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Abstract 

 

The primary objective of this study is to decompose the conditional covariance matrix of a 

system of variables. A structural GARCH model is proposed which makes use of existing 

multivariate GARCH (MGARCH) models to decompose the covariance matrix. The 

variables analysed in the study are the All Share index (ALSI) on the Johannesburg stock 

exchange, the South African Rand/US Dollar exchange rate (R/$) and the South African 90-

day Treasury bill interest rate (Tbill). 

 

The contemporaneous structural parameters in the system of endogenous variables are 

identified using heteroscedasticity. Although the structural parameters of the system of 

variables hold important and interesting information, it is not the main focus of this study. 

Identifying the structural parameters can be seen as a necessary condition to decompose the 

conditional variance covariance matrix into an endogenous and exogenous part. 
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The contribution of the study is twofold.  The first contribution is methodological in 

nature, while the second is empirical. The study proposes a methodology that utilises two 

multivariate GARCH models to decompose the time-varying conditional covariance 

matrix of a system of assets, without imposing unnecessary constraints on the system.  In 

doing so more information is obtained from decomposing the covariance matrix than 

what is available from existing or traditional multivariate GARCH models. The 

information allows the investor to analyse the structural relationships between variables 

in the system in both the first and the second moments. On an empirical level, the study 

analyses the structural relationship between financial variables in the South African 

economy using high-frequency data. The methodology utilised allows for consistent and 

efficient estimates of the structural contemporaneous relationships between these 

variables. The study also decomposes the volatility of each individual variable as well as 

the volatility between the variables. More information is gained on what drives the 

volatility of these variables, i.e. is volatility generated within the system, alternative to 

volatility generated from structural innovations or latent factors outside the system. The 

study finally shows how the information can be utilised in a portfolio management 

context. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 iv

ACKNOWLEDGEMENTS 
 

I dedicate this research to my father, the late Professor Geert de Wet, who planted the seed 

for my love of economics and econometrics. His dedication to everything in life is still dearly 

missed after all these years. 

 

I would like to thank my life companion and friend, Elmien, who believed in me. Her 

support and patience throughout this research cannot be matched. I look forward to the rest 

of our lives together. 

 

Thank you to my mother, Alma, who made it her life dedication to see my two brothers and 

me develop as successful persons in this world. Any attempt to describe her love will do 

injustice to her devotion. 

 

Without my brothers and companions in crime, Theuns and Albert, this research would have 

been impossible. The endless discussions (to the great boredom of our better-halves) on the 

topics of economic, econometrics and finance were a fountain of inspiration and a source of 

motivation. Keep up the good work! 

 

I would like to thank every academic who shaped my mind and thoughts. In particular 

Professors Peter Pauly and Steven Hall who (perhaps unknowingly) have shown me what it 

means to be passionate about economics. Their unselfish dedication to the state of economic 

modelling in Africa goes unmatched. 

 

A last thank to my supervisor, Professor Charlotte du Toit, who in every sense of the word is 

an exceptional person. Her guidance throughout my research and career so far is highly 

appreciated. 

 

Praise the Lord! 

Walter Albert de Wet (10 March 2005) 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



CONTENT 

 

viii LIST OF FIGURES 

LIST OF TABLES 

 

x 

1. INTODUCTION AND BACKGROUND 1 

 1.1. INTRODUCTION 1 

 1.2. OBJECTIVE AND RESEARCH METHODOLOGY 3 

 1.3. CONTRIBUTION OF THE STUDY 4 

 1.4. OUTLINE OF THE STUDY 5 

   

2. THE PROBLEM OF IDENTIFICATION 7 

 2.1. INTRODUCTION 7 

 2.2. IDENTIFICATION 9 

 2.3. REDUCED-FORM VS. STRUCTURAL PARAMETERS 15 

 2.4.OTHER METHODS OF ESTIMATING CONSISTENT 

PARAMETERS IN A SYSTEM OF EQUATIONS 

 

 2.4.1. Instrumental Variables (Two-stage least squares) 15 

 2.4.2. Three-stage least squares 16 

 2.4.3. Full information maximum likelihood  16 

 2.4. CONCLUSION 17 

   

3. IDENTIFICATION THROUGH HETEROSCEDASTICITY 18 

 3.1. INTRODUCTION 18 

 3.2. IDENTIFICATION THROUGH HETEROSCEDASTICITY 20 

 3.3.EMPIRICAL STUDIES USING IDENTIFICATION 

THROUGH HETEROSCEDASTICITY 

25 

 3.4. CONCLUSION 27 

   

4. MULTIVARIATE GARCH MODELS 29 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 vi

 4.1. INTRODUCTION 29 

 4.2. OVERVIEW OF MGARCH MODELS 30 

 4.2.1. VEC and BEKK models 31 

 4.2.2. Factor and Orthogonal Models 33 

 4.2.3. Conditional Correlation Models  35 

 4.3. CONCLUSION 37 

   

5. A STRUCTURAL GARCH MODEL 40 

 5.1. INTRODUCTION 40 

 5.2. STEP 1: ESTIMATING THE EXOGENOUS CONDITIONAL 

COVARIANCE MATRIX DRIVEN BY THE STRUCTURAL 

INNOVATIONS IN A SYSTEM 

42 

 5.3. STEP 2: ESTIMATING THE ENDOGENOUS 

CONDITIONAL COVARIANCE MATRIX OF THE 

VARIABLES IN THE SYSTEM  

50 

 5.4. CONCLUSION 51 

   

6. LITERATURE REVIEW ON EMPIRICAL RESEARCH 52 

 6.1. INTRODUCTION 52 

 6.2. STOCK PRICES AND THE EXCHANGE RATE 53 

 6.3. STOCK PRICES AND THE INTEREST RATE 55 

 6.4. THE EXCHANGE RATE AND THE INTEREST RATE 58 

 6.5. CONCLUSION 60 

   

7. ESTIMATING A STRUCTURAL GARCH MODEL 62 

 7.1. INTRODUCTION 62 

 7.2. THE DATA 63 

 7.3. ESTIMATING THE CONDITIONAL COVARIANCE 

MATRIX OF THE SYSTEM 

67 

 7.3.1. Step 1: Estimating the exogenous conditional covariance 67 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 vii

matrix driven by the structural innovations in the system 

 7.3.2. Step 2: Estimating the endogenous conditional covariance 

matrix of variables in the system  

77 

 7.4. CONCLUSION 

 

89 

8. IMPULSE RESPONSES AND AN APPLICATION TO 

PORTFOLIO RISK MANAGEMENTS  

91 

 8.1. INTRODUCTION 91 

 8.2. IMPULSE RESPONSES 91 

 8.3. AN APPLICATION TO PORTFOLIO RISK MANAGEMENT 99 

 8.4. CONCLUSION 102 

   

9. SUMMARY AND CONCLUSION 103 

 9.1. INTRODUCTION 103 

 9.2. METHODOLOGY 103 

 9.3. EMPIRICAL RESULTS 104 

 9.4. CONCLUDING REMARKS 105 

   

 BIBLIOGRAPHY 107 

   

 APPENDIX A: DERIVATION OF THE REDUCED-FORM ARCH 

MODEL 

115 

 APPENDIX B.1: VECTOR AUTOREGRESSION ESTIMATES 118 

 APPENDIX B.2: RIGOBON AND SACK GARCH MODEL 

ESTIMATE 

120 

 APPENDIX B.3: BEKK GARCH MODEL ESTIMATE 122 

 APPENDIX C.1: IMPULSE RESPONSES AND COVARIANCE 

BETWEEN ALSI AND TBILL 

124 

 APPENDIX C.2: IMPULSE RESPONSES AND COVARIANCE 

BETWEEN ALSI AND R/$ 

126 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 viii

LIST OF FIGURES  

 
 
Figure 2.1 Hypothetical functions for variables yj and yi and the identification 

problem 

10 

Figure 3.1 Identification through heteroscedasticity 22 

Figure 7.1 The three financial variables used in the estimation 64 

Figure 7.2 The reduced-form residuals from the VAR estimation 69 

Figure 7.3 Conditional variance of the structural innovations 75 

Figure 7.4 The structural innovations to the variables 76 

Figure 7.5 The endogenous explained variation: the difference between the 

total change in the variable and the structural innovations 

77 

Figure 7.6 The conditional variance of the endogenous explained variation of 

the variables 

80 

Figure 7.7 The conditional covariance between the explained portion of the 

variables 

82 

Figure 7.8 The conditional correlation between the variables 83 

Figure 7.9 Total conditional variance – “two-step” approach vs. “reduced-

form” approach 

84 

Figure 7.10 Total variance decomposition – structural (exogenous) vs. 

explained (endogenous) 

86 

Figure 8.1 Impulse response due to a shock to ALSI 92 

Figure 8.2 Impulse response due to a shock to R/$ 93 

Figure 8.3 Impulse response due to a shock to Tbill 93 

Figure 8.4 Impulse response due to a shock to ALSI 94 

Figure 8.5 Impulse response due to a shock to R/$ 95 

Figure 8.6 Impulse response due to a shock to Tbill 95 

Figure 8.7 Comparison: Impulse response due to a shock to ALSI 98 

Figure 8.8 Comparison: Impulse response due to a shock to R/$ 98 

Figure 8.9 Comparison: Impulse response due to a shock to the Tbill 99 

Figure 8.10 Percent portfolio variance mismeasurement due to a shock to the 100 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 ix

ALSI 

Figure 8.11 Percent portfolio variance mismeasurement due to a shock to the 

R/$ 

100 

Figure 8.12 Portfolio variance mismeasurement due to a shock to the Tbill 101 

Figure C.1.1 Comparison: Impulse response due to a shock to ALSI 124 

Figure C.1.2 Comparison: Impulse response due to a shock to R/$ 124 

Figure C.1.3 Comparison: Impulse response due to a shock to Tbill 125 

Figure C.2.1 Comparison: Impulse response due to a shock to ALSI 126 

Figure C.2.2 Comparison: Impulse response due to a shock to R/$ 126 

Figure C.2.3 Comparison: Impulse response due to a shock to Tbill 127 

   

   

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 x

LIST OF TABLES 

 

 

Table 4.1 Summary of MGARCH models 39 

Table 7.1 Test statistics and choice criteria for selecting the order of the 

VAR model 

68 

Table 7.2 The structural coefficients from matrix B: Contemporaneous 

interaction between the financial assets  

70 

Table 7.3 Estimates of conditional variance parameters of the structural 

innovations 

73 

Table B.1 OLS estimate of the reduced-form VAR 118 

Table B.2 Maximum likelihood estimation: Rigobon and Sack model 121 

Table B.3 Maximum likelihood estimation: BEKK model 123 

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 1

C h a p t e r  1  

 
INTRODUCTION AND BACKGROUND 

 

1.1 INTRODUCTION 

 

Understanding how different variables react to one another has long been at the core of 

economics. Variables react to one another not only through the mean, but also through the 

second moments. This implies that the change in one variable might result not only in a 

change in the level of another variable, but also affect the volatility of other variables.  

Depending on the purpose of the research one will be interested in the mean effect or the 

higher moments, or perhaps both. Many techniques have been developed to obtain a 

consistent, efficient and unbiased estimate for these relationships that allows for the most 

accurate analysis. These analyses differ in objective – it might be for forecasting purposes, or 

understanding the structure of the relationships for policy analysis. Whatever the objective, 

the best estimate (i.e. in terms of bias, efficiency and consistency) under the given 

circumstances is always important. 

 

Since modern finance theory has been developed it has been generally accepted that there is a 

trade-off between risk and return. In efficient markets, the higher the risk, the higher the 

expected return. Therefore, at the heart of financial analysis is both the level of variables i.e. 

how they influence one another in the mean, as well as the variance of variables and the 

relationship between the variances. The levels of these variables represent the expected 

return, while the variance represents total risk of the variable. Forecasting the variance of 

these variables has therefore become increasingly important. Being able to forecast the 

variance of a variable will give some indication of what return to expect from a given 

investment. This variance is therefore extremely important in the pricing of financial 

variables. Equally important is to understand the behaviour and structural relationship 

between these variables. The structural relationship gives an indication of how variables will 

react when there is a change to other variables in the system. 
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When working with financial variables, the timeframe under scrutiny differs. If the investor is 

interested in compiling a long-run strategy, the type of econometric tools used will typically 

be suited for long-run analysis.  The most common tool used is cointegration analysis, which 

focuses on identifying long-run structural relationships between variables. In most cases 

economic theory defines the expected direction of the relationship between the variables.  

