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CHAPTER 7 

 

COMPARING MODELS AND FORECASTS OF THE LEVEL AND 

TURNING POINTS OF THE SOUTH AFRICAN STOCK MARKET 

 

 

7.1 INTRODUCTION 

 

The cointegration model of the South African stock market developed and estimated 

in chapter six made a contribution to the literature by establishing the factors that 

determine the level of the stock market in both the long-run and the short run. 

However, this model can also be used to forecast the stock market. This will enable 

investors and policy makers to simulate the impact of changes in macroeconomic 

indicators on the future course of the stock market and accurate forecasts of the stock 

market could be used by economists to forecast other macroeconomic indicators that 

lag the stock market such as consumption and investment1. In addition, forecasts of 

the stock market will predict the future direction of share prices and can hence be 

used by investors to construct profitable trading rules.  

 

In this chapter the accuracy of the cointegration model in chapter six will be 

compared to other stock market models. This comparison will be done separately for 

the in-sample and forecast periods2. First the models’ accuracy in modeling the level 

of the stock market will be compared. Then the models will be used to develop 

trading rules in order to compare their profitability and accuracy in modeling the 

direction of the stock market. 

 

 

 

                                                 
1 Gallinger (1994) gives three reasons why share prices are leading consumption and investment. First, 
changes in share prices are synonymous with changes in wealth, which influence the future demand for 
investment goods and consumption (Barro 1990). Second, the stock market is a leading indicator of the 
economy and reflects information about real activity before it occurs. Finally, an increase in real 
economic activity increases the demand on the existing production capacity, which increases the return 
on assets and therefore induces increases in future capital investment. 
2 Granger (1992) points out that only the out-of-sample evaluation of stock price models is relevant for 
several reasons including the possibility of small sample in-sample biases of coefficients that give 
overly encouraging results. This was also shown by Nelson and Kim (1990). 
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7.2 MODELING THE LEVEL OF THE STOCK MARKET  

 

7.2.1 The Stock Market Models 

 

The modeling and forecasting accuracy of three stock market models, namely the 

cointegration model from chapter six, a random walk and a Fully Modified vector 

autoregressive (FM-VAR) model, will be compared. The specifications of the 

cointegration and error-correction models are presented in equations 7.1 and 7.2 

respectively (see sections 6.4 and 6.5): 

 

log(JSEt) = -6.584897 + 0.865694955*Log(GDPt) - 0.0119161469*Discountt      (7.1) 

 

∆Log(JSEt) = 0.3089012926 * ∆log(JSEt-1) - 0.1864008165 * Residualt-1  - 

0.1290787154 * (Residualt-1 * St)  + 0.1768269797 * ∆(Log(Goldt))  + 0.8690841507  

* ∆(Log(SP500t)) - 0.04438600119 * Riskt + 0.04178532045 * Riskt-1 + 

0.3497508004 * ∆log(R$t-1) + 0.0198328801 - 0.02534437603 * ∆(Log(RS, t-1))  - 

0.04484239067 * St - 0.041370202 * DUM98t - 0.1455592312 * DUM00t + 

0.05524827626 * DUM94t.                    (7.2) 

 

The explanations of the variables are given in table 7.1. Equations 7.1 and 7.2 can be 

combined as follows: 

 

∆Log(JSEt) = 0.3089012926 * ∆log(JSEt-1) - 0.1864008165 * (log(JSEt-1) – (-

6.584897 + 0.865694955*Log(GDPt-1) - 0.0119161469*Discountt-1))  - 0.1290787154 

* ((log(JSEt-1) -6.584897 + 0.865694955*Log(GDPt-1) - 0.0119161469*Discountt-1) * 

St)  + 0.1768269797 * ∆(Log(Goldt))  + 0.8690841507  * ∆(Log(SP500t)) - 

0.04438600119 * Riskt + 0.04178532045 * Riskt-1 + 0.3497508004 * ∆log(R$t-1) + 

0.0198328801 - 0.02534437603 * ∆(Log(RS, t-1))  - 0.04484239067 * St - 

0.041370202 * DUM98t - 0.1455592312 * DUM00t + 0.05524827626 * DUM94t.  

