, A. (1994). Automated assembly scheduling: A review.

Computer Integrated Manufacturing Systems, 7(1):51–61.

Longwell, J. P., Rubint, E. S., and Wilson, J. (1995). Coal: Energy for the future.

Progress in Energy and Combustion Science, 21:269–360.

Manson, N. J. (2006). Is Operations Research really research? ORiON (Journal

of the Operations Research Society of South Africa), 22(2):155–180.

Maree, A. (2006). Sasol Synfuels coal processing. In

http://secabweb.sasol.com/cp/. Accessed February 2006.

Méndez, C., Gorssmann, I., Harjunkoski, I., and Kaboré, P. (2006). A simulta-

neous optimization approach for off-line blending and scheduling of oil-refinery

operations. Computers and Chemical Engineering, 30:614–634.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 53:1087–1092. Referenced in Eglese (1990).

Michalewicz, A. (1992). Genetic algorithms + data structures = evolution pro-

grams. Springer-Verlag, New York.

Morison, L. E. (2005). Optimizing the Sasol Oil fuel distribution network. Fi-

nal year project, Department of Industrial and Systems Engineering, Faculty

of Engineering, Built Environment and Information Technology, University of

Pretoria, Pretoria, South Africa.

Mouton, J. (2001). How to succeed in your master’s and doctoral studies. Van

Schaik, Cape Town.

Page, C. and Meyer, D. (2000). Applied research design for business and manage-

ment. McGraw-Hill, New York.

BIBLIOGRAPHY 110

Peyrol, E., Floquet, P., Pibouleau, L., and Domenech, S. (1992). Scheduling and

simulated annealing: Application to a semiconductor circuit fabrication plant.

In European Symposium on Computer Aided Process Engineering, pages 39–44.

Philpott, A. (Accessed: 30 August 2006). Official COSP stochastic programming

introduction. http://stoprog.org/.

Pochet, Y. and Wolsey, L. (2006). Production planning by mixed integer pro-

gramming. Springer series in Operations Research and Financial Engineering.

Springer, NY.

Potts, C. N. and Kovalyov, M. Y. (2000). Scheduling with batching: A review.

European Journal of Operational Research, 120:228–249.

Ramesh, R. and Cary, J. M. (1989). Multicriteria jobshop scheduling. Computers

& Industrial Engineering, 17:597–602.

Rardin, R. L. (1998). Optimization in Operations Research. Prentice Hall, New

Jersey.

Rifai, A. K. (1996). A note on the structure of the goal-programming model:

assessment and evaluation. International Journal of Operations & Production

Management, 16(1):40–49.

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE

Circuits and Device Magazine, pages 19–26.

Sabuncuoglu, I. and Bayõz, M. (2000). Analysis of reactive scheduling problems

in a job shop environment. European Journal of Operational Research, 126:567–

586.

Sen, S. and Higle, J. L. (1999). An introductory tutorial on stochastic linear

programming models. Interfaces, 29(2):33–61.

Silva, J. D. L. (2003). Metaheuristic and multi-objective approaches for space

allocation. PhD thesis, School of Computer Science and Information Technology,

University of Nottingham.

BIBLIOGRAPHY 111

Suresh, V. and Chaudhuri, D. (1993). Dynamic scheduling – a survey of research.

International Journal of Production Economics, 32:53–63.

Swart, M. (2004). A scheduling model for a coal handling facility. Master’s thesis,

Faculty of Engineering, Built Environment and Information Technology, Uni-

versity of Pretoria., Pretoria, South Africa.

Taha, H. A. (2003). Operations Reseach: An introduction. Prentice Hall, NJ,

seventh edition.

Tamiz, M., Jones, D., and Romero, C. (1998). Goal programming for decision

making: An overview of the current state-of-the-art. European Journal of Op-

erational Research, 111:569–581.

Van Breedman, A. (2001). Comparing descent heuristics and metaheuristics for

the vehicle routing problem. Computers & Operations Research, 28(4):289–315.

Van Dyk, J. C., Keyser, M. J., and Coertzen, M. (2006). Syngas production from

South African coal sources using Sasol-Lurgi gasifiers. International Journal of

Coal Geology, 65:243–253.

Winston, W. L. (1994). Operations Research: Applications and algorithms.

Duxbury, California, third edition.

Winston, W. L. and Venkataramanan, M. (2003). Introduction to mathematical

programming, volume 1 of Operations research. Duxbury, California, fourth

edition.