The purpose of the econometric analysis is to obtain an estimate of the magnitude of the 

relationship. Of lesser importance in a long-run strategy (although not neglectable) is the 

variance of the variables.  

 

If the aim of the analysis is to compile a short-term tactical strategy, the focus will differ from 

the long-run strategy. The problem that arises here is that in the short-run financial variables 

often behave different than what economic theory would suggest. These variables are often 

driven by sentiment and external shocks. The structural relationships between the variables 

are still important in this strategy, but most important in these short-run strategies are the 

second moments of the variables. How, and to what extent the volatility is generated 

between these variables is often at the centre of the short-run analysis. 

 

The focus of this study is to estimate the structural relationship between financial variables; 

not only through the means but also through the second moments. These estimates will 

provide information that can be used in the compilation of portfolios, pricing of assets and 

the better understanding of the structural short-run relationship between different variables.  

High frequency weekly data is used in determining these relationships. Because of the short-

term nature of the analysis, the variances as well as the mean effects are of interest. The first 

aim is to estimate consistent, efficient and unbiased structural parameters or 

contemporaneous effects between the high frequency variables. Second, once the structural 

parameters are estimated, a methodology is proposed to analyse the conditional covariance 

matrix of these variables. This methodology allows one to decompose the conditional 

covariance matrix into the volatility that is generated within the system and the volatility that 

is generated outside the system, due to structural innovations or latent factors. Put 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 3

differently, this methodology allows one to estimate the endogenous volatility in the system 

as well as the volatility driven by exogenous factors (or the exogenous volatility).  

 

When working with financial variables it is not sufficient to make use of single-equation 

estimates. These variables are determined contemporaneously, and therefore estimates 

should be solved simultaneously in a system of equations.  If the estimates are not solved 

simultaneously, they will be biased and inconsistent.  This type of analysis presents numerous 

econometric problems. First, when working with a system of endogenous variables, the 

system is not identified.  It is therefore impossible to estimate the structural parameters 

without any additional information. Only a linear transformation of these parameters is 

observable, or the so-called reduced-form parameters. Therefore, the first challenge is to 

obtain additional information that will allow one to recover the structural parameters.  This 

study uses the heteroscedasticity that financial variables so often exhibit, to identify the 

system. 

 

The second challenge is to estimate the time-varying conditional covariance matrix of the 

system.  The variance as well as the covariance between these variables are important in 

understanding how the volatility is generated inside (endogenous volatility) and from outside 

(exogenous volatility) the system. The literature proposes a multivariate GARCH model to 

analyse this problem. However, most of these models use reduced-form estimates while 

ignoring the contemporaneous interaction between variables. If it is possible to identify the 

system, the endogenous and exogenous volatility of the variables can be modelled separately.   

 

 

1.2 OBJECTIVE AND RESEARCH METHODOLOGY 

 

The primary objective of this study is to decompose the conditional covariance matrix of a 

system of variables. Therefore, a structural GARCH model is proposed which makes use of 

existing multivariate GARCH (MGARCH) models to decompose the covariance matrix. 

This type of analysis allows for the structural analysis of the volatility generated within a 
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system of variables, as well as the volatility generated from factors outside the system. In 

most multivariate GARCH models the structural relationships between the variables are 

ignored, thereby leaving the investor without any idea of how the volatility is generated and 

what drives it. However, this type of analysis is important, for depending on the source of 

the innovation, the volatility of variables will differ in periods following the innovation. 

 

In order to satisfy the objective, the contemporaneous parameters in the system of 

endogenous variables are identified using heteroscedasticity. Moreover, a GARCH model 

developed by Rigobon and Sack (2003) is employed to identify the structural parameters as 

well as the time-varying conditional covariance matrix of the structural innovations 

(exogenous innovations) that drives the variables from outside the system. Once the system 

is identified the variation of the variables that is explained within the system (endogenous 

variation) can be recovered. The endogenous variation’s time-varying volatility is modelled 

using the standard multivariate specification proposed by Baba, Engle Kraft and Kroner in 

Engle and Kroner (1995). Although the structural parameters of the system of variables hold 

important and interesting information, it is not the main focus of this study. Identifying the 

structural parameters can be seen as a necessary condition to decompose the conditional 

variance covariance matrix into an endogenous and exogenous part. 

This research analyse the structural relation (in both the first and second moments) between 

three financial variables of the South African economy. These variables are the All Share 

index (ALSI) on the Johannesburg stock exchange, the South African Rand/US Dollar 

exchange rate (R/$) and the South African 90-day Treasury bill interest rate (Tbill). 

 

 

1.3 CONTRIBUTION OF THE STUDY 

 

The contribution of the study is twofold.  The first contribution is methodological in nature, 

while the second is empirical. The study proposes a methodology that utilises two 

multivariate GARCH models to decompose the time-varying conditional covariance matrix 
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of a system of assets, without imposing unnecessary constraints on the system.  In doing so 

more information is obtained from decomposing the covariance matrix than what is available 

from existing or traditional multivariate GARCH models. The information allows the 

investor to analyse the structural relationships between variables in the system in both the 

first and the second moments. 

 

On an empirical level, the study analyses the structural relationship between financial 

variables in the South African economy using high-frequency data. The methodology utilised 

allows for consistent and efficient estimates of the structural contemporaneous relationships 

between these variables. The study also decomposes the volatility of each individual variable 

as well as the volatility between the variables. More information is gained on what drives the 

volatility of these variables, i.e. is volatility generated within the system, alternative to 

volatility generated from structural innovations or latent factors outside the system. The 

study finally shows how the information can be utilised in a portfolio management context. 

 

1.4 OUTLINE OF THE STUDY 

 

The outline of the study is as follows. In chapter 2 the problems associated with the 

estimation of simultaneous equations are discussed. The problem of identification is 

explained as well as solutions proposed in the literature. This problem is very important, for 

identifying structural parameters can be extremely problematic. Wrong applications of 

solutions can result in spurious relationships. 

 

Once the problem of identification has been discussed, the methodology of identification 

through heteroscedasticity is explained in chapter 3. This methodology utilises the 

heteroscedasticity in data (i.e. the volatility of variables differ across time) to obtain additional 

information for identification of the structural parameters. Some empirical applications of 

this methodology are briefly highlighted in order to put its application into perspective. 
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Chapter 4 discusses existing multivariate GARCH models available in the literature. 

Understanding how these GARCH models are structured is important to identify their uses 

and shortcomings. The GARCH models used in this study are also discussed in relation to 

other standard multivariate GARCH models. 

 

Chapter 5 presents a detailed exposition of the proposed methodology to decompose the 

time-varying methodology of a system of variables. The two GARCH models under 

consideration are explained as well as the underlying derivation of the models. 

 

A brief empirical review on the relationship between the three variables of interest (i.e. the 

ALSI, the R/$ and the Tbill) is given in chapter 6. There are numerous international studies 

in the literature that estimate the relationship between these variables. A thorough 

understanding of the relationships between the variables is relevant to conceptualise the 

importance of the results of this study. 

 

Once the methodology has been explained, in chapter 7 follows the empirical application of 

the methodology using South African data. The results are analysed and discussed in detail. 

The structural parameters are identified and the covariance is decomposed into an 

“endogenous” covariance matrix and an “exogenous” covariance matrix. That is, the 

covariance is divided into the endogenous volatility inside the system and the exogenous 

volatility outside the system.  

 

Chapter 8 applies impulse responses to the empirical results obtained in chapter 7. The 

results are essential in understanding the importance of utilising the additional information 

contained in decomposing the time-varying covariance matrix of a system of assets. The 

research is concluded with an application to portfolio risk management to highlight the 

importance of the proposed methodology. 

 

Finally, in chapter 9, a summary of the research is given and some concluding comments are 

made. 
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C h a p t e r  2  

 
THE PROBLEM OF IDENTIFICATION 

 

 

2.1 INTRODUCTION 

 

In single-equation estimation there exists a one-way or unidirectional effect from the 

explanatory variables to the dependent variable. In a system of equations, the endogenous 

variables are random variables determined within the system. These variables are determined 

by not only other variables in the system, but also by disturbance terms specific to the 

variables. That implies that the change in one variable will change all the other variables in 

the system since they are determined simultaneously. When estimating a system one cannot 

determine the parameters in the system without taking into account the information 

provided by the other variables. Examples in the literature are in abundance. Perhaps most 

notable are the demand and supply case analysed by Working (1927) and Klein’s model at the 

Wharton School (Klein, 1974).  

 

When endogenous variables also serve as explanatory variables, one of the assumptions of 

the classical linear regression model (CLRM) is violated. This is the assumption that the 

endogenous variables are assumed fixed in repeated samples. In a system of equations the 

endogenous variables used as regressors are not distributed independently of the disturbance 

terms in the equation. When a disturbance term to a specific variable changes, that 

endogenous variable changes directly. Since the variables are determined contemporaneously 

within the system, the change in one variable will result in a change of other variables in the 

system. Equation 2.1 shows such a system.   

 

.n,...,2,1iforx
xg1
ikxgxk1

igxg
y
xg1

i =ε=Β+Γ   (2.1)  
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Here yi is a vector of g endogenous variables, xi is a vector of k predetermined variables and 

iε is a vector of g stochastic disturbance terms. The covariance matrix of the error terms is 

assumed to be the same for each observation. Without loss of generalisation, the system in 

equation 2.1 can be simplified to the bivariate case with only endogenous variables in 

equation 2.2 

 

jtitjt

itjtit

εβyy

ηδyy

+=

+=
       or       

1x21x22x2
YA µ= .  (2.2) 

 

 

Equation 2.2 represents the structural-form of the system. The standard assumption is that 

the covariance matrix of the system will be constant at each observation. The covariance 

matrix of the structural-form is given by equation 2.3 

 









σσ
σσ

=Ω
εεεη

ηεηη

2x2
.  (2.3) 

 

From equation 2.2 it is clear that given the bivariate case, and δ and β non-zero, a change in 

the disturbance term of one variable will not only result in a change in that variable but will 

also result in a change in the other variable. Because the endogenous variables are not 

distributed independent of their disturbance terms, estimators will be biased and inconsistent, 

even asymptotically (Green, 2000). 

 

In response to this problem researchers have turned to estimating a linear transformation of 

the structural-form, the reduced-form of the system of equations. In the reduced-form, every 

endogenous variable is expressed as a function of all exogenous variables in the system. No 

endogenous variable in the reduced-form is expressed as an explanatory variable. This 

transformation takes care of the contemporaneous feedback that makes regressors and 

disturbance terms dependent. Using this transformation, estimators will be unbiased, 
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consistent and efficient. Equation 2.4 displays the linear transformation (i.e. the reduced-

form) of equation 2.2  

 

 
[ ]

]ε[ββ
δβ1

1y

ηδε
δβ1

1y

jtitjt

itjtit

+
−

=

+
−

=
       or       

1x2

1

2x21x2
AY µ= −  .                           (2.4) 

 

The reduced-form covariance matrix is given by equation 2.5 

 

2x2
1

2x2
1

2x2
AA −′− Ω=Σ .    (2.5) 

 

One observation from equation 2.4 is important. The structural parameters of equation 2.4 

are not directly observable. Only a combination of them is observable. This combination is 

the reduced-form parameters. If one is interested in predicting the movement of an 

endogenous variable in the system, the reduced-form parameters are sufficient. However, if 

one is interested in the structural parameters it is necessary to recover them from the 

reduced-form parameters. This is not always straightforward, and in some instances, 

impossible. The problem of identifying structural parameters from the reduced-form is 

referred to as the problem of identification. 

 

 

2.2 IDENTIFICATION  

 

When estimating the behavioural parameters (structural parameters) of a system, one has to 

solve the reduced-form equations. The reduced-form expresses the endogenous variables 

simply as a function of the predetermined variables and the stochastic disturbance terms. 

