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This thesis deals with the solution of linear elastic fracture mechanics problems. To solve the linear
elastic fracture mechanics problems, the finite element method and path independent integrals are
employed, namely Rice’s J integral and an alternative path independent integral /*, which is the
energy complement to .J. Stress intensity factors for typical mode I and mode II fracture mechanics
problems in isotropic and orthotropic elastic plates are calculated. The problems considered are
a center cracked panel subjected to uniform tension, a single edge cracked panel subjected to
uniform tension, a double edge cracked panel subjected to uniform tension, and a center cracked
panel subjected to uniform shear.

Firstly, classical displacement based finite elements, elements with penalized equilibrium and ele-
ments with drilling degrees of freedom are presented and implemented in a MATLAB environment.

Secondly, two different ways to evaluate the stress intensity factor are considered, namely the
displacement extrapolation approach, and the path independent integrals ./ and /*. The numerical
implementation and path independence of the ./ and /* integral is demonstrated. It is shown that the
J integral can estimate the lower bound of the stress intensity factor when used with displacement
based finite elements, while the /* integral can estimate the upper bound of the stress intensity
factor, when used with stress equilibrium elements.

Thirdly, the path independent integrals ./ and /™ are applied to isotropic fracture mechanics prob-
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lems to determine the stress intensity factor at the tip of a crack. Convergence studies are presented
to investigate the influence of mesh refinement on the stress intensity factor predicted using the J
and /* integral. The path independence of J and [* are investigated. Numerical results for typical
fracture specimens are presented and discussed.

Finally, the path independent integrals J and [* are applied to orthotropic fracture mechanics
problems to determine the stress intensity factor at the crack tip. Again, convergence studies are
done, and the path independence of .J and [* are investigated for orthotropic problems. Numerical
results for typical fracture specimens are presented and discussed. The effect of the degree of
anisotropy and fiber orientation on the stress intensity factor is also demonstrated.

A novel contribution in this thesis are the results for elements with drilling degrees of freedom in
fracture mechanics problems. In addition, the results presented here may serve to clarify published
stress intensity factor results for orthotropic materials presented in the literature, since many of the
results previously presented are contradictory.
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Opsomming

Titel: Elemente met gepenaliseerde ewewig en rotasionele vryheidsgrade in
breukmeganika probleme

Outeur: Antoinette de Klerk

Leier: Prof. A.A. Groenwold

Departement:  Departement Meganiese Ingenieurswese
Graad: Meester van Ingenieurswese

Sleutelwoorde: FEindig element metode, breukmeganika, pad onathanklike integrale,
J integraal, /* integraal, spanningsintensiteitsfaktor, gepenaliseerde ewewig,
rotasionele vryheidsgrade, isotropiese materiaal, orthotropies materiaal.

Hierdie verhandeling is gemoeid met die oplos van linéere elastiese breukmeganika probleme. Om
die linéere breukmeganika probleme op te los, word die eindige element metode en pad onafhank-
like integrale gebruik, naamlik Rice se J integraal en 'n alternatiewe [* integraal, wat die energie
komplement van J is. Spanningsintensiteitsfaktore vir tipiese mode I en mode II breukmeganika
probleme in isotropiese en ortotropiese elastiese plate word bereken. Die volgende probleme word
beskou, eerstens 'n sentraal gekraakte paneel onderhewig aan uniform spanning, 'n enkel kant
gekraakte paneel onderhewig aan uniforme spanning,’n dubbel kant gekraakte paneel onderhewig
aan uniforme spanning en 'n sentraal gekraakte paneel onderhewing aan uniforme skuif.

Eerstens word klassieke verplasings gebaseerde elemente, elemente met gepenaliseerde ewewig,
en elemente met rotasionele vryheidsgrade voorgestel en geimplimiteer in 'n MATLAB omgewing.

Tweedens word twee verskillende maniere om die spanningsintensiteitsfaktor te bereken beskou,
naamlik die verplasingsekstrapolasie metode en die pad onafhanklike J en I* integrale. Die nu-
meriese implementasie en pad onafhanklikheid van laasgenoemde word gedemonstreer. Dit word
aangetoon dat die J integraal die ondergrens tot die spanningintensiteitsfaktor kan voorspel as dit
gekombineer word met verplasing gebaseerde elemente, terwyl die /* integraal die bogrens kan
voorspel as dit gekombineer word met spanningsewewig elemente.

Derdens word die pad onafthanklike integrale J en [* toegepas op isotropiese breukmeganika prob-
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leme om die spanningsintensiteitsfaktore te bereken. Konvergensie studies word aangebied om die
invloed van maas verfyning op die spanningsintensiteitsfaktor, bereken met die JJ en /™ integrale,
te ondersoek. Die pad onafhanklikheid van die J en [* integrale word ondersoek. Numeriese
resultate vir tipiese breukmeganika probleme word aangebied en bespreek.

Laastens word die pad onafhanklike integrale .J en [* toegepas op ortotropies breukmeganika
probleme om die spanningsintensiteitsfaktore te bereken. Konvergensie studies word weereens
uitgevoer, en die padonafhanklikheid van J en /* word ondersoek vir ortotropiese probleme. Nu-
meries resultate vir tipiese breukmeganika probleme word aangebied en bespreek. Die effek van
die graad van anisotropie op die spanningsintensiteitsfaktor word ook in berekening gebring.

'n Nuwe bydrae in hierdie studie is die toepassing van elemente met rotasionele vryheidsgrade
in breukmeganika probleme. Die resultate wat aangebied word kan verder ook gebruik word om
die verwarrende spanningsintensiteitsfaktor waardes in die literatuur vir orfotropiese materiale te
beoordeel, aangesien talle voorheen gepubliseerde resultate teenstrydig is.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade or so, the finite element method has been firmly established as a standard
numerical technique for solving fracture mechanics problems. It would have been impossible to
solve non-linear fracture problems, without the employment of the finite element method [1].

Rice’s path-independent integral .J is one of the most significant parameters in linear elastic frac-
ture mechanics [1]. Recently the I* integral was introduced by Wu e al [1], which is the dual form
of the J integral. The I* integral is based on the complementary energy principle of the system
where the J integral is based on the strain energy density of the system.

Path independent integrals (J/I*) should be solved with finite elements that are based on the same
energy principle as the path independent integrals to ensure path independence. It is due to this
fact that the I* integral makes the assumed stress element (based on the complementary energy
principle) play a powerful role in computational fracture mechanics.

In the penalty-equilibrium approach, stress equilibrium is enforced in individual elements. Thus
assumed stress elements with penalized equilibrium are ideal to solve the /* integral.

In fracture mechanics, upper/lower bound estimation of the stress intensity factor becomes a matter
of great significance as it is difficult to obtain the exact value of the stress intensity factor (K'), no
matter what experimental or numerical method is used due to the complexity of non-linear fracture
[1]. It can be proved that the J integral forms an approximate lower bound to K when displacement
based elements are used to solve the integral and that the /* integral forms an approximate upper
bound to K when stress equilibrium elements are used.

While assumed stress interpolation increases the accuracy of low order membrane elements, drilling
degrees of freedom have an additional advantage in low order membrane elements. Above and be-
yond enrichment of the displacement field, it increases the accuracy of low order elements. Drilling
degrees of freedom also increases the modeling capability of these elements.

In recent years, composite materials have been used increasingly in various engineering disciplines,
notably in the fields of aerospace and marine engineering.

The crack tip singularity in orthotropic materials can be completely characterized in the same
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manner as in the isotopic case by properly defining anisotropic stress intensity factors [2]. Stress
intensity factors are important parameters in the assessment of the fracture strength of anisotropic
composite structural components. Within the framework of plane, linear elastic fracture mechan-
ics, a problem of continuing interest is the calculation of the stress intensity factor in cracked
orthotropic plates modeling fiber reinforced composites [3].

1.2 Objectives

The primary objective of this study is the numerical evaluation of mode I and mode II stress
intensity factors for basic isotropic and orthotropic fracture mechanics problems.

The stress intensity factors are evaluated by using the finite element method, combined with path
independent integrals.

A secondary objective is to investigate the capability of different finite elements to evaluate the J
and /" integral. This is done by comparing elements with drilling degrees of freedom and penalized
equilibrium with standard displacement based and assumed stress elements.

In particular the application of elements with drilling degrees of freedom and penalized equilibrium
in fracture mechanics is of interest.

1.3 Approach

A finite element package was programmed in MATLAB [4]. The program employs different ele-
ments to evaluate fracture mechanics problems.

The following elements were implemented in MATLAB:

e Q4 (A displacement based quadrilateral element)
e PS (The assumed stress quadrilateral element proposed by Pian and Sumihara [5])

e PS(a) (A penalized version of the assumed stress quadrilateral element proposed by Pian
and Sumihara [5])

e Q4X (A displacement based quadrilateral element with drilling degrees of freedom)

e 83 (An assumed stress quadrilateral element with drilling degrees of freedom and 8 3 pa-
rameters)

e 83(«) (A penalized version of the assumed stress quadrilateral element with drilling degrees
of freedom and 8 3 parameters)

e 93 (An assumed stress quadrilateral element with drilling degrees of freedom and 93 para-
meters)

e 953(«) (A penalized version of the assumed stress quadrilateral element with drilling degrees
of freedom and 9 3 parameters)
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The package also employs path independent integrals to evaluate the stress intensity factors.

1.4 Thesis overview

The thesis is arranged as follows:

In Chapter 2 the classic formulations of the standard displacement based bi-linear isopara-
metric membrane element (Q4) and the assumed stress membrane element proposed by Pian
and Sumihara are presented.

In Chapter 3 the penalized version of the assumed stress element proposed by Pian and
Sumihara and the Q4 element are presented and discussed.

In Chapter 4 the formulation of a displacement based membrane finite element and two
assumed stress membrane finite elements with two translational and one rotational degree of
freedom per node are presented. Secondly, a penalty-equilibrium approach, in which stress
equilibrium is enforced in individual elements, is used for the two assumed stress elements
is presented.

In Chapter 5 a brief overview of fracture mechanics history is given and important fracture
mechanics concepts are discussed.

In Chapter 6 the displacement based extrapolation method for determining the stress inten-
sity factor is discussed and implemented.

In Chapter 7 the path independent .J integral is discussed. The path independence and lower
bound theorem are investigated and proved.

In Chapter 8 the path independent /* integral is discussed. The derivation, path independence
and upper bound theorem for the /™* integral is investigated and proved.

In Chapter 9 the influence of mesh refinement is considered and results for basic isotropic
fracture problems are presented and discussed.

In Chapter 10 the stability of the element with drilling degrees of freedom in fracture me-
chanics are considered.

In Chapter 11, fracture mechanics in orthotropic plates, and stress and displacement distri-
butions around the crack tip in an anisotropic material is considered.

In Chapter 12, basic orthotropic fracture mechanics problems are considered. The prob-
lems are evaluated by using the J and [™* integrals with different displacement based and
assumed stress elements. Results are compared with known solutions. A convergence study
is done to investigate the effect of mesh refinement on the path independent integrals. The
effect of fibre orientation and the degree of anisotropy on the stress intensity factors are also
considered.
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The Appendices include the following:

e In Appendix A, symbolic eigenvalues for the Q4 and 573 (or PS) elements are given.
e A sample input file is given in Appendix B.

e Appendix C contains representative parts of the source code developed for this study.
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Classical element formulations

In this chapter the classic formulation of the standard displacement based bi-linear isoparametric
membrane element (Q4) and the assumed stress membrane quadrilateral element (PS) are pre-
sented. The computer implementation of the elements is set out in Appendix C.

2.1 Introduction

In formulating displacement-based finite elements, the principle of virtual displacements (also
called the principle of virtual work) is often used. This principle is equivalent to invoking the
stationary condition of the total potential energy II [6], where II = U;,, — We. Here, Uy, and
Wex respectively indicate the total internal strain energy of a system, and the total potential of the
applied loads. The variational approach provides an elegant and powerful approach for the analysis
of continuous systems.

A rudimentary knowledge of functional analysis is required to study these formulations. The reader
is referred to Bathe [6] for further details. Clear treatments are also presented in amongst others
[7,8,9].

2.2 Classical displacement based formulation in 2-D

In the following, we limit ourselves to linear elastostatics, and, for the sake of brevity, we re-
strict ourselves to the Dirichlet problem. However, more complex boundary conditions may be
incorporated in a standard manner, e.g. see [10].

Let €2 be a region occupied by a body. The boundary value problem under consideration is [7]:
Given f, the body force vector, find w such that

dive+f =0 inQ (2.1)
o =Ce in{ (2.2)
u =0 onl =00, (2.3)
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where (2.1) - (2.3) are, respectively, the equilibrium equations, the constitutive equation, and the
displacement boundary condition. 0f) represents the boundary of 2, and 0f2,, represents the part
of the boundary on which the displacements u are prescribed. For an isotropic material and plane
stress, the constitutive modulus tensor C = {C};; } has the form

Cijkr = A0ijOr + o (6ix0j1 + 0udji) 1,7,k 1 € {1,2} (2.4)

where JE
A= oy (2.5)

and g
W= m (2.6)

E and v are Young’s modulus and Poisson’s ratio, respectively. The potential energy functional
for each element' is given by

1
M(u) = —/ e’ Ced) — / u’ £ dQ, 2.7
2 Ja Q
with
€e=0.u. (2.8)
The stationary condition of the potential energy yields the corresponding variational equation
oM(u) =0 = / 5e’Ced) — / Su’ f d. (2.9)
Q Q
Since we interpolate u as
u= Nagq, (2.10)
we obtain
e=0u=0.Nq= Bg. (2.11)
Using matrix notation, the discrete version of (2.9) is written as
/ §[Bq|"CBq d) — / S(Ng)"fdQ =0, (2.12)
Q Q
or
5qT/ B'CB dQq— 6qT/ NTfdQ =0, (2.13)
Q Q
where we note that 6qT is arbitrary. Hence,
/ BTCBdQ q= / NTfdaqQ. (2.14)
Q Q
Denoting
K= / BTCB d, (2.15)
Q

'Summation over all the elements is implied when calculating the structural potential.
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and
. / NT £ dQ. (2.16)
Q
we rewrite the force-displacement relationship as
Kqg=r, (2.17)

which completes the formulation.

The finite element implementation of the element is well known, and therefore not explicitly given
here.

2.3 Assumed stress formulation in 2-D

The general formulation of an assumed stress hybrid element? is based on independent interpo-
lations for stresses o and displacements w. Hence we obtain strains € = 0 .u derived from the
displacements w, and strains € that satisfy the constitutive equation € = C'o. It is of course
required that these two independently obtained strain fields are equivalent, which may be effected
by enforcing equivalence in a weak sense. The Hellinger-Reissner 2-field principle:

1
M(u,0) = —§/QO'TC_10' dQ—i—/

oledN— / u? £d90. (2.18)
Q Q

Enforcing the variation of the functional to both the stress parameters and the nodal displacements
leads to

SII=0= —/ soTC 1o dQ + / SoledQ + / ode dQ) — / Sul f dQ. (2.19)
Q Q Q Q
Performing the variation with respect to the stress o leads to
/ doled — / solC o dQ =0, (2.20)
Q Q
and the variation with respect to the displacement u

/ ol5ed) — / sul fdQ =0. (2.21)
Q Q
In €), the stresses o are approximated via the interpolation [11, 12]

o= Pg, (2.22)

with P the matrix of the interpolation functions and 3 the vector of stress parameters. The strains,
€ are written in terms of the nodal displacements as

e=0.u=0.Nq= Bg, (2.23)

2For the sake of simplicity, we consider equilibrium on the element level, as opposed to structural equilibrium.
Again, summation over all elements is implied when calculating the structural potential.



University of Pretoria etd — De Klerk A (2006)

CHAPTER 2. CLASSICAL ELEMENT FORMULATIONS 8

where the displacements are as usual interpolated in the standard way, and IN represents the dis-
placement interpolation functions. (As usual, w = INq.) By substituting the above interpolations
into (2.20) and (2.21), we now write (2.20) as

/ s8TPTB qdO — / sBTPTC'P BdQ =0, (2.24)
Q Q
and (2.21) as
/ BTPTB 6q dQ — / S¢"NTfdQ=o0. (2.25)
Q Q
Defining G and H as
G = / PTB 49, (2.26)
Q
H= / PiCc'PdQ, (2.27)
Q
(2.24) can be written as
BTG q—-0B"H B3=0, (2.28)
and (2.25) as
BTG éq=6q"r =5q" G" B, (2.29)

(2.28) and (2.29) can now be rewritten in matrix notation
0 G* q| |r
G —H Bl |0}

B=H'Gaq. (2.30)
By substituting (2.30) into (2.29) we obtain

From (2.28) 3 can be written as

G'H 'Gqg=r. (2.31)
The force-displacement relationship is defined by
Kqg=r. (2.32)
From (2.31) and (2.32) the stiffness matrix can then be written as
K=G'"H'G, (2.33)

which completes the formulation.



University of Pretoria etd — De Klerk A (2006)

CHAPTER 2. CLASSICAL ELEMENT FORMULATIONS 9

2.3.1 Finite element implementation

For a 2-D 4-node quadrilateral membrane element, the displacements w are typically interpolated
as
u= Ngq, (2.34)

with IV the bi-linear Lagrangian interpolation functions, and q the (unknown) element nodal dis-
placements. The stresses o are interpolated as

o =TPg, (2.35)

with P the stress interpolation matrix, 7" an optional transformation or constraint matrix, and 3
the (unknown) elemental stress parameters. Selecting 1" and P is not straight forward; there are no
unique optimal formulations. P depends on issues like completeness in the Cartesian coordinate
system, which may compete with the limiting principle of Fraeijs de Veubeke [13]. Nevertheless,
for the 4-node quadrilateral element at least, previous experience has shown that a number of
formulations are accurate and robust. Typically, 5 3 parameters are used, with

1
P=1|0 (2.36)
0

O = O

0
0
1

o O3
O O

and £ and 7 the natural coordinates. For T, the simplest formulation is probably the rational
approach proposed by Pian and Sumihara [5].

2.4 Numerical example

2.4.1 Cook’s membrane

The swept and tapered cantilever beam proposed by Cook (Fig 2.1), has been used by many au-
thors. The center displacement us. for the various elements studied is tabulated in Table 2.1. The
results are compared with the best known solution of uy. = 23.94.

Table 2.1 clearly illustrates the vastly superior performance of the PS element over the Q4 element.

Element 1 x1 2% 2 4 x4 8 x &
Q4 5.9677 11.8451 18.2993 22.0790
PS 16.7223 21.1284 23.0215 23.6887
Best known 23.94

Table 2.1: Mid node displacement for Cook’s membrane (plane stress) obtained with displacement
based Q4 and assumed stress PS elements
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Figure 2.1: Cook’s membrane

10
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Elements with penalized equilibrium
formulation

In this chapter, the penalized equilibrium formulation of membrane elements is outlined. The
computer implementation of the theory is reflected in Appendix C.

3.1 Penalized equilibrium in assumed stress elements

As indicated in Chapter 2, assumed stress hybrid elements are renowned for their accurate stress
solutions, due to the fact that the stress and displacement trial functions are selected independently.

Accurate stress solutions in the sense of the energy norm do not necessarily imply pointwise ac-
curate stress predictions within elements [14]. Indeed, most hybrid elements only yield accurate
stress predictions at the element centroid, while stress predictions at element edges and in particu-
lar element nodes, can be highly inaccurate.

To improve the accuracy of point wise predictions in hybrid elements, a number of formulations
have been proposed. This includes pre- and post-treatment [14], with the latter simpler and supe-
rior. Post treatment via penalized equilibrium is outlined as follows: While distributed body forces
may induce important loads on a structure, they can usually be ignored on the element level in
stress calculations [15]. Hence element equilibrium is written as

9o =D"0=0inQ 3.1)
with D the 2-D differential operator; 2 indicates the elemental domain.

Enforcement of (3.1) in the variational formulation (2.20) yields a functional IT* of the form
T (u,0) = M(u,0) —« /(aa)T(ao—)dQ, a>0, (3.2)

where II(u, o) represents the potential of the Hellinger-Reissner principle (2.20). Using matrix
notation, and for the sake of convenience setting « «— «/2F, the potential of the assumed stress
elements becomes

I (u,0) = B'Gq - %ﬂT (H n %Hp) B—q'r (3.3)

11
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with
G= / P'BdQ,
Q
H= / PTC'PdQ,
Q
r= / NTf4dQ,
Q
and

H,= / (OP)"(oP)ds,

where P is now understood to represent the matrix product T'P.

The force-displacement relationship is obtained as

-1
G’ <H+%Hp> Gqg=r,
or
Kqg=r.

0.08 [—————T————————————

0.07
)\4/)\1 ——
)\5/)\1 R R

0.06
0.05 |
A 0.04
0.03
0.02

0.01

1 10 100 1000 10000

a/FE

12

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Figure 3.1: Typical variation of the eigenvalues of a penalized, arbitrary distorted 53 assumed

stress element

3.1.1 Allowable values of « for hybrid elements

In the penalty formulation, we note that o > 0 is required. Wu and Cheung merely report that
results converge for o/ E > 10000, but they present no comments on element accuracy in the limit
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of enforcing a > 0. They then suggest that the equality represented in this relationship be used
for practical implementations.

For elements of regular geometry, penalized equilibrium has no influence. (A ‘regular’ geometry is
understood to be square or rectangular.) However, for elements of irregular geometry, the stiffness
associated with the higher order deformation modes completely vanishes as & — oo (e.g. see Fig
3.1).

In an assembly of elements, even very high values of o are normally adequate to prevent com-
municable mechanisms (spurious modes); in addition, the higher order modes of course have no
influence in passing the patch test. Hence connected elements are unconditionally convergent.
Nevertheless, for single elements (or a very small number of elements), the higher order modes
may vanish for all practical purposes, resulting in very low stiffness, and therefore significant
over-displacement, in bending dominated problems.

3.1.2 Cook’s membrane

We again study Cook’s membrane (see Section 2.4.1), to compare the penalized and unpenalized
assumed stress elements.

The penalized assumed stress element converges from above to the best known result, while the
unpenalized assumed stress element converges from below. Typically, penalized elements are
more accurate than their unpenalized counterparts, although very coarse meshes can results in
displacements that are too large.

Element 1 x1 2 %2 4 x4 8 x &
PS 16.7223 21.1284 23.0215 23.6887
PS(«) 46.7567 259153 24.0925 23.9639
Best known 23.94

Table 3.1: Mid-node displacement for Cook’s membrane (plane stress), obtained with unpenalized
PS and penalized PS(«) assumed stress elements

3.2 Penalized equilibrium in displacement based elements

3.2.1 Element defects

While the finite element method is an established method for solving complicated structural prob-
lems, the quest for elements of ever increasing accuracy and robustness continues.

A typical example is the formulation of elements that perform well in bending. The standard dis-
placement based bi-linear isoparametric membrane element (Q4) is notorious for its low accuracy
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under bending dominated conditions. Distortion of the element geometry further aggravates the
already bad performance, which is an indication of the lack of robustness of this element.

When the standard displacement based Q4 element is used in bending it develops shear strains as
well as the expected bending strains. The Q4 element cannot exhibit pure bending, since the par-
asitic shear strains absorb strain energy. Hence, when a given bending deformation is prescribed,
the bending moment needed to produce it is larger than the correct value. In other words, the Q4
element exhibits shear locking behavior [15].

Strain energy U in a linearly elastic body of volume V', without initial stress or strain, can be
evaluated from the expression

1
U= 3 / e’ DedV (3.10)

where, for the 2D case € = [e,€,7.y]"

M, v M,
x,u

Afel i ]\lel
X,

2a

(b)

Figure 3.2: Deformation mode in bending: (a) A rectangular block of material in pure bending (b)
A Q4 element under bending load

and, for a plane element of thickness ¢, the volume increment is dV' = tdzdy. In pure bending, as
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shown in Fig 3.2(a) a block of material experiences the strains

_Ovy Oy (3.11)

€x = 9 Gy:V% Vay = 0.

When a Q4 element is bent, as shown in Fig 3.2(b), its top and bottom sides remain straight,
and each node has only horizontal displacement of magnitude 6.,6/2. Hence, from the strain-
displacement relation € = Bd, the element strains are

eely eelx

2a v = %y:_Za’

(3.12)

€xr — —

Thus ¢, in the element is exact and ¢, is approximate (but exact if = 0). Of the greatest concern
is the nonzero shear strain y,, which should be zero in bending.

3.2.2 Displacement based elements with penalized equilibrium

Various methodologies have been proposed to overcome the bending deficiency of the standard
displacement based element. Amongst others, proposed remedies include reduced integration with
stabilization modes, the introduction of incompatible modes [16], assumed stress interpolations
[17, 18], enhanced strain modes [19], and the inclusion of in-plane drilling degrees of freedom
[20, 21, 22].

In this chapter, we study some of the fundamental reasons for the poor performance of the Q4
element using a penalty formulation; it is not the intention to present yet another 4 node element
formulation. Nevertheless, in the following sections it is demonstrated that the accuracy of the
undistorted Q4 element may be raised to the linear strain capability, albeit at the introduction of
elemental parameters. The elemental parameters are selected such that spurious zero energy modes
are not introduced, for which an investigation of the characteristic equations of the elemental stiff-
ness matrix may be used. For the Q4 element with bi-linear interpolation, enforcement of 9o = 0
in ) seems difficult, if not impossible. However, it may be attempted to soften the higher order
deformation modes via the introduction of elemental parameters, expressed in terms of the element
equilibrium equations.

The straining or deformation modes of a typical rectangular Q4 element are depicted in Fig 3.3.
The (very stiff) higher order modes are to be blamed for the poor performance of this element in
bending. For the element, the stresses are obtained from

o= Ce. (3.13)

viz.
o =CBag. (3.14)

Hence
8o =9(CBq) = C(0B)q = Bq (3.15)
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)\1 )\2 )\3 >\4

As

Figure 3.3: Straining modes of a rectangular Q4 element, side lengths 2a and 20, a > b

The potential energy functional is then written as:

1
IT" (u) = —/ €' Ce d) — a/(Ce)T(Ce) dQ
2 Jo Q
— / ul f dQ
Q
with
€ = Ou.
Interpolating for u as
u= Ngq,

(3.16) becomes
1
I (u) = §qT/ B'CBdQ q —
Q
aqT/ B"B a0 qg—q'r.
Q
Substituting v «— «F' /2, the stationary condition yields

(K—aEK)g=r

with
K = / BTCB d9,
Q
K:/jfsaz
Q
and

r:/NdeQ
Q

3.2.3 On critical values of o

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

The parameter o must be selected such that spurious zero energy modes are not introduced, for
which an investigation of the characteristic equations of the modified stiffness matrix suffices. In

general in 2-D, o must be selected such that

(K - aEK)

(3.24)
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is positive semi-definite, with rank (n — 3), where n = dim(K). For Q4, n = 8. The critical
(maximum) value of « is that value that results in the introduction of a spurious zero energy
mode. a..;; may directly be obtained from the characteristic polynomial of (3.24). We will now
symbolically determine critical values of « for square and rectangular geometries. In doing so, we
will denote the eigenvalues of (3.24) A, through A\g, with Ay > Ay > --- > Ag.