                    (7.3) 

 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  ––  MMoooollmmaann,,  HHCC  ((22000044)) 

 126 

Table 7.1 List of Variables 

 

Variable Explanation 

  

JSE JSE allshare index 

GDP Gross domestic product  

Discount  Constructed discount rate  

Gold Gold price  

SP500 Standard and Poor’s 500 Index (S&P500) 

S State of the business cycle dummy variable constructed in chapter five 

R$ Rand-$US exchange rate 

RS Short-term interest rate (three-month bankers’ acceptance rate) 

Risk Risk premium, defined as difference between long-term interest rates 

of South Africa and the US (the yields on 10-year government bonds) 

Residual Residual from estimated long-run equation (see equation 7.1) 

  

 

If the actual values of the explanatory variables during the forecasting period are used 

it gives the economic model an unrealistic benefit. Therefore, a very conservative 

approach will be followed with respect to the economic model whereby only 

observations that are available at the time of the forecast will be used. Instead of using 

the actual values of the explanatory variables during the forecasting period, the latest 

available values at the time of the forecast will be used. This implies that the 

explanatory variables are forecasted with a random walk where necessary. In other 

words, if only lagged values of a particular variable enters the stock market model in 

equation 7.3, then the actual value of this variable will be used in the forecast since it 

is available to the forecaster at the time of the forecast. For example, the rand-US$ 

exchange rate only enters the model in the transformation ∆log(R$t-1) which is 

available at the end of period t-1 to make a forecast of period t, the actual value will 

be used in the forecast. However, variables such as the first difference of the 

logarithmic transformation of the gold price enter the model contemporaneously, so 

that a forecast of this variable in period t is necessary for the forecast of the stock 

market in period t. The change in the logarithmic value of the gold price is forecasted 
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with a random walk, in other words the first difference of the logarithmic value of the 

gold price in period t-1 is used as forecast for the variable in period t. This is a very 

conservative approach and any improvement in the forecasts of the explanatory 

variables should obviously improve the forecasting ability of the cointegration model 

for the stock market. 

 

The second model, the random walk, is specified as follows: 

 

JSEt = JSEt-1 + εt                  (7.4) 

 

where εt is a random error term. This model essentially forecasts no change from the 

previous period’ s observation. This naïve model may seem like a weak challenge, but 

McNees (1992) has showed that it performs very well in predicting many economic 

variables. One of the advantages of this model is that only lagged variables is used to 

explain the stock market, which means that actual values are available for a one-

period ahead forecast. 

 

The third model is an FM-VAR. The vector autoregression (VAR) modeling 

technique is an effective means of characterizing the dynamic interactions among 

economic variables by reducing dependence on the potentially inappropriate 

theoretical restrictions of structural models. The general VAR specification can be 

written as follows: 

 

ktk2t21t10t XA...XAXAAX −−− ++++= + et              (7.5) 

 

where Xt is a (n × 1) vector containing each of the n variables included in the VAR, 

A0 is a (n × 1) vector of intercept terms, Ai is a (n × n) matrix of coefficients and et is 

a (n × 1) vector of error terms. As described by Phillips (1995), fully modified (FM) 

estimation of the VAR model should improve the OLS results in the presence of non-

stationary regressors, I(1) processes and even cointegrating relationships. In addition, 

the FM-estimation procedure is valid without pre-testing for the exact cointegrating 

relationships or even the number of unit roots in the system. The FM-procedure 

specifically takes into account the possible serial correlation and endogeneities of the 
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system. The variables of the cointegration equation (see equation 7.13) were included 

in the FM-VAR. 

 

Individual autoregressive (AR) models are estimated for each variable included in the 

VAR and the maximum order of the individual AR models is used as the order of the 

FM-VAR. The Akaike (AIC) and Schwartz model selection criteria were used to 

determine the order of the VAR. The results are presented in table 7.2 and the 

preferred AR model according to each model selection criteria is printed in bold. A 

VAR of order one was estimated since autoregressive models of order one were 

preferred by both criteria for all three individual models. 

 

Table 7.2 Model Selection Criteria for Individual AR Models 

 

Variable: JSE Discount rate GDP 

Criteria: AIC Schwartz AIC Schwartz AIC Schwartz 

VAR order       

0 7.49 7.52 3.42 3.45 24.96 24.99 

1 3.89 3.94 1.13 1.18 16.86 16.91 

2 3.93 4.01 1.14 1.23 16.89 16.97 

3 3.94 4.05 1.14 1.26 16.92 17.03 

4 3.99 4.13 1.18 1.32 16.95 17.10 

       

 

The results of the FM-VAR model are given in table 7.3, with standard errors reported 

below in parenthesis. T-statistics constructed with these standard errors are 

asymptotically valid. Significant variables (based on the cut-off value of 1.96) are 

indicated in bold print. The Parzen kernel is used for the non-parametric estimation 

required by the FM-VAR. 

