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2 Background on Computational Fluid
Dynamics

2.1 Introduction

Computational Fluid Dynamics (CFD) is, in part, the art of replacing the
governing partial differential equations of fluid flow with numbers, and
advancing these numbers in space and/or time to obtain a final numerical
description of the complete flow field of interest [1].

The governing equations for flows of practical interest are usually so
complicated that an exact solution is unavailable and it is necessary to seek a
computational solution. Computational techniques replace the governing non-
linear partial differential equations with systems of algebraic equations, so that
a computer can be used to obtain the solution [2].

CFD provides four major advantages compared to experimental fluid

dynamics [2]:

e Lead-time in design and development is significantly reduced.

e CFD can simulate flow conditions not reproducible in experimental model
tests.

e CFD provides more detailed and comprehensive information.

e CFD is more cost-effective than wind tunnel or scale-model testing.

To obtain a well-posed problem, three conditions must be met: the solution
must exist, the solution must be unique, and the solution must depend
continuously on the initial and boundary conditions [2].

The commercial CFD solver STAR-CD is used in this study to solve the
Reynolds-Averaged Navier-Stokes equations [3]. STAR-CD can handle
complex phenomena in the flow field such as chemical reactions, combustion,
dispersed multiphase flow, thermal radiation and distributed resistances.

2.2 The Basic Equations

There are three basic non-linear partial differential equations of conservation
for physical fluid systems:

e Conservation of mass (Equation of continuity)
e Conservation of momentum (Navier-Stokes equations)
e (Conservation of energy

In these equations there are three unknown variables, i.e. velocity, V,
thermodynamic pressure, p, and absolute temperature, T. Variables like p, h,

u and k can be uniquely determined from the independent variables p and T.
Refer to the List of Symbols for the definition of these variables.
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When diffusion and chemical reactions are involved in the flow, there are at
least two extra basic equations that must be considered:

e Conservation of species

e Conservation of chemical reaction

The first three equations above are now stated mathematically.

2.2.1 Equation of Continuity
D =
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2.2.2 The Navier-Stokes Equations
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2.2.3 The Energy Equation
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2.3 Modelling of Turbulence

As far as we know, the Navier-Stokes equations do apply to turbulent flow [4].
Direct numerical simulation is a technique to solve turbulent flow directly with
the Navier-Stokes equations. The solution grid used must be infinitesimally
small because the smallest eddy size is about 0.04mm. Presently, the
computational power does not exist to implement direct numerical simulation
for practical applications, because literally millions of mesh points would be
needed to solve a small domain of a few cubic centimeters.

To implement turbulence practically, there exist a few empirical modelling
ideas for certain mean statistical properties of turbulent shear flows. These
can be classified as zero-equation, one-equation, two-equation and Reynolds
stress models.

Reynolds averaging of the Navier-Stokes equations leads to extra stress
terms called Reynolds stresses. These stresses can be modelled as ‘viscous’
stresses with an eddy viscosity in the same way as laminar shear stresses,

e.g.

T, = UV =y, o (2-4)
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The eddy viscosity, p, varies with flow conditions and geometry and is not a
fluid property although it has the same dimensions as fluid viscosity. In the
class of eddy-viscosity turbulence models, the models are constructed to find
a description of the eddy viscosity p, i.e. an ‘equivalent’ viscosity due to
turbulence.

2.3.1 Zero-Equation Models

The mixing-length theory of Prandtl proposes that each turbulent fluctuation
can be related to a length scale and a velocity gradient. Iteration is required to
find the edge of the boundary layer. Different zero-equation models exist, .g.
Cebeci-Smith[5], and van Driest[6]. Most of these models require a
specification of the outer edge of the boundary layer. A model that
circumvents this problem is the Baldwin-Lomax[7] model.

2.3.2 One-Equation Models

These are usually models that describe the transport of turbulent kinetic
energy. The turbulent kinetic energy equation can be described as follows [4]:

The rate of chance of turbulent energy
convective diffusion +  production
work done by turbulent viscous stresses
turbulent viscous dissipation.

+ + 1l

The terms in this relation are so complex that they cannot be computed from
first principles, therefore the one-equation model combines features of eddy-
viscosity modelling with that of Reynolds stress models.