Square element, side length 2a

For a square element of unit thickness and side length 2a, an investigation of the characteristic
polynomial of (3.24) results in the following linear relationship between the critical eigenvalue A5
and o

As (2a*v* — 8va® — 3va — 3a + 6a?) x

" 1242
(V=12 —v+1). (3.25)
Since £ # 0 and (v® — v? — v+ 1) # 0 for 0 < v < 0.5, the critical value of o may be obtained

through the equality
(2a*v* — 8va® — 3va — 3a + 6a”) = 0, (3.26)

which directly yields
2a%(v? — 4v + 3)
3(v+1)E2

(3.27)

Qerit =

Rectangular element, side lengths 2a and 2b,a > b

For a rectangular element of unit thickness and side lengths 2a and 2b, a > b, the critical eigenvalue

is obtained as
—Fa

A= Top

(Bva + 3a — 2a* + 4a*v — 2a*V? — 4b?

+4b?V) (VP — 2 — v+ 1). (3.28)

Hence
20%(V? — 2v + 1) + 4b*(1 — v)

aCT’it - 3(]/ —I'— 1)E2
It is noted that only the higher order modes (associated with A4, A5) are a function of a.

(3.29)

Irregular geometries

In the foregoing, we have considered only regular geometries; a treatment for irregular (generally
distorted geometries) is awaiting. This can probably be done using

1. analytical or symbolic techniques to find the characteristic polynomial, or
2. through approximate relationships derived from the mapping to a ‘regular’ parent element.

Nevertheless, it is easy to use mathematical programming techniques to determine «.,.;; for arbi-
trary distorted elements. Enforcement of A5 > ¢, € positive and prescribed, will always guarantee
convergence, since the resultant element is rank sufficient, and passes the patch test.
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3.2.4 Optimal values of o

While any value of o <« will prevent spurious modes, values close to a.,.;; are not necessarily
optimal. Although ‘optimality’ is subjective, it seems sensible to make the Q4 element ‘bending-
exact’, which can, at least for square elements, be done by making the element stiffness matrix
equivalent to that of the assumed stress element.

For a square element, this is simple. Equating (A.4) and (A.9) (or (A.5) and (A.10)) in the Ap-

pendix results in

a?(1-v)(2v> —v+1)

(v+1)E2

For a rectangular element, two sets of equations are to be equated, which are for the sake of brevity

not presented here. This results in two expressions, namely

(1-v)(2a*v* — b*v + b?)
(v+1)E? ’

a=2/3 (3.30)

(0%} :2/3

(3.31)

and

(1—v)(2v%* — a®v + a?)
(v+1)E? ’

with ai; # aw; it is impossible to satisfy both expressions at the same time.

as =2/3 (3.32)

3.3 Separation of the higher order deformation modes in Q4

To overcome the implications of oy # s, it is proposed to separate the expressions for the ortho-
gonal higher order modes

0o, in (), and (3.33)
9o, in Q. (3.34)

where 2 again refers to the elemental domain. This results in an elemental formulation of the form

T (u) = II(u) — a, / (8,0)7(8,0)d0

—ay, / (8,0)"(8,0)d, (3.35)
with o derived from the displacement u as o = D Bq. We will denote this formulation Q4(&).

In formulating this (bending-exact) element, the following two equations must be solved simulta-
neously:
4%t — 24203 + (3 F?0, +2a* — 40> +12 EQay) Vi
(2 a’ — 6E2aw) v—2a*+3F%, =0, (3.36)
and
41a*v* = 20°0° + (3E %y, 4+ 20 — 4a® + 12 B0y, ) v*+
(2b° — 6 E*ary) v — 2b° + 3 E*r, = 0. (3.37)
This may be done analytically during assembly of element stiffness matrices; no inversion of sub-
matrices in the element stiffness matrix is required.
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Figure 3.4: Slender and short beams in pure bending

3.4 Numerical example

Consider the slender and short beams in pure bending depicted in Fig 3.4. Numerical results are
presented in Tables 3.2 and 3.3 for the slender and the short beam respectively. In the tables, a.,.;;
results from (3.29), oy and as represent values that enforce (3.31) and (3.32) respectively, while
Qave = (1 + a2)/2. |oy| represents the bending stress at an elemental centroid for a 2 x 2 mesh
discretization.

The tables reveal that « — ., results in severe over-displacement, while o = a5 or @ = gpe
does not overcome the locking behavior of the element. Q4 (&) on the other hand, is bending-exact
in terms of nodal displacements; even the bending stresses at the reduced integration points are
exact.

Element Usy Vg O
56 20.0 100.0 1500
Q4 1.81 9.02 426
Q4(a), =y 20.0 100.0 1500
Q4(a), a = g 222 11.11 500
Q4(a), @ = gpe 40 200 750
Q4(a), @ — agrip 180.0 963.0 2000
Q4(a) 20.0 100.0 1500

Theory 20.0 100.0 1500

Table 3.2: Numerical results for the slender beam in pure bending

3.5 Discussion

Firstly, it is noted that the post treatment of assumed stress membrane finite elements through
penalized equilibrium, in theory, results in complete loss of stiffness associated with higher order
deformation modes. While this can be circumvented by prescribing an upper limit on «, significant
over-displacement can occur for course meshes.
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Element Uy Uy O
503 0.80 0.160 300
Q4 0.78 0.157 294
Q4(a), =y 0.87 0.174 326
Q4(), v = g 0.80 0.160 300
Q4(a), = e 0.83 0.160 313
Q4(a) 0.80 0.160 300
Theory 0.80 0.160 300

Table 3.3: Numerical results for the short beam in pure bending

20

Secondly, we note that the introduction of elemental parameters into the displacement based Q4
element soften the higher order deformation modes, appropriate choices render the element exact

in bending.
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Chapter 4

Elements with drilling degrees of freedom

In this chapter, the formulation of membrane finite elements with drilling degrees of freedom is
outlined. The computer implementation of the theory is given in Appendix C.

4.1 Formulation of elements with drilling degrees of freedom

In membrane analysis, displacements (and hence strains and stresses) are uniquely defined by
two in-plane translations. Strictly speaking, this makes additional in-plane rotational degrees of
freedom seem superfluous. However, because of enrichment of the displacement field, the in-
plane behavior of low order elements is vastly improved when rotational degrees of freedom are
included in the element formulation. In addition, drilling degrees of freedom allow for beam-slab
connections and provide the needed 6" d.o.f in shell analysis.

4.2 Variational formulation

The condensed treatment of Ibrahimbegovic ef al [22] presented by [23] is followed closely with-
out further proof or motivation. The formulation is limited to linear elastic problems and discussion
of boundary conditions is omitted. Boundary conditions may be incorporated in a standard manner.

Let €2 be a region occupied by a body. The boundary value problem under consideration is: For all
x € ()

dive+f=0 4.1)
skewo =0 4.2)

P = skew Yu 4.3)
symm o = C - symm Y u (4.4)

where (4.1) to (4.4) are, respectively, the equilibrium equations, the symmetry conditions for stress,
the definition of rotation in terms of displacement gradient and the constitutive equations. In (4.1)
to (4.4) the Euclidean decomposition of second-rank tensors are employed, e.g

o = symm o + skew o 4.5)

21
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where .
symm o = 5(0 +ao7), (4.6)
1 T
skew o = 5(0’ —0o'). 4.7

For an isotropic material and plane stress, the constitutive modulus tensor C = {C);;,;} has the form

Cijir = A0t + 1(0irj1 + 0510,k (4.8)
where g
v
_ 4.
A A=)’ 4.9)
FE
h ot +o)y (10

where I/ and v are Young’s modulus and Poisson’s ratio, respectively. Reissner [24] presented a
variational formulation for the boundary value problem reflected in (4.1) to (4.4). The problems
of the formulation presented by Reissner are not discussed here, but the reader is referred to [21]
instead. The variational problem of Reissner was modified by Hughes and Brezzi [21] in order
to preserve the stability of the discrete problem. This modification preserves (4.1) to (4.4) as the
Euler-Lagrange equations. In addition, the symmetrical components of stress are eliminated using
the constitutive equation (4.4) to give:

Problem(M)

1
IT,(v,w,skew 7) = 5 /Q symm (yv) - C - (symm yv)dS) + /Q skew 77 - (skew v —w)dQ

1
—57—1/ |skeWT|2dQ—/v-fdQ, 4.11)
Q Q

where v € V, w € W, 7 € T are spaces of trial displacements, rotations and stresses. This
variational formulation requires that the rotations w and stresses 7, together with the displacement
generalized derivatives \/v, belong to the space of square-integrable functions over the region ().
The variational equation which results from variations on (4.11) is

0 = DIL,(u,%,skew o) - (v,w,skew T) = / (symm /v) - C - (symm 7u)dS?
Q
—|—/ skew 77 - (skew yu —p)dQ + /(skew v’ skew o — w’ - skew o)dS
0 0
—fyl/ skew 771 - skew od§) — / v - fdSQ. 4.12)
0 Q

It is possible to eliminate the skew-symmetric part of the stress tensor (see [21]) by substituting

v Iskew o = skew syu — P (4.13)
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into Problem (M) to obtain Problem (D)

- 1
I,(v,w) = §/stmm (Vv)-C - (symm 7v)dS2

1
+§’y/ |skew 7v — w [2dQ — / v - fdd. (4.14)
0 0

The corresponding variational equation now is
0 = DIL,(u, %) - (v,w) = / (symm yu) - C - (symm 7v)dS2
Q

—l—v/(skew v — w)! - (skew yu — )dS) — / v - fdSQ. (4.15)
Q Q

The variational equation (4.15) is taken as the basis for constructing the displacement-type discrete
formulation which is presented in the next section. The parameter ~y in the foregoing formulation
is problem dependent [21].

4.2.1 Finite element interpolation

As with the foregoing, the treatment of Ibrahimbegovic et al. [22] is followed closely and the same
notation is used. However, only the displacement-penalty approach is presented here. The mixed-
type variational approach may be found in [22]. The particular choice for finite dimensional spaces
VR W" T" is presented along with the resulting discrete formulations. First the discrete version of
Problem(D) is considered:

Problem (D)"
0= / (symm 7v™)7 - C - (symm 7u")d
Oh

-w/ (skew 70" —w™)T - (skew yu —¢p")dQ — / " fdQ. (4.16)
Qh Q

Consider a 4-node quadrilateral element with degrees of freedom as depicted in Fig 4.1. The
reference surface of the element is defined by

4
z = Nj(n)m, (4.17)

I=1

where x represents co-oordinates (1, x2) of a point on the reference surface and N;((,n) are the
isoparametric shape functions [25]

1
Ni(¢,m) = 1(1+C1C)(1+77ﬂ7) ;I=1,234. (4.18)

The independent rotation field is interpolated as a standard bilinear field over each element:

4
us =" =Y > N7 (¢ (4.19)

e I=1
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S

1

Figure 4.1: Four-node quadrilateral element with drilling degrees of freedom

The in-plane displacement approximation is taken as an Allman-type interpolation

4 8
)
( i ) = = 3 NI+ DS TNSHC )L (e — o)+ 3 NB5(Cm) £,

Uz
e I=1 e I=5
(4.20)
where [ ;i and n;x are the length and outward unit normal vector on the element side associated
with the corner nodes J and K, i.e.

. nq _ COSO K
K = ( N9 ) - < SiHOéJK >7 (421)

lJK = ((ZL’Kl —fL’Jl)Q‘l‘(ZL‘Kg _xJQ)Q)%. (422)

In the above, a FORTRAN:-like definition of adjacent corner nodes are employed:

and

J=1—-4;K=mod(I,4) + 1. (4.23)

In (4.20) the serendipity shape functions are defined by

1
NS¢(¢,n) = 5(1 — (1 4+nm); 1=5,7, (4.24)

NS{(Cn) = 51+ GO (L —1): 1= 68 @25)
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To illustrate the superior performance of the 9-node Lagrangian element over that of the 8-node
serendipity element, a hierarchical bubble interpolation function is added in (4.20) where

1
NB5(Cn) = 5(1 =)0 =n). (4.26)

The terms in the element stiffness matrix arising from this interpolation may be eliminated at the
element level by static condensation (see Wilson [26]). Employing matrix notation and defining

symm yu® = Biu; + Gy, (4.27)

where u; and 1 ; are nodal values of the displacement and the rotation fields, respectively. The B
matrix in (4.27) has the standard form

Ne, 0
Bi=| 0 Ni,|;1=1234, (4.28)
Nis Ni,

where N; ; = %1] The part of the displacement interpolation associated with the rotation defines
(l]J COS Oé[JNSil - ZIK COS Oé[Kstew’l)
(l[J sinaUngz — l]K SiHOé[KNSiLz)
G? = = (l[JCOSOé]JNSEz — l]K COSC(]KNSﬁLz) s (429)
_|_
(ZIJ sin Oé[(]NSil - ZIK SiHO[]KNSf\/LI)

where

I1=1,234,M=1+4;L=M -1 +4int(1/I);
K =mod(M,4)+1;J=L -4, (4.30)
and
ONS},
a.fll'i

The above expressions enter into the element stiffness matrix as

NS =

K°= / [B°G‘]' C[B*G*|dS, (4.31)

where K“ is a 12 x 12 matrix. This is, in fact, the QC9 or QC9(8) element (depending on the
integration scheme employed to integrate the element area §2°. This rank deficient element was re-
ported by Stander and Wilson [27] further to the work of Taylor and Simo [28]. The rank deficiency
is associated with the spurious higher order mode shown in Fig 4.2.

It is now required to remove the rank deficiency. Denoting

skew 7 u® — ¢ = bjus + g (4.32)
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Square

Irregular

Figure 4.2: Spurious higher order mode for a four-node quadrilateral element with drilling degrees
of freedom

where . .
b; =< _§N1672 §NIE’1 > ;1=1,2,34, (4.33)
and
g7 = [—1—6(ZU cosarsNSy ol cosarg NSy )]
1
+1—6(ZIJ COS Oé[JNSle]K COS O[IKNSX/[J) — N[e]’ 1= 1,2,3,4, (434)

with induces J,K,L,M again defined by (4.30) Employing the interpolations for displacement (4.20)
and rotations (4.19) and combining with (4.32) directly leads to

Pe— / ( b ) b° g°]de, (4.35)
2 \ 9
for the second term in Problem (D)". Hence the element stiffness matrix becomes
K+ Pla=f;a= ( ;‘; ) , (4.36)

P is integrated by a single point Gaussian quadrature in (4.36) above. By fully integrating K “
and combining with P¢, spurious zero energy modes are prevented [22]. No additional devices
are needed (e.g. see [29]). The same holds if a modified 8-point quadrature rule is employed
to integrate K¢ [22]. In this study a 5-point quadrature rule for which the above holds true is
implemented.

The finite element based on (4.36) will be denoted Q4X.

4.3 Membrane locking correction

Flat shell elements assembled from membrane elements with in-plane drilling degrees of freedom
suffer from undesirable membrane-bending interactions associated with the drilling degrees of
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freedom [30]

Mechanistically, the locking phenomena may be described as follows: Flat quadrilateral shell el-
ements approximate curved shell geometries with the possibilities of kinks between adjacent ele-
ments. In this situation the continuity of the three rotation parameters for the shell result in a
situation where a non-zero drilling degree of freedom in one element leads to non-zero bending
degrees of freedom in an adjacent element (and vice versa). Accordingly, the element will ex-
hibit a membrane-bending locking performance, unless the drilling degree of freedom part of the
membrane strains may assume a zero value over the element [30].

For the assumed displacement field of the drilling element (4.20), zero strains are not possible for
non-zero rotations [30]. (An exception is the special case of identical rotations at opposite nodes.)

Taylor [30] presented a correction which alleviates the membrane bending locking. The correction,
which is based on a three field (displacement, strain and stress) formulation, is repeated here, albeit
with a slightly different notation.

From (4.27) the membrane strains of the element with drilling degrees of freedom are written as:
e=Biu;+ G 1=1234 (4.37)

where u; and ~y; are nodal values of displacement and rotation respectively and summation is
implied. The strain associated with displacements may assume arbitrary values, including zero,
as conventional interpolation is employed. Except for constant values of v;, the strains associated
with rotations cannot be constant or zero. The membrane strains are hence modified as

€ = Blu; + G + €. (4.38)

These modified strain relations are now required to satisfy a requirement that the drilling parameter
part can be inextensible. Accordingly, it is desired that

G +¢é =0 (4.39)

for rotational fields which are inextensible. Unless the drilling degrees of freedom are eliminated
completely it is only possible to satisfy (4.39) in a weak sense. A suitable weak form may be
constructed by augmenting the usual potential energy functional of each element for a shell by the
term

/ 7" (G5¢1 + €)d =0, (4.40)
Qe

where (2° is the surface region of the shell. Both & and €, are assumed constant over each element.
Performing the variation with respect to & leads to

1
€= —— G;dS) 4.41)
Q¢ Jqe
and, hence, the modified strain relationship
1
€= B?’U;[ + (Gi — @/ G?dQ) ’QD] (442)
Qe

which is the final result presented by Taylor [30].
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4.4 Assumed stress formulation

Elements with drilling degrees of freedom and elements with assumed stress interpolations have
the potential to improve the modeling capabilities of, in particular, low-order quadrilateral finite
elements. Hence, it seems desirable to formulate low-order elements with both an assumed stress
interpolation field and drilling degrees of freedom, on condition that the elements are rank suffi-
cient and invariant. The treatment of Geyer and Groenwold [11] is followed closely without further
proof or motivation.

The variational formulation of the boundary value problem is given as:

Formulation (D,)

L(ud.0) = [

+—”Y/[skew Vu — PdQ — / u - fd. (4.43)
2 Q Q

1
symm o - symm \Ju df) — 5/ symm o - C~' - symm odf)
Q

This variational formulation also requires that the rotations 1) and the stresses o, together with the
displacement generalized derivatives S/ u, belong to the space of square-integrable functions over
the region 2.

4.4.1 Finite element discretization

For a typical element it is required that the three independent interpolation fields arising from the
translations, rotations and the assumed stress are constructed. Again, the independent rotation field
is interpolated as:

4
V= NG ), (4.44)
i=1

with N? the standard bi-linear shape functions. The in-plane displacement approximation is still
taken as an Allman-type interpolation field:

4 8
( Uy ) —ut = ZZNF(QWU@‘-{—%;NSf(gan)(@/)K—l/)J)nJm (4.45)

u
2 e I=1

with N.S¥ the serendipity shape functions. [;; and n; respectively represent the length and outward
normal of side i, located between nodes j and k.

Using matrix notation, symm S/u° is obtained as
symm yu® = Biu; + G7,9;. (4.46)

To satisty the requirement that the drilling parameter part can be inextensible (4.46) is modified to
become

1
symm yu® = Bju; + (Gfm - 5/ GeidQ) P, (4.47)
Q
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Skew 7u° is given by
skew yu® = biu; + gip,. (4.48)
For assumed stress field, the global stresses are directly interpolated by the stress parameters [3;
symm o¢ = P3¢, (4.49)

where P is the interpolation matrix in terms of the local coordinates and 3¢ is the stress parameter
vector.

The body force vector is given by

r= / NT fd0. (4.50)
Q
In matrix notation, the stationary conditions are
GeT Pe ,8 f
'Y =
S e llal-17]
which leads to
K+ Plg=r, (4.52)
with q—= [uli U9; Q/Ji]T, 1= 1,2,3,4 and
beT
Pi—fy/ { T } [ b° g° }dQ, (4.53)
ol d
and
K¢ = GeTHeilGi (4_54)
with
G = / P [B°GY)dQ, (4.55)
Q
and
H® = / PT.C7t . PedQ, (4.56)
Q

where C~* denotes the elastic compliance matrix. Finally, stress recovery is obtained through
B=H""G%q. (4.57)

The parameter + in the foregoing is problem dependent, since it is part of a penalty term.

4.4.2 Interpolating the assumed stress field

The stress field assumed in (4.49) is, without loss of generality, expressed as [11]

symm 0 = P = symm o + symm o} = [ I, P, } { gc ] , (4.58)
h

where the superscript e is dropped on P for reasons of clarity and brevity. I. allows for the
accommodation of constant stress states, and the higher order stress field is given by symm oj, =
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P;,3,,. The lowest number of parameters that prevents mechanisms is 8, for which the higher order
interpolation matrix P}, becomes

n —¢ . (4.59)

Since 8 beta parameters are present, the element is denoted the 83 element. With 9 beta parame-
ters, the 9 element is given as:

n 0 ¢ 0 n2 0
Pyy=1|0 ¢ 0 n 0 -2 (4.60)
00 —p —C 0 0

The presented stress interpolation matrices represent unconstrained interpolation fields, which are
not necessarily optimal. Constraints may be enforced by a suitable transformation matrix. The
rational approach of Pian and Sumihara [5] is chosen, i.e.

symm o, < T(P[3,, 4.61)
with
ai a3 2a1a3
T, = b? b2 20103 , (4.62)
albl agbg Cllbg + a3b1
and
a; by -1 1 1 -1 1 N
a9 b2 o l 1 -1 1 -1 T2 Yo
as bg B 4 -1 -1 1 1 T3 Ys ' (463)
ay b4 1 1 1 1 T4 Yau

4.4.3 Penalty-equilibrated approach

As mentioned previously, while distributed body forces may induce important loads on structures,
they can usually be ignored on the element level in stress calculations. Hence element equilibrium
is written as [31]

d(symm o) = D" (symm ) = 0in Q, (4.64)

with D the 2-D differential operator. This yields a functional IT? of the form
IT) (u,v,0) = I, (u,,0) - a/(asymm o)’ (8symm a)dQ, a >0, (4.65)

with a > 0 is a large number. Using matrix notation, and for the sake of convenience setting
« . . .-
Qe on the internal potential of the 8 and 93 families becomes
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* 1 «
I (u..0) = 8'Gq— A" (H+=H,)B—q"P.q (4.66)
with o = P and
H,= / (OP)T(8P)ds, (4.67)
Q
where P., is given by (4.53). For 83, 0 P may be shown to be
000 mn, 0 ¢ -ny —C 277-%}
OP = ’ ' Y Y ’ 4.68
{ 000 0 ¢ —na my —Co ~2-C, (469
where 9
Ca = % ete. (4.69)
Ox

The penalty formulation 95(«) is obtained in a similar fashion to 83(«). For this element, O P is
given by
OP = ’ ’ Y Y ’ . 4.70
{ 000 0 ¢y =Mz 1Ny —Ca 0 —2¢ - Cy (4.70)
Upon comparing 83(«) and 95(«) under pure bending, locking-like behavior is observed for
83 (). This deficiency is however not taken into account in this study.

4.5 Numerical Results

4.5.1 Cook’s membrane

We again study the swept and tapered cantilever beam proposed by Cook (Fig 2.1). The center
displacement uy,. for the various elements studied is tabulated in Table 4.1. Although the drilling
element Q4X is quite accurate, it is outperformed by the assumed stress elements.

Element 1 x1 2 %2 4 x4 8 x 8
Q4X 13.7526 19.8808 22.4157 23.2404
80 14.6522 20.3114 22.7116 23.3517
84 () 34.0329 25.5869 24.7800 23.9012
943 14.6466 20.3066 22.7121 23.3498
98() 17.0532 21.4060 23.0398 23.4387
Best known 23.94

Table 4.1: Mid-node displacement for Cook’s membrane (plane stress), obtained with displace-
ment based and assumed stress elements with drilling degrees of freedom and penalized equilib-
rium
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Chapter 5

Fracture mechanics: Classical and
numerical treatments

In this chapter a brief overview of the history of fracture mechanics is given and important fracture
mechanics concepts are discussed.

5.1 Historical overview

Fracture mechanics is concerned with fracture-dominate failure where the fracture mechanism is
the growth of cracks or crack-like defects. The earliest recorded investigation into the phenomenon
of fracture would appear to be Leornardo da Vinci’s [32] study of the variation of failure strength
in different lengths of wire of the same diameter. The first attempt at a mathematical approach to
fracture mechanics was by Inglis [33] in 1913. The first successful analysis of a fracture-dominant
problem was that of Griffith in 1920, who considered the propagation of brittle cracks in glass
[34]. Griffith formulated the now well-known concept that an existing crack will propagate if
thereby the total energy of the system is lowered, and he assumed that there is a simple energy
balance, consisting of a decrease in elastic strain energy within the stressed body as the crack
extends, counteracted by the energy needed to create the new crack surfaces. His theory allows
the estimation of the theoretical strength of brittle solids and also gives the correct relationship
between fracture strength and defect size [35].

The Griffith concept was first related to the brittle fracture of metallic materials by Zener and
Hollomon in 1944. Soon after, Irwin pointed out that the Griffith-type energy balance must be
between

e the stored strain energy, and
e the surface energy plus the work done during plastic deformation.

Irwin also recognized that for relatively ductile materials the energy required to form new crack
surfaces is generally insignificant compared to the work done in plastic deformation, and he defined
a material property G as the total energy absorbed during cracking per unit increase in crack length
and per unit thickness. G is called the energy release rate or crack driving force [35].

32
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In the middle 1950s Irwin contributed another major advance by showing that the local stresses
near the crack tip are of the general form:

Oij = . fij(0) + .. (5.1)
vV (2rr)

where r and 6 are polar coordinates of a point with respect to the crack tip and K is the stress
intensity factor. The stress intensity factor K describes the magnitude of the elastic crack tip stress
field. He further showed that the energy approach is equivalent to a stress intensity approach,
according to which fracture occurs when a critical stress distribution ahead of the crack tip is
reached. The material property governing fracture may therefore be stated as a critical stress
intensity, K., or in terms of energy as a critical value G.. Demonstration of the equivalence of G
and K provided the basis for development of the discipline of Linear Elastic Fracture Mechanics
(LEFM). This is because the form of the stress distribution around and close to the crack tip is
always the same. Thus tests on suitably shaped and loaded specimens to determine /. make
it possible to determine which flaws are tolerable in an actual structure under given conditions.
Furthermore, materials can be evaluated for their fitness for purpose in situations where fracture
is possible. It has also been found that the sensitivity of structures to sub critical cracking such as
fatigue crack growth and stress corrosion can, to some extent, be predicted on the basis of tests,
using the stress intensity approach [35].