Zhong, Z., Ooi, J. Y., and Rotter, J. M. (2005). Predicting the handlability of a

coal blend from measurements on the source coals. Fuel, 84:2267–2274.

Appendix A

Variable Definition Notes

The following steps need to be executed to access the actual code embedded in

the program. To run the model, please refer to Appendix B to prevent execution

errors due to incorrect paths.

• Make sure that Microsoftr Excel’s security settings allows one to access and

use macros. This can be verified using the following menu path: Tools, Op-

tions, Security and then Macro Security. Newer versions of Microsoftr Excel

must be set to either Medium or Low.

• Open the Simulated Annealing for CVC v8.xls file located on the attached

CD.

• Click “Enable Macros” to ensure that the embedded code can be accessed.

• Click either “Don’t Update” or “No” to make sure that links to other files

and databases are not updated.

• Ensure that the MainMenu sheet is active.

• Right-click on the “Run SA metaheuristic for the CVC scheduling problem”

button, select “Assign Macro” and click the “Edit’ button.

• Microsoftr Visual Basic will now open. The code can be found in the 5

modules shown in the Project Explorer.

112

APPENDIX A. VARIABLE DEFINITION NOTES 113

The code is also included in text format on the CD for persons who do not use

Microsoftr products.

This rest of this section explains the formulations that are used to define the

variables with. All the subscripts used in the model are explained below.

Side subscripts (1 to 2):

1. Side 1

2. Side 2

Mine subscripts (1 to 6 / 1 to 7 / 1 to 8):

1. Source 1

2. Source 2

3. Source 3

4. Source 4

5. Source 5

6. Stacking: Source 6-7 stream

Reclaim: Source 6-7 stream

Bunkers: Source 6 circular stockpile

7. Bunkers: Source 7

Stacking: Bleed in

Reclaiming: Bleed in

8. Bunkers: Yard bunker

Yard subscripts (1 to 6):

1. Yard 1

2. Yard 2

3. Yard 3

APPENDIX A. VARIABLE DEFINITION NOTES 114

4. Yard 4

5. Yard 5

6. Yard 6

Heap subscripts (1 to 5):

1. Live 1

2. Live 2

3. Live 3

4. Live 4

5. Live 5

Time/hour subscripts (0 to 48 / 1 to 48):

• Every hour represents a time point

• Hour 0 is the hour before the hour in which the scheduler is run

• Hour 1 is the first hour for which model is solving

Transfer belt subscripts (1 to 3):

1. 2037 (Side 1 to 2)

2. 2038 (Side 2 to 1)

3. 3034 (Yard bunker coal to side 2)

Also note that most actual values at the beginning of the scheduling period are

saved as time 0 in the variable arrays. The letter “l” in front of a variable name

indicates that this variable is a local variable.

Appendix B

Executing the CHF SA Scheduler

The run the scheduling model, the steps shown below should be followed. Refer to

Appendix A for instructions on how to access the developed programming code.

• Copy the entire Metaheuristic folder on the CD to the C drive (C:\CVC\).
The files in Metaheuristic the folder on the CD must be located on a writable

hard-drive in the folder C:\CVC\Metaheuristic.

• Make sure that Microsoftr Excel’s security settings allows one to access and

use macros. This can be verified using the following menu path: Tools, Op-

tions, Security and then Macro Security. Newer versions of Microsoftr Excel

must be set to either Medium or Low.

• Open the Simulated Annealing for CVC v8.xls file located in C:\CVC\Metaheuristic.

• Click “Enable Macros” to ensure that the embedded code can be accessed.

• Click either “Don’t Update” or “No” to make sure that links to other files

and databases are not updated (only click “Update” or “Yes” when running

the scheduler on a live Sasol network).

• Ensure that the MainMenu sheet is active.

• Set all the options and input parameter values required on the MainMenu

sheet.

• Click the “Run SA metaheuristic for the CVC scheduling problem” button

to run the model.

115

APPENDIX B. EXECUTING THE CHF SA SCHEDULER 116

• After model execution various output graphs are included in the coloured

sheets, as explained in Appendix C.

The steps shown in Figure B.1(a) should be followed when running the sched-

uler at CHF (note that Sasol Intranet network access is required). The process

listed in the bullets above required to run the scheduler in an off-line environment

(i.e. outside of Sasol), is summarized in Figure B.1(b).