 

                                                 
3 The variables in the ECM were not included in the FM-VAR due to insufficient degrees of freedom. 
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Table 7.3 Results of the FM-VAR Estimation 

 

 JSE Discount rate GDP 

    

∆JSEt-1 -0.10 0.09 -86 

 (0.02) (0.00) (7650) 

∆Discount ratet-1 -0.83 0.26 -339 

 (0.20) (0.01) (98295) 

∆GDPt-1  0.00 0.00 0.21 

 (0.00) (1.63) (0.01) 

JSEt-1  0.86 0.01 84.6 

 (0.01) (0.00) (3927) 

Discount ratet-1  0.03 0.97 160 

 (0.02) (0.00) (12167) 

GDPt-1  0.0002 0.00 0.99 

 (2.14) (1.35) (0.00) 

Constant 1.43 0.67 -240 

 (8.28) (0.52) (4090997) 

    

 

According to the results in table 7.3, the JSE can be presented by the following 

equation: 

 

JSEt = -0.10*∆JSEt-1 - 0.83*∆Discountt-1 + 0.0002*∆GDPt-1 + 0.86*JSEt-1 + 

0.03*Discountt-1 + 0.00*GDPt-1.                (7.6) 

 

The results of the FM-VAR estimation presented in table 7.3 differs from the standard 

output of a VAR, since it includes not only lagged variables but also the first 

differences of the lagged variables4. However, these results can easily be rewritten to 

                                                 
4 Like in the case of the random walk, this model has the advantage that only lagged variables is used 
to explain the stock market, which means that actual values are available for a one-period ahead 
forecast. 
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be in the same format as the standard VAR, which is easier to interpret. Table 7.4 

represents the results of the FM-VAR in the format as a standard VAR5. 

 

Table 7.4 Reparametarized Results of the FM-VAR 

 

 JSE Discount rate GDP 

    

JSEt-1 0.76 0.19 -1.79 

JSEt-2  -0.10 0.09 -86 

Discount ratet-1  -0.8 0.27 -179 

Discount ratet-2  -0.83 0.26 -339 

GDPt-1  0.00 0.00 1.64 

GDPt-2  0.00 0.00 0.21 

Constant 1.43 0.67 -240 

    

 

Figures 7.1 to 7.4 present the three stock market models graphically. These graphs 

highlights several differences between the different models. The FM-VAR and 

random walk both includes the lagged dependent variable (JSEt-1) in the specification. 

Consequently, both these models closely follow the movements and trends in the 

stock market but this happens with a lag. In other words, these models pick up all the 

turning points in the stock market but always with a lag and never 

contemporaneously. For example, the stock market turning point in the third quarter 

of 1986 is only reflected by the FM-VAR and moving average in the fourth quarter of 

1986. The cointegration model, on the other hand, sometimes deviates more than the 

FM-VAR and random walk from the actual stock price index, but there is no 

significant lag between the cointegration model and the actual stockmarket. For 

example, the cointegration model deviates quite substantially from the actual stock 

market index during 1996, while the deviations between FM-VAR and random walk 

models and the actual stock market are much smaller. The cointegration model and 

actual index peaked simultaneously in the third quarter of 1986, while the FM-VAR 

and random walk only peaked in the fourth quarter of 1986. Similarly, both the 
                                                 
5 The FM-VAR specification is yt=β0+β1yt-1+β2∆yt-1. This can be written as yt=β0+β1yt-1+β2(yt-1-yt-2) = 
β0+(β1+β2)yt-1+β2yt-2 which is the same format as the standard VAR. 
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cointegration model and the actual stock price index have a trough in the third quarter 

of 1998, while the FM-VAR and random walk models only start their upswings in the 

fourth quarter of 1998. 

 

Figure 7.1 Stock Market Models 
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Figure 7.2 The Cointegration Stock Market Model 
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Figure 7.3 The Random Walk Stock Market Model 
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Figure 7.4 FM-VAR Stock Market Model 
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7.2.2 Evaluating the Stock Market Models  

 

(i) Evaluation criteria 

 

The performance of the three models for the sample and forecast periods will be 

evaluated and compared on the basis of the root mean squared error (RMSE), the root 

mean square percentage error (RMSPE) and Theil’ s inequality coefficient (U) across 

the observations for every period. These are defined as follows: 
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where s
tY  is the simulated value of Yt, a

tY is the actual value and T is the number of 

periods in the simulation (Pindyck and Rubinfeld 1991:338, 340). The RMSE is the 

criterion most frequently used to evaluate forecast performance, but the other two 

criteria have certain advantages over the RMSE. The RMSPE is similar to the RMSE, 

but compares each error with the magnitude of the actual value. Theil’ s inequality 

coefficient (U) is based on the RMSE, but it is scaled in such a way that U will always 

fall between 0 and 1. If U = 0, then s
tY = a

tY  for all t, and the model is a perfect fit. On 

the other hand, if U = 1, then the forecasting ability of the model is as bad as it 

possibly could be. In other words, the best forecasting model will be the one with the 

minimum RMSE, RMSPE and U.  