From these parameters (as expressed in equation 2.4 and equation 2.5) the structural 

parameters have to be recovered. The reduced-form allows for the application of standard 
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estimation techniques, since the endogenous variables are expressed as a function of only 

exogenous (predetermined) variables and disturbance terms, which are assumed independent.  

 

When attempting to retrieve structural parameters from reduced-form parameters, there are 

three possible cases. The first case is where it is possible to extract unique structural 

parameters from the reduced-form. In this case the equations are exactly identified, or just 

identified. The second case, when the system of equations is over-identified, is where it is 

possible to retrieve the structural parameters, but more than one solution exist for every 

structural parameter in the system. The third and more problematic case is where it is 

impossible to retrieve any structural parameters from the reduced-form parameters without 

any additional information. In this case the system is said to be under-identified or 

unidentified. 

 

Figure 2.1:  Hypothetical functions for variables yj and yi and the identification 

problem  

 ( a ) 
iy

3
iy

2
iy1

iy  

jy  

3
jy

2
jy

1
jy  
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The problem of identification exists because different sets of structural parameters may be 

compatible with the same set of data.  Figure 2.1 explains the problem of identification. 

Given variables yi and yj in equation 2.4 and no other information, there is no way the 

researcher can be sure that he or she is estimating the true and exact function for yj or the 

function for yi. That is, a single observation of yj and yi represents simply the point of 

intersection of the appropriate two functions. This is indicated in figure 2.1a. With no 

additional information, it is not possible to obtain unique estimates for the structural 

parameters. Given a specific point of intersection, there exist many possible functions for yj 

and yi that go through that point. Some additional information on the nature of the two 

variables is necessary to identify unique functions for them. If some additional information 

exists on say, variable yj, it is possible to identify the function for yi. Of course, the reverse 
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also holds. Figure 2.1b and figure 2.1c indicate these cases. In these two cases the equations 

are said to be identified since it is possible to obtain unique estimates for each equation.   

 

A more formal method to establish if an equation in a system is under-, exactly- or over-

identified is the order and rank conditions for identification (Intriligator et al., 1996). The 

order and rank conditions deal with the number of endogenous and predetermined variables 

in a system of equations. For expositional reasons the following notation is introduced to 

explain the order and rank conditions: 

 

M =  number of endogenous variables in the system 

m = number of endogenous variables in the equation 

K  = number of predetermined (exogenous) variables in the system including the 

intercept 

k =  number of predetermined variables in a given equation 

P  = partitioned matrix of the reduced-form coefficients containing the coefficients of 

the predetermined variables 

 

Given the M endogenous variables in the system, there should be M equations. The order 

conditions for identification are as follows: 

 

Order condition for Identification of Equation j: 

 

j
*
j MK ≥ . 

 

The number of exogenous variables excluded from equation j ( *
jK ) must be at least as large as the number of 

endogenous variables included in equation j ( jM ). 

 

The order condition is only a counting rule. It is a necessary but not sufficient condition for 

identification. It ensures that each structural coefficient has at least one solution, but does not 
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ensure that it has only one solution. The sufficient condition for uniqueness is the rank 

condition. The rank condition requires the researcher to partition the matrices and impose 

restrictions. 

 

Rank condition for Identification: 

 

[ ] 1MPrank −=  

 

The rank of the partitioned matrix of the reduced-form coefficients containing the coefficients on the 

predetermined variables is equal to the number of endogenous variables less one. 

 

This condition imposes a restriction on the partitioned matrix of the reduced-form 

coefficient matrix. In practice it is easy to check both conditions for a small model. For large 

models, frequently only the order condition is verified (Green, 2000). Given the order and 

rank conditions one can distinguish between four cases: 

 

1. If K-k > m-1 and the rank of the partitioned matrix P is M-1, the equation is over-

identified. 

 

2. If K-k = m-1 and the rank of the partitioned matrix P is M-1, the equation is exactly 

identified. 

 

3. If K-k ≥ m-1 and the rank of the partitioned matrix P is less than M-1, the equation 

is under-identified. 

 

4. If K-k < m-1 the structural equation is unidentified. The rank of the partitioned 

matrix P is bound to be less than M-1. 

 

From the above discussion it can be determined that the equations in the system such as 

presented in equation 2.4 are unidentified. As mentioned before, if an equation is identified 
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(exactly or over) it does not present much of a statistical problem. If the system is under-

identified, the only way to obtain the structural parameters from the reduced-form 

parameters is through imposing some restrictions on the equations. Such restrictions, of 

course, can only be imposed if their validity can be verified. The additional information for 

the restrictions is obtained from several sources: 

 

1. Normalisation. In each equation one variable has the coefficient of one. It is similar 

to putting one variable on the left hand side of the equation.  Normalisation directly 

scales down the number of coefficients to estimate in each equation. 

 

2. Identities. Variable definitions or equilibrium conditions imply that all the 

coefficients in a particular equation are known. This implies that there are less 

parameters to estimate which adds additional information to the system. 

 

3. Exclusions. The omission of variables from an equation places zeros on certain 

coefficients to be estimated. 

 

4. Linear restrictions. Restrictions on the structural parameters may serve to rule out 

false structures.  One example is the restriction of the coefficients in a production 

function to add up to unity. 

 

5. Restrictions on the disturbance covariance matrix. In the identification of a system, 

this is similar to restrictions on the slope parameters. For example, one may assume 

that the structural disturbance terms are uncorrelated. 

 

6. Nonlinearities.  In some systems the variables, the parameters or both enter non-

linear. This will usually complicate the analysis, but may aid in identification.  
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2.3 REDUCED-FORM VS. STRUCTURAL PARAMETERS 

 

The question of when it is necessary to use reduced-form parameters and when it is 

necessary to use structural-form parameters depends on the purpose of the estimation. If the 

purpose of estimation is to forecast variables, to describe various characteristics of the data, 

or to search for hypotheses of interest to test a theory, the reduced-form parameters are 

sufficient. However, using the reduced-form of a system is not sufficient if the aim is to 

evaluate structural innovation and economic policy. Also, related impulse response functions 

are less useful if not done using structural equations (Cooley and LeRoy, 1985). Since the aim 

of this paper is to analyse, amongst others, the effects of structural innovations on a portfolio 

of assets, the reduced-form is not sufficient for using in the research. 

 

 

2.4 OTHER METHODS OF ESTIMATING CONSISTENT PARAMETERS 

IN A SYSTEM OF EQUATIONS  

 

Apart from restricting the parameters that need to be estimated the literature also proposes 

other methods to estimate consistent and efficient structural parameters. 

 

2.4.1 Instrumental Variables (Two-stage least squares) 

 

Instrumental variable technique (IV) is a general estimation procedure in situations where the 

independent variable is correlated with the disturbance terms. If an instrument can be found 

for each endogenous variable that appears as regressor in the system, the structural 

parameters can be estimated consistently. However the instrument must be highly correlated 

with the exogenous regressors and uncorrelated with the disturbance terms. 

 

Two-stage least squares (2SLS) are a special case of IV and as the name suggests contains 

two steps. Step 1 estimates the reduced-form parameters by regressing each endogenous 

variable acting as a regressor on all the exogenous variables in the system of simultaneous 
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equations. Step 2 then uses these estimated values as instrumental variables for these 

endogenous variables in estimating the parameters using OLS. 2SLS gives consistent 

estimators for the parameters in the system of equations. 

   

2.4.2 Three-Stage Least Squares 

 

Three-Stage Least Squares (3SLS) is the system counterpart of 2SLS. The 3SLS estimator is 

consistent and in general is more efficient than 2SLS. The first step in 3SLS calculates the 

2SLS estimates as defined above. Step 2 the use the 2SLS estimates to estimate the individual 

structural equations’ disturbance terms and use them to calculate the variance –covariance 

matrix of the errors. The last step then applies generalized least squares and the variance-

covariance matrix to estimate the system of equations once again.  

 

In general, the superiority of 3SLS over 2SLS is slight if the computational intensity of 3SLS 

is taken into account. For this reason 3SLS has not been very popular in empirical studies in 

the past.  

 

2.4.3 Full Information Likelihood Estimation 

 

In this technique estimates of all the reduced-form parameters are found by maximising the 

likelihood function of the reduced-form disturbances, subject to zero restrictions on all the 

structural parameters in the system of equations. The usual assumption made is that the 

structural disturbances, and thus the reduced-form disturbances is distributed multivariate 

normally. The variance-covariance matrix under this assumption is as efficient as the 

variance-covariance matrix in 3SLS. 
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2.5 CONCLUSION 

 

When estimating a system of equations it is not possible to directly estimate the structural 

parameters of the system. Rather, in order to obtain unbiased and consistent estimates, a 

linear transformation of the structural-form (i.e. the reduced-form) is estimated. In order to 

obtain the structural-form parameters from the reduced-form estimates, the system has to be 

identified (either exactly or over-identified). When the system is not identified it is not 

possible to recover the structural parameters without additional information. The literature 

proposes a solution to this problem by placing restrictions on the equations. These 

restrictions are difficult to defend when working with high-frequency data (e.g. daily asset 

return data). If the researcher wants to recover structural parameters when working with this 

type of unidentified system, alternative sources of restrictions have to be imposed. 

Alternative methods for estimating systems have been proposed. Most notable of these 

methods is 2SLS. The main problem with 2SLS is finding suitable instrumental variables that 

are highly correlated with the regressors but uncorrelated with the disturbance terms. If no 

suitable instruments can be found, 2SLS will still give inconsistent estimators. However, 

recently the heteroscedasticity that prevails in data has been successfully used to identify 

equations where traditional long-run constraints are not applicable. It is this identification 

methodology that will be used to identify and decompose the system of equations.   
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C h a p t e r  3  

 

IDENTIFICATION THROUGH HETEROSCEDASTICITY 

 
 

3.1 INTRODUCTION 

 

When modelling economic variables it is often useful to distinguish between long-run and 

short-run relationships between variables. The long-run relationship represents the 

equilibrium between variables while the short-run relationship represents the adjustment of 

the variables towards the long-run equilibrium. To illustrate the idea, Johansen and Juselius 

(2000) use an analogy from physics and think of the economy as a system of balls connected 

by springs. When left alone the system will be in equilibrium but pushing any ball will bring 

the system away from equilibrium. Through the connection of the balls the movement or 

shock will influence the whole system of balls. When there is no shock present the economy 

is in a “steady-state” moving along at some controlled speed. The long-run relationships 

between economic variables represent the steady-state in the economy. The magnitude of the 

parameters will dictate at what speed the balls move in the controlled state. However, as soon 

as one of the balls is shocked the effect is transmitted to all the balls. At some stage the 

springs are stretched to its limit and the balls move back towards the steady-state observed 

before the shock. This adjustment away and towards the steady state represents the dynamic 

short run relationship between variables. Parameters of this nature measure the short run 

dynamics between economic variables. The nature of the parameters differs and their use in 

economic research depends on the problem at hand. Identifying the parameters are essential 

in economics as it gives a picture of the transmission of shocks through the economy and 

how the economy adjust to shocks back towards its steady-state. The parameters will also 

give an indication of the speed at which the economy is moving in its steady-state. The 

parameters in the system need to be estimated simultaneously. Depending on the frequency 

of the data either the long-run or short-run dynamic parameters will be estimated. High 

frequency data (e.g. daily data) on certain economic variables will typically measure average 

short-run relationships as “noise” in the system is likely to affect the steady-state of the 
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system. This “noise” consists of other variables that may drive relationships in the short-run 

as what is suggested by economic theory (Harasty and Roulet, 2000). Over lower frequency 

data (e.g. quarterly data) noise in the system is likely to average out and the parameters is 

more likely to represent long-run steady state relationships. However, the econometric 

problems in obtaining parameters stay the same in both cases. The solution to the problem 

will differ depending on the type of system at hand. 