Whilst executing, the graph shown in Figure B.2 will be displayed and updated.

The graph shows the objective function value for the solution generated for each

of the iterations (in blue) as well as the objective function value of the incumbent

solution (in green).

APPENDIX B. EXECUTING THE CHF SA SCHEDULER 117

Update Input_rev12

Press Fix Ops and
Quality button

Check and fix Ops and
Quality sheet if Settings

C3 is still red

Set MainMenu C9 =
Yes in Simulated

Annealing for CVC v8

Set blue cells in
MainMenu to desired

values

Input breakdowns in
BDs sheet

Input planned
maintenance completed

in MainDone sheet

Press button to run
model

Press Combine Heaps
button

(a) Running the sched-

uler at CHF

Set MainMenu C9 = No
in Simulated

Annealing for CVC v8

Set blue cells in
MainMenu to desired

values

Press button to run
model

(b) Running the sched-

uler off-line

Figure B.1: Process to run the SA scheduler

APPENDIX B. EXECUTING THE CHF SA SCHEDULER 118

Objective Function over Iterations

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 20 40 60 80 100 120 140 160

Iteration

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
e

Figure B.2: Objective function over iterations

Appendix C

Model Outputs

The model has various different outputs to illustrate and describe the best solution

found during execution. Each type of output of the best solution is now discussed

separately.

C.1 Log Output

For debugging during development and to be able to investigate the solution in

detail, a log file of the best solution is written out during execution.

Output is divided into 3 categories, each with different possible logs:

• Reclaiming

– Reclaiming a not full heap

– Reclaiming heap emptied

– Prop-chute of x tons required but no source available

– Prop-chute of x tons required

– CP bunker below 65%

– Reclaiming action of x ton/h

– Reclaiming action2 of x ton/h (two heaps reclaimed in one period)

– New heap length calculation caused division by 0 error

– Reclaimer waiting for stacker

119

Output Graphs 120

– Reclaimer turned around

– New reclaiming heap found

• Stacking

– Tried to stack on reclaiming heap

– New heap started

– Over-blend 3%, bunker full

– Stacker change-over time of x h

– Mine source change-over time of x h

– Stacking of x ton/h

– Change-over time of x h carries over

• Bunkers

– Bunker empty

– Throw-out of x tons at mine bunker

Each log also writes out the relevant details required to understand exactly

when coal must move a source to a destination:

• Time

• Yard

• Heap

• Side

• Mine

C.2 Output Graphs

Various output graphs are shown to illustrate the outputs in an understandable

way:

Detail Stockpiles Picture Output 121

• Expected bunker levels

• Expected circular operations

• Expected yard bunker operations

• Expected throw-outs

• Expected throw-outs per day

• Expected load-backs at mine bunkers

• Expected transfer belt operations

• A graph for the expected yard operations for every yard

• Expected stacking locations of all mines

• Expected CP bunker levels

• Expected reclaiming side 1

• Expected reclaiming side 2

• Expected reclaiming per day

• Expected ash and fines reclaimed

• Expected Carbon reclaimed

C.3 Detail Stockpiles Picture Output

When one has chosen that the model must write out the status of the stockpiles

at the end of each hour in picture format, one can view the planned stockpile

situation for every hour using the normal CHF picture.

To do this, open the Prentjie SA output init.xls file from the directory where

all the metaheuristic scheduler files are located (C:\CVC\Metaheuristic).

• Click “Enable Macros”.

Detail Stockpiles Picture Output 122

• Click “Update Links” or “Yes” (depending in the type of prompt enquiring

whether Microsoftr Excel should update links or not).

• Click “Continue” if a prompt appears that indicates that some links could

not be updated. This might happen if the file is being run outside the Sasol

network, but does not cause any problems in this workbook.

• Select the Data sheet.

• Type in the hour for which the picture of the stockpiles is required. If 1 is

input, then the picture will shows the heaps as planned for at the end of the

1st hour (i.e. exactly one hour after the start time of the model). To view

the current heaps as fed to the model as input data, select time 0.

• Then click the “Get heap data from model” button to update blend and

quality information for that period. The file will automatically update the

data on the Data sheet from the Prentjie output data init.xls file.

• Thereafter click the “Update Data” button.

• Also note that it is extremely difficult to calculate the planned percentages

and some rounding errors might occur.

• Repeat the process from the fourth bullet onwards to view the stockpile

status for a different hour.