 

Theil’ s inequality coefficient (U) can be decomposed into three parts as follows: 
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where σa and σs are the standard deviations of the actual and simulated series 

respectively and ρ is their correlation coefficient. The proportions UM, US and UC are 

called the bias, variance and covariance proportions respectively. The bias proportion, 

UM, is an indication of systematic error since it measures the extent to which the 

average values of the simulated and actual series deviate from each other. The 

variance proportion, US, indicates the ability of the model to replicate the degree of 

variability in the variable of interest. A large value of US means that the actual series 

has fluctuated considerably while the simulated series showed little fluctuation, or 

vice versa. The covariance proportion measure unsystematic error, in other words it 

represents the remaining error after deviations from average values have been 

accounted for. The ideal distribution over the three sources is therefore UM = US = 0 

and UC = 1 (Pindyck and Rubinfeld 1991:341). 

 

The abovementioned model selection criteria can be used to rank the performance of 

the different models, but it does not test whether the differences between the models’  

performances are statistically significant. Diebold and Mariano (1995) have suggested 

two tests6 for the null hypothesis of equal accuracy of two competing forecasts7. Let 

the two rival forecasts of the time series { }T
1tty =  be { }T

1titŷ =  and { }T

1tjtŷ
=

, with 

                                                 
6 They have also suggested an asymptotic test for the null of no difference in the accuracy of two rival 
forecasts, but the exact finite sample tests are preferred in the small sample context. 
7 Other tests such as an F-test for equal forecast error variances, the Morgan-Granger-Newbold test and 
the Meese-Rogoff test for testing the null of equal accuracy of two forecasts also exist. However, these 
tests are only strictly valid if several strong assumptions hold. The most important virtues of the 
Diebold and Mariano (1995) tests are that they are valid for a very wide class of loss functions, which 
need not be symmetric or continuous. In addition, the forecast errors do not have to be Gaussian or 
have a zero mean, and they can even be contemporaneously correlated. See Diebold and Mariano 
(1995) for a detailed discussion of the advantages of their tests over the other existing tests. 
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associated forecast errors { }T
1tite =  and { }T

1tjte
=

. The null hypothesis of equal accuracy 

of { }T
1titŷ =  and { }T

1tjtŷ
=

 is: 

 

H0: E[dt=0]                 (7.13) 

 

where dt≡[g(eit)-g(ejt)] and g() is the loss function applicable to the forecast. In 

general, the loss function, g, does not have to be a direct function of the forecast error, 

but can be a function of the actual and predicted values. In this case, dt≡[g(yt, itŷ )- 

g(yt, jtŷ )]. 

 

The first test suggested by Diebold and Mariano (1995) is the sign test, which tests the 

null hypothesis of a zero median loss differential between the two forecasts: 

 

H0: med(g(eit)-g(ejt))=0.               (7.14) 

 

The test statistic is 

 

∑
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1t
t1 )d(IS                 (7.15) 

 

where 

 

I+(dt) = 1 if dt > 0               (7.16) 

  0 otherwise.                 

 

The test statistic, S1, is distributed binomial with parameters T (the sample size) and 

0.5 under the null hypothesis. The studentized version of the test statistic is distributed 

standard normal in large samples: 
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The second test for the null of equal forecast accuracy is Wilcoxon’ s signed-rank test. 

Unlike the sign test, this test requires symmetry of the loss differential. However, this 

test is more powerful than the sign test in the case of a symmetric loss differential 

(Diebold and Mariano 1995). The test statistic is: 

 

|)d(|rank)d(IS t

T

1t
t2 ∑

=
+=                (7.18) 

 

where rank(|dt|) is the rank of the |dt| when |dt| is ordered from small to large. Like in 

the case of the sign test, the studentized version of the test is asymptotically 

distributed standard normal: 
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(ii) In-sample performance 

 

Table 7.5 presents the calculated values of the RMSE, RMSPE and Theil’ s inequality 

U as well as the decomposition of Theil’ s U for each of the three stock market models 

for the sample period. 

 

Table 7.5 Evaluation of the In-Sample Performance of the Models 

 

Criterion Random Walk Cointegration FM-VAR 

    

RMSE 6.883 5.492 6.322 

RMSPE 0.977 0.751 0.937 

U 0.046 0.036 0.043 

UM 0.047 0.020 0.048 

US 0.006 0.104 0.003 

UC 0.958 0.887 0.959 
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According to the results in table 7.5, the cointegration model performs relatively well 

in modeling the stock market. It has the lowest root mean squared error (RMSE), root 

mean squared percentage error (RMSPE) and Theil’ s inequality coefficient (U). The 

cointegration model therefore outperforms the other two models in terms of these 

three criteria. However, when Theil’ s inequality coefficient is decomposed, the 

cointegration model has the lowest bias proportion (UM) but the FM-VAR has the 

lowest variance proportion (US) as well as the highest covariance proportion (UC) and 

is therefore preferred to the cointegration model according to these two criteria. This 

comparison should be seen in perspective. The cointegration model has a lower 

inequality coefficient with a less desirable decomposition. On the other hand, the FM-

VAR has a higher inequality coefficient with a more desirable decomposition. 