 

If a system of equations is unidentified, structural parameters cannot be recovered from the 

reduced-form estimation. The literature presents a solution by constraining the number of 

parameters to be estimated and thereby indirectly increasing the number of equations (Fisher, 

1976, Haavelmo, 1947, Koopmans et al., 1950). These restrictions differ in nature. Zero 

restrictions (the coefficients of variables in an equation are assumed to have zero values) are 

the most commonly used restriction (Gujurati, 2003). This type of restriction is often found 

in cointegration analysis where long-run relationships are analysed. Other restrictions take on 

a variety of forms such as the use of extraneous estimates of parameters, knowledge of 

relationships that exist between parameters, knowledge of the variances of the disturbance 

terms, normalisation, sign restrictions and covariance constraints (Kennedy, 2003).  

 

However, when working with high-frequency financial data, most of these restrictions, based 

on long-run relationships, are difficult to defend. Financial assets tend to influence one 

another in a very different way in the short run than what economic and finance theory 

suggest should hold in the longer run. In the short run financial assets are influenced by 

investor sentiment rather than fundamentals. Therefore, if the researcher is working with an 

unidentified system of equations containing high-frequency data (e.g. daily financial asset 

returns), obtaining any structural parameter from the reduced-form estimation is extremely 

difficult, and in many cases, subject to (invalid) ad hoc constraints. Rigobon (2003) presents a 

methodology based upon the heteroscedasticity in the data that solves the identification 

problem in the case of an unidentified system of equations. When working with high-

frequency data, it is often the case that none of the standard identification assumptions can 

be defended. However, high-frequency financial data often exhibits heteroscedasticity.  
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3.2 IDENTIFICATION THROUGH HETEROSCEDASTICITY 

 

Wright (1928) and Wright (1921) first introduced the use of second moments as a source of 

identification1. Rigobon (2003) extended this literature by developing the methodology 

whereby heteroscedasticity is used as an instrument to solve the identification problem. 

Reconsider the general case of two assets, yi and yjj: 
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The system in equation 3.1 includes only endogenous variables and asset specific disturbance 

terms. The parameters of interest are β  and δ , and the variances of the innovations are 2
ησ  

and 2
εσ . As explained in chapter 2, if β  and δ  are non-zero, the parameters in equation 3.1 

cannot be estimated unbiased and consistently without any further information. It is only 

possible to estimate the covariance matrix of the reduced-form of the system given by 
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Given the estimated covariance for the reduced-form in equation 3.2, the problem of 

identification is that the covariance matrix only provides three moments while there are four 

unknowns to recover. Many constraints have been used to solve this problem. These 

constraints have proven very helpful in many economic problems, but are not practical in all 

                                                 
1 Wright (1928) and Wright (1923) showed that when heteroscedasticity is present in an equation, it reduces the bias in 

simultaneous equations in the OLS estimation. The bias is reduced because the hetroscedasticity present in the data serves 
as instrument to identify the structural parameters. 
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instances. Therefore, in cases where traditional constraints cannot be justified, identification 

based on heteroscedasticity may be helpful. 

The method of identification through heteroscedasticity is intuitively appealing. Consider the 

case where there are two regimes in the variances of the structural disturbance terms. One 

regime exhibits high volatility in the disturbance terms while the other regime exhibits low 

volatility in the disturbance terms. Also assume the structural parameters of interest remain 

constant across both regimes. Under these two assumptions the reduced-form covariance 

matrices in both regimes have the same structure: 
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Each regime in equation 3.3 is denoted by )2,1(s∈ . In this two-regime system of equations, 

there are now six unknowns ( 2
ε,2

2
η,2

2
ε,1

2
η,1 σ,σ,σ,σδ,β, ), while there are also six equations in 

the two reduced-form covariance matrices. It should be clear that the equations are identified 

if they are independent, i.e. if the structural-form innovations across regimes are not 

correlated, the number of equations matches the number of structural parameters to retrieve. 

Figure 3.1 gives an intuitive explanation of the identification methodology.  Assume it is 

known that there is an increase in the variance of variable yj. During this period the 

realisations along the curve for variable yi are going to widen. This allows one to identify the 

slope of the equation for variable yi. The method is similar to that of an instrumental variable 

that allows one to identify an equation.  
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Figure 3.1:  Identification through heteroscedasticity 

 
Two assumptions are critical for the equations to be identified: 

 

1. The structural innovations should not be correlated. 

2. The parameters are stable across the heteroscedasticity regimes.  

 

These two assumptions are not controversial and are standard in much of the applied macro 

economic research (Rigobon, 2003).  If the two assumptions are satisfied, the equations will 

be identified. Rigobon (2003) provides the following proposition for identification: 

 

Proposition 3.1: The system as described in equation 3.1, where the parameters are stable and where the 

disturbance terms that have finite variance are not correlated and exhibit heteroscedasticity that can be 

described by two regimes, will be identified if the covariance matrices satisfy  
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The condition is similar to testing the rank condition when the order condition has been 

satisfied. 
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In the case where there are more than two regimes, the equations in the system may still be 

identified. If there are multiple regimes, )S,...,1(s∈ , the data has to exhibit multiple finite 

heteroscedastic regimes. For each regime the covariance matrix is 

)S,...,1(s
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The system has S3× equations (3 equations per regime) and 2S2 +×  unknowns to solve (S 

times the two structural variances for each regime plus two parameters).  

 

It is also possible to extend this identification framework to the case of a multivariate system 

where common shocks occur. The inclusion of common shocks in the system of equations is 

equivalent to relaxing the assumption that the structural innovations are correlated. 

Continuing with a system of variables, assume there are M variables in the system determined 

endogenously, with K common shocks. There are still S)(1,...,s∈  possible volatility regimes. 

The structural-form is denoted as: 
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where tM,y are the endogenous variables, tK,z the common shocks and tM,ε the structural 

innovations. The common shocks are assumed to be independent of one another, such that 
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Furthermore, matrix A contains the contemporaneous parameters from the system where 

normalisation is already imposed. Matrix Π  contains the parameters of the common shocks 

to the system with normalisation of unity on the first equation: 
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In order for the system described in equation 3.5 to be identified, Rigobon (2003) provides 

the following proposition: 

 

Proposition 3.2: In the multivariate system of M endogenous equations with K common shocks, the 

equations are identified if and only if, for M>1, 

 

1. the number of states (S) satisfies 
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3. and the covariance matrices constitute a system of equations that are linearly independent. 

 

From the above it should be clear that in the case where there are no common shocks, only 

two regimes are required to identify the system. If the common shocks are larger than zero, 

the regimes required to identify the system will also be larger than two. 

 

3.3 EMPIRICAL STUDIES USING IDENTIFICATION THROUGH 

HETEROSCEDASTICITY 

 

Relatively new research has been conducted extending the intuition first developed by Wright 

(1928) and Wright (1921). This has been extended to non-linear models, ARCH and 

GARCH models and models that are partially identified.  

 

There is a considerable amount of interest in the relationship between different asset prices, 

monetary policy and the interaction between them. There is also great interest in the 

feedback effect between asset prices between countries, especially in times of financial crisis. 

Since the interaction between these types of variables is simultaneous, the problem of 

identifying a structural model in order to solve the system simultaneously prevails. It is 

therefore not surprising that most of the applied research that incorporates heteroscedasticity 

to identify a system focuses on asset prices in and across countries as well as the effect of 

monetary policy on assets. Although the application and purpose of the methods differ in the 

various papers, they all share the same method of identification. By identifying 

heteroscedasticity, equations are added to the system after some covariance restrictions have 

been imposed. There have also been some recent developments in structural GARCH 

models using the same method.  

 

Sentana (1992) and Sentana and Fiorentini (2001) studied the problem of estimation in a 

factor regression model when there is conditional heteroscedasticity. They were interested in 

the contemporaneous effects between different asset prices and the factors that drive them. 
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They study the case where heteroscedasticity is achieved when the common latent factors 

exhibit heteroscedasticity. They find that if the variation of conditional moments is explicitly 

recognised in estimation, identification problems are often alleviated. They apply their results 

to dynamic arbitrage pricing theory (APT) models to show that a system can be identified 

through heteroscedasticity.    

 

Caporale, Cipollini and Demetriades (2000) evaluated whether tight monetary policy was 

successful in defending the exchange rate from speculative pressures during the Asian crisis. 

The challenge they faced was to distinguish between monetary policy exogenous shocks and 

monetary policy actions that to some extent respond to current developments in the 

economy. There is thus an identification scheme needed to solve the simultaneity problem 

between policy instruments and other endogenous variables, such as exchange rates to which 

monetary policy reacts. They employ a structural VAR to model movements in interest rates 

and exchange rates simultaneously, and identify the system through heteroscedasticity in the 

data. They find that by increasing interest rates, the central banks generated an adverse effect 

that led to a greater depreciation of the countries’ currencies and thereby magnifying the 

crisis.  

 

Dungey and Martin (2001) developed a multivariate GARCH model to identify the 

contemporaneous flows between Asian countries, Australia and the US during the Asian 

crisis. Their model is a latent factor model that allows them to decompose the relative 

contribution of alternative factors to the volatility in financial markets. Their identification of 

the contemporaneous coefficients is also based on identification through heteroscedasticity. 

They find strong results that volatility in currency markets was primarily driven by volatility in 

equity markets, with the main channel linking these markets being spillovers from the equity 

market to the currency markets. The empirical results in this paper provide strong support 

for modelling currency and equity markets simultaneously. 

 

Rigobon and Sack (2003) looked at how monetary policy reacts to changes in the stock 

market. The impact of stock markets on the macro economy comes primarily through two 
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channels. The first is the wealth channel and the second the balance sheet channel. Because 

of the importance of the stock market, monetary policy will react to changes in stock prices. 

The problem in estimating this effect lies in the fact that the policy reaction function and 

stock prices react simultaneously.  In order to overcome this problem, Rigobon and Sack 

(2001) use heteroscedasticity in the data to identify a reaction function for the monetary 

authorities in the United States. They specify stock prices as a function of a short-term 

interest rate, while the short-term interest rate is also a function of stock prices. They also 

identify some common factors that influence both variables. They estimate a reduced-form 

VAR using the two response functions. In order to identify the system, they divide the 

sample into sub-periods. This allows for the covariance matrices in each regime to add 

equations to the system in order to identify the structural parameters. In related research, 

Rigobon and Sack (2004) use a similar approach to identify how asset prices react to 

monetary policy. They demonstrate that the response of asset prices and market interest rates 

to changes in monetary policy can be estimated using heteroscedasticity as an instrument for 

identification.  

 

Rigobon (2002) developed a multivariate GARCH model to identify the structural 

relationship between yields on sovereign debt between Mexico and several countries. He 

finds that there is a significant change in the risk associated with a country before and after 

the country receives an upgrade from rating agencies. His contribution to the literature 

concerning identification is the methodology that he applies. This GARCH model offers a 

solution to the problem of simultaneous equations when data suffer from conditional 

heteroscedasticity. 

 

  

3.4 CONCLUSION 

 

This chapter introduces an alternative method to identify a system of equations when 

traditional restrictions cannot be defended on economic or statistical grounds. The intuition 

behind the identification procedure is straightforward. If the data exhibit heteroscedasticity, 
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the information can be used to add equations to the system in order to recover the structural 

parameters. Traditional restrictions placed on reduced-form estimations to recover structural 

parameters are in these cases not always defendable. This identification method is ideal in the 

case of high frequency financial data that often exhibit conditional heteroscedasticity. 

Although the concept of identifying a system of equations through the heteroscedasticity has 

been around for some time, it is not until recently that it has been applied in the context of 

high-frequency data. The applied studies using this methodology are therefore limited.  

 

Identification through heteroscedasticity is used in conjunction with a multivariate GARCH 

model in the proposed methodology to identify a system of equations. The identification of 

the structural parameters is crucial to decompose the volatility in the system of variables into 

the endogenous volatility generated between variables and the exogenous volatility generated 

by structural innovations.  
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C h a p t e r  4  

 
MULTIVARIATE GARCH MODELS 

  

 

4.1 INTRODUCTION 

 

The purpose of the research is to analyse the structural composition of a system of variables 

both in the first and second moments. Since the proposed methodology makes use of 

multivariate Generalised Autoregressive Conditional Heteroscedasticity (MGARCH) models, 

it is necessary to discuss existing MGARCH models to highlight their uses as well as 

shortcomings. More specifically, the survey on existing models will show that the majority of 

existing GARCH models do not attempt to obtain structural relationships between variables 

but rather focus on reduced-form estimates. Although sufficient to forecast volatility, 

reduced-form estimates provide little information on what drives the volatility of a variable.    