5.2 Linear elastic fracture mechanics assumptions

Linear elastic fracture mechanics (LEFM) principles are used to relate the stress magnitude and
distribution near the crack tip to [36]

e remote stresses applied to the cracked component,
e the crack size, shape, the geometry of the cracked component, and

e the material properties of the cracked component.

LEFM is based on the application of the theory of elasticity to bodies containing cracks or de-
fects. The assumptions used in elasticity are also inherent in the theory of LEFM: namely, small
displacements and general linearity between stresses and strains. The general form of the LEFM
equations given in (5.1) illustrates that a singularity exists such that as r, the distance from the
crack tip, tends towards zero, the stresses go to infinity. Since materials plastically deform as the
yield stress is exceeded, a plastic zone will form near the crack tip. The basis of LEFM remains
valid, though, if this region of plasticity remains small in relation to the overall dimensions of the
crack and cracked body.

5.3 Loading modes

Consider a cracked body, with a sharp crack along the x-axis. There are generally three modes of
loading, which involve different crack surface displacements. The three modes are [34]:
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| N <

(a) (b) (©)

Figure 5.1: The three modes of loading : (a) mode I opening mode (b) mode II sliding mode (c)
mode III tearing mode

e Mode I: Opening or tensile mode in which the crack faces are pulled apart in the y direction,
but where the deformations are symmetric about the x-z and z-y planes.

e Mode II: Sliding or in plane shear in which the crack surfaces slide over each other in the
direction, but where the deformations are symmetric about the x-y plane and skew symmetric
about the z-z plane.

e Mode III: Tearing or anti-plane shear (the crack surfaces move parallel to the leading edge
of the crack and relative to each other). The crack surfaces slide over each other in the z
direction, but the deformation are skew-symmetric about the x-y and x-z planes.

5.4 Stress intensity factor

Cracks or defects are present to some degree in all structures [34]. They may exist as basic defects
in the constituent materials or they may be induced during construction or service life. Therefore
a fundamental requirement of fracture mechanics theory is some means of assessing the stability
of such cracks. In this respect, the most significant advance has been the introduction of the stress
intensity factor as a single parameter for categorizing the onset of crack propagation [34].

The stress-intensity factor uniquely describes the theoretical state of stress at the crack tip. In
isotropic materials this is all the information required to predict the critical stress level and the
direction of fracture propagation. Thus K can correlate the crack growth and fracture behavior of
materials provided that the crack tip stress field remains predominantly elastic. This correlating
ability makes the stress intensity factor an extremely important fracture mechanics parameter [35].

The stress intensity factor K, also defines the magnitude of the local stresses around the crack tip.
The stress intensity factor depends on loading, crack size, crack shape, and geometric boundaries,
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with the general form given by [36]:

K = f(g)o/(ra) (5.2)

where

e o represents the remote stress applied to the structure,
e ¢ the crack length, and

e f(g) the correction factor that depends on specimen and crack geometry.

Stress intensity factors for a single loading mode can be added algebraically. Consequently, stress
intensity factors for complex loading conditions of the same mode can be determined from the
superposition of simpler results, such as those readily obtainable from handbooks. In determining
K, numerical methods (including finite element methods) have been widely used in recent years.
Determination methods for K tend to be approximate [36].

It is the use of the stress intensity factor as the characterizing parameter for crack extension that is
the fundamental principle of Linear Elastic Fracture Mechanics (LEFM).

5.5 Fracture toughness

As the stress intensity factor reaches a critical value, K., unstable fracture occurs. This critical
value of the stress intensity factor is known as the fracture toughness of the material. The fracture
toughness can be considered the limiting value of stress intensity, similarly the yield stress being
the limiting value of stress in a body [36].

The fracture toughness at a given temperature varies with specimen thickness until limiting con-
ditions (maximum condition) are reached. The maximum constraint condition occurs in the plane
strain state. The plane strain fracture toughness, /;., can be considered a material property cha-
racterizing the crack resistance, and is therefore called the plane strain fracture toughness.

Thus, the same value of /;. could theoretically be found by testing specimens of the same material
with different geometries and with critical combinations of crack size, shape and fracture stress.
Within certain limits this is indeed the case. The fracture toughness, K., can also be determined
under standard conditions, and the value thus found may also be used to predict failure, but only
for situations with the same material thickness and constraint [35].

5.6 Finite elements in fracture mechanics

Over the last decade or so, FEM has been firmly established as a standard procedure for the solution
of practical fracture problems. The method can easily take account of nonlinearities at the crack
tip, e.g small contact zone, finite deformation or scale yielding. The finite element method has
become a useful technique for solving elastic fracture mechanics problems [34].
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The finite element approaches to fracture mechanics can be divided into either direct or indirect
methods. In the direct method, the stress intensity factors are calculated directly from the solution.
In most of the direct methods adequate representation of the crack tip singularity is a problem. In
the indirect method, an energy-release rate is calculated and stress intensity factors inferred from it.
Direct methods can be used with conventional (nonsingular) elements or with elements containing
a stress singularity at the crack tip. In the former case, it is necessary to curve fit the stress or
displacement behavior away from the crack tip and extrapolate to the crack tip to determine the
stress intensity factor (displacement extrapolation). In the latter case, it is calculated directly [37].

The indirect approach determines the stress intensity factor by evaluating the energy-release rate.
Several techniques for evaluating energy-release rates have been described in the literature. These
methods are base on computing the change in potential energy for two crack lengths or computing
the change in compliance for two crack lengths. Other approaches are based on evaluating the
change in stiffness matrix due to crack extension and require only one analysis. The J integral
evaluated for a elastic material, is identical to the energy-release rate and offers a convenient way
of evaluating G with a single analysis. In general the indirect techniques do not give the mode I
and mode II values of K (stress intensity factor) independently, unless it is known a priori that the
loading produces only mode I or mode II response [37].

The use of finite elements in fracture prediction requires two distinct considerations [34], namely

e crack tip singularity modeling, and

e interpretation of the finite element results.

5.7 Crack tip singularity modeling

Initial studies involving the use of finite element methods in fracture mechanics employed con-
ventional constant stress elements. It was found that substantial mesh refinement is required in
the vicinity of the crack tip in order to accurately represent the stress and strain field singularities.
It is however expensive in computer time and data preparation effort to use these refined meshes.
The development of higher-order elements (elements containing stress singularity at the crack tip)
permitted the same order of accuracy to be achieved with coarser meshes. For the efficient numer-
ical solution of fracture problems it is advantageous to develop special crack tip elements which
directly model the 1/+/r near tip strain field singularity because any extrapolation to calculate K is
avoided. Many such elements have been developed to date based both on hybrid and displacement
formulations [34].

5.8 Interpretation of the finite element results

After the displacement and stress fields throughout the cracked solid or body have been determined,
a means of evaluating the stress intensity factor must be found. The most obvious approach is to
relate the analytical solutions for the near tip stress and displacement fields to the values obtained
from the finite element analysis. This clearly requires extrapolation procedures to provide the
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crack tip stress intensity factors. For linear elastic problems, relationships are available which
relate the stress intensity factor to strain energy release rate associated with an infinitesimal crack
advance. These expressions from the basis of the so-called strain energy release rate and virtual
crack extension methods, in which a finite element analysis is preformed for two incrementally
different crack lengths and strain energy difference, are evaluated.

A further approach is to derive the stress intensity factors from the value of a path-independent
integral. The line integral which has been used most often is Rice’s J integral. The J integral
evaluated for a linear-elastic material, is identical to the energy-release rate and offers a convenient
way of evaluation G with a single analysis. Use of energy methods or a line-integral approach
also has the distinct advantage that exact modeling of the crack tip stress and displacement fields
is not necessary [34]. The path independence of the .J integral expression allows calculation along
a contour remote from the crack tip. Such a contour can be chosen to contain only elastic loads
and displacements and accurate results can be obtained by the use of relatively coarse meshes with
conventional elements [35]. The use of special crack-tip elements is then not necessary [34].
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Chapter 6

Fracture mechanics: Displacement
extrapolation

In this chapter the displacement extrapolation technique for solving stress intensity factors is out-
lined. The computer implementation of the theory can be obtained from the author on request.

6.1 Displacement extrapolation basics

The analytical expressions for the displacement variation along radial lines emanating from the
crack tip (e.g. see [34]) are given by:

"= f—;\/;{(% _ 1) Cos(g) _ COS(%} _ f—;\/;[mm 3) sin(g) + sin(%} ©.1)

v= f—;\/;{(% + 1)sin(g) - Siﬂ(%)} - f—;\/;[(% —3) Cos(g) + cos(%} . (62)

The situation is depicted in Fig 6.1. K; and K, respectively are the mode I and mode II stress
intensity factors, p is the shear modulus and  a parameter that depends on the state of stress:
(3=v)

(1+v)
k = 3 — 4v for plane strain

K= for plane stress

(6.3)

The analytical expressions for the displacement variation along radial lines can be solved to obtain
the stress intensity factors:

o (G D) ta) ) a2 (1) 6
s ( _(2(iﬁ—+3)1 liisn(ggf!ciﬁg) ) =4y 2% ( ; ) (6.5)
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Crack —

N

Figure 6.1: Stress intensity factor evaluation by extrapolation. Example of mesh that can be used

Stress intensity factor
O

Radial distance from crack tip (r)

Figure 6.2: Stress intensity factor evaluation by extrapolation. Plot of stress intensity factor K vs.
radial distance r from the crack tip

Substituting the values of « or v and 7 for nodal points along a radial line emanating from the
crack tip as shown in Fig 6.1 yields a curve of Ky, K5 or K,,;,.q against radial distance r (Fig 6.2).
By discarding the results for points very close to the crack tip the solutions for K; and K> can
be extrapolated to = 0. Stresses can also be extrapolated to determine the stress intensity factor,
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but the displacement extrapolation method is far superior to the stress extrapolation method [34].
The stress intensity values obtained using displacements are far more consistent than those based
on stresses [38]. In the displacement extrapolation there is little difference between the accuracy
of the results obtained by using different angles [34]. Generally finite element mesh idealization
dictates = 0° and 6 = 90° to be the most convenient choices. The extrapolation approach can be
employed using either conventional finite elements or with crack tip singularity elements included
in the crack tip zone.

6.2 Numerical example

Consider the example of a single edge cracked plate loaded in uniform tension (Fig 6.3(a)). The
data are:

e Crack/width ratio a/W = 0.5
e Elastic modulus E = 107

e Poisson’s ratio ;1 = 0.3

e Force P =100

Width W =1

Height L =2.5
Thickness t =1

Strictly speaking, this is a rod and not a plate, but this example [38] is used for the sake of verifi-
cation and comparison with published results.

The stress intensity factor is determined by extrapolation of the displacements (v and u) along the
radial lines # = 0° and 6 = 90°. The plot for extrapolation of the stress intensityy factor along the
radial line 6 = 90° is shown in Fig 6.4. The graph for the extrapolation of the stress intensity factor
along the radial line # = (0° is given in Fig 6.5.

Va a a a a

Ky =P—(1.99 - 041(— — — —

! ﬁ( (W w w w

The exact value of the Mode [ stress intensity factor, as calculated using (6.6), is K =200 Pa.m?5>
[38]. In Table 6.1 the results obtained using the displacements (u,v) on the radial line # = 90° are

given.

) +18.7(=)% — 38.48(—)3 + 53.85(—)") (6.6)

6.3 Discussion

The stress intensity factor obtained through displacement extrapolation is largely dependent on
the number of points used to extrapolate the displacement for a particular mesh and radial line
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10 x 10 mesh

a

(a) (b)

Figure 6.3: Single edge cracked plate used for displacement extrapolation: (a) Geometry of the
SECP problem (b) A 10 x 10 mesh for the single edge crack plate (SECP)

Stress intensity factor (K1 /(o a)o's) vs. radial distance r (6 = 90)
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Figure 6.4: Normalized K; vs. radial distance for § = 90°

(6) (see Table 6.1). It may be possible to determine an optimal number of points to be used for
extrapolation vs. the number of nodes on the radial line (e.g. ¢ = 0) emanating from the crack
tip. If a radial line from the crack tip other than § = 0° or 90° is used for extrapolation, a radial
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Stress intensity factor (K1/(6 a)°'5) vs. radial distance r (8 = 0)
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Figure 6.5: Normalized K; vs. radial distance for § = (°

Number of Mesh size Mesh size Mesh size Mesh size Mesh size Mesh size
Extrapolation points 10 x 10 20x20 30x30 40x40 50x50 60 x 60
10 198.39 196.74 213.40 220.76 224.48 224.69
13 181.77 196.64 209.22 214.00 216.34 217.92
20 — — 202.53 201.01 200.79 202.77
21 — — 195.24 188.69 190.97 192.52
25 _ _ — — — 200.68

Table 6.1: Stress intensity factor for a SECP determined with displacement extrapolation along the
radial line 6 = 90° using different numbers of extrapolation points

mesh should be generated (to generate a radial mesh takes more time than to generate a normal
rectangular mesh). It can sometimes be difficult to extrapolate the /K vs. 7 plot obtained for a given
radial line.
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Chapter 7

Fracture mechanics: J integral

In this chapter, the formulation, proof of path independence, the lower bound theorem and finite
element implementation of the .J integral is outlined. The computer implementation of the theory
is given in Appendix C.

7.1 J integral method

Linear elastic fracture mechanics was originally developed to describe crack growth and fracture
under essentially elastic conditions (plain strain conditions). Later it was shown that LEFM con-
cepts could be adapted for limited amounts of plasticity in the crack tip region. However, there
are many important classes of materials where the crack tip plastic zone are simply too large for
LEFM concepts.

One of the notable successes of LEFM for practical applications is the ability to predict crack
initiation using one or two parameters. Of the concepts developed for this purpose two have found
a fairly general acceptance: The J integral and the Crack Opening Displacement (COD) approach
[35].

Use of energy methods or a line-integral approach has the distinct advantage that an exact model of
the crack tip stress and displacement fields is not necessary and accurate results can be obtained by
the use of relatively coarse meshes with conventional elements (not crack tip singularity elements).

7.2 J integral definition

The J integral is based on an energy balance approach and is equivalent to the energy release rate
during crack extension in a homogeneous elastic body. J.R. Rice first introduced the J integral
concept in 1968. The J integral method is an effective method for determining the stress intensity
factors (K).

Consider a 2-D homogeneous cracked body of linear or non-linear elastic material free of body
forces and tractions on the crack surfaces as shown in Fig 7.1. The total energy content U of the

43
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Figure 7.1: Center crack panel
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Figure 7.2: A closed contour I' used in defining the J integral

loaded cracked plate is [35]
U=U,+U,+U,—-F, (7.1)

where

e [, = elastic strain energy content of the loaded uncracked plate,

e U, = change in the elastic strain energy caused by introducing the crack in the plate,
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e U, = change in elastic surface energy caused by the formation of the crack surfaces, and
e ['=work performed by external forces.

Crack growth instability will occur as soon as U no longer increases with increasing crack length
a. Thus instability will occur if:

W oy, (1.2)
da
or since Uy is a constant, p
%(Ua +U,—F)<0. (7.3)
Rearranging (7.3) yields:
d dU.
—(F — — 7.4
da( Ua) > da (7:4)

dF
The left hand part of (7.4), T represents the energy provided by external work F' per unit crack
a

. U, . . . . dF
extension and — is the increase of elastic energy owing to the external work — .Thus, the left

a a
hand part of (7.4) is the amount of energy that remains available for crack extension. The right
hand part of (7.4) represents the elastic surface energy of the crack surfaces. This is the energy
needed for the crack to grow, i.e. the crack resistance R [35].

The J integral is equal to the energy release rate:

d
J=—(F-U,). 7.5
~(F-UL) 15)
The J integral is usually defined as
_ 0 ou;
J = /F[W(ul)dy - Tz‘a—de] = /F[W(ul)dy - Uijnja—xds]a (7.6)

with I' a curve surrounding the notch tip and the integral being evaluated in a counterclockwise
sense starting form the lower flat notch surface and continuing along the path I' to the upper flat
surface (see Fig 7.2).

W(u;) is the strain energy density, defined as:

W(E) = / O-ijdeija (77)
0
where 1
€ij = §<ui’j + u;;), the infinitesimal strain tensor (7.8)
0i;; = 0, the equilibrium equations for zero body forces (7.9)
0;; = 0j;, symmetry of the stress tensor (7.10)

T; = oi;n;, the traction on the surface, with n; the components of a unit vector normal to I"
(7.11)
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The J integral can also be equivalently be defined as the potential energy release rate per unit crack
extension, i.€.

) (7.12)
da
with the system potential energy
Tp(u;) = / W (u;)dS) — / Tiu;ds. (7.13)
ﬂ SO
7.3 Derivation of J
T U
So
T Y
a T
da!  z-dx
A

Figure 7.3: A cracked body of unit thickness loaded by a traction T

The derivation of the J integral presented here follows closely the derivation of the .J integral
presented in [35]. Consider a cracked body of unit thickness (Fig 7.3). The body has a perimeter I'
and a surface A. A traction 7" acts on a part .S, of the perimeter and performs external work of an
amount AF'. Thus parts of the body undergo a displacement represented as a displacement u. Let
Uy, be the energy contained in the plate before the traction is applied. Uy, represents the energy
contained in the cracked plate owing to any previous history. The effect of applying traction may
now be considered for two cases:

e No crack growth:
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— The potential energy is U1 = Up; + AF
e Crack growth Aa:

- -AF =AU, — AU,
— In this case the potential energy is Uy, = Uy + AU,

— U, (change in elastic surface energy caused by the formation of the crack surfaces) is
irreversible and can not be part of U,

The change in potential energy due to crack extension Aa is then

AUp - Up2 - Upl - AUa - AF (714)

For the limiting case where Aa — 0: the change in potential energy due to crack extension Aa is
then
dU, = dU, — dF. (7.15)

Integration of (7.15) leads to U, = U, — I’ + constant. The integration constant will be equal to
U1, the energy content before AF' was applied, i.e.

U,=U, — F+Up. (7.16)

U, + Uy 1s the total strain energy contained in the body. The total strain energy can be represented
by

UQ+U01 = / /Wdl‘dy, (717)
A
and F' can be represented by

F:/Tds-u (7.18)
I

where « is the displacement vector. Substituting (7.17) and (7.18) into (7.15) yields

://dedy—/Tds-a (7.19)
A T

if the traction applied to the body is constant, this yields

/ / dxdy — / Tds - 8_u (7.20)
oa

au, . ) . . . . .

d—p is the expression for the change in potential energy per unit crack extension. Constrain the
a

coordinate system such that the origin if fixed at the crack tip a. If the contour I' is fixed, da = -dx

d
//—dxder/Tds ou (7.21)
ox

d
hus — = ——. Th
and thus T . en
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Next we utilize Green’s theorem.
Green’s theorem can be stated as follows: Let R be a simply connected region with a piecewise

smooth boundary C, oriented counterclockwise. If M and N have continuous partial derivatives
in an open region containing R, then

/Md:l:+Ndy // 8_N_8_M Ydxdy. (7.22)

Writing Green’s theorem in parts yields

// Ydxdy = /N (z,y)dy, (7.23)
//(a—M)dxdy: —/ M (z,y)dx. (7.24)
R dy c

by

and

With Green’s theorem the area integral can be eliminated and

/Wdy+/T ds. (7.25)

For nonlinear elastic behavior an energy release rate ./ can be defined as follows

can be expressed as a line

integral along the contour I', hence

d
F— 7.2
J = da( Uy). (7.26)
Substituting (7.25) into (7.12) yields
:/Wdy—/T.a—uds, (7.27)
r r Oz
or 6
/ Wdy — “ld (7.28)

which completes the derivation of the .J integral.

7.4 Path independence of J

Again, the proof of the path independence of .J integral presented here follows the proof presented
n [35]. Considering a closed contour as shown in Fig 7.4 and using Green’s theorem, it is not
difficult to prove that the .J value is zero for such a contour.

‘We have:
. 011 012
Ojj = )
021 022
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Path of integration

¢

u

Figure 7.4: A closed contour I' with parameters used in defining the J integral

[ €11 €12
€ij = .
€21 €22

The infinitesimal strain energy dW is given by:

and

dW = Z Uijdeij = O'HdGH + 0'12d€12 -+ 0'21d621 -+ 0'22d€22 = O'Hdﬁn + 20’12d€12 + O'QQdEQQ (729)

ij

and o o
0 0
The traction vector 7" loading a segment of a body may be defined as:
,I% = 0Ny (731)
or
T\ = onni + o1ans (7.32)
Ty = 091m1 + 02212 (7.33)

where n; and n, are the cosines of the angles ¢, and 6, being the angles the vector normal to the
surface of the body makes with the positive x and y direction respectively. From this follows

dr = —dscos(f2), (7.34)

and
dy = dscos(6y). (7.35)

J:/Wdy—/ﬂ%ds, (7.36)
r r Oz

Now:
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/Wdy—// dxdy

and from Green’s theorem,

or
ow Oe Oe Oe
E_Olla—;+2 12 612 + 092 3;2.
Since
8611 . 0 8u1
Or  Ox 01’

8612 B 0 (‘3u1 (91@
O 896( dy + Ox )
8622 _ 0 8u2
Or  Ox 8y

s can be represented in terms of u; and u,. Hence
x

a_W_i[ A,(%)]
or  Ox; T\ gy

/Wdy—// dxdy = //8 (04 (=— 8uz V] dzdy.

The right side (force) of the .J integral can be written as

and

ou; ou ou
/FTz‘ 7 ds = /F[(Ullnl + 012n2)8—3:1 + (09111 + 092n2) 8:1:2]d8
ou; ou ou ou ou
/FT o —ds = /F(O'Ha—xl + agla—;)nlds + /F(O'lga—xl + 092 a;)ngds,
with
dxr = nods = — cosByds
and
dy = nyds = cosbds
Thus,

6 ; 0 0 0 0
al; dS—/F(O'H 62;1 + 091 aU2)dy /F(012%+022%)dx.

Using Green’s theorem, this expression gives

aulals—// 011 +021 d[L‘dy—f—//Ulg%—l—Uggaaug)dl'dy

[rgeas=[ [ oG ldxdy,

or

50

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)



University of Pretoria etd — De Klerk A (2006)

CHAPTER 7. FRACTURE MECHANICS: J INTEGRAL 51

Figure 7.5: A closed contour ABCDEEF for a cracked body

Hence

(9ui
ox

J:/Wdy— T, %" ds =0 (7.51)
T I

Now consider a closed contour in a cracked body (Fig 7.5). The closed contour to be considered is
ABCDEEF, which includes CD and FA on the crack flanks, and the two paths I'; and I's in opposite
directions to each other. Then, from the knowledge that the total value of .J is zero along the closed
contour ABCDEEF, it follows that

J = JF1 +Jop + JF2 + Jpa = 0. (7.52)

Along the crack flanks dy=0 and the traction in zero, 1.e. 7; is zero. Thus for CD and FA the open
contours Jop and Jp 4 are equal to zero. Then

J=Jp, + Jp, =0 (7.53)

or
Jr, = —Jr,. (7.54)

Reversing the direction along I'; results in a change of sign. It follows that
Jr, = Jr, = J, (7.55)

i.e. J is path independent when applied around a crack tip from one crack surface to another.

7.5 Lower bound theorem for ./

The lower bound theorem can be established for a given linear or nonlinear elastic crack system
with homogeneous displacement boundary constraints.
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Lower Bound Theorem for J integral: For a given elastic cracked system, if u; and wu; are,
respectively, the exact displacement and the approximate one based on the minimum potential
energy principle, the approximate .J integral will take a lower bound to the exact integral [39], i.e.

J(;) < J(w). (7.56)
Therefore, the lower bound for the stress intensity can be obtained by using J integral with dis-
placement based elements.
7.5.1 Proof of the lower bound theorem for J

Wu et al [1] presented a proof of the lower bound theorem. It is followed closely here without
further proof or motivation. Let ; = u; + du;, with du; compatible virtual displacements. Then the
approximate potential energy can be expressed as [7]

I, (;) = T, (w;) + 011, + §°TL,,. (7.57)

As a stationary condition of I1,,(4;), 11, = 0. On the other hand, for the given exact displacement
u; which satisfied the boundary condition u;|g, = 0,

/ uZTst = / eijo-ide (758)
a Q
should hold, such that
II, = / W (u;)dS2 — / u;Tids = —/ W (u;)dSQ. (7.59)
Q So Q
Besides, it is well known that
_ / W (61)d92 > 0. (7.60)
Q
In accordance with the definition of .J integral and its positive definite attribute, we have
g d 2
J( @) = =) = J(ui) +6°, (7.61)
where p
J(u;) = _d_H (u;) = /W u;)dQ >0, (7.62)
a
6 J = ——52 = /W (du; 7.63
da da ) (7.63)

Observing that W (u;) and W (du;) are all the deformation energy functions, they possess the same
function configurations, and must take the same regularity when a stable crack in the system de-
velops. Thus, we see by comparison of (7.62) and (7.63) that 62.J < 0, hence the inequality (7.56)
must be true.
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7.5.2 J integral in FEM

In this section the implementation of the .J integral in a finite element code (after Owen and Fawkes
[34]) is considered. Quadratic isoparamteric elements with a 2 x 2 point Gauss integration scheme
are employed in this example. Since the integral is path-independent, the path can conveniently be
chosen to coincide with the line ( = ¢, = constant, shown in Fig 7.6.