Therefore the cointegration model is still preferred to the FM-VAR model since it has 

the lowest inequality coefficient, which is arguably more important than the 

composition of the inequality coefficient. 

 

Although the RMSE, RMSPE and U can be used to rank the performances of the 

models, it cannot be used to test whether the differences between the models are 

statistically significant. Therefore Diebold and Mariano’ s (1995) sign (S1a) and 

Wilcoxon signed-rank (S2a) tests will be used to test whether the models’  accuracy is 

statistically different. These tests require the specification of a loss function. The 

following loss functions were used: 

 

L1: g(et) = et                 (7.20) 

 

L2: g(et) = 2
te                  (7.21) 

 

L3: g(et) = ( ){ }1eeexp tt2
−α+α

α
β

 where  α=-1, β=1           (7.22) 

 

L4: g(et) = ( ){ }1eeexp tt2
−α+α

α
β

 where α=-0.5, β=1           (7.23) 

 

L5: g(et) = ( ){ }1eeexp tt2
−α+α

α
β

 where  α=-2, β=1           (7.24) 
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L6: g(et) = ( ){ }1eeexp tt2
−α+α

α
β

 where  α=-3, β=1           (7.25) 

L7: g(et) = ( ){ }1eeexp tt2
−α+α

α
β

 where  α=-4, β=1.            (7.26) 

 

Loss functions L1 and L2 are standard, symmetric loss function that minimizes the 

errors and squared errors respectively. Loss functions L3 to L7 are linex loss 

functions8 which are asymmetric. In these loss functions the parameter α determines 

the degree of asymmetry9. If α>0, then the losses are approximately linear for e<0 and 

approximately exponential for e>0. By defining the error (e) as the actual value less 

the simulated value, positive values of α corresponds to the case in which 

underpredictions are more costly than overpredictions. Negative values, on the other 

hand, corresponds to the case where the function is exponential to the left of the origin 

and linear to the right. Furthermore, the closer α is to zero, the closer the function 

approximates the standard quadratic case. As explained in chapter six, overpredictions 

are more dangerous to investors than underpredictions, and therefore negative values 

of α are used in this study so that overpredictions are more costly than 

underpredictions10. 

 

In table 7.6, {eRt}, {eCt} and {eVt} are the error series of the random walk model, the 

cointegration model and the FM-VAR model respectively. The signed-rank test 

requires a symmetric loss function and is therefore not applied to the asymmetric loss 

functions L3 to L7 (see section 7.2.2). According to the results in table 7.6 all the 

models’  accuracy are statistically different for loss function L1 according to both the 

sign and signed-rank tests. However, using any of the other loss functions there are no 

statistically significant differences in the accuracy of the models. 

                                                 
8 The linex loss function was introduced by Varian (1974) and Zellner (1992). 
9 The parameter β in the linex loss function is a scaling factor, which does not influence the results. 
This is illustrated in Appendix 2 where the results of the test of equal accuracy are presented for 
different values of β. The results show that different values of β do not influence the results.  
10 See Appendix 2 for the results in the counterintuitive case of positive values of α, in other words 
when underpredictions are more costly than overpredictions. The results show that none of the models’  
accuracy is significantly different for loss functions with positive values of α.  
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Table 7.6 Equal Accuracy Tests for In-Sample Performance 

 

Loss function: L1  L2  L3 L4 L5 L6 L7 

Test statistic: S1a S2a S1a S2a S1a S1a S1a S1a S1a 

          

H0: med(g(eRt)-g(eCt))=0 

HA: med(g(eRt)-g(eCt))≠0 

-3* -3* -1.1 0.48 -1.5 -0.6 -1.5 -1.9 -1.9 

H0: med(g(eRt)-g(eVt))=0 

HA: med(g(eRt)-g(eVt)) ≠0 

2.5* 2.9* 1.1 1.87 1.05 1.05 0.84 0.84 0.63 

H0: med(g(eCt)-g(eVt))=0 

HA: med(g(eCt)-g(eVt)) ≠0 

9.5* 8.2* -0.6 -0.1 1.26 0.21 1.90 1.90 1.90 

          

* Significant on a 1% level of significance. 