 

The introduction of Autoregressive Conditional Heteroscedasticity (ARCH) models to 

econometrics by Engle (1982) allowed researchers to detect behaviour in financial data that 

may not be linear in nature. The ARCH model allowed econometricians to model volatility 

behaviour in financial data, which was previously extremely difficult.  Following the success 

of ARCH modelling, Bollerslev (1986) introduced the now widely used GARCH model. This 

type of model explicitly models a time-varying conditional variance as a linear function of 

past squared residuals and of its own past values. The ARCH and GARCH models have 

been applied with great success in various situations but more predominantly in financial 

market research.  

 

Since the introduction of ARCH and GARCH models to the literature, many different types 

of GARCH models have been developed. These types of models, as introduced by Engle 

(1982) and Bollerslev (1986) are all univariate in nature. That is, univariate models assume 

asset movements are independent from one another. Many comprehensive surveys exist on 

the univariate models (see e.g. Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and 
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Nelson (1994), Pagan (1996)). However, to some extent temporal dependence in second 

moments of assets does exist. In order to understand and predict the movements of different 

asset volatilities over time, it is necessary to recognise this dependence, which is captured in 

MGARCH models. Therefore, because MGARCH models incorporate the dependence of 

volatilities they provide a tool for better decision making in financial analysis. Examples 

where MGARCH models have been applied successfully include asset pricing models, option 

pricing, portfolio selection, and value-at-risk (Bauwens, Laurent and Rombouts (2003)). Not 

many comprehensive surveys exist on the available multivariate GARCH models. However, 

Bauwens, Laurent and Rombouts (2003) provide a fairly up to date survey of MGARCH 

models. This chapter is based on their survey and covers the most common used MGARCH 

models.  

 

4.2 AN OVERVIEW OF MGARCH MODELS 

 

Given a vector stochastic process { }ty  of dimension 1N×  and θ  a finite vector of 

parameters, we can write the process as 

 

ttt )(y ε+θµ= . (4.1) 

 

In equation 4.1 )(t θµ is the conditional mean vector and t
2/1

tt z)(H θ=ε . t
2/1

t z)(H θ is a 

NN×  positive definite matrix and tz is a 1N×  random vector to be i.i.d. with its first and 

second moments 0)z( t =Ε  and Nt I)zvar( =  respectively. NI  is an identity matrix of order 

N. tH is the positive definite conditional variance matrix of ty  and is given by 

 

tt1tt1t1tt H)(Var)y(Var)Iy(Var =ε== −−−  (4.2) 

 

where tI is the information matrix available at time t. Σ  is the unconditional variance of  the 

matrix,  i.e. [ ]tHΕ=Σ . 
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When estimating tH  the usual trade-off between general models and parsimonious models 

apply. Some models become intractable if the number of time series included in the model 

becomes too large (usually more than 4). The MGARCH models therefore differ in the 

number of parameters to be estimated in θ .  A second problem when estimating MGARCH 

models, is that tH has to be positive definite2. Several models ensure this condition under 

very loose conditions. The purpose and use of each MGARCH model differ and it is 

therefore difficult to define the “best” model. Ranking the MGARCH models therefore 

depends on the specific problem at hand and the application of the model. 

 

MGARCH models can be divided into three broad classes. In the subsequent section each of 

these classes will briefly be discussed. 

  

4.2.1 VEC and BEKK models 

 

The VEC model proposed by Bollerslev, Engle and Wooldridge (1988) has a fairly general 

formulation. The model stacks the lower triangular portion of a NN× matrix as a 

12/)1N(N ×+ vector. The VEC(p,q) model can be defined by 

 

1tj
p

1j
jtj

q

1j
t hGnAch −

=
−

=
Σ+Σ+=  (4.3) 

 

where th is )H(vech t and tn is )(vech ttε′ε . In the specification )(vech ⋅  is an operator that 

stacks the lower triangular portion of a NN ×  matrix as a 12/)1N(N ×× vector. In the 

bivariate case, the (p,q) model will be 

 

                                                 
2 A matrix is said to be positive definite if the characteristic roots of that matrix is positive. 
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This specification of the VEC model contains 21 parameters to estimate (because of its 

generality, i.e. the structure of th  is not constrained). If the specification is higher than the 

(1,1) specification in equation 4.4, the model becomes too complex to estimate in practice. 

 

To overcome this problem the same authors have introduced some simplifying assumptions. 

Bollerslev, Engle and Wooldridge (1988) suggest a diagonal VEC (DVEC). In this 

specification, it is assumed that the jA and jG  matrices in equation 4.3 are diagonal. This 

implies that the off-diagonal elements are zero, which greatly reduces the number of 

parameters to be estimated. The variance depends now only on past values and its own 

squared errors. In equation 4.4 the number of parameters to be estimated reduces to only 9. 

 

It is difficult to guarantee that the variance matrix in the VEC model is positive-definite 

without imposing strong restrictions on the parameters. In order to overcome this problem, 

Engle and Kroner (1995) proposed a new specification for tH that easily imposes its 

positivity, i.e. the BEKK model (after Baba, Engle, Kraft and Kroner). 

 

The BEKK (p,q,K) model is defined as: 

 

jkjtjk
p

1j

K

1k
jkjtjtjk

q

1j

K

1k
t GHGAACCH −

==
−−

==
′ΣΣ+ε′ε′ΣΣ+′=  (4.5) 

 

where jkA,C and jkG are NN× matrices but C is upper triangular. 

 

For the bivariate case the BEKK model is: 
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In this specification of the BEKK model, there are 11 parameters to be estimated, compared 

to the 21 in the VEC specification. It can also be shown that the BEKK model is a special 

case of the VEC model. A further reduction of the number of parameters to be estimated 

can be achieved by estimating a diagonal BEKK model (Engle and Kroner, 1995). This is 

also a DVEC model but less general than the specification suggested by Bollerslev, Engle and 

Wooldridge (1988). 

 

 

4.2.2 Factor and orthogonal models 

 

BEKK and VEC models both require a high number of parameters to be estimated (even 

after imposing some restrictions). The BEKK and VEC models are therefore not often used 

when estimating models with large numbers of series. To overcome this problem, factor and 

orthogonal models impose a common dynamic structure on all elements of the conditional 

covariance matrix )H( t . This results in a model with less parameters to be estimated. 

 

Engle, Ng and Rothschild (1990) proposed a factor model where tH is determined by a small 

number of common underlying variables, called factors. The common underlying variables 

are supposed to be a small number of factors that drives the underlying volatility across 

variables. The factor model can also be expressed as a special case of the BEKK model. The 

BEKK(p,q,K) model is a factor model, denoted by F-GARCH(p,q,K), if for each 
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k=1,2,…K, jkA and jkG have rank of unity and have the same left and right eigenvectors, 

kλ and kω , i.e.  

 

kkkjjkA λ′ωα=  and kkkjjkG λ′ωβ= . (4.7) 

 

In equation 4.7, jkα and jkβ are scalars, and kλ and kω are 1N× vectors with 

 





=
≠

=λω′
ikfor1
ikfor0

ik  and 1kn
N

1n
=ωΣ

=
. (4.8) 

 

Using equation 4.5 of the standard BEKK model to substitute equation 4.7 and 4.8 into, it is 

possible to obtain: 

 











ωω′βΣ+αε′εω′αΣλ′λΣ+Ω= −

=
−−

==
kjjtkkj

p

1j
kjjtjtjk

2
kj

q

1j
kk

K

1k
t HH . (4.9) 

 

The K-factor GARCH model implies that the time-varying part of tH has reduced rank K, 

but tH remains of full rank because of Ω . In this model kλ is called the k-th factor loading 

and tkεω′  the k-th factor. 

 

The orthogonal models are a specific class of factor models. Orthogonal models are based on 

the assumption that the observed data can be obtained by a linear transformation of a set of 

uncorrelated components as expressed in equation 4.10 

 

tt22t11t ey +δλ+δλ= . (4.10) 
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In equation 4.10 itδ (i = 1, 2) are the factors and te  represents idiosyncratic shocks with a 

constant variance which is uncorrelated with the two factors. These factors or components 

are chosen to be the principal components of the data. Alexander and Chibumba (1997) as 

well as Alexander (2001) first proposed this model. In these models the NN× time-varying 

variance is generated by m univariate GARCH models, where Nm < determined using 

principal component analysis is. The orthogonal GARCH models are based on the factor 

GARCH models and are thus nested in the class of BEKK-GARCH models. 

 

 

4.2.3 Conditional-Correlation models 

 

When estimating a conditional-correlation GARCH model, the first step is to choose a 

model for each conditional variance. Each conditional variance may follow a different 

process. For example, one variance may follow a GARCH process while another series may 

follow an exponential GARCH (E-GARCH) process. In the second step, based on the 

conditional variances, the conditional correlation matrix is modelled. This conditional matrix 

should also be positive definite across the whole sample. Two classes of conditional-

correlation models exist. The first is the constant conditional-correlation model and the 

second the dynamic conditional-correlation model. 

 

Bollerslev (1990) proposed a class of MGARCH models where the conditional correlations 

are constant across time. This restriction greatly reduces the number of parameters to be 

estimated. The Constant Conditional Correlation (CCC) model is defined as: 

 

)hh(RDDH jjtiitijttt ρ==  (4.11) 

 

where 

 

)h...h(diagD 2/1
NNt

2/1
t11t = . (4.12) 
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In equation 4.11 and equation 4.12, 2/1
iith  can be defined as a univariate GARCH model, and 

 

)(R ijρ=  (4.13) 

 

which is a symmetric positive definite matrix with i,1ii ∀=ρ . 

 

For example, in the first step one would take the GARCH(p,q) process for each conditional 

variance in tD ( Bauwens, Laurent and Rombouts, 2003) 

 

N,...,1ihh jt,iiij
p

1j
jt,i

2
ij

q

1j
iiit =βΣ+εαΣ+ω= −=

−
=

. (4.14) 

 

If all the conditional variances are positive and R is positive definite, tH  will be positive.  

 

The unconditional variances are then obtained through: 

 

∑ β−∑ α−
ω

=σ
==

p
1j ij

q
1j ij

i
ii 1

. (4.15) 

 

The assumption that the conditional correlations between assets are constant may be an 

unrealistic assumption in many cases of applied research. Tse and Tsui (2002) and Engle 

(2001) proposed a generalisation of the CCC model where the conditional correlation matrix 

is time dependent. The Dynamic Conditional Correlations (DCC) model of Engle (2001) is 

defined by: 

 

tttt DRDH =  (4.16) 
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where tD is defined in equation 4.12. Once again, iith can be defined as any univariate 

GARCH model, and tR as: 

 

2/1
tt

2/1
tt )diagQ(Q)diagQ(R −−= . (4.17) 

 

tQ is a NN×  symmetric positive definite matrix given by: 

 

∑β+µ′∑ ∑ ∑ µ+−−=
=

−−
= = =

−
S

1s
sts1t

L

1l

S

1s

L

1l
1tst QαlQ)βαl(1Q  (4.18) 

 

where iititit h/ε=µ , tQ is the NN× unconditional variance matrix of tu , and 

)0(l ≥α and )0(s ≥β are scalar parameters satisfying 1βαl
L

1l

S

1s
s <∑ ∑+

= =
. 

 

The DCC models can be estimated consistently in two steps, which make this approach 

attractive when the number of variables (N) is large. The DCC models also allow for more 

complex specifications, using N univariate specifications for the N variables.  

 

4.3 CONCLUSION 

 

MGARCH models allow for the simultaneous estimation of time-varying volatilities of 

different variables. Time-varying volatility allow for the better estimation of measures of risk 

and therefore asset allocation. The great practical drawback with MGARCH models is that 

the number of parameters to be estimated increases greatly as the number of variables 

increases. In most instances, more than four variables in the models make the number of 

parameters too many to be estimated. To overcome this problem many different MGARCH 

models have been developed. Depending on the problem at hand, the researcher will apply a 

different, but relevant MGARCH model. With MGARCH models, the trade-off is between 
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generality (i.e. including as much information on many variables as possible) and the number 

of parameters to be estimated.  