Figure C.1 shows an example of the stockpiles picture output. A similar output

is used by CHF to report information regarding the plant status on a daily basis.

The output used at CHF was modified so that the model’s predicted output can

be shown to the users in a familiar format.

D
e
ta

il
S
to

ck
p
ile

s
P

ictu
re

O
u
tp

u
t

1
2
3

Stockpiles Side2 Stockpile Status and Positions
Stacker Reclaimer

Factory Crusher
330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 -320 -330 -340 -350 -360

 15226 Tons 33386 Tons 9660 Tons

RMSD - 2.16 RMSD - 7.01 RMSD - 2.14
-6.3 - 29.54 -6.3 - 29.7 -6.3 - 29.43
AMF - 27.94 AMF - 27.68 AMF - 27.9
 12:00:00 AM 12:00:00 AM 12:00:00 AM
81 Meters 270 Meters 50 Meters
Heap 64 Heap 62 Heap 61
Stockpile 6 Live 4 Stockpile 6 Live 2 Stockpile 6 Live 1

 21885 Tons 31336 Tons 9959 Tons

RMSD - 8.5 RMSD - 2.03 RMSD - 1.42
-6.3 - 29.68 -6.3 - 29.52 -6.3 - 29.45
AMF - 29.2 AMF - 27.9 AMF - 27.81
 12:00:00 AM 12:00:00 AM 12:00:00 AM
140 Meters 160 Meters 51 Meters
Heap 55 Heap 54 Heap 51
Stockpile 5 Live 5 Stockpile 5 Live 4 Stockpile 5 Live 1

 9572 Tons 43114 Tons

RMSD - 17.47 RMSD - 2.31
-6.3 - 28.9 -6.3 - 29.53
AMF - 30.84 AMF - 27.88
 12:00:00 AM 12:00:00 AM
340 Meters 242 Meters
Heap 42 Heap 41
Stockpile 4 Live 2 Stockpile 4 Live 1

Factory Crusher

Reclaiming

Busy Stacking

RMSD > 4 or any source
overblend resulting in RMSD > 4

Stacking Completed

Reclaiming Completed

-50350 300 250 200

Li
ve

 S
t.

6
%

 F
ul

l
Li

ve
 S

t.
5

%
 F

ul
l

Li
ve

 S
t.

4
%

 F
ul

l

-300-150 -200 -250

2006/06/20 14:22

-100

RECLAIMSTOCK

174,138 121,520

150 100 50 -350

Figure C.1: Stockpiles picture output

	FRONT

	Title page

	Summary

	Key words

	Nomenclature
	Contents
	List of Figures
	List of Tables

	Research Problem
	Coal to Liquid Fuel Scheduling
	Coal Handling
	Coal Processing
	Gasification

	Research Design
	Research Methodology

	Literature Review
	Problem Classification
	Scheduling Problem
	Conflicting Objectives
	Stochastic Elements

	Solution Approaches
	Exact Solution Approaches
	Approximation Techniques

	Choosing a Solution Approach
	Exact Solution Attempts of the Problem
	Simplified Model
	Incorporating Multiple Objectives
	Incorporating Stochastic Elements

	Exact Solution as a Benchmark
	Approximate Solution Evaluation
	Simulated Annealing
	Tabu Search
	Genetic Algorithm

	Selecting the Most Appropriate Approach

	The Simulated Annealing Approach
	Annealing Analogy
	The Basic SA Algorithm
	Applying SA to Solve Problems
	SA for Scheduling Coal Handling
	Continuous Time Points in a Discrete Environment
	Neighbourhood Solutions
	Cooling Schedule
	SA Objective Function

	Coal Handling Solution Generation
	Reclaiming
	Stacking
	Bunkers

	Algorithm Customization and Implementation
	Input Variable Refinement
	Comparative Fractions Used for Evaluation
	Number of Iterations (N)
	Time of Temperature Reduction (w)
	Speed of Temperature Reduction (k)
	Initial Temperature ((1))

	Business Process Integration
	Model Output Display
	MES Integration
	Tracking

	Evaluation of the Developed Approach

	Conclusion and Review
	Conclusions
	Suggestions for Future Work
	Scheduling of Coal Handling Processes
	Real-Time Scheduling
	Solution Method Selection Guidelines

	Appendices

	Variable Definition Notes
	Executing the CHF SA Scheduler
	Model Outputs
	Log Output
	Output Graphs
	Detail Stockpiles Picture Output