Cp

Figure 7.6: Contour path for .J integral evaluation

To start, a unit normal vector n to the line ¢ = ¢, is defined: The vectors A and B which are
respectively directed along the lines ( = constant and 7 = constant are given by

|0z Oy

A= {_877’ —an,O} , (7.64)
|0z Oy

B = {—ag, —ac,()} . (7.65)

The vector C' which is normal to the plane of the element is given by the vector product of A and
B, so that

Jr dy Oy Ox
—AxB= v I B 7.
C X [0,0,(677 i o (%)} (7.66)
A vector D normal to the line { = (, can then be constructed (vector product of C' and A)
Oy, 0y Or Ox Oy, Oxr dxr dy Oy Ox
=l (= =" =), =— (= =—= = = |Dy,D 7.67

The unit normal vector (n) to the line ¢ = ¢, can then be obtained

D, D
n = [n1,ny,0] = [Wl,ﬁz,o}withN: \/ D2 + D2. (7.68)

The elemental arc length along the line ( = ¢, is given by

ds = +/dx? + dy? = \/(2—2)2 + (g—g)an (7.69)
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and similarly,

d
dy = X an. (7.70)
dn
For plane stress problems, the strain energy density can be written as
Ev G
U= . +GE+e)+ =02 7.71
AT ) @ T HEEaTa)+50m) (7.71)
Also, the traction vector is
T = (01111 + 01202, 02111 + 09212, 0) (7.72)
so that 5d 5
T% = (o111 + 012”2)8—Z + (o121 + 022712)8—x~ (7.73)
where
d=(uvw) (7.74)

Substituting (7.69), (7.70), (7.71), (7.72) and (7.73) into the definition of the .J integral, we obtain
an equation that gives the contribution of an individual element to the .J integral:

i Ev G Ay

(&) _— 2 2, 2y, T2y \Y%Y

! /1 {(2(1 ooy ta) Hale )t g (%y)) 3

au av afL‘ a
+1
= [ Xdn. (7.75)
—1
The integration for (7.75) must be undertaken numerically:
NGAUS
T =" X (G W, (7.76)
q=1

in which the integrand X is evaluated at the Gaussian sampling points ¢, 7, and W, is the weight-
ing factor corresponding to 7,. The Cartesian derivatives of the displacement components in (7.75)
are given by

Mu,v) & N
o _; o (ur,v;), (1.77)
O(u,v) " ON
- i ), 7.78
o 2; 3 (u,v;) (7.78)
aNi(e) aNi(e)

in which u;, v; are the displacement components of the nodes of the element and _—
Z Y

the Cartesian derivatives of the element shape functions. The total value of the .J integral is given
by summing the contribution of all the elements forming the integral path.

are
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7.5.3 Choice of integration path in element

The numerical scheme presented in Section 7.5.2 for evaluating the contribution of an element to
the J integral places restrictions on both the finite element mesh that can be used and the order of
node numbering of the elements in the path [34]. To be able to use the method presented, the crack
geometry must preferably be idealized by a radial fan of elements centered at the crack tip (see Fig
7.7) and the nodal number of the elements, through which the contour is to be taken, must be such
that the local { coordinate axes follow the tangential direction.

Radial finite elment mesh around the crack tip

1
N\ \ LT 1T 777

TTTTTTTY

=3

)
T 3T

Crack 4

Figure 7.7: Radial finite element mesh around a crack tip

While such an approach allows the numerical process for the evaluation of .J to be elegantly for-
mulated, it nevertheless places a considerable restriction on the finite element mesh topology.
Therefore a method is required for evaluating the .J integral that can be used with any arbitrar-
ily structured finite element mesh is optimum [34]. The most general case for an integration path
is illustrated in Fig 7.8.

A typical contour path around the crack tip will be made up of:

e Contributions from elements in which integration is made along paths ¢ = ¢, (constant)
e Contributions from elements in which integration is made along paths 7 = 7,, (constant)

e Contributions from “corner” elements in which the path changes from the ( to 7 direction.

Integration along a path where 1 = 7, and a path where ¢ = ¢, (see section 7.5.2) can be done in
an identical manner [34].

For a corner element where the path changes form ( to the n direction the contribution of the
element to the .J integral can be evaluated in a normal manner by integrating across the complete
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"""""""

Figure 7.8: Contour for J evaluation involving paths along both ¢ and 7 directions and “corner”
elements

Figure 7.9: Path through corner elements

element dimensions in the ¢ and 7 directions. The values obtained can then be scaled to account
for the actual shorter path length. The scaling factor for both the  and n directions can be readily
obtained for a 2 point Gauss rule to be [34]:

_1—|—PG

Sa = 0.788675 where P; =0.57735. (7.79)
Obviously some degree of numerical inaccuracy is introduced by this scaling process, but since the
contribution of such a corner element to the complete .J integral will be small, the error involved
is acceptable.

To avoid the error introduced by the corner elements the .J integral path can be selected on the

boundary of the element. If the element edge is chosen as the integral path, no scaling of corner
node elements needs to be done. This approach can also be used with any arbitrary mesh.
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Chapter 8

Fracture mechanics: The /™ integral as the
dual form of the J integral

In this chapter, the formulation, path independence, lower bound theorem and finite element im-
plementation of the [* integral is outlined. The computer implementation of the theory is reflected
in Appendix C.

8.1 The /" integral

Based on the energy foundation of the path-independent integral there must exist a dual version of
Rice’s J integral, which should also be a path-independent integral, be identical to ./ in value and
be dependent on the system complementary energy. The /™ integral presented by Wu et al. [39] is
such an integral. The .J integral is equivalent to the release rate of strain energy I1(u;) with respect
to the crack area, and the /™ integral is equivalent to the release rate of the complementary energy
I1.(0;;) with respect to the crack area. An interesting application of the I* integral is that it is able
to provide the approximate upper bound solution for crack problems. Equilibrium based elements
(based on the complementary energy principle) should be used to estimate the /* integral.

8.2 Derivation of the /* integral

The derivation of the /* integral presented here follows the derivation of the /* integral presented
by [39]. Consider a 2-D homogeneous cracked system of linear or non-linear elastic material free
of body forces and traction on the crack surface as shown in Fig 7.3. For the purpose of developing
the dual integral of ./, one may use the Legendre transformation

W(Ul) + B(O’ij) = 04;€5, (81)

thus
W(ul) = 045€5 — B(O’Zj) (82)

57
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Introducing (8.2) into the .J integral formulation (7.6), the /* integral can be formulated as follows

Ou;
I" = /[[Uijeij — B(oy)]dy — Uijnja—uds]- (8.3)
Iy xr

with nyds = cos 01ds = dy and nods = — cos fads = —dx. Viz.,

I* — /F[—B(O'”)dy + Uijeijdy — 01 a—:L‘dy + 02 a—xdl’], (84)
hence 9 9
% U; U;
I = /F[—B(O'ij)dy+U¢28—ydy+(7@'28—xdl’], (85)
o 9 9 9 9
u u u u
[* — /F[—B(aw)dy + (a—yla'lz + a—;am)dy + (8—1'1012 -+ a—;UQQ)dx]. (86)
The I* integral can also be defined as a complementary energy release rate
dll
= —=° 8.7
I (8.7)

where the system complementary energy is given by:

HC(UZ]):/QB(O'U)CZQ—/ IZZ‘O'Z‘]"I’Lde. (88)

8.3 Path independence of [*

Again consider the cracked body shown in Fig 7.5. The domain A(2 is enclosed by the paths I'y,
I's and the crack surface CD and AF. With respect to (8.5) the I* integrals related to the different
paths I'; and I'; yields (no sum on 7)

AI* = I*(T) — I*(I")

00y 0
:% |: — B(O'Z])dy + uiﬂnjds -+ —(UiO'lz)d.Tj]

o0x Oz, (8.9)

00 0
- — B(oy; —2n.d —(uy dr
/CD+AF[ (0ij)dy +u 5 95t 5 (u;o12) x]}

J

For the assumed stress finite elements employed to calculate *, it is assumed that the equilibrium
equations o;; ; = 0 are satisfied (exactly or in a least-squares sense). Thus

a@'ij 0
f [_B(Uzj)dy+ula—xnjd5+ a—l'j(UiO-n)dxj] (810)

83 aO'Z']' aO'Z']' a
[ 9% 2 Tdo 8.11
/AQ[ B0y 0z "y TV ] ®1D
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0B aO'ij
= i — i dQ) 8.12
/AQ |: aaij tu J] (‘3m ( )
Observing that the traction-free condition (o;;n; = T;)|cp+ar = 0 and o9 = 012 = 0 can be im-

posed by the assumed stress elements, the second term in (8.9) vanishes, since dy = 0 on CD and
AF. Using

0
i = 8.13
= For (8.13)
then (8.9) becomes
00y
AQ ax
For a given discrete system, it takes the form
Jojj
Al = —€;5 i) —=—2dSQ. 8.15
Y e, 519
In accordance with (8.15), we have another equivalent relation:
1
Al"=0& €5 = —(ui,j + Ujﬂ') in AQ°. (816)

2

As for the assumed stress elements, the path independence for the numerical solution of /* are
conditioned by meeting the €;; — u; compatibility constraints within individual elements.

The assumed stress finite elements are able to guarantee the numerical solution of /* to be path-
independent.

8.4 Upper bound theorem for [*

The upper bound theorem as given in [39] is formulated as follows: For a given elastic cracked
system, if o;; and 0;; are, respectively, the exact stresses and the approximate stresses based on the
minimum complementary energy principle, the approximate /* integral will take the upper bound
of its exact integral:

I"(65) > I"(045)- (8.17)

Therefore, the upper bound of /* can be obtained by using stress equilibrium elements.

8.5 Proof of the upper bound theorem

Let 0;; = 0y + 605, where do;; are virtual stresses, hence we can write:

. (03;) = U.(04;) + 011, + §°I1,. (8.18)

As a stationary condition of I1.(5;;), we have 0II. = 0. On the other hand, due to u;|s, = 0, the
complementary energy functional

HC(O'ZJ):/S;B(O'Z])CZQ—/ ﬂiO'l'jnde, (819)
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becomes
Q
and

621, = / B(60;;)d) > 0. (8.21)
Q

dil.
With respect to the exact solutions, *(o;;) = J(u;) > 0. Thus, by means of /* = Tn and (8.18)
a
through to (8.21), the following can be obtained:

I*(Gij = I*(035) + 6°1*, (8.22)
with p p
[*<Uij) = %HC(UZ']') = %/QB(UU)dQ 2 O, (823)
and
g2 — Lo = 4 B(604;)dS (8.24)
da ¢ da Jq R '

Observing that both B(c;;) and 0B(o;;) are positive definite complementary energy functions,
they possess the same function configurations. Therefore, they must exhibit the same variation
when the system is experiencing stable crack growth. By comparison of (8.23) and (8.24), it can
be found that 627* > 0 and that the inequality (8.17) must be true.

The stress equilibrium element is based on the complementary energy formulation I1.(o), while
the stress hybrid element is based on the Reissner formulation Iz (o, u). However, [1g(o,u) is
identical to II.(c). Thus a hybrid model may degenerate into an equilibrium model when the
stress equilibrium equations are enforced in the hybrid element.

8.5.1 Determination of the stress intensity factor /; using the J and [ in-
tegrals

For ease of comparison the .J- or [* integrals are expressed in terms of stress intensity factors. The
relationship between the J and I* integral values and the stress intensity factor can be stated as
follows:

Linear isotropic elasticity

For linear elastic isotropic materials in elastic conditions the J and /* integrals can be written in
terms of Mode I and Mode /1 stress intensity factors as follows:

 K}+ K3,

J=1TI =

(8.25)

where E' = F for plane stress and E' = E/(1 — v?) for plane strain, where v is Poisson’s ratio [40].
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Linear orthotropic elasticity

Formulating the constitutive relations of a linear elastic orthotropic material in global coordinates
as follows (for the definition of a; - agg see (11.7)):

ajip a0
€ = 12 a922 0 o. (826)
0 0 g6

the J and [* integrals can be expressed as follows in terms of the Mode I and Mode I stress
intensity factors [40]:

1/2 1/2 1/2
11022 a1 22 2a19 + agp
J=1I"=|K? + K? (—)} {(—) +7} . 8.27
{ I< 2 ) " \/5 ai 2a1; ( )
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Chapter 9

Fracture mechanics: Isotropic results

In this chapter, numerical results are presented for isotropic fracture mechanics problems using the
developed code in Appendix C. The problems are evaluated using the J and [* integrals with the
different displacement based and assumed stress elements presented in earlier chapters. The results
obtained are compared with known exact solutions. A convergence study is done to determine the
effect of mesh refinement on the values of the J and /* integrals.

9.1 Problem description

Four different problems (three Mode I problems and a Mode II crack problem) with known “exact”
solutions are investigated. These are

e a center cracked panel (CCP) with unit thickness subjected to uniform tension, see Fig 9.1(a),

e asingle edge cracked panel (SECP) with unit thickness subjected to uniform tension, see Fig
9.1(b),

e a double edge cracked panel (DECP) with unit thickness subjected to uniform tension, see
Fig 9.1(c), and

e a center cracked panel (CCP) subjected to uniform shearing, see Fig 9.1(d).

Due to the symmetry of the cracked panels, only a quarter of the CCP and DECP and one half
of the SECP are modelled with a discrete finite element mesh (see Fig 9.2(a) and Fig 9.2(b) for
Mesh 1 and Mesh 3). For the mode I problems (CCP, SECP and DECP with uniform tension) the
normal nodal displacements are fixed on the axes of symmetry. For the mode II problem (CCP
with uniform shear), the tangential nodal displacements are fixed on the axis of symmetry and the
upper right hand corner node’s = and y displacement are constrained with an MPC.

Five integration contours (numbered 1, 2, 3, 4 and 5 beginning with the innermost contour) were
used. The contours are shown in Fig 9.2(a) and Fig 9.2(b) for Mesh 1 and Mesh 3.

To evaluate the J integral, the following elements, based on the minimum potential energy princi-
ple, are used:

62
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Figure 9.1: Cracked panels: (a) Center cracked panel (CCP) that is subjected to tension (b) Single
edge cracked panel (SECP) subjected to uniform tension (c) Double edge cracked panel (DECP)
subjected to uniform tension (d) Center cracked panel (CCP) subjected to uniform shear

e (4 (A displacement based quadrilateral element) and

e (Q4X (A displacement based quadrilateral element with drilling degrees of freedom)



University of Pretoria etd — De Klerk A (2006)

CHAPTER 9. FRACTURE MECHANICS: ISOTROPIC RESULTS 64

The value of the 7* integral was calculated using the following elements, in accordance with the
complementary energy principle:

e PS (The assumed stress quadrilateral element proposed by Pian and Sumihara [5]),

e PS(a) (A penalized version of the assumed stress quadrilateral element proposed by Pian
and Sumihara [5]),

e 87 (A assumed stress quadrilateral element with drilling degrees of freedom and 8 /3 para-
meters),

e 83(«) (A penalized version of the assumed stress quadrilateral element with drilling degrees
of freedom and 8 3 parameters),

e 90 (A assumed stress quadrilateral element with drilling degrees of freedom and 9 para-
meters) and

e 93(«) (A penalized version of the assumed stress quadrilateral element with drilling degrees
of freedom and 9 3 parameters).

The J and [* integral values calculated are converted to stress intensity factors (/) for convenient
comparison. The exact solutions of the stress intensity factor K and K are adopted from [1].

The stress intensity factor is independent of the material constants in principle [40]. For computa-
tional ease, the following material properties were used throughout:

e Young’s modulus £ =1,
e Poisson’s ratio v = (0.3, and

e the distributed loads o =7 = 1.

The units of loading are consistent with that of F.

9.2 Analytical stress intensity factors expressions

e a center cracked panel (CCP) with unit thickness subjected to uniform tension:

— where o is the remote stress applied to the component, 2a is the crack length and f(g)
is a correction factor that depends on the specimen and crack geometry.

Kr = f(g)oy/(ra) 9.1)
£l9) = V/(see 37) ©92)

e asingle edge cracked panel (SECP) with unit thickness subjected to uniform tension:
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— where o is the remote stress applied to the component, a is the crack length and f(g) is
a correction factor that depends on the specimen and crack geometry.

K; = f(g)o/(na) (9.3)
fl9) = 112 - 0.231(3) + 10.55(;)° — 21.72(7)° +:30.39(3)" (94

e a double edge cracked panel (DECP) with unit thickness subjected to uniform tension:

— where o is the remote stress applied to the component, a is the crack length and f(g) is
a correction factor that depends on the specimen and crack geometry.

Kr = f(g)oy/(ma) 9.5)

a

£(g) = 1.1240.203(3) — 1.197(3)* + 1.930(3)° 9.6)

9.3 Convergence study

The effect of mesh refinement on the stress intensity factor is of interest. The convergence study
is done for a center cracked panel (see Fig 9.1(a)) using 3 different meshes (Mesh 1, Mesh 2 and
Mesh 3) with different densities. The stress intensity factor is obtained for the different meshes
using 5 independent integral paths. Mesh 2 is a bisection of Mesh 1, and Mesh 3, in turn, is a
bisection of Mesh 2.

Mesh 1 consists of 17 x 9 elements in total and a radial fan of element around the crack tip of 7 x
3 elements as shown in Fig 9.2(a). The five selected integration contours for the quarter CCP are
shown in Fig 9.2(a) and Fig 9.2(b).

The effect of the mesh refinement on the J integral is investigated for displacement base finite
elements Q4 and Q4X. The stress intensity factor calculated with the .J integral for the CCP plate
are listed in Table 9.1 for the Q4 element and in Table 9.2 for the Q4X elements. The results are
plotted in Fig 9.3(a) and Fig 9.3(b).

Path Mesh1 Mesh2 Mesh?3

Path1 4.377 4474  4.494
Path2 4.377 4474  4.494
Path3 4450 4.503 4.501
Path4 4.463 4.496 4.505
Path5 4.459 4.495 4.504
Exact 4.506

Table 9.1: Convergence of K for an isotropic CCP subjected to uniform tension with Q4 elements

It is evident that the stress intensity factor obtained with the J integral converges to the analytical
value as the mesh is refined. It is also confirmed that the stress intensity factor calculated with the
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Path Mesh1 Mesh2 Mesh3

Path1 4.391 4.468 4.494
Path2 4.375 4.467 4.494
Path3 4.443 4494  4.501
Path4 4390 4470 4.496
Path5 4.392 4471 4.496
Exact 4.506

Table 9.2: Convergence of K for an isotropic CCP subjected to uniform tension with Q4X ele-
ments

J integral, with the displacement based elements, presents a lower bound to the true value of K.
The path-independence of .J integral is also confirmed.

Next we consider the /* integral with assumed stress elements: The mixed formulation elements
PS, PS(a), 84, 84(«), 95 and 93(«) elements are used in combination with the I* integral to
calculate the stress intensity factor for the center cracked panel.

The calculated stress intensity factors for the CCP plate obtained using all the mixed formulation
elements are listed in Table 9.3, Table 9.4, Table 9.5, Table 9.6, Table 9.7 and Table 9.8 and plotted
in Fig 9.3(c), Fig 9.3(d), Fig 9.4(a), Fig 9.4(b), Fig 9.4(c) and Fig 9.4(d).

Path Mesh1 Mesh2 Mesh?3

Path1 4.441 4.485 4.500
Path2 4.444 4485 4.500
Path3 4486 4.513 4.507
Path4 4.469 4.496 4.505
Path5 4.473 4.497 4.505
Exact 4.506

Table 9.3: Convergence of K for an isotropic CCP subjected to uniform tension with PS elements

It is evident that the stress intensity factor obtained with all the mixed formulation elements using
the /™ integral converge to the analytical value as the mesh is refined. It is also confirmed that the
stress intensity factor calculated with the /* integral using the elements with penalized equilibrium
(PS(), 85(c) and 95(«) elements) forms a upper bound for the true value of K. The stress
intensity factors obtained when the PS, 83 and 95 elements are used tends to under predicted the
K, value. The stress intensity factor calculated with the ™ integral using unpenalized assumed
stress elements with drilling degrees of freedom do not form a upper bound for the stress intensity
factor for the (relatively fine) meshes considered. The path-independence of the /* integral as
obtained with all the mixed formulation elements is, however, confirmed.

It is noted that the solution of .J converges to the analytical solution from below, while the solution
of I* using the penalized equilibrium elements converges to the analytical solution from above.
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Path Mesh1 Mesh2 Mesh3

Path1 4.485 4.528 4.512
Path2 4.491 4.508 4.512
Path3 4.534  4.538 4.518
Path4 4.517 4.520 4.516
Path5 4.521 4.521 4.516
Exact 4.506

Table 9.4: Convergence of K for an isotropic CCP subjected to uniform tension with PS(«)
elements

Path Mesh1 Mesh2 Mesh3

Path1 4.442  4.481 4.498
Path2 4.429 4482  4.498
Path3 4.419 4.476 4.495
Path4 4.434 4480  4.498
Path5 4436 4480  4.498
Exact 4.506

Table 9.5: Convergence of K, for an isotropic CCP subjected to uniform tension with 83 elements

This demonstrates the bound theorems nicely.

9.4 Results for different panels

In Fig 9.5(a) to Fig 9.5(d) the displaced geometry of the different cracked plate problems are
plotted against their undisplaced geometry.

From the convergence study it is noted that the results obtained using Mesh 3 are superior to the

results obtained using Mesh 1 or Mesh 2, hence all the results given below are obtained using Mesh
3.

Fig 9.6(b), Fig 9.7(a) and Fig 9.7(b) presents a summary of the numerical results for the individual
specimens. All of them confirm that the J integral using elements with drilling d.o.f and Q4
element gives a lower bound on the stress intensity and that the /* integral using the 83(«), 95(«)
and PS(«) elements gives a upper bound on the stress intensity factor.

1. Center cracked panel subjected to a uniform stretching load

In Table 9.9 the results for the center cracked plate subjected to tension are tabulated. The
results for the CCP are plotted in Fig 9.6(a). Clearly, the stress intensity factor calculated
with the " integral and penalized equilibrium elements forms an upper bound and the .J
integral forms a lower bound to the analytical stress intensity factor.
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Path Mesh1 Mesh2 Mesh3

Path1 4.483 4.508 4.512
Path2 4.492  4.509 4.512
Path3 4.506 4.519 4.516
Path4 4.517 4.524  4.516
Path5 4.524  4.527 4.517
Exact 4.506

Table 9.6: Convergence of K for an isotropic CCP subjected to uniform tension with 83(«a)
elements

Path Mesh1 Mesh2 Mesh3

Path1 4.442  4.481 4.498
Path2 4.429 4482  4.498
Path3 4.419 4.476 4.495
Path4 4434 4480  4.498
Path5 4.437 4480  4.498
Exact 4.506

Table 9.7: Convergence of K, for an isotropic CCP subjected to uniform tension with 93 elements

2. Single edge cracked panel

In Table 9.10 the results obtained for the single edge cracked plate subjected to uniform
tension are tabulated. The results for the SECP are plotted in Fig 9.6(b). The stress intensity
factor calculated with the ™ integral using the first 3 integration contours under predicts the
stress intensity factor rather than forming an upper bound. This seems to be the result of
selecting the integration paths to close to the crack tip.

3. Double edge cracked panel

In Table 9.11 the results for the double edge cracked plate under uniform tension are ta-
bulated. The results for the DECP are plotted in Fig 9.7(a). The upper and lower bounds
predicted for the stress intensity factor of the DECP are clearly depicted in Fig 9.7(a).

4. Center cracked panel subjected to uniform shear

In Table 9.12 the results for the center cracked plate under uniform shear are tabulated. The
results for the CCP under uniform shear are plotted in Fig 9.7(b). Using a finer mesh may
improve the results obtained. The elements all under predicts K;;, in particular as r, is
increased.
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Path Mesh1 Mesh2 Mesh?3
Path1 4476  4.503 4.508
Path2 4.487 4.501 4.508
Path3 4.488 4512 4.512
Path4 4.502 4.515 4.512
Path5 4.504 4.515 4.513
Exact 4.506
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Table 9.8: Convergence of K for an isotropic CCP subjected to uniform tension with 95(«a)

elements

Path

Q4

Q4X

PS

PS(«)

80

83(cv)

96

96(c)

Path 1
Path 2
Path 3
Path 4
Path 5
Exact

4.494
4.494
4.501
4.505
4.504

4.494
4.494
4.501
4.496
4.496

4.500
4.500
4.507
4.505
4.505

4.512
4.512
4.518
4.516
4.516
4.506

4.498
4.498
4.495
4.498
4.498

4.512
4.512
4.516
4.517
4.517

4.498
4.498
4.495
4.498
4.498

4.508
4.508
4.512
4.512
4.513

Table 9.9: K results for the isotropic CCP subjected to uniform tension (Mesh 3)

Path

Q4

Q4X

PS

PS(«)

80

803(c)

9

96(a)

Path 1
Path 2
Path 3
Path 4
Path 5
Exact

6.457
6.455
6.512
6.508
6.507

6.456
6.455
6.492
6.486
6.486

6.469
6.469
6.482
6.502
6.503

6.496
6.495
6.508
6.529
6.529
6.517

6.461
6.460
6.465
6.496
6.496

6.498
6.497
6.516
6.531
6.531

6.463
6.463
6.467
6.498
6.499

6.484
6.483
6.504
6.517
6.517

Table 9.10: K results for the isotropic SECP subjected to uniform tension (Mesh 3)
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Figure 9.2: Finite element mesh and five selected integration contours for one-quarter of the CCP
and one half of the SECP and the DECP. (a) Mesh 1 (b) Mesh 3
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Convergence study for the CCP with different elements: (a) Q4 (b) Q4X (c) PS, and
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Stress intensity factor K|
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Figure 9.4: Convergence study for the CCP with different elements: (a) 83 (b) 83(«) (¢) 95 (d)

96(c)
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Relative displacement of elemental nodes

Relative displacement of elemental nodes Relative displacement of elemental nodes

(a) (b) (©

Figure 9.5: Displacement of cracked panels (x 0.1): (a) Center cracked panel (CCP) (b) Single
edge cracked panel (SECP) (c) Double edge cracked panel (DECP) (d) Center cracked panel (CCP)
with uniform shear
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Figure 9.6: Summary of results for cracked isotropic panels with different elements: (a) CCP
subjected to uniform tension (b) SECP subjected to uniform tension
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Stress intensity factor KI for a double edge cracked plate
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Figure 9.7: Summary of results for cracked isotropic panels with different elements: (a) DECP
subjected to uniform tension (b) CCP subjected to uniform shear
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Path Q4 Q4X PS PS(a) 83 8B(a) 98 95(a)

Path1 4.812 4.849 4.817 4940 4.891 4.892 4.891 4.890
Path2 4.810 4.848 4.817 4938 4.890 4.892 4.890 4.890
Path3 4.845 4.872 4825 4959 4.890 4902 4.890 4.898
Path4 4.837 4.860 4.828 4964 4903 4.907 4903 4.900
Path5 4.836 4.860 4.827 4963 4902 4.907 4.902 4.899
Exact 4.889

Table 9.11: K results for the isotropic DECP subjected to uniform tension (Mesh 3)

Path Q4 Q4X PS PS(a) 83 8B(a) 98 95(a)

Path1 4.465 4.465 4.486 4.523 4.489 4.526 4.486 4.515
Path2 4.459 4445 4484 4520 4484 4523 4484 4.513
Path3 4.509 4.396 4.479 4513 4428 4516 4.426 4.499
Path4 4.482 4401 4412 4440 4415 4443 4414 4.422
Path5 4.477 4393 4400 4.428 4.404 4.431 4.403 4411
Exact 4.533

Table 9.12: K results for the isotropic CCP subjected to uniform shear (Mesh 2)
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Chapter 10

On the stability of drilling elements

The stability of elements with drilling degrees of freedom in fracture mechanics is largely influ-
enced by two factors: The integration scheme used (i.e. reduced or full integration) and the value
of the penalty parameter ~.