 

MGARCH models can be broken down into three broad types of models. The first group is 

the VEC and BEKK specifications.  The VEC models are very general in specification but 

require a lot of parameters to be estimated. The BEKK model constrains the number of 

parameters to be estimated at the expense of generality. Secondly there are the Factor and 

Orthogonal GARCH models. These models allow for many variables to enter into the 

GARCH models without increasing the number of parameters to be estimated too much. 

More recently the Conditional Correlation model has been developed that uses a two-step 

procedure to estimate the parameters. This procedure allows for a fairly general specification 

of the conditional covariance matrix. Table 4.1 presents a summary of the MGARCH models 

discussed above. 

 

All the models discussed are reduced-form models. It is not possible to recover any structural 

parameters from the multivariate set-up. As mentioned in the beginning of the chapter, this is 

simply because most of these models are only concerned with forecasting the volatility of 

variables. For forecasting purposes the reduced-form estimates are sufficient. However, 

when the purpose of the research is to explain the underlying structure of the volatility in 

individual, as well as the volatility between different variables, traditional MGARCH models 

are not sufficient. In this case another methodology is necessary.  

 

In the next chapter a methodology is introduced that determines the structural characteristics 

of the volatility in and between variables. This methodology makes use of multivariate 

GARCH models and the heteroscedasticity in the data to obtain the structural estimates of 

the volatility.  
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Table 4.1:  Summary of MGARCH models 

 

 
tH  # of parameters 

for N=2, 3, 4. 

VEC(1,1) 

1tj
p

1j
jtj

q

1j
t hGnAch −

=
−

=
Σ+Σ+=  2

1)1N(N)(1N(N +++

 

21, 78, 210 

BEKK(1,1) 

jkjtjk
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1j

K
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1j

K

1k
t GHGAACCH −

==
−−

==
′ΣΣ+ε′ε′ΣΣ+′=  2

)1N5(N +
 

11, 24, 42 
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GARCH(1,1,1)   






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
ωω′βΣ+αε′εω′αΣλ′λΣ+Ω= −

=
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==
kjjtkkj
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2
)5N(N +

 

7, 12, 18 

CCC )hh(RDDH jjtiitijttt ρ==  
2

)5N(N +
 

7, 12, 18 

DCC(1,1) )hh(RDDH jjtiitijttt ρ==  
2

)4N)(1N( ++
 

9, 14, 20 

Source: Bauwens, Laurent and Rombouts (2003) 
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C h a p t e r  5  
 
 

A STRUCTURAL GARCH MODEL 

 
 

5.1 INTRODUCTION 

 

If the researcher is interested in not only forecasting the volatility of variables but also in 

explaining the structure of the volatility, traditional MGARCH models are not sufficient. 

That is, if the researcher is interested in decomposing the conditional covariance of a system 

of equations into the endogenous conditional covariance generated inside the system and the 

exogenous conditional covariance generated by innovations or latent factors outside the 

system, it is necessary to find the structural parameters to identify the structural equations. 

However, in order to recover the structural equations from the reduced-form estimation, 

some identification restrictions are necessary. When modelling with high-frequency data (like 

financial data), traditional constraints are not always valid to identify a system (see chapter 3). 

Some alternative identification methodology is necessary that doesn’t impose a structure on 

the model that is invalid. 

  

This chapter proposes a two-step structural GARCH model as opposed to the traditional 

“reduced-form” MGARCH models. The structural model estimates the structural equations 

as well as the conditional covariance matrix. The estimation methodology is divided into two 

parts: 

 

1. The first step identifies the system of equations and estimates the conditional 

covariance matrix of the structural innovations. A “structural” GARCH model 

developed by Rigobon (2002) and Rigobon and Sack (2003) is utilised to 

  

a.) identify the structural parameters  
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b.) estimate the conditional covariance of structural innovations resulting from 

outside the system (the exogenous volatility).  

 

2. The second step recovers the variation of the variables explained within the system and 

estimates the endogenous conditional covariance. For this step any standard 

MGARCH model (as explained in chapter 4) can be employed to estimate the 

conditional covariance matrix of variables determined inside the system (the 

endogenous volatility).  

As equation 5.1 shows, the sum of the two conditional covariance matrices gives the total 

conditional covariance matrix for the system of variables: 

exogenous,tendogenous,ttotal,t HHH +=  (5.1) 

 

The traditional MGARCH models determine the conditional covariance matrix ( total,tH ) 

without decomposing the conditional covariance matrix into separate parts. When 

decomposing the total conditional covariance matrix as in equation 5.1, it is possible to 

determine which part of the variance is determined by other variables inside the system 

( endogenous,tH ) and which part of the variance is explained by variable specific structural 

innovations ( exogenous,tH ). It is also possible to take into account the effect of the structural 

parameters on movements in volatility going forward. This is not possible when estimating 

reduced-form parameters or traditional MGARCH models. 

 

The chapter is outlined as follows. In section 5.2 the first step in decomposing the 

conditional covariance to obtain exogenous,tH  is discussed. This section provides a detailed 

discussion of the “structural” GARCH model developed by Rigobon (2002) and Rigobon 

and Sack (2003), used in the first step. The following section explains the second step of the 

proposed estimation methodology. This step employs a standard MGARCH specification 
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discussed in chapter 4 to model endogenous,tH . Finally in section 5.4 some concluding remarks 

are made.   

 

 

5.2 STEP 1: ESTIMATING THE EXOGENOUS CONDITIONAL 

COVARIANCE MATRIX DRIVEN BY THE STRUCTURAL 

INNOVATIONS IN THE SYSTEM 

 

A bivariate “structural” GARCH model has recently been develop by Rigobon (2002) and 

also extended into a multivariate model (Rigobon and Sack, 2003). These models have the 

advantage of recovering the structural parameters from the reduced-form, while also 

restricting the number of parameters to be estimated to a reasonable size. The models are 

derived from structural equations and follow a VECH specification as in equation 4.3. They 

are useful in that they give more information on what the movement of variables will be, 

following a structural innovation to a certain variable in the system of variables.  

 

The bivariate GARCH model of Rigobon (2002) is an ARCH model that achieves 

identification of the structural parameters through conditional heteroscedasticity in the data. 

Given the bivariate model in equation 5.2 with endogenous variables, the system will be 

under-identified according to the rank and order conditions discussed in chapter 2  
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The structural innovations are assumed to follow the following ARCH process: 
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where 
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The most important assumption in the ARCH model is the zero correlation between the 

structural innovations ( 0),( t,t, =ννΕ ηε ). As indicated in chapter 2, it is this covariance 

restriction plus the heteroscedasticity in the data that allows for identification of the 

parameters. 

  

It is assumed the conditional variance satisfy an ARCH process of:  
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 (5.5) 

 

Equations 5.2 to 5.5 describe the structural model relationships between the two variables.  

The objective is to measure the ARCH effects of the structural innovations as well as the 

parameters in equation 5.23. The ARCH specification in equation 5.5 includes only one lag, 

but can easily be extended to more lags. From the structural equations a reduced-form 

ARCH model can be derived4. The reduced-form residuals are given by: 

 

                                                 
3 The structural model described in equations 5.2 to 5.5 is equivalent to a latent factor model. Both models have the same 

problem of identification. 

4 See Appendix A for detailed derivation of the reduced-form model 
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In equation 5.6, t,iω  and t,jω  have zero means. The conditional moments are given by 
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Unlike the structural innovations, the reduced-form residuals have a covariance that is 

different from zero. This is because the structural parameters β and δ are non-zero. If the 

expected conditional covariance matrix of reduced-form is given by, 
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it can be shown that they follow an ARCH specification as in equation 5.9 
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iζ , jζ and jiζ are constants while matrix A is given by: 
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The reduced-form ARCH model is defined by equations 5.6 to 5.10. From the reduced-form 

estimates, the structural parameters can be obtained. In matrix A there are six equations, 

while there are also six structural coefficients.  This is a restricted multivariate model, where 

the restrictions result from the fact that the structural innovations are assumed to be 

uncorrelated.   

 

Using the same methodology, Rigobon and Sack (2003) extend the bivariate ARCH model 

described above to a multivariate GARCH model that allows for the estimation of the 

structural contemporaneous parameters within the GARCH model. In the model, they 

estimate the conditional covariance matrix between three financial assets. Their general 

structural-form model assumes the dynamics between the three financial assets to be 

described by:  

 

ttt
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g)L(y)L(yB η+φ+ϕ+ψ= . (5.11) 

          

In this model ty  contains the variables of interest, ψ  is a vector of constants, ty)L(ϕ  

contains lags of the endogenous variables and tg)L(φ represents other exogenous variables 

that may influence the system. The system can also be extended to contain lags of the 

endogenous variables and additional exogenous variables that may influence the system, like 

commodity prices. In this set-up, the matrix 
3x3

B captures the contemporaneous relationship 

amongst the endogenous variables. The matrix is normalised to have the following form: 
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Equation 5.11 is once again equivalent to a latent factor model where ),,( t,3t,2t,1t ηηη=η  

represents the “structural innovations” or latent factors that drive asset movements in the 

system. Given the assumption that the structural innovations that represent changes in 

fundamental factors, have zero mean and conditional cross moments, the following 

characteristics apply across time:  

 

0)(E
0)(E
0)(E

3,2,1iwhere0)(E

32t

31t

21t

it

=ηη
=ηη
=ηη

==η

. (5.13) 

         

Furthermore, these structural innovations are assumed to exhibit a GARCH(1,1) behaviour 

equivalent to 

 

2
1t3x3

1t
3x3

ht hh −− ηΛ+Π+ψ= . (5.14) 

   

The conditional variances are then given by ( )′≡ t,3t,2t,1t h,h,hh . This implies that 

structural innovations evolve from their lagged values, the magnitudes of the most recent 

shocks and a constant. The matrices Π  and Λ , which determine the dependence of the 

conditional variances on their lagged values and on lagged shocks, are subject only to the 

restrictions that their elements are positive and have finite second moments. 

 

Identification of the system in equation 5.11 can be achieved if there is conditional 

heteroscedasticity in the data. The intuition behind the identification is based on the 

movement of structural innovations and the movement of the conditional covariances 

between them. As explained in chapter 2, the heteroscedasticity adds equations to the system, 

thereby making identification of the structural parameters possible. These movements 

depend on the contemporaneous responsiveness to one another. 
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The reduced-form model (which is being estimated for purposes of obtaining the reduced-

from residuals used in the GARCH model) is given by 

 

tttt vg)L(qy)L(Fcy +++=  (5.15) 

          

where all the variables are premultiplied by the inverse of matrix B . This implies that the 

reduced-form residuals and the structural innovations exhibit the following relationship: 
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The reduced-form coefficients can be estimated consistently using ordinary least squares 

(OLS). Thus, the structural coefficients can be recovered if matrix B  is identified. The 

reduced-form residuals tv will exhibit GARCH behaviour if the structural innovations 

exhibit GARCH behaviour. The second moments of the reduced-form residuals will satisfy 
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with 
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From equation 5.18 the structural parameters can be obtained. It shows that the structural-

form GARCH specification imposes restrictions on the evolution of the conditional 

variance-covariance matrix of the reduced-form innovations. These restrictions once again 

result from the fact that the conditional covariances between the structural innovations are 

assumed to be zero. The structural-form GARCH model in equation 5.18 contains 27 

parameters to be estimated, consisting of 3 constants, 6 coefficients in matrix B  and 9 

coefficients each in matrix Π  and Λ . If the structural innovations were allowed to have 
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conditional covariances different from zero, the model becomes an unrestricted multivariate 

GARCH model with 60 parameters, which proves extremely difficult to estimate. 