 

(iii) Forecasting performance 

 

The forecasting accuracy of the three stock market models are compared using the 

RMSE, RMSPE and Theil’ s inequality coefficient (U) from the first quarter of 2001 

quarter until the first quarter of 2003. The results are presented in table 7.7. The 

preferred model according to each of the criteria is printed in bold. 

 

Table 7.7 Evaluation of the Forecasting Performance of the Models 

 

Criterion Random Walk Cointegration FM-VAR 

    

RMSE 14.577 8.423 14.690 

RMSPE 0.086 0.051 0.088 

U 0.044 0.026 0.044 

UM 0.007 0.136 0.005 

US 0.009 0.032 0.000 

UC 0.984 0.832 0.995 
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According to the results in table 7.7, the cointegration model performs relatively well 

in forecasting the stock market. It has the lowest root mean squared error (RMSE), 

root mean squared percentage error (RMSPE) and Theil’ s inequality coefficient (U). 

The cointegration model therefore outperforms the other two models in terms of these 

three criteria. However, when Theil’ s inequality coefficient is decomposed, the 

cointegration model has the lowest variance proportion (US) but the FM-VAR has the 

lowest bias proportion (UM) as well as the highest covariance proportion (UC) and is 

therefore preferred to the cointegration model according to these two criteria.  

 

In addition to the RMSE, RMSPE and U criteria, Diebold and Mariano’ s (1995) sign 

(S1a) and Wilcoxon signed rank (S2a) tests are used to test whether the models’  

forecasting accuracy is statistically different. The results are presented in table 7.8. 

 

Table 7.8 Equal Accuracy Tests for Forecasting Performance 

 

Loss function: L1  L2  L3 L4 L5 L6 L7 

Test statistic: S1a S2a S1a S2a S1a S1a S1a S1a S1a 

          

H0: med(g(eRt)-g(eCt))=0 

HA: med(g(eRt)-g(eCt))≠0 

4 16* 6 32* 6 6 6 6 6 

H0: med(g(eRt)-g(eVt))=0 

HA: med(g(eRt)-g(eVt)) ≠0 

2 9* 4 23* 4 4 4 4 4 

H0: med(g(eCt)-g(eVt))=0 

HA: med(g(eCt)-g(eVt)) ≠0 

4 17* 2 7* 1* 1* 0* 0* 0* 

          

* Significant on a 10% level of significance. 

 

According to the results in table 7.8, the null hypothesis that the random walk and 

cointegration model are equally accurate in forecasting the stock market is rejected 

against the alternative that they are not equally accurate if the loss function is 

symmetric11. Likewise, the forecasting accuracy of the random walk and FM-VAR 

                                                 
11 The results of the sign (S1a) and signed-rank (S2a) are contradictory for loss functions L1 and L2. 
However, the signed-rank test is more powerful in the case of symmetric loss functions such as L1 and 
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differs significantly in the case of symmetric loss functions but not in the case of 

asymmetric loss functions. The null hypothesis of equal forecasting accuracy of the 

cointegration and FM-VAR models is rejected for the symmetric as well as the 

asymmetric loss functions. To summarize, the forecasting accuracy of any pair of 

models is statistically different for symmetric loss functions, in other words when 

over- and under-predictions are equally costly to investors. However, in the case of 

asymmetric loss functions in which over-predictions are more costly than under-

predictions, only the cointegration and FM-VAR models differ significantly in terms 

of forecasting accuracy.  

 

 

7.3 MODELLING TURNING POINTS IN THE STOCK MARKET 

 

7.3.1 The Turning Point Models 

 

The modelling and forecasting accuracy of the models in the previous section, namely 

the cointegration, FM-VAR and random walk models, are compared in modelling the 

direction of the stock market. The simulated values of these models are used to 

calculate the implied predicted direction of the stock market. In addition, they are 

compared to one of the most popular models used by technical analysts, a moving 

average12. 

 

One of the most popular averages used to identify major stock market trends is the 

200-day (or 30-week) moving average (Jones 1991:438). The moving average line is 

used to create a basic trend line of stock prices. A general sell (buy) signal is created 

when the actual stock price index fall below (rise through) the moving average line. 

The following are specific signals of a sell signal (i.e. an upper turning point) (Jones 

1991:438): 

 

                                                                                                                                            
L2 and therefore the results of the signed-rank test are interpreted rather than that of the sign test 
(Diebold and Mariano 1995). 
12 Technical trading rules are designed to signal when to buy or sell shares and not to model the level of 
share prices. Therefore the moving average was only used to model the direction and not the level of 
the stock market, since this is consistent with its general purpose. 
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- The actual share price index is approaching the moving average from below, but 

does not cross the moving average line before it starts to fall again. 