10.1 Effect of reduced integration

Reduced integration is frequently used in evaluating the element stiffness matrix of quadratically
interpolated displacement based finite elements. Using reduced integration ’softens’ the element,
thereby increasing elemental accuracy. (Softening comes about because certain higher-order poly-
nomial terms happen to vanish at Gauss points of a low-order rule. Simply stated, with fewer
sampling points, some of the more complicated displacement modes offer less resistance to defor-
mation [41].)

Reduced integration should be used with caution due to the fact that it can result in the introduction

of spurious zero energy modes on the element level.

For Q4X, the matrix K¢ = G H 'G* can be integrated using either full or reduced integration.
Integrating the K “ matrix with a 3 x 3 Gaussian quadrature prevents any spurious modes (full
integration). Alternatively, K“ may be integrated by the reduced 5-point rule proposed by Dovey
[42]. (A 2 x 2 Gaussian quadrature is not suitable, since a communicable mechanism is introduced
[43].) The reduced 5-point rule is outlined below. This scheme also prevents spurious modes in
linear elastostatics for the Q4X element [43].

It is noted that reduced integration in mixed/hybrid finite elements is in general not considered
advantageous.
10.1.1 5-Point integration rule

The 5-point integration rule is depicted in Figure 10.1. Due to the symmetry of the integration
scheme, the weights W, are identical. The rule is indicated by:

I* = WoF(0,0) + WoF(+a, +a) (10.1)

7
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Figure 10.1: 5-Point integration scheme

W,=1- % (10.2)

o= (3V1V )05 (10.3)

The scheme only has physical meaning while 0 < W} < 4, but is often restricted to 0 < W, < 8/3.
The 5-point scheme converges to the 2 x 2 Gaussian scheme as W, — 0.

10.1.2 Influence of center point weight 11/,

To investigate the effect of reduced integration on elements with drilling degrees of freedom in
fracture mechanics, the 5-point integration scheme is now applied with different values for the
center point weight . In performing this study, v = G is used throughout. We study the nodal
values of rotation; results are depicted in Figs 10.2(a) through 10.2(c).

Figs 10.2(a) and 10.2(b) illustrate that a checkerboard-like pattern is introduced when W is small
(e.g. Wy < 0.1 x 8/3). By increasing the weight 1/ of the center point, the checkerboard-like
effect is reduced. A sensible value for the center point weight 1/ is in the vicinity of 8/3 (Fig
10.2(c)). In fact, when using a center point weight of W, = 8/3, the results compare closely with
the results for full integration (Fig 10.2(d)). This suggests that full integration is preferable, since
reduced computational effort should probably not be the sole motivation for selecting reduced
integration [15].

10.2 Different values for

Next, we study the effect of the penalty parameter v on the rotations in the vicinity of the crack
tip. A 9-point full integration scheme is now used to integrate K °.

Recall that the formulation of the element with drilling degrees of freedom depends on the para-

meter 7y as follows:
[K°+Pllg=r (10.4)
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() (b)

(c) (d)

Figure 10.2: Nodal rotation for a center cracked panel using different integration schemes: (a) 5
point integration, W, = 0.01 x 8/3 (b) 5 point integration, W, = 0.1 x 8/3 (c) 5 point integration,
Wy = 8/3 (d) 9 point integration, (all with v = G)

with

P = ’y/ ( zz ) [b° g°]dS. (10.5)

The parameter -y is problem dependent, since it is a part of a penalty term. For linear elastic isotopic
problems, the formulation is relatively insensitive to the value of v [21, 22, 43] and the patch test
is passed for any v > 0. However, in linear elastic fracture mechanics, the material in the vicinity
of the crack tip contains a stress singularity, and different values for v may apply.

In addition, a further important argument applies when evaluating suitable values of . Recall
that the variational expression (4.11) contains the skew part of the stress tensor, skew 7. This is
interpolated in the discrete problem as 7, which is selected constant over an element. Clearly, it
is required that 7y ~ 0. To assess this aspect, the dependency of 7y on + is depicted in Fig 10.3 for
the center cracked panel.

Fig 10.3 suggests that v < G, or even 7 < (G/10 is desirable to ensure 79 ~ 0. This is confirmed
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T, VS- v/G for a center cracked plate
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Figure 10.3: 7 vs. v for a center cracked panel with full integration, for v = 6.5 x 10~* through
= 6.5 x 103. The solid line indicates the optimal range for

by Fig 10.4. However, this figure illustrates that v has a marked influence on the shape and size
of the rotations in the ’plastic zone’. While approximate relationships exist which relate the size
of the plastic zone to a material specific stress intensity value, it is not clear what the true value of
rotations in the plastic zone are. It is recommended that this is addressed in a future study.

To assess the effect of v on 7y for a different geometry, we now also study a single edge cracked
plate. Results are depicted in Fig 10.5, which illustrates that the trend is similar to that of the center
cracked plate, although the maximum value of 7 for the single edge cracked plate is notably higher
than 7 for the center cracked plate.

Finally, Fig 10.6 illustrates that the predicted accuracy of K decreases as /G is increased, viz.
as 7y increases. Based on the foregoing, it is recommended that v is selected from the range
v = G /100 through v = G/10.
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(©)

Figure 10.4: Nodal rotations for a center cracked panel: (a) v = G/1000 (b) v =G (¢) v = G X
1000 (9-point integration scheme)
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T, VS- v/G for a single edge cracked and center cracked plate

—— Single edge cracked plate
- - Center cracked plate

25r

051

Figure 10.5: 7¢ vs. 7y for a center cracked panel and a single edge cracked panel with full integration
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Stress intensity factor KI vs v/G for a center cracked plate
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Figure 10.6: Stress intensity factor /K'; vs. -y for the 5 different integration paths: (a) Center cracked
panel (b) Single edge cracked panel
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Chapter 11

Fracture mechanics: Orthotropic materials

In this chapter, fracture mechanics in orthotropic plates, stress and displacement distributions
around the crack tip in an anisotropic material are considered.

11.1 Introduction

With the growth in applications of composite materials, a problem of continuing interest is the
calculation of the stress intensity factor in cracked orthotropic plates modeling fiber reinforced
composites. The fracture of composite materials is an important and complex engineering pro-
blem. Significant defects can be built into a composite laminate during manufacturing of a new
component. The material used can also be relatively fragile and large cracks can result from minor
service mishaps. High performance composites often consist of high strength fibers in a weak
matrix. Hence, crack formation and growth is constrained by the fiber direction, resulting in mixed
mode crack deformation growth.

Several numerical methods for determining stress intensity factors in cracked anisotropic plates
have been developed by extending the methods originally developed for isotropic materials. The
J integral can be used to develop a failure analysis approach which is applicable to both single
and mixed mode crack problems in orthotropic materials. In a mixed mode, however, a simple
application of the J integral does not provide sufficient information for a separate determination of
mixed mode stress intensity factors. Various other methods are used to determine stress intensity
factors for anisotropic materials: the J; integral, the hybrid mongrel formulation, contour integrals
based on Betti’s reciprocal work theorem, etc.

11.2 Anisotropic stress and displacement field near a crack tip

The stress and displacement expressions in the neighborhood of the crack tip in homogeneous
anisotropic media under a plane stress condition with zero body forces are given by Saxce and
Kang [44] as:

84
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and

U= 51\/FRC{ (81p222 — 82p12a)} + 511\/7_"Re[
S1 — S S1 — S

v = 51\/7_“Re[ (519222 — S2Q1Za)} + 511\/7_“Re[

51 — 52 51— 82

21 = /cosf + s;sinf 29 = 1/c0osf + s9sinf
_ 2 _ 2

P1 = 1187 + Q12 — A1651 P2 = Q1153 + A1z — 1652
— a2 J— az2

1 = a1181 + ° — 2 G2 = a11512 + 2 — as
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(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

where Re denotes the real part of the complex function between brackets. si, s; and their conju-

gates are roots of the fourth order characteristic equation

CL1184 + 2&1683 + (2@12 + CL66)82 — 2&268 + ag9 = 0,

(11.6)

where the a;; are the elastic compliance coefficients, which can be written in terms of Young’s

(11.7)

moduli F;;, Poisson’s ratios v;; and shear moduli GG;;. For an orthotropic material, a;; are given as
- 1 - Vo1 Vi Qe — V31 i3
nN=—4" 02=—F—=—"7— 3= =——
En Es En Els:«z E
- 1 g VsV
2= 55— (2= —F =" a33=—
Ess Es3 B Ef3
1
Q44 = 5 Q55 = 5 — A = —~—
Gas Gis Gz

and 16 = Q96 = A3 = 0.
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Chapter 12

Fracture mechanics: Orthotropic results

In this chapter, numerical results for orthotropic fracture mechanics problems are presented. Again
the problems are evaluated using the J and /* integrals with different displacement based and
assumed stress elements. Results are compared to known solutions where possible. The effect of
fiber orientation and the degree of anisotropy on the stress intensity factors are also described.

12.1 Overview

To allow comparison with results presented in literature, the problems considered are mode I crack
problems. For an orthotropic material crack problem to be a mode I problem, one of the principal
axes of the material must be parallel to the crack axis. Therefore, only 0°, 90° or symmetric angle
ply laminates can be considered. The fiber orientation in orthotropic material is defined as the
angle between the crack axis and the fiber in a counterclockwise direction, see Fig 12.1.

Figure 12.1: Definition of the fiber orientation in an orthotropic material

Three test problems are investigated, namely

e a center cracked panel (CCP) with 0° ply arrangement, uniformly loaded in tension (the

86
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reference solution is taken from [40]),

e a single edge cracked panel (SECP) with 0° ply arrangement, uniformly loaded in tension
(the reference solution is taken from [40]), and

e a double edge cracked panel (DECP) with symmetric angle ply arrangements, uniformly
loaded in tension (the reference solution is taken from [3] and [45]).

The in-plane lines of material symmetry for the first two problems coincide with the z-y axis. The
material constants are setto be Fy = 1, E, =10, 8, = 1 and 32 = 0.1, where 3,0, = (El/Eg)% and
B+ Be =2 [(Ey/ EQ)% + E1/2Go — '012]% [40]. The units of loading are consistent with that of
E.

12.2 Convergence study

To study the influence of mesh refinement on the prediction of the stress intensity factor in or-
thotropic materials, a convergence study is firstly done. For the convergence study the center
cracked panel with 0° ply arrangement is considered. Three different meshes (the same meshes as
for the isotropic problems) are used with the same 5 integration contours (see Fig 9.2(a) and Fig
9.2(b)).

For the convergence study we only consider the following elements (for the sake of convenience,
the elemental descriptions are again given):

e Jintegral: Q4 (A displacement based quadrilateral element)

e J integral: Q4X (A displacement based quadrilateral element with drilling degrees of free-
dom)

e [*integral: PS(a) (A penalized version of the assumed stress quadrilateral element proposed
by Pian and Sumihara [5])

e [* integral: 85(«) (A penalized version of the assumed stress quadrilateral element with
drilling degrees of freedom and 8 3 parameters)

e [* integral: 95(«) (A penalized version of the assumed stress quadrilateral element with
drilling degrees of freedom and 9 3 parameters)

The assumed stress elements without penalized equilibrium (PS, 83 and 9/3) are not considered,
since they do not predict an upper bound for the stress intensity factor for reasonably fine meshes.
(The results obtained with these elements are of course still path-independent and the calculated
stress intensity factor converges with mesh refinement.)

For the meshes considered, the stress intensity factor calculated using the Q4 element violates the
bound theorem, (see Fig 12.2(a)), and the results reveal a notable path dependency. This is due to
the material orthotropy, which requires a very fine mesh for the Q4 elements [40].
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Figure 12.2: Convergence study of K; for the orthotropic CCP with different displacement based
elements: (a) Q4 (b) Q4X

With Q4X elements, the J integral is path-independent and satisfies the bound theorem (see Fig
12.2(b)). As expected, the stress intensity factors calculated with the J integral and Q4X form a
lower bound to the true value of the stress intensity factor, but the calculated stress intensity factor
does converge to the analytical value with mesh refinement.

When evaluating the J integral for orthotropic materials, the Q4X element seems superior to the
Q4 element.

We now turn the attention to the assumed stress based elements: For PS(«), 83(«) and 93(«), a
convergence study is presented in Figs 12.3(a), 12.3(b) and 12.3(c). The results confirm the path
independence of the elements, while an upper bound to the stress intensity factor is predicted,
as may be expected. Again, the calculated stress intensity factors do converge to the analytical
solutions with mesh refinement. Clearly, the results obtained with mesh 3 are superior to the

Path Mesh1 Mesh2 Mesh3

Path 1 4.370 4.392 4.584
Path 2 4.371 4.347 4.569
Path 3 4411 4.939 4.783
Path 4 4.403 4.674 4.663
Path 5 4.403 4.704 4.669
Reference 4.646

Table 12.1: Convergence of K for an orthotropic CCP subjected to uniform tension with Q4
elements
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Figure 12.3: Convergence study of K for the orthotropic CCP with different assumed stress ele-
ments: (a) PS(«) (b) 85(a) (c) 95(v)

results obtained using mesh 1 or mesh 2.

12.3 Selected results demonstrating path independence

General results for the problems of interest are now presented. Throughout, mesh 3 is used.

1. Center cracked panel with a 0° ply arrangement

The results obtained for the CCP are listed in Table 12.6. The reference solution is K
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Path Mesh1 Mesh2 Mesh3

Path 1 4.386 4.428 4.572
Path 2 4.520 4514 4.579
Path 3 4.450 4.543 4.585
Path 4 4.486 4.611 4.619
Path 5 4.661 4.626 4.622
Reference 4.646

Table 12.2: Convergence of K for an orthotropic CCP subjected to uniform tension with Q4X
elements

Path Mesh1 Mesh2 Mesh3

Path 1 4619  4.652 4.660
Path 2 4.631 4.655 4.660
Path 3 4,646  4.661 4.653
Path 4 4.681 4.668 4.661
Path 5 4.686  4.668 4.662
Reference 4.646

Table 12.3: Convergence of K for an orthotropic CCP subjected to uniform tension with PS(«)
elements

4.646. The results demonstrate adherence to the bound theorems: The stress intensity factor
determined with the /* integral using penalized equilibrium elements forms an upper bound
to the K factor, while the stress intensity factor determined with the .J integral and Q4X
elements forms a lower bound to K.

2. Single edge crack panel with 0° ply arrangement

Results are given in Table 12.7 for the SECP. Unfortunately, no theoretical reference solution
could be found for this problem, but the results compare well with those obtained by Xiao
et al [40].

12.4 The effect of fiber orientation on the stress intensity factor

The effect of fiber orientation on a double edge cracked panel with a symmetric ply arrangement
is now studied. Symmetric fiber orientations of +0°, £10°, £20° ... £90° are considered.

The calculated stress intensity factors for this problem are listed in Tables 12.8, 12.9 and 12.10.
The results are compared with the results obtained by [45] and [3] where possible.

For the double edge cracked plate problem, the material constants used are:
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Path Mesh1 Mesh2 Mesh3

Path 1 4.614 4.651 4.647
Path 2 4.630 4.651 4.647
Path 3 4.674 4.677 4.655
Path 4 4.679 4.670 4.650
Path 5 4.691 4.672 4.651
Reference 4.646

Table 12.4: Convergence of K for an orthotropic CCP subjected to uniform tension with 83(«)
elements

Path Mesh1 Mesh2 Mesh3

Path 1 4.605 4.646 4.644
Path 2 4.633 4.645 4.644
Path 3 4.650 4.669 4.653
Path 4 4.671 4.663 4.648
Path 5 4.675 4.666 4.648
Reference 4.646

Table 12.5: Convergence of K for an orthotropic CCP subjected to uniform tension with 95(«)
elements

Stress intensity factor for a center cracked panel (CCP) Stress intensity factor for a center cracked panel (CCP)
467
481 -+ Q4 > 8p(o)
_ Qax 4 9p(0)
. - 28
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Figure 12.4: Summary of results for an orthotropic center cracked panel with § = 0° fiber angle:
(a) Q4, Q4X and PS(«a) elements (b) 8/3(«) and 95(«) elements
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Element Path1 Path2 Path3 Path4 Path5

Q4 4584 4569 4783 4.663 4.669
Q4X 4572 4579 4585 4619 4.622
PS 4.650 4.650 4.645 4652 4.652
PS(o) 4.660 4.660 4.653 4.661 4.662
87 4.634 4.633 4.583 4.631 4.632
84(x) 4.647 4.647 4.655 4.650 4.651
943 4.633 4.633 4.583 4.633 4.633
98(«) 4.644 4.644 4.653 4.648 4.648
Reference 4.646

Table 12.6: K results for the orthotropic CCP with 0° laminate under uniform tension (mesh 3)

Element Path1 Path2 Path3 Path4 Path5

Q4 6.351 6.351 6382 6385 6.383
Q4X 6.350 6.348 6371 6371 6.372
PS 6.3641 6.363 6.374 6.383 6.382
PS(a) 6.393 6398 6422 6415 6415
83 6.325 6.352 6363 6378 6.378
80(ar)  6.393 6.393 6405 6425 6.429
96 6.352 6.352 6363 6376 6.376

Table 12.7: K results for the orthotropic SECP with 0° laminate under uniform tension (mesh 3)

£, =144.798 GPa,

Es=11.722 GPa,
G192 =9.6532 GPa, and

e v=0.21.
The double edge cracked plate dimensions used are:
e Crack length: a = 3.5,
e Width: 2b = 14,
e Height: 2¢ = 14,

The units of loading are consistent with that of F.

For the double edge cracked panel, the results are summarized in Figs 12.6(a) and 12.6(b). The
results reveal a slight (unimportant) path dependence.
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Figure 12.5: Summary of results for an orthotropic single edge cracked panel with 8 = 0° fiber
angle: (a) SECP with 0 = 0° Q4, Q4X, PS and PS(«) elements (b) SECP with 6 = 0° 83, 83(«a),
94 and 9/3(«x) elements

Stress intensity factor K

8.1

791

7.8

77+

7.5F

74r

Stress Intensity factor for DECP with 6 = 90

Trmmm o >

-+

-

Q4
Q4x
PS(ar)
8p

—— 8f(a)
—o o
> 9B(or)

== Jin-Woo Kim (1985)
—— Chu and Hong (1990)

7.2

Stress intensity factor K|

Stress Intensity factor for DECP with 6 = 0

- 9p
361 >~ 9B(a)

R _ _.—| =~ Jin-Woo Kim (1985)
—— Chu and Hong (1990)

Figure 12.6: Summary of results for an orthotropic double edge cracked panel: (a) fiber angle 6 =
90° (b) fiber angle 6 = 0°

The results obtained for the DECP with symmetric angle ply lamina (see Table 12.10 and Fig
12.10), compare very well with the results obtained by Chu and Hong [45]. Comparing the results
obtained by Chu and Hong with the results obtained by Kim [3], it is noted that large discrepancies
exist between these results, which peak around angles of +607. According to Chu and Hong [45]
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Element Path1 Path2 Path3 Path4

Q4 7.248 7.248 7.222 7.354
Q4X 7226 7.221 7.237 7.311
PS(«) 7.297 7298 7.297 7.379
80 7.254 7.255 7.245 7.323
80(«) 7.305 7.306 7305 7.394
96 7.254 7.254 7.244 7.325
95(cx) 7295 7.299 7.293 7.366

Reference [3] 8.171 8.101 8.091 —
Reference [45] 7.295 7.295 7.295 7.295

Table 12.8: K results for the orthotropic DECP with a 90° laminate under uniform tension (mesh
3)

Element Path1 Path2 Path3 Path4

Q4 3.829 3.828 3.828 3.834
Q4X 3.827 3.827 3.825 3.825
PS(a) 3.855 3.855 3.855 3.853

83 3.830 3.830 3.830 3.837
83(a) 3.862 3.861 3.861 3.865

93 3.830 3.830 3.830 3.830
93(cv) 3.857 3.856 3.856 3.856

Reference [3] 3.581 3.571 3.585 —
Reference [45] 3.847 3.847 3.847 3.847

Table 12.9: K results for the orthotropic DECP with a 0° laminate under uniform tension (mesh
3)

it seems that these discrepancies are due to Kim’s [3] miscalculation of compliance coefficients.
(The compliance coefficients for a laminate must be determined by inversion of the equivalent
modulus for a laminate, which is the average of the modulus of the constituent plies, and must not
be determined by averaging the compliance coefficients of the constituent plies.)

The agreement with the results presented by Chu and Hong seems to indicate that the current
implementation is correct.

12.5 The effect of the degree of anisotropy on K

To consider the effect of the degree of anisotropy on the stress intensity factor, a center cracked
plate under uniform tensile stress is now considered. This problem was also considered by Su and
Sun [46]. The ratio g—; is varied to determine the influence of the degree of anisotropy on the stress
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Fiber orientation Q4 Q4X PS(a) 88(a) 90(«)
+03 1.1546 1.1538 1.1624 1.1645 1.1628
+107 1.1576 1.1555 1.1656 1.1677 1.1654
+207 1.1746 1.1734 1.1838 1.1860 1.1843
+307 1.2111 1.2111 1.2215 1.2239 1.2218
+407 1.2855 1.2864 1.2969 1.2993 1.2971
+£507 1.4601 1.4604 14716 1.4740 14715
£60; 1.7540 1.7525 1.7667 1.7693 1.7669
£709 2.0291 2.0256 2.0443 2.0471 2.0444
+807 2.1574 2.1531 2.1744 2.1772 2.1743
+907 2.1824 2.1797 22006 2.2031 2.1930

Table 12.10: K results for the isotropic CCP under uniform tension (mesh 3)
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The height to width ratio ~/w and the crack length to width ratio a/w are varied to estimate the
effect of geometry on the stress intensity factor. Height to width ratios of A/w = 1.0, 1.5, and 2.0

are considered.

The material properties used are:

e Young’s modulus £; =30.0, and

e Poisson’s ratio v15 = 0.3.

The values of F5 and (G5 are obtained from

El El E1 1
=L o= — 1)
5= V2WE, Tag, v

The material properties are summarized in Table 12.11.

(12.1)

In the tabulated results that follow, the reported stress intensity factor values are average normalized

values, calculated as

(K1 path1 + K1 pathz + K1 paths + K1 patha + K71 patns)

(5% /7 xa)

(12.2)

The results are summarized in Figs 12.8 and 12.9. When comparing the results with those obtained

by Su and Sun [46], it is noted that the correlation between the results is very high.

A study of Figs 12.8 and 12.9 reveals the following:

e As the ratio of the crack length to plate width a/w increases, the stress intensity factor

increases.

e Anincrease in the height to width ratio 4 /w of the cracked plate decreases the stress intensity

factor significantly.
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E\/E, E; (PSi x 105 E, (PSi x 10%) v,

G12 (PSI X 106)

0.3
0.5
0.7
0.9
1.0
1.1
1.5
2.5
3.5
4.5

30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0

100.00
60.000
42.860
33.333
30.000
27.273
20.000
12.000
8.571
6.667

0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

15.789
14.286
13.043
12.000
11.538
11.111
9.677
7.317
5.882
4918

Table 12.11: Material constants for cracked rectangular plate

e The effect of the degree of anisotropy decreases as a/w decreases and h/w increases.
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e The effect of the degree of anisotropy on the stress intensity factor is considerable for ratios

of £/ F, less than 1.

e The stress intensity factor is only influenced significantly when F;/FEy > 1 for a/w large

and h/w small.

For the sake of clarity, the tabulated results are summarized as follows:

1. Height to width ratio h/w = 1

Results are shown in Fig 12.8(a) and tabulated in Tables 12.12 through 12.16. In Table 12.17,

the results obtained by Su and Sun [46] are listed.

2. Height to width ratio h/w = 1.5

Results are shown in Fig 12.8(b) and tabulated in Tables 12.18 through 12.22. In Table
12.23, the results obtained by Su and Sun [46] are listed.