 

Unlike most multivariate GARCH models that are “reduced-form” models, this model 

enables one to recover the structural parameters. In cases where models have attempted to 

recover the structural parameters, the restrictions placed on the model were mostly on an ad 

hoc basis and not derived as in Rigobon and Sack (2003). Although this “structural” 

GARCH model recovers the structural parameters, it is still a reduced-form model in the 

sense that it does not distinguish explicitly between the conditional variances generated 

endogenously within the system and conditional variances generated exogenously by 

structural innovations.  

 

Step 1 of the proposed methodology uses equation 5.14 and the parameters estimated in 

equation 5.18 to obtain:  

 

a.) The conditional variance of the structural innovations to each variable in the system, 

i.e. the exogenous part of the conditional covariance is modelled. These variables 

have no covariance as they are assumed to be independent in order for the equations 

to be identified. Since these are structural innovations, this assumption is not 

restrictive as it is generally assumed in macroeconomics for fundamental shocks to be 

independent. 

 

b.) The structural parameters of the system. These structural parameters (matrix B) allow 

one to determine the variation of a variable explained endogenously within the 

system of assets and the variation explained exogenously by external structural 

innovations.  
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Once the conditional covariance matrix of the structural innovations5 is retrieved from the 

model in equation 5.18, the second step can be performed. This requires the estimation of 

the conditional covariance matrix of the endogenous explained variation of the variables 

( endogenous,tH ). 

 

 

5.3 STEP 2: ESTIMATING THE ENDOGENOUS CONDITIONAL 

COVARIANCE MATRIX OF VARIABLES IN THE SYSTEM 

 

 

Utilising matrix B in equation 5.16 and equation 5.19 the variation of the variable explained 

by other variables in the system can now be determined. This is done be simply substituting 

the structural parameters into the equation for each variable. Depending on the data 

generating process of the resulting series of the explained variation it is possible to model its 

volatility across time. If the series exhibit GARCH behaviour, then a multivariate GARCH 

model can be used to model the conditional covariance matrix of this endogenous variation. 

In the case of modelling with financial data, it is likely that the endogenous variation of a 

variable will exhibit GARCH behaviour, for it is simply a linear combination of individual 

series that exhibit GARCH behaviour. Therefore, any applicable multivariate GARCH model 

(e.g. a BEKK specification) described in chapter 4 can be used to model the endogenous 

variation of the variables.  

 

Once steps 1 and 2 have been completed, the two parts can be summed to give the total 

conditional covariance matrix of the system of variables as in equation 5.1.  Where the 

multivariate GARCH models from chapter 4 only determine the total conditional covariance 

matrix ( total,tH ) the two steps allow for a more detailed breakdown of the structure of the 

volatility. 

 

                                                 
5 This is the conditional covariance matrix  “ exogenous,tH ” from equation 5.1, which is a diagonal matrix since the 

structural innovations are assumed independent. 
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5.4 CONCLUSION 

 

Decomposing the variance of a system of endogenous variables necessitates the identification 

of the system of equations. This is required to distinguish between the portion of the variable 

explained endogenously within the system and the portion of the variable explained 

exogenously from outside the system. However, given that such a system is not identified, in 

order to overcome this problem, heteroscedasticity is used to identify the equations. By 

employing two multivariate GARCH models the system is decomposed into two parts. The 

first is the conditional covariance matrix of the structural innovations to the variables. The 

second part is the conditional covariance matrix of the explained variation of the variables. 

 

This two-step methodology for decomposing the covariance of a system of endogenous 

variables provides more information than under traditional reduced-form GARCH models. 

It allows one to determine the amount of volatility generated by other variables, and the 

amount of volatility generated by structural innovations. It also allows for the retrieval of the 

structural parameters of equations, without imposing invalid constraints on the system. Lastly 

it allows for structural analysis of the conditional variances of individual variables or 

combinations of them.  

 

Traditional GARCH models discussed in chapter 4 focuses only on the reduced-form 

without recovering the structural parameters (matrix B). They do not measure the 

contemporaneous interactions between variables. These models therefore have to specify the 

conditional heteroscedasticity directly in terms of the reduced-form innovations, rather than 

in terms of the structural-form innovations as in the case with the Rigobon-Sack model. The 

two-step decomposition allows for a more tractable analysis of how volatility is generated 

between different variables. 
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C h a p t e r  6  

 
LITERATURE REVIEW ON EMPIRICAL RESEARCH 

 

 

6.1 INTRODUCTION 

 

Economists have long debated the effect that financial variables have on one another. This 

debate was fuelled anew after several financial crises hit the world economy during the 1990s. 

These crises spread very fast across regions and within domestic economies. Understanding 

how domestic financial variables influence one another has therefore become an important 

focus in financial research. Much research has focused on exchange rates, monetary policy 

and international stock markets. The effect they have on one another, i.e. their structural 

dependence (through the mean) as well as through the second moments have become equally 

important. Since the variables of interest in this study are the ALSI, the South African Rand 

/US Dollar exchange rate and the South African 90-day Treasury bill interest rate, the 

literature review will cover some of the findings and empirical techniques applied to estimate 

the relationships between these variables. 

 

As mentioned, these variables are determined within a system. Furthermore, given the nature 

of high-frequency data, problems arise in identifying the structural relationships between 

these variables. For these reasons, almost all of the applied studies have focused on reduced-

form estimates between these variables. In the cases where structural relationships were 

determined, they tend to be single-equation estimations. Nevertheless, an overview of 

existing research will be informative in understanding these relationships and provide more 

information on the relationships to expect when estimating the structural parameters. 

 

For expositional reasons, this chapter is divided into three parts. The first section discusses 

studies that analysed relationships between stock prices and the exchange rate. Section 2 
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discusses studies covering the relationship between stock markets and monetary policy6. The 

third and final section covers empirical findings on the relationship between the exchange 

rate and monetary policy or short-term interest rates. 

 

 

6.2 STOCK PRICES AND THE EXCHANGE RATE 

 

The theoretical link between stock prices and exchange rates can be explained by two 

different approaches (Yang, 2003). The first is flow-oriented models of exchange rates or 

goods market approaches. This approach focuses on the current account or the trade 

balance. Changes in the exchange rate affect international competitiveness and the resulting 

trade balance influences real domestic income and output. The stock prices, generally 

interpreted as the present value of future cash flows of firms, react to exchange rate changes 

and form the link between future income, interest rate innovations, and current income and 

consumption decisions. Innovations in the stock market then affect aggregate demand 

through wealth and liquidity effects, thereby influencing money demand and exchange rates 

(Gavin, 1989).  

 

The second approach is stock-oriented models of exchange rates, or the so-called portfolio-

balance approach (e.g. Branson, 1983; Frankel, 1983). These models view exchange rates as 

equating the supply and demand for assets, such as stocks and bonds. This approach gives 

the capital account an important role in determining exchange rate dynamics. Since the values 

of financial assets are determined by the present values of their future cash flows, 

expectations of relative currency values play a considerable role in their price movements 

especially for international held financial assets. Therefore, stock price innovations may 

affect, or be affected, by exchange rate dynamics. 

 

                                                 
6 In the context of this study analysing monetary policy and a short-term interest rate is equivalent for they are closely related 
through monetary policy in South Africa. 
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Early empirical studies have focused on the contemporaneous relation between stock returns 

and exchange rates. Aggarwal (1981) used monthly data for US stock markets and a trade 

weighted exchange rate for the Dollar for the period 1974 – 1978. He found a positive 

relationship between stock prices and the exchange rate. Soenen (1988) found a strong 

negative correlation between U.S. stock markets and a weighted Dollar exchange rate. Ma 

(1990) explained these contradicting results by looking at the structure of the economy. For 

an export-dominant economy, a currency appreciation has a negative effect on the stock 

market, while a currency appreciation boosts the stock market for import-dominant 

economies. 

 

More recent studies have focused on the direction of causality between exchange rates and 

stock prices for major industrial economies. Bahmani-Oskooee and Sohrabian (1992) 

showed that there is a bi-directional causality between stock prices in the US and the effective 

exchange rate of the Dollar. Ajayi and Mougoue (1996) found short-run and long-run 

feedback between the two variables in eight industrial economies. Their results show that if 

the exchange rate appreciates it has a short-run negative effect and long-run positive effect 

on the stock market. Ajayi, Friedman and Mehdian (1998) provided evidence of 

unidirectional causality from the stock market to the currency market for advanced 

economies and no consistent relations in emerging markets. 

 

Using cointegration techniques Harasty and Roulet (2000) model stock prices of 17 

developed countries. They argue that theory explains long-run movements in stock prices 

while other variables will drive stock prices in the short run. They find that the main drivers 

of stock prices in the long-run are earnings and long-term interest rates. However, in the 

short-run variables like short-term interest rates and the exchange rate tend to determine 

stock prices.  

 

Attempts have also been made to analyse the possibility that the transmission of volatility 

spillover effects can exist between the stock market and currency markets. Most of this 

literature examines the stochastic behaviour of stock prices and exchange rates employing 
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ARCH and GARCH specifications. For example, Hamao, Masulis and Ng (1990) 

investigated the price and volatility spillovers in three major stock markets while Koutmos 

and Booth (1995) found asymmetric spillovers across stock markets and the exchange rate. 

Yang (2003) adopted a bivariate EGARCH framework and investigated the volatility 

spillovers between stock and exchange rate for G8 countries. He found that movements in 

the stock prices affect future exchange rate movements, but that changes in the exchange 

rates have less direct impact on future changes in the stock prices. His results also pointed to 

significant volatility spillovers between some of the stock markets and the currencies of the 

G8 countries.  

 

There exists a significant amount of research on the behaviour between the stock markets 

and exchange rates. Depending on the structure of the economy, an exchange rate can either 

have a positive or negative effect on the stock market. The movements of the stock market 

in turn also affect the exchange rate. However, not much empirical research is available on 

the volatility spillovers across the two variables for emerging markets. The available research 

indicates that in some instances there exist volatility spillovers.   

 

 

6.3 STOCK PRICES AND THE INTEREST RATE 

 

Theory posits that stock prices equal the expected present value of future net cash flows.  

Therefore, any evidence that a monetary tightening is expected should have a decreasing 

effect on stock prices by decreasing future cash flows or by increasing the discount factors at 

which those cash flows are capitalised ((Thorbecke, 1997). 

 

To examine the relationship between stock prices and monetary policy, a variety of empirical 

techniques have been employed. These differ from single-equation estimation, VAR’s and 

impulse responses to variance decompositions. The standard methods employed can be 

categorised into three techniques. The first applies simultaneous equations in the form of 

vector autoregressive (VAR) estimations. These studies employ impulse responses and study 
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mainly the reduced-form parameters. The second makes use of narrative accounts by looking 

at monetary authorities’ reaction to stock prices and vice versa. These studies do not attempt 

to obtain magnitudes of the relationships. The last category employs event studies using 

high-frequency data to estimate the reaction of stock prices to monetary policy. The general 

finding of most papers is that expansionary monetary policy increases an asset’s return. 

 

Relevant to the first category, i.e. VAR’s, Bernanke and Blinder (1992) used monthly data for 

the federal funds rate and employed a VAR approach to measure monetary policy. Evidence 

from variance decomposition and Granger causality tests indicated that the funds rate 

adequately predicted stock returns over the period 1959 to 1989. The evidence indicates that 

there should be some reaction in stock prices when interest rates change. Christiano, 

Eichenbaum and Evans (1994) applied a monthly VAR amongst other variables, the federal 

funds rate and stock prices. Orthogonalised innovations in the funds rate were used to 

measure monetary policy. In similar fashion, Thorbecke (1997) also used a VAR approach 

applied to monthly data to measure the impact of monetary policy on stock prices. However, 

unlike Christiano et al., who found that the funds rate did not predict movements in stock 

prices, Thorbecke found evidence of the federal funds rate influencing stock return.  

 

Zhou (1996) studied the relationship between interest rates and stock returns using 

regression analysis. He found that interest rates have an influence on stock prices over longer 

horizons, but that this relationship is not so strong in the short run.   