- The moving average declines after a rise and the actual share price index crosses 

it from above. 

- The actual share price index rises above the moving average line when the 

average is still falling.   

 

In this study a 30-week (or equivalently 7-month) moving average is constructed as 

technical trading rule. The moving average is calculated using monthly data and is 

then converted to quarterly data before the implied turning points are calculated. The 

calculated 7-month moving average of the JSE is presented in figure 7.5. The graph 

highlights the lag between movements of the moving average and the actual stock 

price index. For example, the stock market had a peak in the fourth quarter of 1980, 

while the turning point predicted by the moving average (i.e. when the actual index 

intersects with the moving average) only follows in the first quarter of 1981. 

Likewise, the stock market troughs in the second quarter of 1982 and the first quarter 

of 1988 are followed by turning point signals that are lagged by one quarter. 

However, the moving average seems to pick up all the peaks and troughs in the stock 

price index. 

 

Figure 7.5 A Moving Average Model of the JSE 
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7.3.2 Evaluating the Turning Point Models 

 

Investors are investing in the stock market to maximize their profits following a basic 

strategy of buying when share prices are low and selling when they are high. In order 

to evaluate the usefulness of the cointegration model for investors, the profitability of 

the different stock market models will be compared following this strategy of selling 

when share prices reach their predicted upper turning point and selling when share 

prices reach their predicted lower turning point. It is assumed that investors receive 

the short-term interest rate on their money while they do not hold the all-share index 

and that the returns are reinvested according to the same strategy as the original 

investment13. This will be compared to the returns of a buy-and-hold strategy over the 

sample period as well as receiving the short-term interest rate14 on their money over 

the sample period. Following Heathcotte and Apilado (1974), a commission of 0,5 

percent was charged on each trade15. Dividends were excluded from the analysis and 

any taxes were ignored. 

 

(i) The in-sample profitability of the stock market models 

 

Table 7.9 contains the results of these strategies for an initial investment of R100 at 

the beginning of the sample period. The second column presents the quarterly rate of 

return of the investment at an annual rate. The third and fourth columns contain the 

number and percentage of times that the specific model predicted a different direction 

than the actual realization of the stock market. 

 

According to the results in table 7.9, trading according to the cointegration model 

would have yielded a return of 24.39 percent, which is higher than the return on the 

buy-and-hold strategy. In fact, the return yielded by the cointegration model is higher 

than that of all the other models except the moving average model which would have 

yielded a return of 26.71 percent. The cointegration model also outperforms all the 

models except the moving average in terms of the number or percentage of times that 

it correctly predicts the direction of the stock market. 
                                                 
13 Dividends are not included. 
14 The yield on three-month bankers’  acceptances was used throughout the study. 
15 This is consistent with the rate charged by PSG, an investment services firm in South Africa 
(www.psg-online.co.za). 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  ––  MMoooollmmaann,,  HHCC  ((22000044)) 

 144 

 

Table 7.9 In-sample Profitability of Different Trading Strategies 

 

Model Final value of 

investment16 

Annualized rate 

of return17 

Wrong 

predictions 

% Wrong 

predictions 

     

Buy-and-hold 835.380 9.89%   

Interest rate 1702.90 13.43%   

Cointegration  13564.6 24.39% 12 13.33% 

FM-VAR 1268.60 11.95% 35 38.89% 

Random Walk 1251.00 11.88% 35 38.89% 

Moving Average 20584.7 26.71% 11 12.22% 

     

 

 

(ii) The forecasting profitability of the stock market models 

 

Table 7.10 contains the results of these strategies for an initial investment of R100 at 

the beginning of the forecast period. The forecast period was from the first quarter of 

2001 until the second quarter of 2003. 

 

According to the results in table 7.10, the cointegration model outperformed all the 

stock market models in terms of return on investment. However, it was as accurate as 

the moving average in terms of the number of times that it predicted the wrong 

direction for the stock market. Despite the good performance of the cointegration 

model in predicting the stock market, an investor would have been better of by simply 

investing in interest-bearing instruments during this particular period. However, it has 

to be kept in mind that dividends were not included in the calculation of these returns 

                                                 
16 The final value of the investment refers to the value at the end of sample period of the R100 invested 
at the beginning of the sample period if the investment strategy was to invest the money in share if the 
model predicted that share prices will increase while the money was invested in short-term bearing 
instruments when the relevant model predicted that share prices would decline. With the buy-and-hold 
and interest rate strategies, it is assumed that the money was kept in share or interest-bearing 
instruments respectively for the full sample period. 
17 The annualized rate of return is calculated as the percentage increase in the original R100 investment 
expressed at an annual rate. 
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and that any taxes on the returns were ignored. Table 7.11 replicates the results in 

table 7.10 but includes the dividends. 