2.3.3 Two-Equation Models

If a second equation modelling rate of change is coupled with the turbulent
energy equation described above, better results are usually obtained because
the convection of turbulence is accounted for. The second rate of change can
be that of turbulence dissipation, turbulent length scale, or vorticity, but
dissipation is more commonly used. From there the k-e model, where k is the
turbulent kinetic energy and ¢ the turbulence dissipation.

2.3.4 Reynolds Stress Models

Turbulence can also be modelled using Reynolds stresses (like the one
shown in Equation (2-4)), with additional partial differential equations
describing the stresses. The modelling of Reynolds stresses is more complex
than the previous models and is called a second-order closure. The stresses
are computed directly and therefore the usage of the eddy viscosity and
velocity gradient approaches are discarded.

2.4 Boundary Conditions

Any CFD model is as good as the assumptions it is based on. One can have a
sufficiently converged solution, but if the boundary conditions do not resemble
reality, the solution is useless. Thus, it is very important to apply the correct
boundary conditions. The following are some of the boundary conditions that
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can be applied to a CFD model. As STAR-CD is used in this study, the
boundary conditions implemented in STAR-CD are described below.

2.4.1 Prescribed Flow or Inlet
This can be used for an inlet where the fluid properties and mass flux
properties are known.

2.4.2 Qutlet

The mass flow rate at this exit boundary is fixed from continuity considerations
and all the variables’ gradients are taken to be zero in the direction of the local
flow direction at the exit boundary.

2.4.3 Prescribed Pressure

The static pressure at this boundary is specified and, unlike the outlet
boundary condition, the direction and magnitude of the flow must be
determined to describe the near-wall region [4].

2.4.4 Impermeable Wall and Baffle Surfaces
The no-slip condition next to the wall is applied and ‘wall functions’ are applied
with certain turbulence models.

2.4.5 Symmetry Plane

When the flow domain is symmetrical relative to a plane, great simplifications
can be made to the CFD model regarding grid size. At the symmetry plane the
normal velocity and the normal gradients of all other variables are zero.

2.5 Computational Grids

A grid is generated in the domain where the fluid flow equations are solved
through computational techniques. To obtain good results the grid must meet
certain requirements:

e The grid points must be clustered near solid boundaries to provide high
resolution of the viscous boundary layer.

e The grid resolution must be the highest in expected areas of high gradients
of the flow variables.

e Excessive skewness of the grid must be avoided.

Body-fitted grids are generated in this study using either an algebraic method
or a scheme based on elliptical partial differential equations.

2.5.1 Algebraic Grid Generation

Algebraic grid generation is computationally inexpensive and very simple to
implement. After the grid points on the boundaries are obtained with stretching
functions such as Vinokur[8] stretching, the interior grid is obtained by
transfinite interpolation. After this, the gridlines can be blended to be
orthogonal near the boundary walls. This was done in this study using the
SURCH-algorithm in Fletcher{9].
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2.5.2 Elliptic Grid Generation
As was the case with algebraic grid generation, the grid points on the
boundary can also be obtained using stretching functions. Solving the
transformed Poisson equations generates the interior of the grid [10]. For 2D
grids, the Poisson equations are:

=2, + px,, = —JZ(Pxé +erf)

(2-5)
QY #2/6-,);-.5?7 T Wy = —-JZ(Py.ﬁ +Qyn)
where (&,1) represent the coordinates in the computational domain, and P and
Q are terms which control the point spacing in the interior of the domain. «, f3
and y are metric coefficients and J is the Jacobian of the transformation.

2.6 Conclusion

CFD is a powerful tool to perform simulations of complex flow phenomena in a
very economical manner. Computational techniques make it possible to solve
the non-linear partial differential governing equations. CFD has major
advantages compared with experimental fluid dynamics. One such advantage
is the application of boundary conditions to a CFD model that will be very
difficult or even impossible to apply in experimental fluid dynamics.
Turbulence can be modelled in CFD using one of several turbulence models
that differ in complexity. In this study CFD is used in Chapter 4 for a
parametric study of boiler operational conditions and in Chapter 5 for the
investigation of remedial measures for boiler tube failures due to particle
impingement erosion.



	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005