3. Height to width ratio h/w =2

Results are shown in Fig 12.5 and tabulated in Tables 12.24 through 12.28. In Table 12.29,

the results obtained by Su and Sun [46] are listed.
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Stress intensity factor for center cracked plate in tension (h/w = 1)
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Figure 12.8: The effect of the degree of anisotropy and height to width ratio for the orthotropic
CCP with 0° ply arrangement: (a) Height to width ratio A/w = 1 (b) Height to width ratio h/w =
1.5
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Stress intensity factor for center cracked plate in tension (h/w = 2)
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Figure 12.9: The effect of the degree of anisotropy and height to width ratio for the orthotropic
CCP with 0° ply arrangement: Height to width ratio h/w =2

a/w
E.JE, 01 02 03 0.5

0.3 1.0152 1.0878 1.2009 1.5405
0.5 1.0101 1.0682 1.1592 1.4314
0.7 1.0071 1.0571 1.1351 1.3682
0.9 1.0053 1.0497 1.1190 1.3268
1.0 1.0045 1.0468 1.1127 1.3110
1.1 1.0038 1.0443 1.1074 1.2976
1.5 1.0029 1.0370 1.0917 1.2594
25 09995 1.0277 1.0721 1.2133
3.5 09984 1.0233 1.0630 1.1923
45 09977 1.0208 1.0577 1.1803

Table 12.12: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1, different crack length to width ratios a/w, using
Q4 elements
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a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0145 1.0845 1.1962 1.5406
0.5 1.0102 1.0659 1.1559 1.4307
0.7 1.0076 1.0552 1.1324 1.3673
0.9 1.0058 1.0480 1.1165 1.3259
1.0 1.0050 1.0453 1.1104 1.3102
1.1 1.0044 1.0428 1.1051 1.2968
1.5 1.0025 1.0356 1.0897 1.2587
25 09999 1.0264 1.0703 1.2126
3.5 09986 1.0220 1.0613 1.1917
4.5 09977 1.0195 1.0561 1.1797

Table 12.13: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1, different crack length to width ratios a/w, using
Q4X elements

a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0237 1.0959 1.2116 1.5850
0.5 1.1089 1.0762 1.1693 1.4650
0.7 1.0163 1.0653 1.1450 1.3963
0.9 1.0146 1.0580 1.1287 1.3515
1.0 1.0139 1.0551 1.1225 1.3348
1.1 1.0133 1.0527 1.1170 1.3208
1.5 1.0115 1.0455 1.1013 1.2809
2.5 1.0092 1.0364 1.0817 1.2326
3.5 1.0081 1.0321 1.0726 1.2176
4.5 1.0075 1.0296 1.0673 1.1977

Table 12.14: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1, different crack length to width ratios a/w, using
PS(a) elements
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a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0249 1.0975 1.2113 1.5672
0.5 1.0198 1.0777 1.1693 1.4564
0.7 1.0162 1.0666 1.1453 1.3927
0.9 1.0150 1.0592 1.1293 1.3511
1.0 1.0143 1.0564 1.1231 1.3353
1.1 1.0137 1.0539 1.1178 1.3219
1.5 1.0118 1.0467 1.1023 1.2836
2.5 1.0095 1.0375 1.0830 1.2372
3.5 1.0084 1.0333 1.0741 1.2161
4.5 1.0071 1.0308 1.0690 1.2039

Table 12.15: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1, different crack length to width ratios a/w, using
87 (a) elements

a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0230 1.0954 1.2110 1.5596
0.5 1.0178 1.0755 1.1686 1.4476
0.7 1.0149 1.0645 1.1443 1.3834
0.9 1.0130 1.0571 1.1281 1.3416
1.0 1.0123 1.0542 1.1216 1.3257
1.1 1.0116 1.0517 1.1164 1.3122
1.5 1.0098 1.0445 1.1007 1.2739
2.5 1.0080 1.0354 1.0811 1.2277
3.5 1.0069 1.0311 1.0721 1.2068
4.5 1.0055 1.0287 1.0670 1.1949

Table 12.16: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1, different crack length to width ratios a/w, using
95(«x) elements
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a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.027 1.096 1212 1.566
0.5 1.020 1.076 1.169 1.454
0.7 1.016 1.065 1.145 1.390
0.9 1.014 1.057 1.128 1.348
1.0 1.013 1.054 1.122 1.333
1.1 1.012 1.052 1.117 1.319
1.5 1.009 1.044 1.101 1.281
2.5 1.006 1.035 1.081 1.235
3.5 1.004 1.030 1.072 1.214
4.5 1.003 1.028 1.066 1.203

Table 12.17: Reference solution for the effect of the degree of anisotropy on K; for an orthotropic
CCP with 0° ply arrangement and height to width ratio h/w = 1, different crack length to width
ratios a/w

a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0024 1.0228 1.0952 1.2665
0.5 1.0003 1.0194 1.0739 1.2204
0.7 09989 1.0182 1.0643 1.2002
09 09982 1.0175 1.0591 1.1893
1.0 09979 1.0173 1.0574 1.1855
1.1 0.9977 1.0171 1.0560 1.1825
1.5 09971 1.0166 1.0523 1.1745
25 09965 1.0157 1.0485 1.1651
3.5 09963 1.0150 1.0567 1.1601
4.5 09961 1.0145 1.0455 1.1566

Table 12.18: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1.5, different crack length to width ratios a/w, using
Q4 elements
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a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0022 1.0364 1.0912 1.2651
0.5 1.0004 1.0271 1.0710 1.2187
0.7 09993 1.0243 1.0619 1.1986
0.9 09987 1.0203 1.0570 1.1878
1.0 09984 1.0195 1.0553 1.1841
1.1 0.9982 1.0188 1.0540 1.1811
1.5 09977 1.0171 1.0505 1.1733
25 09969 1.0152 1.0469 1.1643
3.5 09965 1.0142 1.0451 1.1594
45 09961 1.0135 1.0439 1.1559

Table 12.19: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1.5, different crack length to width ratios a/w, using
Q4X elements

a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0110 1.0460 1.1027 1.2908
0.5 1.0087 1.0360 1.0814 1.2421
0.7 1.0077 1.0316 1.0721 1.2209
0.9 1.0072 1.0293 1.0671 1.2094
1.0 1.0070 1.0285 1.0654 1.2054
1.1 1.0069 1.0278 1.0641 1.2022
1.5 1.0065 1.0262 1.0608 1.1936
2.5 1.0061 1.0246 1.0574 1.1834
3.5 1.0060 1.0239 1.0558 1.1777
4.5 1.0058 1.0234 1.0547 1.1736

Table 12.20: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1.5, different crack length to width ratios a/w, using
PS(a) elements
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a/w
E,/E, 0.1 0.2 0.3 0.5
0.3 1.0121 1.0475 1.1026 1.2852
0.5 1.0095 1.0373 1.0816 1.2398
0.7 1.0083 1.0328 1.0725 1.2205
0.9 1.0077 1.0304 1.0677 1.2103
1.0 1.0074 1.0296 1.0662 1.2068
1.1 1.0073 1.0290 1.0649 1.2016
1.5 1.0068 1.0274 1.0618 1.1967
2.5 1.0064 1.0257 1.0586 1.1881
3.5 1.0062 1.0250 1.0573 1.1833
4.5 1.0061 1.0245 1.0564 1.1799

104

Table 12.21: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1.5, different crack length to width ratios a/w, using

87 («) elements

a/w
E,/E, 0.1 0.2 0.3 0.5
0.3 1.0103 1.0456 1.1022 1.2777
0.5 1.0076 1.0354 1.0808 1.2310
0.7 1.0064 1.0309 1.0715 1.2111
0.9  1.0057 1.0285 1.0665 1.2006
1.0 1.0054 1.0276 1.0648 1.1972
1.1 1.0053 1.0270 1.0635 1.1942
1.5 1.0048 1.0253 1.0602 1.1868
2.5 1.0043 1.0237 1.0569 1.1784
3.5 1.0041 1.0230 1.0554 1.1739
4.5 1.0040 1.0225 1.0544 1.1707

Table 12.22: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 1.5, different crack length to width ratios a/w, using

94(«x) elements
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a/w
E./E, 0.1 0.2 0.3 0.5

0.3 1.015 1.046 1.103 1.282
0.5 1.009 1.036 1.081 1.235
0.7 1.006 1.031 1.072 1.215
0.9 1.004 1.028 1.067 1.205
1.0 1.003 1.028 1.065 1.202
1.1 1.003 1.027 1.064 1.199

Table 12.23: Reference solution for the effect of the degree of anisotropy on K for an orthotropic
CCP with 0° ply arrangement and height to width ratio h/w = 1.5, different crack length to width
ratios a/w

a/w
E./E, 0.1 0.2 0.3 0.5

0.3 0.9988 1.0228 1.0601 1.1896
0.5 09977 1.0194 1.0535 1.1790
0.7 09973 1.0182 1.0513 1.1760
09 09970 1.0175 1.0503 1.1746
1.0 09970 1.0173 1.0499 1.1742
1.1 0.9969 1.0171 1.0496 1.1738
1.5 09966 1.0166 1.0487 1.1726
25 09964 1.0157 1.0471 1.1698
3.5 09962 1.0150 1.0460 1.1673
45 09960 1.0145 1.0450 1.1652

Table 12.24: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 2, different crack length to width ratios a/w, using
Q4 elements
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a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 0.9980 1.0199 1.0563 1.1895
0.5 0.9978 1.0174 1.0507 1.1787
0.7 0.9977 1.0165 1.0490 1.1758
09 09975 1.0161 1.0482 1.1746
1.0 09975 1.0159 1.0479 1.1742
1.1 0.9974 1.0158 1.0477 1.1738
1.5 0.9972 1.0153 1.0470 1.1726
2.5 0.9967 1.0145 1.0456 1.1700
3.5 0.9964 1.0138 1.0445 1.1676
4.5 0.9961 1.0132 1.0435 1.1655

Table 12.25: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 2, different crack length to width ratios a/w, using
Q4X elements

a/w
E,/E, 0.1 0.2 0.3 0.5

0.3 1.0056 1.0294 1.0666 1.1985
0.5 1.0048 1.0260 1.0605 1.1871
0.7 1.0046 1.0251 1.0587 1.1839
0.9 1.0046 1.0248 1.0580 1.1826
1.0 1.0045 1.0247 1.0578 1.1821
1.1 1.0045 1.0246 1.0576 1.1818
1.5 1.0045 1.0244 1.0571 1.1805
2.5 1.0043 1.0240 1.0560 1.1803
3.5 1.0042 1.0235 1.0551 1.1801
4.5 1.0041 1.0231 1.0542 1.1730

Table 12.26: The effect of the degree of anisotropy on K for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 2, different crack length to width ratios a/w, using
PS(a) elements
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a/w
E,/E, 0.1 0.2 0.3 0.5
0.3 1.0076 1.0303 1.0666 1.2071
0.5 1.0069 1.0272 1.0608 1.1961
0.7 1.0066 1.0263 1.0593 1.1932
0.9 1.0065 1.0261 1.0588 1.1919
1.0 1.0065 1.0259 1.0586 1.1915
1.1 1.0064 1.0258 1.0585 1.1911
1.5 1.0063 1.0255 1.0582 1.1898
2.5 1.0062 1.0251 1.0575 1.1883
3.5 1.0061 1.0247 1.0567 1.1842
4.5 1.0060 1.0243 1.0560 1.1820
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Table 12.27: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 2, different crack length to width ratios a/w, using

87 (a) elements

a/w
E,/E, 0.1 0.2 0.3 0.5
0.3 1.0059 1.0286 1.0662 1.1993
0.5 1.0050 1.0254 1.0600 1.1882
0.7 1.0047 1.0244 1.0582 1.1862
0.9 1.0045 1.0240 1.0575 1.1845
1.0 1.0045 1.0239 1.0573 1.1839
1.1 1.0044 1.0238 1.0571 1.1835
1.5 1.0043 1.0235 1.0565 1.1825
2.5 1.0041 1.0230 1.0555 1.1801
3.5 1.0040 1.0226 1.0547 1.1778
4.5 1.0039 1.0223 1.0539 1.1759

Table 12.28: The effect of the degree of anisotropy on K; for an orthotropic CCP with 0° ply
arrangement and height to width ratio h/w = 2, different crack length to width ratios a/w, using

95(«x) elements
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a/w
E,JE, 01 02 03 05

0.3 1.010 1.029 1.066 1.202
0.5 1.006 1.025 1.060 1.191

Table 12.29: Reference solution for the effect of the degree of anisotropy on K for an orthotropic
CCP with 0° ply arrangement and height to width ratio h/w = 2, different crack length to width
ratios a/w



University of Pretoria etd — De Klerk A (2006)

Chapter 13

Conclusions

The conclusions of this study are summarized as follows: It is well known that isotropic and
orthotropic fracture mechanics problems can effectively be solved by combining the finite element
method and the path independent integrals J and [*.

Not as well known, is that assumed stress finite elements, combined with the /* integral, can be
used to predict an upper bound to the stress intensity factor. Assumed stress elements without
penalized equilibrium tend to under predict the stress intensity factor if the mesh is not highly
refined; to predicted the upper bound, assumed stress elements with penalized equilibrium are an
attractive modeling option.

Solving the J integral with displacement based elements, yields a lower bound to the stress inten-
sity factor. A lower bound in isotropic fracture mechanics problems can be predicted accurately
with Q4 or Q4X elements. In orthotropic fracture problems however, Q4 elements reveal a no-
table path dependency, for such problems, elements with drilling degrees of freedom represent a
superior modeling option to Q4 elements.

When using elements with drilling degrees of freedom to solve fracture mechanics problems, the
integration scheme used and the value of the penalty parameter v in the elements, needs consider-
ation. Reduced integration, with a small center point weight, or a too large penalty parameter, can
introduce a checkerboard like locking pattern. Both the integration scheme and the penalty param-
eter v influence the stability of elements with drilling degrees of freedom. For these elements, it
is proposed that full integration is used, combined with a ~ value selected from the range G /100
through G//10.

From a mechanics of material point of view, it is shown that the degree of anisotropy and the fiber
orientation in orthotropic fracture mechanics problems have a large influence on the stress intensity
factor. The influence of the degree of anisotropy decreases as the ratio of £/ FE5 increases. When
the degree of anisotropy is larger than 1, the stress intensity factor is only influenced significantly
for large a/w and small h/w ratios.
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13.1 Recommendations for further studies

e In the section on displacement based elements with penalized equilibrium we only consid-
ered regular geometries; a treatment for irregular (generally distorted geometries) is await-
ing. This can probably be done using

1. analytical or symbolic techniques to find the characteristic polynomial, or
2. through approximate relationships derived from the mapping to a ‘regular’ parent ele-

ment.

e While approximate relationships exist which relate the size of the plastic zone to a material
specific stress intensity value, it is not clear what the true value of rotations in the plastic
zone are. It is recommended that this is addressed in a future study.

e A further study on the effect of fiber orientation on the stress intensity factor in orthotropic
materials is recommended.

e The use of elements with drilling degrees of freedom in more complicated fracture mechan-
ics problems will be a interesting study.

e A further study using path independent integrals (e.g. .Jj) that can split the mixed mode
stress intensity factor into Mode I and Mode I stress intensity factors is recommended.
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Appendix A

Eigenvalues of Q4(«) and 53

In this chapter the symbolic eigenvalues (used in Chapter 3) for square and rectanguler Q4, 57,
Q4(a) and Q4(a, vy ) elements are given.

A.1 Square Q4() element with side lengths 2a

A

A2

= 1/2

= 1/2

(_w - ﬂm) E

E

—a? + ap?

v+1

(—2 a’+ ﬂW) E

_a2+a21/2
E (—3vAE? -3AFE?+2v%a* + 64> — 8va?)

= 1/12

a?(—v2+1—v+03)
E (-3vAFE?*—-3AFE?+2v%a*+6a* —8va?)

= 1/12

a?(—v?2+1—v+v3)
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(A.1)

(A.2)

(A.3)

(A4)

(A.S)
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A.2 Square 53 element with side lengths 2a

)\1:

Ay =

(_M _ ﬂW) E

1/2 — o (A.6)
E
v+1 A7
(~20*+ vAVa?) E
1/2 T (A.8)
1/3E (A.9)
1/3E (A.10)

A.3 Rectangular Q4(«) element with side lengths 2a, 2b, a > b

As

(—=0? — a* + Vb* — 20%a® + a* + 4b%a*1?) E

1/2 o St (A.11)
E (b*+a?)

1/2 ————= A.12

/ ab(v+1) (A-12)
(—0* — a® = Vb* — 20%a® + a* + 4b%a*1?) E

1/2 T (A.13)

1/12E(—SUAEQ—3AE2+2a2—4a2v+2a202+4bQ—4621;) (A.14)

ab(v3—v2—v+1) '

E (=3AFE? -3vAE?+4a*—4a%* +2b* — 4b*0 + 20%?

1/12 (-3 3v +4a a‘*v + v+ 20v°b%) (AL5)

ab (v3—v2—v+1)

A.4 Rectangular 53 element with side lengths 2a, 20, a > b

)\1:

)\2:

(=0 — a® + Vb* = 20%a® + a* + 4b%a*v?) E

1/2 A.16

/ —ab+abv? ( )
E (b* +a?)

1/2 ———= A.17

/ ab(r+1) (A-17)
—b2 —a? —/Pr = 2822 414020212 E

1/2( a? —+/ a? + a* + 4b0%a*1?) A.18)

—ab+abv?

1/3b—E (A.19)
a
E

1/3%° (A.20)
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A.5 Rectangular Q4(c,,) element with side lengths 2a, 2b,
a>b

(—0* — a® + Vb* — 20%a® + a* + 40%a*?) E

Moo= 1/2 A2l
! / —ab+abv? ( )
E (b* + a?)
Ay = 1/2————— A.22
? / ab(v+1) ( )
(—0* — a® — Vb* = 20%a® + a* + 4b%a*1?) E
A3 = 1/2 A.23
° / —ab+abv? ( )
\ = E(-20*0 + (12 E?a, +4a* + 20> + 3 E% ) Jv?
tT —12ab(v* — 202+ 1)
E((—6 E? 20%)v — 2b% — 4a? E?
N (=6 E*ay +2b°)v—2b a®+3E°w,) (A24)
—12ab(vt—20v2+1)
v = E(2v*a® + (=3 F*a, — 2a® — 4% — 12 B2, )v?)
° 12ab(vt — 202 + 1)
N E((—2a®+6 E?a,)v+2a® + 4b* — 3 E*ax) (A25)

12ab(vt—20v2+1)
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Appendix B

Sample input file

An example of an input file is presented below. The input file is for an isotropic center cracked
panel under uniform tension. (Note: Not all the element connectivity and node coordinates are
given.)

function [elprop,gcoord,loads,nnode,restraints,nodes,begin_Jnode] = Drilling

nload=1; % number of load cases
begin_Jnode = 1;

nodes = [

20 19 9 10

19 17 7 9

17 15 5 7
30 29 19 20
29 27 17 19
106 120 119 105
120 134 133 119
134 144 143 133
144 150 147 143

150 152 149 147];

gcoord = [ -6. 48. 0

-3.58378 48. 0

-1.61089 48. 0

0. 48. 0

18. 48. 0

. 744958 .743769 0O

0. .693522 0

-.693522 0. 0

.693503 0. 0
0. 0. 0l;

nnode=length(gcoord); 7% number of nodes

restraints=[

46 011111 000000
60 011111 0000O00O0
72 011111 0000O00O0
86 011111 000000
98 011111 0000O00O0
111011111 000000
124011111 000000
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137
146
151
152
1
11
21
31
a7
62
75
76
7
78

% format

% node no. :: ux - rx :: val ux

O O O O O
(ol el elNeNel
(ol el eNeNe}
O O O OO
o O O O o
(ol ol eNe N}

R RrRrRPrPRPRRPrRRrRRPRRPR,OO0O0O
OO OO OO O0OOO0OO K KB =
e
e
e
e

O OO OO0 OOoOOo
[el el elNelNeNe e NeoNe
[el el elNelNeNe o NeoNe
O OO OO0 OoOOoOOo
[el el elNelNeNelNeoNeoNe

ff=zeros(length(gcoord)*2,1);
Force = 24x1;

Upper = [1 2 3 468 10 9 7 5];
L = length(Upper);

for i = 1:(L-1)
ndl = Upper(1,i);
nd2 = Upper(1,i+1);
xcoordl = gcoord(ndl,1);
xcoord2 = gcoord(nd2,1);

O O OO OO OoOOo

0]; % constraints

- X

Bydrae = abs(xcoord2 - xcoordl);

Frac = Bydrae/24;

ff(nd1*2) = ff(nd1*2) + (ForcexFrac)/2;
ff(nd2*2) = ff(nd2*2) + (Force*Frac)/2;

end

elprop=[1.0 1 0.3 5]; % element properties

% format

% element no. :: thickness :: E ::
loads=[

11 0 ff(1x2) 0000

12 0 ff(2x2) 0000

13 0 ff(3*2) 0000

14 0 ff(4x2) 0000

16 0 ff(6x2) 0000

18 0 ff(82) 0000

110 0 £f(10%2) 0 0 0 O

19 0 ff(9%2) 0000

17 0 ff(7x2) 0000

15 0 ff(5x2) 0000

1; % loads

% format

% load case :: node :: fx :: fy ::

clear ff

poisson’s ratio :: integration scheme

fz :: mx :: my :: mz
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Appendix C

Source code listings

For the sake of brevity, only representative code fragments are presented; other code fragments
may be obtained from the author upon request.

C.1 Element routines: J integral (for a Q4 element)

For the sake of brevity, only the implementation for Q4 is shown.

function [K1,J] = J_integral(nnel,matmtx,nodes,gcoord,disp,iopt,poisson,emodule,begin_Jnode,Type)

if Type "= 0

Y _—

% J Integraal

Y _—

[Path_element] = path_element_def (Type);
[Junk1,Stress_eq] = size(Path_element);
Path_plot(disp,gcoord,nodes,begin_Jnode,Path_element) ;

% —_— -
% Initialize constants

Y _—
all = matmtx(1,1);

al2 = matmtx(1,2);

al3 = matmtx(1,3);

a21 = matmtx(2,1);

a22 = matmtx(2,2);

a23 = matmtx(2,3);

a3l = matmtx(3,1);

a32 = matmtx(3,2);

a33 = matmtx(3,3);

number_of_elm = length(Path_element);
J = zeros(number_of_elm,1);
Sy_lengte = zeros(number_of_elm,1);

A —— R

% Choose integration path

% —— .

choose_int=menu(’Choose the integration scheme to be used’,...
> 1 Point quadrature rule °’,’ 2 Point quadrature rule ’,...
> 3 Point quadrature rule ’,’ 4 Point quadrature rule ’,...
> 5 Point quadrature rule ’);

if (choose_int == 1)

119
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nglx=1; ngly=1;
nglxy=nglx*ngly;

end

if (choose_int == 2)
nglx=2; ngly=2;
nglxy=nglx*ngly;

end

if (choose_int == 3)
nglx=3; ngly=3;
nglxy=nglx*ngly;

end

if (choose_int == 4)
nglx=4; ngly=4;
nglxy=nglx*ngly;

end

if (choose_int == 5)
nglx=5; ngly=5;
nglxy=nglx*ngly;

end

[point2,weight2]=feglqd2(nglx,ngly) ; % sampling points & weights
choose_x = menu(’Specify path in element’,’Positive integrasion points’,’Negative integration points’,’ -1 ’,’ 1 ’);

if choose_x ==
x_path = nglx;

end
if choose_x ==
x_path = 1;
end
if choose_x == 3;
x_path = 1;
end
if choose_x ==
x_path = 1;
end
"
% Loop over all the elements in path
% -
for E = 1:number_of_elm % Loop over all the elements in path
teller = 1;
geval = 0;

for i=1:nnel

nd(i)=nodes(Path_element(E,1),1i); % extract connected node for (iel)-th element
end
if Path_element(E,2) == % Change the node connectivity, for element on the left
nd2(:,:) = nd(:,:);
nd(1,1) = nd2(1,3);
nd(1,2) = nd2(1,4);
nd(1,3) = nd2(1,1);
nd(1,4) = nd2(1,2);
end
if Path_element(E,2) == % Change the node connectivity, for elements on the top
nd3(:,:) = nd(:,:);
nd(1,1) = nd3(1,2);
nd(1,2) = nd3(1,3);
nd(1,3) = nd3(1,4);
nd(1,4) = nd3(1,1);
end

for i=1:nnel
xcoord(i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);
eldisp(teller,1) = disp(nd(i)*2-1);
eldisp(teller+ 1,1) = disp(nd(i)*2);

extract x value of the node
extract y value of the node
extract u displacement of node
extract v displacement of node

N
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teller = teller + 2;

end
Y — —_
% Adjacent element (for integration on element bound)
Y —_ —
if Stress_eq ==
if choose_x ==
if Path_element(E,1) ~= Path_element(E,3)
teller2 = 1;
for i=1:nnel
nd2(i)=nodes (Path_element (E,3),1i); % Extract connected node for (iel)-th element
end
if Path_element(E,2) == % Change the node connectivity, for element on the left
nd3(:,:) = nd2(:,:);
nd2(1,1) = nd3(1,3);
nd2(1,2) = nd3(1,4);
nd2(1,3) = nd3(1,1);
nd2(1,4) = nd3(1,2);
end
if Path_element(E,2) ==3 % Change the node connectivity, for elements on the top
nd3(:,:) = nd2(:,:);
nd2(1,1) = nd3(1,2);
nd2(1,2) = nd3(1,3);
nd2(1,3) = nd3(1,4);
nd2(1,4) = nd3(1,1);
end
for i=1:nnel
xcoord2(i)=gcoord(nd2(i),1); % extract x value of the node
ycoord2(i)=gcoord(nd2(i),2); % extract y value of the node
eldisp2(teller2,1) = disp(nd2(i)*2-1); % extract u displacement of node
eldisp2(teller2+ 1,1) = disp(nd2(i)*2); % extract v displacement of node
teller2 = teller2 + 2;
end
end
end
end
Y ——
% Numerical integration in the zeta = constant direction
Y —
for intx=x_path
x=point2(intx,1); % sampling point in x-axis
if choose_x == 3
x = -1.0;
end
if choose_x == 4
x = 1;
end

==

wtx=weight2(intx,1); weight in x-axis

for inty=1:ngly
y=point2(inty,2);
wty=weight2(inty,2);

sampling point in y-axis
weight in y-axis

== =

==

[shape,dhdr,dhds]=feisoq4(x,y); compute shape functions and
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
detjacob=det (jacob2) ; determinant of Jacobian
invjacob=inv(jacob2); inverse of Jacobian matrix

N =

[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob); % derivatives of shape functions w.r.t.
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% physical coordinate

dxdr = jacob2(1,1); % derivative of x with respect to r
dydr = jacob2(1,2); % derivative of y with respect to r
dxds = jacob2(2,1); % derivative of x with respect to s
dyds = jacob2(2,2); % derivative of y with respect to s

D = [dyds*(dyds*dxdr - dxds*dydr), dxds*(dxds*dydr-dyds*dxdr),0]’; 7% Vector product of A and C
% Vector normal to the line
% r = constant
kinmtx2=fekine2d(nnel,dhdx,dhdy) ; % compute kinematic matrix
kinmtx2_omgekeer = fekine_J(nnel,dhdx,dhdy) ;
Stress = matmtx*dudx_dvdy;

dudy_dvdx = kinmtx2_omgekeer*eldisp;

% compute stresses in integration point

dudx_dvdy=kinmtx2*eldisp; % compute strains in integration point
if Stress_eq ==
if choose_x
if Path_element(E,1) ~= Path_element(E,3)
[shape2,dhdr2,dhds2]=feisoq4(-1,y);
jacob3=fejacob2(nnel,dhdr2,dhds2,xcoord2,ycoord2); %
detjacob2=det (jacob3);
invjacob2=inv(jacob3);
[dhdx2,dhdy2] =federiv2(nnel,dhdr2,dhds2,invjacob2); %

3 % Adjacent element

==

compute shape functions and
compute Jacobian
determinant of Jacobian
inverse of Jacobian matrix

N =

derivatives of shape functions w.r.t.

kinmtx3=fekine2d (nnel,dhdx2,dhdy2) ; % compute kinematic matr

dudx_dvdy2=kinmtx3*eldisp2; % compute strains in integration point
Stress2 = matmtx*dudx_dvdy2; % compute stresses in integration point
Stress3 = Stress; % compute stresses in integration point

% Calculate stress on element bound

Stress4(1,1) = 0.5%(Stress2(1,1) + Stress3(1,1));
Stress4(2,1) 0.5%(Stress2(2,1) + Stress3(2,1));
Stress4(3,1) 0.5%(Stress2(3,1) + Stress3(3,1));

end
end
end

Stress = matmtx*dudx_dvdy; %
dudy_dvdx = kinmtx2_omgekeer*eldisp;

compute stresses in integration point

dudx = dudx_dvdy(1,1); % Strain xx (dudx)

dvdy = dudx_dvdy(2,1); % Strain yy (dvdy)

dudy = dudy_dvdx(1,1); % dudy derivative of u with respect to y
dvdx = dudy_dvdx(2,1); % dvdx derivative of v wiht respect to x
estrain(1,1) = dudx_dvdy(1,1); % strain xx

estrain(3,1) = dudx_dvdy(3,1); % strain xy

estrain(2,1) = dudx_dvdy(2,1); % strain yy

if Stress_eq == 3
if choose_x
if Path_element(E,1)

~= Path_element (E,3)

Stress = Stress4;
end
end
end
estress(1,1) = Stress(1,1); % stress xx
estress(2,1) = Stress(2,1); % stress yy
estress(3,1) = Stress(3,1); % stress xy

% Strain energy density for plane problems

A = 0.5%((all*estrain(1,1) + al2*estrain(2,1) + al3*estrain(3,1))*estrain(1,1) +...
(a21*estrain(1,1) + a22*estrain(2,1) + a23*estrain(3,1))*estrain(2,1) +...
(a31*estrain(1,1) + a32*estrain(2,1)+ a33*estrain(3,1))*estrain(3,1));

% Calculate J integral terms

U_dyds = Ax(dyds); % To be able to integrate
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normal = sqrt(D(1,1)°2 + D(2,1)°2); % Normal to zeta = constant line
n = [(D(1,1)/normal), (D(2,1)/normal),0]; % Unit normal vector to line zeta
nl = n(1,1);

n2 = n(1,2);

t_dddx = ((estress(1,1)*n1) + (estress(3,1)*n2))*dudx +((estress(3,1)#*nl1) + (estre
ds = sqrt(dxds”2 + dyds~2); % Path length in element
Sy_lengte(E,1) = Sy_lengte(E,1) + ds;
J(E,1) = J(E,1) + (U_dyds - t_dddx*ds)*wty;
end
end
end

L = length(J);
J_tot = 03

for i = 1:L
J_tot =

J(i)+ J_tot; % Sum of elements contribution to J
end

J_totaal = abs(2*J_tot) % Jx2 for symmetry around crack tip
Y _—
% Material properties
Y _—
if iopt == 1
kappa = (3-poisson)/(1+poisson);

end
if iopt == 2
kappa = (3 - 4*poisson);
end
shear_m = emodule/(2*(1+poisson)); % shear modules
Y —
% Calculate Stress intensity factor for J int value
Y —
K1 = sqrt((8*shear_m*J_totaal)/(1+kappa));
if iopt == 2
K = sqrt(J_totaal*(emodule/(1-poisson~2)));
end
if iopt == 1
K = sqrt(J_totaal*emodule) ; % uit Dual analysis for path integrals...
end
if K1 "= K
disp(’K calculations error’);
end
end

C.2 Element routines: /* integral (for a PS(a) element)

For the sake of brevity, only the implementation for PS(«) is shown

function [K1,I] = J_integral(nnel,matmtx,nodes,gcoord,disp,iopt,poisson,emodule,begin_Jnode,Type,t
if Type "= 0

% .