 

Table 7.10 Forecasting Profitability of Different Trading Strategies 

 

Model Final value of 

investment 

Annualized rate 

of return 

Wrong 

predictions 

% Wrong 

predictions 

     

Buy-and-hold 84.01 -6.73%   

Interest rate 127.12 10.07%   

Cointegration  121.99 8.27% 3 30% 

FM-VAR 102.02 0.81% 4 40% 

Random Walk 106.41 2.51% 4 40% 

Moving Average 106.94 2.72% 3 30% 

     

 

 

Table 7.11 Forecasting Profitability Including Dividends 

 

Model Final value of 

investment 

Annualized rate 

of return 

Wrong 

predictions 

% Wrong 

predictions 

     

Buy-and-hold 91.08 -3.67%   

Interest rate 127.12 10.07%   

Cointegration  124.87 9.29% 3 30% 

FM-VAR 106.46 2.53% 4 40% 

Random Walk 110.75 4.17% 4 40% 

Moving Average 111.30 4.38% 3 30% 

     

 

The ranking of the models remain the same when dividends are included in the 

calculation of the rates of return. However, the difference in the returns of the stock 

market models and the interest-bearing scenario shrinks when dividends are included 
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in the analysis. The yield on the cointegration model increases from 8.27 percent to 

9.29 percent, while the yield on the FM-VAR model increases from 0.81 percent to 

2.53 percent when dividends are added to the analysis. The returns on the moving 

average model increases from 2.72 percent to 4.38 percent, while the returns on the 

buy-and-hold scenario increases from –6.73 percent to –3.67 percent.  

 

 

7.4 CONCLUSION 

 

In this chapter the accuracy of the cointegration model developed and estimated in 

chapter six was compared to other stock market models. The comparison was done 

separately for the in-sample and forecast periods. First the models’  accuracy in 

modeling and forecasting the level of the stock market were compared. Then the 

models were used to develop trading rules in order to compare their profitability and 

accuracy in modeling and forecasting the direction of the stock market. 

 

The accuracy of the cointegration model developed in chapter six was compared to 

that of a random walk and a Fully Modified Vector Autoregressive (FM-VAR) model. 

The performance of these models for both the sample and forecast periods was 

evaluated and compared on the basis of the root mean squared error (RMSE), the root 

mean square percentage error (RMSPE) and Theil’ s inequality coefficient (U) across 

the observations for every period.  

 

According to the results, the cointegration model performed relatively well in 

modeling the stock market within the sample period. The cointegration model 

outperforms the other two models in terms of the RMSE, RMSPE and U. Diebold and 

Mariano’ s (1995) sign and Wilcoxon sign rank tests are used to test whether the 

models’  accuracy is statistically different. According to the results the accuracy of all 

the models differ significantly if the minimized loss function is simply the errors. 

However, using any of the other symmetric or asymmetric loss functions there are no 

statistically significant differences in the accuracy of the models. 

 

The cointegration model also performs relatively well in forecasting the stock market, 

as it is preferred to the other models according to the RMSE, RMSPE and U. 
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According to the results, the null hypothesis that the random walk and cointegration 

model are equally accurate in forecasting the stock market is rejected against the 

alternative that they are not equally accurate if the loss function is symmetric. 

Likewise, the forecasting accuracy of the random walk and FM-VAR differs 

significantly in the case of symmetric loss functions but not in the case of asymmetric 

loss functions. The null hypothesis of equal forecasting accuracy of the cointegration 

and FM-VAR models is rejected for the symmetric as well as the asymmetric loss 

functions. To summarize, the forecasting accuracy of any pair of models is 

statistically different for symmetric loss functions, in other words when over- and 

under-predictions are equally costly to investors. However, in the case of asymmetric 

loss functions in which over-predictions are more costly than under-predictions, only 

the cointegration and FM-VAR models differ significantly in terms of forecasting 

accuracy. 

 

The models used to model and forecast the level of the stock market is also used to 

model and forecast the direction of the stock market. The simulated values of these 

models are used to calculate the implied predicted direction of the stock market. In 

addition, they are compared to one of the most popular models used by technical 

analysts, a 30-week moving average. According to the results, trading according to 

the cointegration model would have yielded a higher return than the returns yielded 

by a buy-and-hold strategy. In fact, the return yielded by the cointegration model is 

higher than that of all the other models except the moving average model. The 

cointegration model also outperforms all the models except the moving average in 

terms of the number or percentage of times that it correctly predicts the direction of 

the stock market. 

 

To summarize, in terms of both accuracy and profitability the cointegration model is 

preferred to other stock market models in modelling and forecasting the level as well 

as the turning points of the stock market. 
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