% I* Integraal

% _——

Cinv = inv(matmtx);

[Path_element] = path_element_def (Type)

[Junk1,Stress_eq] = size(Path_element);

123

= constant

ss(2,1)*n2) ) *dvdx;

,Alpha)
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Path_plot(disp,gcoord,nodes,begin_Jnode,Path_element) ;
%
number_of_elm = length(Path_element);
I = zeros(number_of_elm,1);

choose_int=menu(’Choose the integration scheme to be used’,...
> 1 Point quadrature rule ’,’ 2 Point quadrature rule ’,...
> 3 Point quadrature rule ’,’ 4 Point quadrature rule ’,...
> 5 Point quadrature rule ’);

if (choose_int == 1)
nglx=1; ngly=1;
nglxy=nglx*ngly;

end

if (choose_int == 2)
nglx=2; ngly=2;
nglxy=nglx*ngly;

end

if (choose_int == 3)
nglx=3; ngly=3;
nglxy=nglx*ngly;

end

if (choose_int == 4)
nglx=4; ngly=4;,
nglxy=nglx*ngly;

end
if (choose_int == 5)
nglx=5; ngly=5;
nglxy=nglx*ngly;
end
[point2,weight2]=feglqd2(nglx,ngly); % sampling points & weights
[point_b,weight_bl=feglqd2(4,4); % sampling points & weights
choose_x = menu(’Specify path in element’,’Positive integrasion points’,’Negative integration points’,’ -1 ’,’ 1 ’);

if choose_x ==
x_path = nglx;

end

if choose_x == 2
x_path = 1;

end

if choose_x == 3;
x_path = 1;

end

if choose_x == 4
x_path = 1;

end

S_matrix = inv(matmtx);
b1l = S_matrix(1,1);

b12 S_matrix(1,2);
b16 = S_matrix(1,3);

b21 = S_matrix(2,1);
b22 = S_matrix(2,2);
b26 = S_matrix(2,3);

b61 = S_matrix(3,1);
b62 = S_matrix(3,2);
b66 = S_matrix(3,3);

A —_—
% Loop over all the elements in path
A —_—
for E = 1:number_of_elm % Loop over all the elements in path
teller = 1;
geval =

Element = Path_element(E,1);
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for i=1:nnel

nd(i)=nodes(Path_element (E,1),1i); % extract connected node for (iel)-th element
end
if Path_element(E,2) == % Change the node connectivity, for element on the left
nd2(:,:) = nd(:,:);
nd(1,1) = nd2(1,3);
nd(1,2) = nd2(1,4);
nd(1,3) = nd2(1,1);
nd(1,4) = nd2(1,2);
end
if Path_element(E,2) == % Change the node connectivity, for elements on the top
nd3(:,:) = nd(:,:);
nd(1,1) = nd3(1,2);
nd(1,2) = nd3(1,3);
nd(1,3) = nd3(1,4);
nd(1,4) = nd3(1,1);
end

for i=1:nnel
xcoord(i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);

extract x value of the node
extract y value of the node

N =

eldisp(teller,1) = disp(nd(i)*2-1); % extract u displacement of node
eldisp(teller+ 1,1) = disp(nd(i)*2); % extract v displacement of node
teller = teller + 2;
end
Y — —
% Calculate H and G matrix for path element
%
H =sparse(5,5);
Hp = sparse(5,5);
G = sparse(5,8);
for intx=1:4
xb=point_b(intx,1); % sampling point in x-axis
wtxb=weight_b(intx,1); % weight in x-axis
for inty=1:4
yb=point_b(inty,2); % sampling point in y-axis
wtyb=weight_b(inty,2) ; % weight in y-axis
[shaped,dhdrd,dhdsd]=feisoq4(xb,yb) ; % compute shape functions and x - zeta waarde
% derivatives at sampling
jacob2d=fejacob2(nnel,dhdrd,dhdsd,xcoord,ycoord); % compute Jacobian
detjacobd=det (jacob2d) ; % determinant of Jacobian
invjacobd=inv(jacob2d) ; % inverse of Jacobian matrix
[dhdxd,dhdyd] =federiv2(nnel,dhdrd,dhdsd,invjacobd) ;% derivatives w.r.t.
kinmtx2d=fekine2d (nnel,dhdxd,dhdyd) ; % B -matrix, compute kinematic matrix
[Pd,ab] =P_matr(xcoord,ycoord,xb,yb);
H = H + Pd’*Cinv*Pd*wtxb*wtyb*detjacobd*t;
G = G + Pd’*kinmtx2d*wtxb*wtyb*detjacobdx*t;
end
end % end of numerical integration loop
fhm————————————- Penalty for PS($\alpha$) formulation

JO = ab(1,1)*ab(3,2) - ab(3,1)*ab(1,2);
J1 = ab(1,1)*ab(2,2) - ab(2,1)*ab(1,2);
J2 = ab(2,1)*ab(3,2) - ab(3,1)*ab(2,2);

A = (((ab(1,1))"2 + (ab(1,2))"2)*J1"2);
B = (((ab(3,1))"2 + (ab(3,2))"2)*J2"2);
C = ((ab(1,1))*(ab(3,1)) + (ab(1,2))*(ab(3,2)))*J1xJ2;

Hp = ((4%t)/(3%J0))*[0
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000 C B;l;

H= H + (Alpha/emodule)*Hp;

%
% aangrensende element
Y —— ——
if Stress_eq ==
if choose_x ==
if Path_element(E,1) ~= Path_element(E,3)
teller2 = 1;
for i=1:nnel
nd2(i)=nodes(Path_element(E,3),i); % extract connected node for (iel)-th element
end
if Path_element(E,2) ==1 % Change the node connectivity, for element on the left
nd3(:,:) = nd2(:,:);
nd2(1,1) = nd3(1,3);
nd2(1,2) = nd3(1,4);
nd2(1,3) = nd3(1,1);
nd2(1,4) = nd3(1,2);
end
if Path_element(E,2) == % Change the node connectivity, for elements on the top
nd3(:,:) = nd2(:,:);
nd2(1,1) = nd3(1,2);
nd2(1,2) = nd3(1,3);
nd2(1,3) = nd3(1,4);
nd2(1,4) = nd3(1,1);
end
for i=1:nnel
xcoord2(i)=gcoord(nd2(i),1); % extract x value of the node
ycoord2(i)=gcoord(nd2(i),2); % extract y value of the node
eldisp2(teller2,1) = disp(nd2(i)*2-1); % extract u displacement of node
eldisp2(teller2+ 1,1) = disp(nd2(i)*2); % extract v displacement of node
teller2 = teller2 + 2;
end
%
% Calculate H and G matrix
%
H2 =sparse(5,5);
Hp2 = sparse(5,5);
G2 = sparse(5,8);
for intx=1:4
xb2=point_b(intx,1); % sampling point in x-axis
wtxb2=weight_b(intx,1); % weight in x-axis
for inty=1:4
yb2=point_b(inty,2); % sampling point in y-axis
wtyb2=weight_b(inty,2) ; % weight in y-axis
[shaped2,dhdrd2,dhdsd2] =feisoqg4 (xb2,yb2) ; % compute shape functions and x - zeta waarde
% derivatives at sampling
jacob2d2=fejacob2(nnel,dhdrd2,dhdsd2,xcoord2,ycoord2); % compute Jacobian
detjacobd2=det (jacob2d2) ; % determinant of Jacobian
invjacobd2=inv(jacob2d2) ; % inverse of Jacobian matrix
[dhdxd2,dhdyd2] =federiv2(nnel,dhdrd2,dhdsd2,invjacobd2) ;% derivatives w.r.t.
kinmtx2d2=fekine2d (nnel,dhdxd2,dhdyd2) ; % B -matrix, compute kinematic matrix
[Pd2,ab2] =P_matr(xcoord2,ycoord2,xb2,yb2);
H2 = H2 + Pd2’*Cinv*Pd2*wtxb2*wtyb2*detjacobd2x*t;
G2 = G2 + Pd2’*kinmtx2d2*wtxb2*wtyb2+*detjacobd2x*t;
end
end % end of numerical integration loop
Yym———————————— Penalty for PS($\alpha$) formulation

J02 = ab2(1,1)*ab2(3,2) - ab2(3,1)*ab2(1,2);
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end
end

J12 = ab2(1,1)*ab2(2,2) - ab2(2,1)*ab2(1,2);
J22 = ab2(2,1)*ab2(3,2) - ab2(3,1)*ab2(2,2);
A2 = (((ab2(1,1))"2 + (ab2(1,2))"2)*J12°2);
B2 = (((ab2(3,1))"2 + (ab2(3,2))"2)*J22"°2);
C2 = ((ab2(1,1))*(ab2(3,1)) + (ab2(1,2))*(ab2(3,2)))*J12xJ22;
Hp2 = ((4xt)/(3*J02))*[0 0 0 0 0;
0000 0;
0000 O0;
0 0 0 A2 C2;
000 C2 B2;];

H2= H2 + (Alpha/emodule)*Hp2;

end

Numerical integration for I

for intx=x_path
x=point2(intx,1);

if choose_x == 3
x = -1.0;

end

if choose_x == 4
x =1;

end

for inty=1:ngly

% sampling point in

127

x-axis

y=point2(inty,2);

wty=weight2(inty,2);
[shape,dhdr,dhds]=feisoq4(x,y);
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord);
detjacob=det (jacob2) ;

invjacob=inv(jacob2);
[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob);

N =

%

N =

h

%
dxdr = jacob2(1,1); pA
dydr = jacob2(1,2); yA
dxds = jacob2(2,1); yA
dyds = jacob2(2,2); yA
kinmtx2 = fekine2d(nnel,dhdx,dhdy) ; %

kinmtx2_omgekeer = fekine_J(nnel,dhdx,dhdy) ;
dudx_dvdy=kinmtx2*eldisp;

[P,ab] =P_matr(xcoord,ycoord,x,y);
Beta = inv(H)*G*eldisp;
Stress = PxBeta;

if Stress_eq == 3
if choose_x
if Path_element(E,1)

==

e

~= Path_element (E,3)

sampling point in y-axis

weight in y-axis

compute shape functions and

compute Jacobian

determinant of Jacobian

inverse of Jacobian matrix
derivatives of shape functions w.r.t.
physical coordinate
derivative of x with
derivative of y with
derivative of x with
derivative of y with

respect to
respect to
respect to
respect to

n un KK

compute kinematic matrix

compute strains in integration point

compute P matrix for path element
determin Beta for path element
calculate stress for path element

end
end

end

Stress2 = Stress;

[P2,ab2] = P_matr(xcoord2,ycoord2,-1,y);
Beta2 = inv(H2)*G2*eldisp2;

Stress3 = P2*Beta2;

% Calculate average stress on element bound
Stress4(1,1) =
Stress4(2,1)
Stress4(3,1)

0.5%(Stress2(1,1) + Stress3(1,1));
0.5%(Stress2(2,1) + Stress3(2,1));
0.5%(Stress2(3,1) + Stress3(3,1));

% calculate stress for path element
% compute P matrix for adjacent element
% determin Beta for adjacent element
% calculate stress for adjacent element
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end
end
end

L = length(I);

I_tot = 0;

for i = 1:L
I_tot =

end

I_totaal =

K1 =

end

dudy_dvdx = kinmtx2_omgekeer*eldisp;

dudx = dudx_dvdy(1,1); yA
dvdy = dudx_dvdy(2,1); %
dudy = dudy_dvdx(1,1); yA
dvdx = dudy_dvdx(2,1); %

estrain(1,1)
estrain(3,1) =
estrain(2,1)

dudx_dvdy(1,1); %
dudx_dvdy(3,1) ; %
dudx_dvdy(2,1); %

if Stress_eq == 3
if choose_x
if Path_element(E,1)

~= Path_element (E,3)

Stress = Stress4(1:3,1);
end
end
end
estress(1,1) = Stress(1,1); %
estress(2,1) = Stress(2,1); %

estress(3,1) Stress(3,1); %

% Complementary strain energy
B = (1/2)*((bli*estress(1,1) + (b12)*estress(2,1)

Strain xx (dudx)
Strain yy (dvdy)

dudy derivative of u with respect to y
dvdx derivative of v wiht respect to x

strain xx
strain xy
strain yy

stress xx
stress yy
stress Xxy

+ bl6*estress(3,1))*estress(1,1) + ...

((b21) *estress(1,1) + (b22)*estress(2,1) + b26*estress(3,1))*estress(2,1) + ...
((b61) *estress(1,1) + b62*estress(2,1) + b66xestress(3,1))*estress(3,1));

% Calculate terms in I ingtegral
Term2 = (dudy*estress(3,1) + dvdy*estress(2,1));
Term3 = (dudx*estress(3,1) + dvdx*estress(2,1));

Bdy = B*dyds;
Term2dy = Term2x*dyds;

Term3dx = Term3*dxds;

I(E,1) = I(E,1) + (-Bdy + Term2dy + Term3dx)*wty;

I(i)+ I_tot;

abs(2*I_tot); % Calculate total I integral

sqrt (I_totaal*(emodule/(1-poisson~2))); % Calculate stress intensity factor

128

C.3 Element: Element with drilling degrees of freedom (85a)
for composite material

C.3.1 Element routines: Main program

function Drilling_element_8BA
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clear all;
[props, joints,loads,nnode,restraints,nd_d4d,begin_Jnode,Type] = choose;

iopt2 = menu(’Choose the amount of integration points for the penalty’,’Displacement model’,’mixed formulation’);
path(path,’./functions’)
Y — —
% Material type
Y — —
thick = 0;
matmtx = zeros(3,3);
[layer, junk] = size(props);
for i = 1:layer
emodulel(i) = props(i,1);
emodule2(i) = props(i,2);
poissoni2(i) = props(i,4);
G12(i) = props(i,3);
t(i) = props(i,5);
theta(i) = (pi/180)*(props(i,6));
thick = thick + t(i);
end

for laag = 1:layer
matmtx = matmtx + Compfematiso(props(laag,1),props(laag,2),props(laag,4),theta(laag),props(laag,5),props(laag,3));
end

Cinv = inv(matmtx);
%
% initialize
%
kkuu=sparse (nnode*6 ,nnode*6) ;
ff=sparse(nnodex*6,1) ;
qg=sparse(nnode, 1) ;
uu=sparse(nnode*6,1);
[Total_elm, junk] = size(nd_d4d);

BBGG = zeros(3,12,props(1,7),Total_elm);
PP = zeros(3,8,props(1,7),Total_elm);
H_M = zeros(8,8,Total_elm);

G_M = zeros(8,12,Total_elm);

HP_M = zeros(8,8,Total_elm);

bbgg = zeros(1,12,Total_elm);

Po_M = zeros(3,8,Total_elm);

he_el = zeros(12,1,Total_elm);

area_el = zeros(1,Total_elm);

gamma_el = zeros(1,Total_elm);

Y —
% process boundary conditions

Y —
[bcdofval] = essboundy(restraints);
[ff] = natboundary(1l,loads,ff);

)3

% process drilling dof elements

h

fprintf (’Processing D4d elements ...\n’)
[nel_d4d,temp] = size(nd_d4d);

if nel_d4d~=0;
h = waitbar(0, ’Processing D4d elements. Please wait...’);

for id4d = 1:nel_d4d
waitbar(id4d/nel_d4d,h);

elno = id4d; % [elno] extract element number
nodes = nd_d4d(id4d,1:4); % [nodes] extract nodes
for j=1:length(nodes) % [gcoord] extract nodal coordinates

inode = nodes(j);
gcoord(j,1:3) = joints(inode,1:3);
end
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[kkuu,bcdofval,BG,Hmatr,Gmatr ,HPmatr,P_int,he,area,gammal] =

d4d(nodes,props,gcoord, kkuu,bcdofval,id4d, iopt2,matmtx,thick) ;

BBGG(:,:,:,id4d) = BG;
PP(:,:,:,id4d) = P_int;
H_M(:,:,id4d) = Hmatr;
G_M(:,:,id4d)= Gmatr;
HP_M(:,:,id4d) = HPmatr;
he_el(:,:,id4d) = he;
area_el(1,id4d) = area;
gamma_el(1,id4d) = gamma;

end
close(h)
end

matmtx=fematiso(iopt,props(1,2),props(1,3));

fprintf (’Processing D4d elements COMPLETE.\n’)

Y —

% solve system of equations

Y — —

fprintf (’Solving ...\n’)

[uu] = solvefem(kkuu,ff,bcdofval,nnode);

fprintf (’Solving COMPLETE.\n’)

%

% solve system stress

%

[nel dl=size(nd_d4d);

nnel=4;

for element_nom = 1:nel
nodes = nd_d4d(element_nom,1:4);

% number of elements

for i = 1:4
displacement ((i*3)-2,1)
displacement ((i*3)-1,1)
displacement ((i*3) ,1)

disp((nodes(1,i))*6 - 5);
disp((nodes(1,i))*6 - 4);
disp((nodes(1,i))*6);

end

Beta = inv(H_M(:,:,element_nom))*G_M(:,:,element_nom)*displacement;

for teller = 1:ninpt

Stress(teller,:,element_nom) = PP(:,:,teller,element_nom)*Beta;

[s1,s2,VonM] = Stress_funk(Stress(teller,:,element_nom));

end
if iopt2 ==
tau_o(1,element_nom) = (
gamma_el(1,element_nom)/(area_el(1,element_nom)*elprop(1,1)))*he_el(:
end
end
Y% —_—
% Material properties
%

props = elprop;
poisson = props(1,3);
emodule = props(1,2);
if iopt == 1
kappa = (3-poisson)/(1+poisson);
end
if iopt == 2
kappa = (3 - 4*poisson);

end

shear_m = emodule/(2*(1+poisson)); % shear modules
%

% Post Processing

%

y .

130

,element_nom) ’*displacement;

choose12=menu(’POST PROCESSING’,’Kl1 evaluation (Disp extra)’,’Plot displacement’,’Plot stresses’,

>Jplot’,’J integral’,’I integral’,’Exit’);
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while choosel2 "= 7
if (choosel2 == 1)

% K1 evaluasie deur displacement extrapolation
Y — -
[K1] = K1_dis_extra(nel,nnel,props(1,3),props(1,2),joints,nd_d4d,iopt,uu)
end
if (choosel2 == 2)
Y I I
% Plot the displacement of nodes
Y I I
displot_drill(uu, joints,nd_d4d) ;
end

if (choosel2
%

3)

% Plot a countour map of the stresses
Y N
CONPLOT4_br (Counter,Sigma,StressXY,gcoord,nodes) ;
end
if (choosel2 == 4)
Y — —
% Help to select path for J integral
Y — —
[Path_element] = Jplot4(displace,gcoord,nodes,begin_Jnode)
end
if (choosel2 == 5)
Y — —
% J integral to determine Stress intensity
Y —
[K1,J] = J_integral2 Drill(4,matmtx,nd_d4d,joints,uu,iopt,poisson,emodule,begin_Jnode,Type);
end

if choosel2 ==
%
%
%
[K1,I] = I_integral_8BA(4,matmtx,nd_d4d, joints,uu,iopt,poisson,emodule,begin_Jnode,Type,elprop(1,4),elprop(1,1));

I integral to determine Stress intensity

end
close all;
choose12=menu(’POST PROCESSING’,’Kl1 evaluation (Disp extra)’,’Plot displacement’,’Plot stresses’,
>Jplot’,’J integral’,’I integral’,’Exit’);
end
close all;

C.3.2 Element routines: Stiffness matrix

function [kk,bcdofval,BG_T,Hmatr,Gmatr,HPmatr,P_int,he,area,gamma]
d4d (nodes,props,gcoord, kk,bcdofval ,element_nom,iopt2,matmtx,thick);

nintpts = props(1,7); 7% integration scheme for main part of k
G12 = props(1,3);

gamma = G12;

Y _—

% additional inputs <defaults>

A _—
nintpts_pen = 1; % integration scheme for penalty
nintpts_tay = 4; % integration scheme for locking correction

%

% input data for
%

control parameters

nnel=4; % number of nodes per element
ndof=3; % number of dofs per node
edof=nnel*ndof; % degrees of freedom per element
Y —

% initialization

of matrices and vectors
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5
Y — —
index=zeros(edof,1); % index vector
kinmtx2=zeros(3,edof) ; % kinematic matrix
matmtx=zeros(3,3); % constitutive matrix
k=zeros (edof ,edof); % initialization of element matrix to zero
ke=zeros (edof ,edof) ; % initialization of element matrix to zero
he = zeros(12,1); % initialization of element matrix to zero
kp=zeros(edof,edof) ; % initialization of element matrix to zero
taycorr=zeros(3,4); % initialization of element matrix to zero
H = zeros(8,8); % initialization of element matrix to zero
HP = zeros(8,8); % initialization of element matrix to zero
G = zeros(8,12); % initialization of element matrix to zero
%
% computation of element matrices and vectors and their assembl

p y
Y — I
[rsk,wtk]=intsch(nintpts); % integration points and weights
[rspen,wtpen]=intsch(nintpts_pen) ; % integration points and weights
[rstay,wttay]l=intsch(nintpts_tay); % integration points and weights

y y p y g P g

==

Cinv = inv(matmtx); material constitutive matrix

for i=1:nnel
xcoord(i)=gcoord(i,1);
ycoord(i)=gcoord(i,2);

extract x value of the node
extract y value of the node

== =2

end

[1_cos_sin]=alpha_l(xcoord,ycoord) ; % side lengths, cos(alpha) and sin(alpha)

[area] = quad_area(xcoord,ycoord); % element area

Y - N

% numerical integration (locking correction)

%

[nintp, junk]=size(rstay) ;

for intp=1:4
r=rstay(intp,1);
s=rstay(intp,2);
wtr=wttay(intp,1);
wts=wttay(intp,2);
[shape,dhdr,dhds]=feisoq4(r,s); % compute shape functions and derivatives at sampling point (NI)
[shape8,dhdr8,dhds8]=feisonsi8(r,s); % compute shape functions and derivatives at sampling point (NSI)
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ; % compute Jacobian
detjacob=det (jacob2) ; % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
[dhdx8,dhdy8]=federiv2(nnel,dhdr8,dhds8,invjacob); % derivatives w.r.t. physical coordinate
GI = fekinegi(nnel,dhdx8,dhdy8,1_cos_sin); % compute kinematic matrix [GI]
yA
% compute element matrix
yA
taycorr = taycorr + GI*wtr*wts*detjacob;

end % end of numerical integration loop

taycorr=taycorr/area;

A —_—
% numerical integration (ke)
0

A —_—

[nintp, junk]=size(rsk);

BG_T = zeros(3,12,nintp);
P_int = zeros(3,8,nintp);
Hmatr = zeros(8,8);
HPmatr = zeros(8,8);
Gmatr = zeros(8,12);

for intp=1:nintp
r=rsk(intp,1);
s=rsk(intp,2);
wtr=wtk(intp,1);



University of Pretoria etd — De Klerk A (2006)

APPENDIX C. SOURCE CODE LISTINGS

end

for

end

alpha

H =

wts=wtk(intp,2);

[shape,dhdr,dhds]=feisoq4(r,s);

% compute shape

[shape8,dhdr8,dhds8]=feisonsi8(r,s); % compute shape

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ;
detjacob=det (jacob2) ;
invjacob=inv(jacob2) ;

[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob);
[dhdx8,dhdy8]=federiv2(nnel,dhdr8,dhds8, invjacob) ;

BI = fekine2d(nnel,dhdx,dhdy) ;
GI = fekinegi(nnel,dhdx8,dhdy8,1_cos_sin);
GI = GI-(taycorr);

BG=[BI(:,1:2) GI(:,1) BI(:,3:4) GI(:,2) BI(:,5:6)
BG_T(:,:,intp) = BG;

[P] = Pmatrix(r,s,xcoord,ycoord);
P_int(:,:,intp) P;
[Po] = Pmatrix(0,0,xcoord,ycoord) ;

H
G =

H + P’*Cinv*P*wtr*wts*detjacob*thick;
G + P’*BG*wtr*wtsxdetjacob*thick;

intp=1:nintp
r=rsk(intp,1);
s=rsk(intp,2);
wtr=wtk(intp,1);
wts=wtk(intp,2);

[shape,dhdr,dhds]=feisoq4(r,s);

%

yA
%

functions and derivatives at sampling point (NI)
functions and derivatives at sampling point (NSI)

compute Jacobian
determinant of Jacobian
inverse of Jacobian matrix

derivatives w.r.t. physical coordinate
derivatives w.r.t. physical coordinate

compute kinematic matrix [BI]
compute kinematic matrix [GI]

GI(:,3) BI(:,7:8) GI(:,4)];

% compute shape

[shape8,dhdr8,dhds8]=feisonsi8(r,s); % compute shape

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ;
detjacob=det (jacob2) ;
invjacob=inv(jacob2) ;

[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob);
[dhdx8,dhdy8]=federiv2(nnel,dhdr8,dhds8, invjacob) ;

%
"

end of numerical integration loop

functions and derivatives at sampling point (NI)
functions and derivatives at sampling point (NSI)

compute Jacobian
determinant of Jacobian
inverse of Jacobian matrix

derivatives w.r.t. physical coordinate
derivatives w.r.t. physical coordinate

[PD] = PDmatrix(r,s,xcoord,ycoord,jacob2(1,1),jacob2(2,2),jacob2(1,2),jacob2(2,1),detjacob);

HP = HP + PD’*PD*wtr*wts*detjacob*thick;

1000;
H + alphax*HP;

Hmatr(:,:) = H;
Gmatr(:,:) = G;
HPmatr(:,:) = HP;

ke =

if i

for

G’ *inv (H) *G;

opt2 == 1
)3

)

end of numerical integration loop

Penelty met 1 punt

% numerical integration (kp)

[nintp, junk]=size(rspen);

intp=1:1
r=rspen(intp,1);
s=rspen(intp,2);

133
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wtr=wtpen(intp,1);
wts=wtpen(intp,2);

[shape,dhdr ,dhds]=feisoq4(r,s); % compute shape functions and derivatives at sampling point (NI)
[shape8,dhdr8,dhds8]=feisonsi8(r,s); % compute shape functions and derivatives at sampling point (NSI)

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ;
detjacob=det (jacob2) ;
invjacob=inv(jacob2) ;

[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob) ;
[dhdx8,dhdy8] =federiv2(nnel,dhdr8,dhds8,invjacob);

bi = fekine2dpenal (nnel,dhdx,dhdy);

gi = fekinegipenal (nnel,dhdx8,dhdy8,1_cos_sin,shape);

%

== =2

%
h

==

%

compute Jacobian
determinant of Jacobian
inverse of Jacobian matrix

derivatives w.r.t. physical coordinate
derivatives w.r.t. physical coordinate
compute kinematic matrix [bil
compute kinematic matrix [gil

bg= [bi(:,1:2) gi(:,1) bi(:,3:4) gi(:,2) bi(:,5:6) gi(:,3) bi(:,7:8) gi(:,4)];

% —_— —_—

% compute element matrix

% —_— _

kp = kp + gammaxbg’*bg*wtr*wts*detjacob*thick;

% end of numerical integration loop

% Penelty met 4 punt

% numerical integration (kp)

"A —_— _

[nintp, junk]=size(rspen);

for intp=1:4
r=rstay(intp,1);
s=rstay(intp,2);
wtr=wttay(intp,1);
wts=wttay(intp,2);

[shape,dhdr,dhds]=feisoq4(r,s); % compute shape functions and derivatives at sampling point (NI)
[shape8,dhdr8,dhds8]=feisonsi8(r,s); % compute shape functions and derivatives at sampling point (NSI)

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ;
detjacob=det (jacob2);
invjacob=inv(jacob2);

[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob);
[dhdx8,dhdy8]=federiv2(nnel,dhdr8,dhds8, invjacob) ;

bi = fekine2dpenal(nnel,dhdx,dhdy) ;

gi = fekinegipenal (nnel,dhdx8,dhdy8,1_cos_sin,shape);

%

== ==

%
)

==

h

compute Jacobian
determinant of Jacobian
inverse of Jacobian matrix

derivatives w.r.t. physical coordinate
derivatives w.r.t. physical coordinate
compute kinematic matrix [bil
compute kinematic matrix [gil

bg= [bi(:,1:2) gi(:,1) bi(:,3:4) gi(:,2) bi(:,5:6) gi(:,3) bi(:,7:8) gi(:,4)];

)3

% compute element matrix

h
he = he + bg’*wtr*wts*detjacob*thick;

end % end of numerical integration loop
kp= (gamma/(areaxthick))*hexhe’;

k = ke + kp;

% expand local stiffness matrix

%
sparsek = sparse(k);
clear k

134

index_red = [1 234 5 6 7 89 10 11 12];% entries in reduced local stiffness matrix with 2 dof per node

index_ful

[1 267 8 12 13 14 18 19 20 24];% entries in full local stiffness matrix with 6 dof per node
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k = sparse(6*nnel, 6*nnel);
k(index_ful,index_ful) = k(index_ful,index_ful) + sparsek(index_red,index_red);
%

% assemble global stiffness matrix

Y — —
index=feeldof (nodes,nnel,6); % extract system dofs associated with element
kk=feasmbl1(kk,k,index); %, assemble element matrices

%
% append the boundary condition matrix
%
for j=1:mnel
nd = nodes(j);
addbc = [((nd-1)*6 + 3) 0
((nd-1)*6 + 4) 0
((nd-1)*6 + 5) 0];
bcdofval = union(bcdofval,addbc,’rows’);
end
Yo sk ke sk sk ok ok ok sk sk sk o o sk sk sk sk o o sk sk sk ok o o ok ok sk sk ok ok o ok sk sk sk sk ok ok ok ok sk sk sk ko sk kokokkok ok )

C.3.3 Element routines: P matrix for 8.

function [P] = Pmatrix(R,S,xcoord,ycoord);

% P matrix for 8$\beta \alpha$

P = zeros(3,8);
Phigh = zeros(3,5);

P(1,1) = 1;

P(2,2) = 1;

P(3,3) = 1;

Phigh = [S O R 0 8°2;
OROS -R72;
00 -S -R 0;];

A1 = (- xcoord(1l) + xcoord(2)
A2 = (- xcoord(1l) - xcoord(2)
Bl = (- ycoord(1l) + ycoord(2)
B2 = (- ycoord(1) - ycoord(2)

xcoord(3) - xcoord(4))/4;
xcoord(3) + xcoord(4))/4;
ycoord(3) - ycoord(4))/4;
ycoord(3) + ycoord(4))/4;

+ o+ + o+

To(1,1)=A1%A1;
To(1,2)=A2%A2;
To(1,3)=A1%A2%2;
To(2,1)=B1%B1;
To(2,2)=B2*B2;
To(2,3)=B1*B2%2;
To(3,1)=A1%B1;
To(3,2)=A2%B2;
To(3,3)=A1%B2+A2%B1;

P_2 = To*Phigh;

P(1,4) = P_2(1,1);
P(1,5) = P_2(1,2);
P(1,6) = P_2(1,3);
P(1,7) = P_2(1,4);
P(1,8) = P_2(1,5);

P(2,4) = P_2(2,1);
P(2,5) = P_2(2,2);
P(2,6) = P_2(2,3);
P(2,7) = P_2(2,4);
P(2,8) = P_2(2,5);

135
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P(3,4) = P_2(3,1);
P(3,5) = P_2(3,2);
P(3,6) = P_2(3,3);
P(3,7) = P_2(3,4);
P(3,8) = P_2(3,5);

C.3.4 Element routines: P matrix for 95

function [P] = Pmatrix(R,S,xcoord,ycoord)

Y __ -
% P matrix for 8$\beta \alpha$
%
P = zeros(3,9);
P(1,1) = 1;
P(2,2) = 1;
P(3,3) = 1;
Phigh = [S 0 R 0 S72 0;

OR O S 0 -R72;

00-S -R 0 0;]1;
A1 = (- xcoord(l) + xcoord(2) + xcoord(3) - xcoord(4))/4;
A2 = (- xcoord(1) - xcoord(2) + xcoord(3) + xcoord(4))/4;
Bl = (- ycoord(1l) + ycoord(2) + ycoord(3) - ycoord(4))/4;
B2 = (- ycoord(1l) - ycoord(2) + ycoord(3) + ycoord(4))/4;

To(1,1)=A1%A1;
To(1,2)=A2%A2;
To(1,3)=A1%A2%2;
To(2,1)=B1%B1;
To(2,2)=B2%B2;
To(2,3)=B1%B2%2;
To(3,1)=A1%B1;
To(3,2)=A2%B2;
To(3,3)=A1%B2+A2%B1;

P_2 = To*Phigh;

P(1,4) = P_2(1,1);
P(1,5) = P_2(1,2);
P(1,6) = P_2(1,3);
P(1,7) = P_2(1,4);
P(1,8) = P_2(1,5);
P(1,9) = P_2(1,6);
P(2,4) = P_2(2,1);
P(2,5) = P_2(2,2);
P(2,6) = P_2(2,3);
P(2,7) = P_2(2,4);
P(2,8) = P_2(2,5);
P(2,9) = P_2(2,6);
P(3,4) = P_2(3,1);
P(3,5) = P_2(3,2);
P(3,6) = P_2(3,3);
P(3,7) = P_2(3,4);
P(3,8) = P_2(3,5);
P(3,9) = P_2(3,6);
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C.3.5 Element routines: Material matrix for composite material

function [matmtx] = Compfematiso(E1,E2,v12,theta,t,G12);

v21 = v12*E2/E1;

Q11 = E1/(1-v12%v21);

Q22 = E2/(1-v12%v21);

Q12_2 = (v21*E1)/(1-v21%v12);
Q12 = (v12%E2)/(1-v12%v21);

Q66 = G12;

Q = [Q11 Q12 0;
Q12 Q22 0;
0 0 Q66;1;

T = [(cos(theta))”2 (sin(theta))"2 2*(cos(theta))*sin(theta);
(sin(theta)) "2 (cos(theta))~2 (-2*(cos(theta))*(sin(theta)));
(-1x(cos(theta))*sin(theta)) (cos(theta))*sin(theta) (cos(theta))"2 - (sin(theta)”~2)];

T_inv = [(cos(theta)) "2 (sin(theta))"2 (-2*(sin(theta))*cos(theta));
(sin(theta)) "2 (cos(theta))~2 2*(cos(theta))*(sin(theta));
(cos(theta))*sin(theta) (-1*(cos(theta))*sin(theta)) (cos(theta))~"2 - (sin(theta)"2)];

R=[100;
010;
00 2;1;
R_inv = [ 1 0 0;
010;
0 0 0.5];
matmtx = T_inv*Q*R*T*R_inv;
matmtx = [matmtx(1,1)*t matmtx(1,2)*t matmtx(1,3)*t;

matmtx(2,1)*t matmtx(2,2)*t matmtx(2,3)*t;
matmtx(3,1)*t matmtx(3,2)*t matmtx(3,3)*t;];

C.4 Element: Q4 with penalized equilibrium

C.4.1 Element routines: Main program

% Patchtest for Q4 with penelty %

% Variable descriptions : Same as Q4

clear all;

Y .

% Load Mesh and define integration scheme

Y _—

[gcoord,nodes,bcdof ,bcval,ff,emodule,poisson,t,choose3,Type,begin_Jnode] = kieslys;
[nglx,ngly,nglxy] = integration_points;

A _—
% input data for control parameters

A _—

nel=>5; number of elements

nnel=4; number of nodes per element
ndof=2; number of dofs per node
nnode=8; total number of nodes in system

sdof=nnode*ndof;
edof=nnel*ndof;

total system dofs

degrees of freedom per element
emodule=1; elastic modulus

poisson=0.25; Poisson’s ratio

nglx=3; ngly=3; % 3x3 Gauss-Legendre quadrature

S22 ST s s

137
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nglxy=nglx*ngly; % number of sampling points per element
%
% initialization of matrices and vectors
pA
ff=zeros(sdof,1); % system force vector
kk=zeros (sdof,sdof) ; % system matrix
kke=zeros (sdof,sdof) ;
disp=zeros(sdof,1); % system displacement vector
eldisp=zeros(edof,1); % element displacement vector
stress=zeros(nglxy,3); ' matrix containing stress components
strain=zeros(nglxy,3); % matrix containing strain components
index=zeros (edof,1); % index vector
kinmtx2=zeros(3,edof); % kinematic matrix
matmtx=zeros(3,3); % constitutive matrix
dispcoord=zeros(sdof,2) ;% coordinates position with force aplied
% _— -
% MENU DISPLAY (SELECTION OF PLANE STRESS OR PLANE STRAIN)
% _— -
iopt = menu(’Choose the method of solving’,’Plane strain’,’Plane Stress’);
if iopt ==

Plane=1;
end
if iopt ==

Plane=2;
end
Y — —
% computation of element matrices and vectors and their assembly
Y — —
[point2,weight2]=feglqd2(nglx,ngly); % sampling points & weights
matmtx=fematiso(iopt,emodule,poisson) ; % compute constitutive matrix
for iel=1:nel % loop for the total number of elements

xcoord = zeros(1,4);
ycoord = zeros(1,4);
for i=1:4
nd(i)=nodes(iel,i); % extract connected node for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the node
ycoord(i)=gcoord(nd(i),2); % extract y value of the node

end
k=zeros (edof,edof); % initialization of element matrix to zero
ke = zeros(edof,edof);
%
% numerical integration
S —
for intx=1:nglx
x=point2(intx,1); % sampling point in x-axis
wtx=weight2(intx,1); % weight in x-axis
for inty=1:ngly
y=point2(inty,2); % sampling point in y-axis
wty=weight2(inty,2) ; % weight in y-axis
[shape,dhdr,dhds]=feisoq4(x,y) ; % compute shape functions and
% derivatives at sampling point
jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian
detjacob=det (jacob2) ; % determinant of Jacobian
invjacob=inv(jacob2) ; % inverse of Jacobian matrix
[dhdx,dhdy]l=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.
% physical coordinate
kinmtx2=fekine2d(nnel,dhdx,dhdy) ; % compute kinematic matrix
Y —_
% compute element matrix
Y —_

k=k+kinmtx2’*matmtx*kinmtx2*wtx*wty*detjacob; 7% element matrix

ke =ke + Penelty_db(xcoord’,ycoord’,x,y,poisson,emodule);

end

end % end of numerical integration loop
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index=feeldof (nd,nnel ,ndof);
kk=feasmbll (kk,k,index) ;
kke feasmbli (kke,ke,index);

end

Alfa 0.1;

Pen =(kk - (Alfa/emodule)* kke)
%
%
%
[Pen,ff]=feaplyc2(Pen,ff,bcdof,bcval);
%

apply boundary conditions

solve the matrix equation
yA
disp=Pen\ff;
num=1:1:sdof;
displace=[num’ disp]

%
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% extract system dofs associated with element
% assemble element matrices

% print nodal displacements

element stress computation

%

for ielp=1:nel % loop for

for i=1:nnel
nd(i)=nodes(ielp,i);
xcoord(i)=gcoord(nd(i),1);
ycoord(i)=gcoord(nd(i),2);

%
%
pA

en

numerical integration

intp=0;

for intx=1:nglx
x=point2(intx,1);
wtx=weight2(intx,1);

for inty=1:ngly
y=point2(inty,2);
wty=weight2(inty,2)
intp=intp+1;

>

[shape,dhdr,dhds]=feisoq4(x,y);

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord) ;

detjacob=det (jacob2);
invjacob=inv(jacob2);
[dhdx,dhdy]l=federiv2(nnel,dhdr,dhd

kinmtx2=fekine2d (nnel,dhdx,dhdy) ;
index=feeldof (nd,nnel ,ndof) ;

the total number of elements

extract connected node for (iel)-th element
extract x value of the node
extract y value of the node

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

compute shape functions and
derivatives at sampling point
compute Jacobian

determinant of Jacobian

inverse of Jacobian matrix
derivatives w.r.t.

physical coordinate

kinematic matrix

extract system dofs for the element

===

)

B

%

s,invjacob);

e =2

extract element displacement vector

for i=1:edof
eldisp(i)=disp(index(i));
end
kinmtx2=fekine2d(nnel,dhdx,dhdy) ;
estrain=kinmtx2*eldisp
estress=matmtx*estrain

for i=1:3
strain(intp,i)=estrain(i);
stress(intp,i)=estress(i);
end

location=[ielp,intx,inty];
stress(intp,:)

Sm(ielp,1) =ielp;

% compute kinematic matrix
compute strains

compute stresses

= =

% store for each element
% store for each element

%

print location for stress
print stress values

==
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Sm(ielp,2) =stress(intp,1);
Sm(ielp,3) =stress(intp,2);
Sm(ielp,4) =stress(intp,3);

end
end % end of integration loop
end
)3
% Plot the displacement of nodes
)3

% Plot the relative diplacement
[dispcoord]=displot(displace,gcoord,nodes);
%

C.4.2 Element routines: Calculate penalized stiffness matrix

function [kPe] = Penelty_db(xn,yn,x,y,v,E);
syms r s L P real;
kPe = zeros(8,8);

[h,hr,hs,hrs] = Q4vorm;
[hxx,hyy,hxy,hx,hy,detJ] = Afgeleidevormfunk(h,hr,hs,hrs,xn,yn);

hixx = subs(hxx(1),{s,r},{x,y});
h2xx = subs(hxx(2),{s,r},{x,y});
h3xx = subs(hxx(3),{s,r},{x,y});
h4xx = subs(hxx(4),{s,r},{x,y});
hiyy = subs(hyy(1),{s,r},{x,y}D);
h2yy = subs(hyy(2),{s,r},{x,y});
h3yy = subs(hyy(3),{s,r},{x,y});
hdyy = subs(hyy(4),{s,r},{x,y});
hixy = subs(hxy(1),{s,r},{x,y});
h2xy = subs(hxy(2),{s,r},{x,y});
h3xy = subs(hxy(3),{s,r},{x,y});
h4xy = subs(hxy(4),{s,r},{x,y});
hix = subs(hx(1),{s,r},{x,y});
h2x = subs(hx(2),{s,r},{x,y});
h3x = subs(hx(3),{s,r},{x,y});
h4x = subs(hx(4),{s,r},{x,y});
hily = subs(hy(1),{s,r},{x,y});
h2y = subs(hy(2),{s,r},{x,y});
h3y = subs(hy(3),{s,r},{x,y});
hdy = subs(hy(4),{s,r},{x,y});

b —=mmmm—m—m B matriks-------------——--—-

B = [hix 0 h2x O h3x O h4x 0
0 hly 0 h2y O h3y O h4dy
hily hix h2y h2x h3y h3x h4y hdx];

Btrans = transpose(B);

A dB = d(CB)---------------

dB =((E/(1-v~2))*[ (v*hilxx+((1-v)/2)*hlyy) (vxhilxy + ((1-v)/2)*hixy) (vxh2xx+((1-v)/2)*h2yy) ...
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(vx¥h2xy + ((1-v)/2)*h2xy) (v*h3xx+((1-v)/2)*h3yy) (vxh3xy + ((1-v)/2)*h3xy) (v*hdxx+((1-v)/2)*hdyy)...
(v¥hdxy + ((1-v)/2)*h4xy) (vxhixy + ((1-v)/2)*hixy) (((1-v)/2)*hixx+hlyy) (v*h2xy + ((1-v)/2)*h2xy)...

(((1-v)/2)*h2xx+h2yy) (v*h3xy + ((1-v)/2)*h3xy) (((1-v)/2)*h3xx+h3yy) (v*hdxy + ((1-v)/2)*hdxy)...

(((1-v)/2) *hdxx+hdyy) 1);

dBtrans =(transpose(dB));
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detj =subs(detJ,{s,r},{x,y});
kPe = kPe + dBtrans*dB*detj;

C.4.3 Element routines: Derivatives of form functions

function[hxx,hyy,hxy,hx,hy,detJ] = Afgeleidevormfunk(h,hr,hs,hrs,xn,yn);
syms x yr s Ev A real;

y=h*yn;
x=h*xn;

% Bepaal die Jacobiaan
syms J11 J12 J21 J22

J11 = diff(x,r);
J12 = diff(y,r);
J21 = diff(x,s);
J22 = diff(y,s);
J = [J11 J12
J21 J22];

% Bepaal die determinant van die Jacobiaan
detJ = det(J);

%Bepaal die inverse van die Jacobiaan
invJ = (1/detJ)*[ J22 -J12
-J21 J11];

% Bepaal die afgeleides van die vorm funksies

Y= Afgeleide van vormfunksie 1 metode 1---------------
hx(1) = hr(1) *(1/detJ)*J22 + hs(1)*(1/detJ)*(-J12);

hixr = diff(hx(1),r); % Afgeleide van Hl,x na r
hixs = diff(hx(1),s); % Afgeleide van H1,x na s

hxx(1) = hixr*(1/detJ)*J22 + hixs*(1/detJ)*(-J12); % H1,xx

Hix,r * r,x + Hlx,s *s,x
hy(1) = hr(1) *(1/detJ)*(-J21) + hs(1)*(1/detJ)*(J11);

hiyr = diff(hy(1),r); % Afgeleide van Hl,y na r

hiys = diff(hy(1),s); % Afgeleide van Hl,y na s

hyy(1) = hlyr*(1/detJ)*(-J21) + hilys*(1/detJ)=*J11; % Hl,yy = Hly,r * r,y + Hly,s *s,y

hxy(1) = hixr*(1/detJ)*(-J21) + hixs*x(1/detJ)*(J11); % Hi,xy = Hilx,r * r,y + Hlx,s *s,y
% hixy = hilyx

fh==———m———= Afgeleide van vormfunksie 2 metode 1
hx(2) = hr(2) *(1/detJ)*J22 + hs(2)*(1/detJ)*(-J12);

h2xr = diff (hx(2),r); % Afgeleide van Hl,x na r
h2xs = diff(hx(2),s); % Afgeleide van H1,x na s

hxx(2) = h2xr*(1/detJ)*J22 + h2xs*(1/detJ)*(-J12); % Hi,xx = Hix,r * r,x + Hix,s *s,x
hy(2) = hr(2) *(1/detJ)*(-J21) + hs(2)*(1/detJ)*(J11);

h2yr = diff(hy(2),r); % Afgeleide van H1l,y na r

h2ys = diff(hy(2),s); % Afgeleide van Hl,y na s

hyy(2) = h2yr*(1/detJ)*(-J21) + h2ysx(1/detJ)*J11; % H1l,yy = Hly,r * r,y + Hly,s *s,y
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hxy(2) = h2xr*(1/detJ)*(-J21) + h2xs*x(1/detJ)*(J11); % Hi,xy = Hilx,r * r,y + Hlx,s *s,y
% hixy = hiyx

Y= Afgeleide van vormfunksie 3 metode 1
hx(3) = hr(3) *(1/detJ)*J22 + hs(3)*(1/detJ)*(-J12);

h3xr = diff(hx(3),r); % Afgeleide van Hl,x na r
h3xs = diff(hx(3),s); % Afgeleide van Hl,x na s

hxx(3) = h3xr*(1/detJ)*J22 + h3xs*(1/detJ)*(-J12); % H1l,xx = Hix,r * r,x + Hix,s *s,x
hy(3) = hr(3)*(1/detJ)*(-J21) + hs(3)*(1/detJ)*(J11);

h3yr = diff(hy(3),r); % Afgeleide van Hl,y na r
h3ys = diff(hy(3),s); % Afgeleide van H1,y na s

hyy(3) = h3yr*(1/detJ)*(-J21) + h3ys*(1/detJ)=*J11; % Hi,yy = Hly,r * r,y + Hly,s *s,y

hxy(3) = h3xr*(1/detJ)*(-J21) + h3xs*x(1/detJ)*(J11);% Hl,xy = Hix,r * r,y + Hlx,s *s,y
% hixy = hilyx

b —mmmmmmmm Afgeleide van vormfunksie 4 metode 1
hx(4) = hr(4) *(1/detJ)*J22 + hs(4)*(1/detJ)*(-J12);

h4xr = diff(hx(4),r); % Afgeleide van Hl,x na r
h4xs = diff(hx(4),s); % Afgeleide van Hl,x na s

hxx(4) = hdxr*(1/detJ)*J22 + hdxs*(1/detJ)*(-J12); % H1l,xx = Hix,r * r,x + Hix,s *s,x
hy(4) = hr(4) *(1/detJ)*(-J21) + hs(4)*(1/detI)*(J11);

hd4yr = diff(hy(4),r); % Afgeleide van Hl,y na r
h4ys = diff(hy(4),s); % Afgeleide van Hl,y na s

hyy(4) = hd4yr*(1/detJ)*(-J21) + hdys*(1/detJ)*J11; % Hl,yy = Hly,r * r,y + Hly,s *s,y

hxy(4) = hdxr*(1/detJ)*(-J21) + hdxs*(1/detJ)*(J11); % Hi,xy = Hlx,r * r,y + Hlx,s *s,y
% hixy = hilyx