 

The narrative approach to identify monetary effects on stock prices was pioneered by 

Friedman and Schwartz (1963). They used Federal Reserve statements and other historical 

documents over the 1867 – 1960 period to identify exogenous changes in monetary policy 

and the responses of real variables. Romer and Romer (1989) extended this research to 

include the period after 1960 up until 1988. Both studies found that monetary policy 

innovations such as changes in the federal fund rate are highly correlated to changes in the 

stock market. The approach was also employed in other research, e.g. Boschen and Mills 

(1995) and White (1984). 
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The third category investigates the relationship between monetary policy and stock returns 

and uses daily data. The studies that use daily data tend to be event studies. If the monetary 

authorities control a short-term interest rate in setting monetary policy very closely, market 

participants are able to discern a change in the fund rate target on the day it occurs (Cook 

and Hahn, 1989). By collecting anticipated rate changes in the financial media, actual rate 

changes are easily identified. By regressing a change in stock prices on the change in the 

policy interest rate over the period of change, the relationship between the variables is 

measured. Using event studies, significant negative relationships between policy induced 

changes in the interest rate and changes in stock prices are found (see for example Thorbecke 

(1997), Thorbecke (1995), Jones (1994), Bradsher (1994), Risen (1994), Grant (1992) and 

Cook and Hanh (1989)). 

 

Different to the methods applied for high-frequency data, Rigobon and Sack (2003) 

employed a “structural” GARCH model to determine the contemporaneous effects and 

spillovers between US stock prices, the long-term interest rate and the short-term interest 

rate in the US. They found significant contemporaneous effects and volatility spillovers 

between these variables. The methodology used in this study is an extension of their 

methodology. Although Rigobon and Sack (2003) estimate the structural parameters, they do 

not decompose the variance into exogenous and endogenous parts.   

 

This section gave a brief summary of the three different methods that are generally used to 

determine the short run reaction of stock prices on changes in monetary policy as defined by 

a change in a short-term interest rate. Where the effects were measured using systems of 

equations, the structural coefficients are mostly not recovered. When working with high-

frequency data (i.e. event studies), the estimates obtained are mostly single equation 

estimates, ignoring the contemporaneous effects between variables.  

 

As far as South Africa is concerned, van Rensburg (1998) used bivariate Granger causality 

tests and correlations to study relationships between stock returns and macroeconomic 

variables. Although he doesn’t estimate the relationship he found that various interest rates 
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(including a short-term interest rate) do influence stock returns on the Johannesburg Stock 

Exchange (JSE). Barr (1990) also models returns on the JSE as a function of macroeconomic 

variables. Barr follows a factor-analytical approach and identify short-term interest rates as 

one factor out of four that influence the stock returns on the JSE. 

 

6.4 THE EXCHANGE RATE AND THE INTEREST RATE 

 

Research on the relationships between these two economic variables can be dated back to 

the study of the interest rate parity condition. The existing literature, however, focuses mainly 

on the long-run equilibrium relationships between interest rates and exchange rates. The 

short-run relationships between these two markets are often ignored. Theoretically, it is true 

that the equilibrium relationships between the interest rate and the exchange rate should be a 

long-run concept; nevertheless, often short-run changes in the exchange rates are observed 

after changes in the interest rate. Apart from price movements, the relationship between 

higher moments of the two markets also deserves an examination because the variance is also 

a source of information. 

 

Since the Asian financial crisis the high frequency relationship between the exchange rate and 

the short-term interest rate has been at the centre of a hot policy debate. The questions raised 

are whether an increase in the interest rate results in an appreciation of a currency, or 

whether sharp rises in the interest rate destabilise the currency (by increasing the risk of 

bankruptcy). Given the monetary approach to exchange rate determination, an increase in 

the interest rate should result in an appreciation of the exchange rate. Tight monetary policy 

strengthens the exchange rate by sending a signal that authorities are committed to 

maintaining a strong currency, thereby increasing capital inflows (Backus and Driffill, 1985). 

Also, depending on the monetary policy setting of a country, a depreciation of the currency 

will result in an increase in the short-term interest rate via possible inflationary pressures 

imported into the domestic economy. A number of economists (e.g. Radelet and Sachs, 

1998, Feldstein, 1998 and Stiglitz, 1999) argued against the signaling value of monetary policy 
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by considering the positive effect of the interest rates on the likelihood of bankruptcy for 

highly leveraged borrowers.     

 

The empirical evidence on the issue is mixed. Some empirical studies (based on reduced- 

form VAR specifications) support the traditional view of interest rates and exchange rates 

(i.e. the monetary approach). Dekle et al. (1998), using weekly data, found that in the case of 

Korea an increase in the interest rate differential helped to appreciate the Korean Won. 

Tanner (1999) also used a VAR approach and found that tight monetary policy helps to 

reduce exchange rate market pressures.  

 

A number of empirical studies support the view that increases in interest rates might not lead 

to exchange rate appreciation. Goldfajn and Baig (1998) used a VAR approach and impulse 

responses based on weekly data and found a perverse effect of monetary tightening on the 

exchange rate for six emerging markets countries. They found that during periods of high 

volatility the exchange rates are not significantly affected by changes in the interest rate in any 

of the countries examined. Ohno, Shirono and Sisly (1999) found similar results for daily data 

for seven Asian countries. Caporale et al. (2000) also evaluated whether tight monetary policy 

was successful in defending the exchange rate from depreciation during the Asian financial 

crisis. They applied their analysis to 5 Asian countries utilising a bivariate VAR model and 

identified the structural parameters using the heteroscedasticity in the data. Their empirical 

evidence shows that tight monetary policy did not help to stabilise the currencies under 

investigation. 

 

However, in determining the interaction between the interest rates (monetary policy) and 

exchange rates, there are important challenges. The main challenge is the issue of 

identification of monetary policy exogenous shocks as distinct from monetary policy actions. 

An identification scheme is needed to solve the simultaneity problem between policy 

instruments (i.e. the interest rate) and other endogenous variables, such as the exchange rate 

to which monetary policy systematically reacts (Caporale et al., 2000). Using VAR analysis 

does not explicitly recognise this feedback between the two variables. By identifying the 
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structural relationships between the variables, it is possible to identify the exogenous reaction 

of policy to movements in the exchange rate, and the exchange rate’s reaction to changes in 

policy. 

 

Juselius and McDonald (2000) empirically examine the joint determination of a number of 

key parity conditions for Germany and the US using monthly data. They consider the 

German mark – US dollar exchange rate, prices, short term interest rates and long term 

interest rates. They use a cointegrated VAR model to define long-run stationary relationships 

as well as common stochastic trends. They find that long term bond rates in both the US and 

Germany that drives exchange rates. However, they also found that the short-term interest 

rate was an important driver of movement s in the purchasing power exchange rate. 

 

The methodology applied in chapter 7 to estimate a structural GARCH model for the South 

African case, allows for the identification of exogenous changes in the interest rate (i.e. policy 

shocks) that do not come from movements in the South African Rand/US Dollar exchange 

rate or the South African stock exchange. This methodology also allows for the measurement 

of the effect of an interest rate change on the exchange rate in both the mean and variance. 

 

6.5 CONCLUSION 

 

Current empirical literature on determining the relationship between the exchange rate, the 

short-term interest rate and the stock market vary greatly in terms of the methodology 

applied. The focus tends to estimate the relationship on terms of high-frequency data such as 

daily, weekly and monthly data. The majority of the research relates to reduced-form 

estimations mainly in the form of vector auto regression (VAR) analysis. It therefore ignores 

the structural relationships that exist between the variables of interest. Furthermore, the 

literature indicates that there exist contemporaneous effects amongst the three variables 

discussed, which makes it important to estimate the parameters simultaneously. In most cases 

where the system is solved simultaneously, the structural parameters are not recovered. In the 

cases where structural relationships are estimated, the estimates tend to be either single-
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equation estimates (i.e. not solved simultaneously) or ad hoc restrictions are placed on the 

system (such as long-run constraints) to identify the structural parameters. Therefore, given 

the necessity of solving the equations simultaneously, and recovering the structural 

parameters without placing unnecessary constraints on the system, the approach and 

methodology employed in this research are essential. In applying these techniques in chapter 

7 this methodology allows for the simultaneous estimation of the contemporaneous 

structural parameters. The identification methodology also allows for the determination of 

the volatility due to endogenous reactions and the volatility due to exogenous structural 

innovations. This study encompasses previous literature in that it measures structural 

relationships between these variables as well as volatility spillovers in the system of equations. 
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C h a p t e r  7  

 
ESTIMATING A STRUCTURAL GARCH MODEL 

 

 

7.1 INTRODUCTION 

 

When modelling high-frequency data, the contemporaneous effects between variables may 

differ significantly from their long-run behaviour. It is likely that there are contemporaneous 

effects across all variables that need to be determined. However, such a system with 

endogenous variables is not identified (see chapter 2). When interested in determining how 

volatility is generated in a system, the identification problem will yield serious problems in the 

analysis. First of all, only the reduced-form parameters are observable. In order to recover 

the structural parameters, restrictions need to be imposed on the reduced-form parameters. 

Most of these restrictions are long run in nature and cannot always be justified when using 

high-frequency data. Secondly, if the structural parameters are not observable, it is impossible 

to decompose the system into variability explained within the system and variability due to 

external structural innovations. 

 

In this chapter, the proposed two-step methodology (outlined in chapter 6) is implemented 

to decompose the conditional covariance matrix of a system of financial variables for South 

Africa. This two-step approach allows one to identify the system, and determine the 

“endogenous” conditional covariance matrix as well as the  “exogenous” conditional 

covariance matrix.  The approach utilises two multivariate GARCH models to obtain the 

results. In the first step, a multivariate GARCH model developed by Rigobon and Sack 

(2003) is utilised. This model solves the identification problem using heteroscedasticity as 

instrument, while an estimate for the conditional covariance matrix of the external structural 

innovations can also be recovered from the model. The second step utilises a standard 

BEKK model. The BEKK specification is used to estimate the conditional covariance matrix 

of the “endogenous” variation from within the system. Once the two steps are completed, 

the conditional covariance matrices can be summed in order to get the conditional 
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covariance matrix for the total system. The two-step methodology allows for analysis of the 

variances that is not possible with traditional multivariate GARCH models. 

 

 

7.2 THE DATA 

 

The analysis utilises three financial variables for South Africa. However, financial variables 

are exposed to the problem of simultaneity for their movements are determined within a 

broader integrated financial system causing two sets of problems. First, although certain 

unidirectional long-run relationships do exit amongst most financial variables, the short-run 

relationships often differ from what long-run theory suggest. Second, financial variables 

often exhibit heteroscedasticity, which makes this type of system ideal for implementing 

restrictions through heteroscedasticity in order to identify the structural parameters. 

 

The first financial variable used is the return on the All Share index (ALSI) of the 

Johannesburg stock exchange in South Africa. The second variable is the change in the South 

African Rand/US Dollar exchange rate (R/$). The third and final variable is the change in a 

short-term interest rate in South Africa, namely the 90-day Treasury bill interest rate (Tbill). 

These three variables were chosen for their importance in the economy mainly from a 

monetary policy perspective. Since these three variables are so closely linked and plays a 

significant role in determining inflation, understanding the high frequency relationship to one 

another is important not only from a portfolio point of view but also from a monetary policy 

perspective.  

 

Weekly data for the three variables are used for the period January 1995 to December 2003. 

The reason for weekly data as opposed to daily data is that when analysing the volatility of 

these variables in terms of portfolios, it might be more useful to have a weekly analysis than 

daily analysis. It is not always possible (and feasible) to rebalance a portfolio on a daily basis. 

Figure 7.1 represents an exposition of the data for the three variables.  
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Figure 7.1: The three financial variables used in the estimation 
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Similar to Rigobon and Sack (2003) the system analysed is of the form: 

 

ttt
xT3

g)L(y)L(yB η+φ+ϕ+ψ=  (7.1) 

 

Once again, in this model ty  contains the three variables of interest, i.e. 

)Tbill,$/R,ALSI(y tttt = . ψ  is still a vector of constants, ty)L(ϕ  contains lags of the 3 

endogenous variables and tg)L(φ  represents other exogenous variables that may influence 

the system like commodity prices. It is important to notice that this system is not identified. 

The objective of this analysis is to analyse the “structural” volatility of this system by 

implementing the two-step methodology as proposed in chapter 5. It is expected that 

changes in these variables influence one another in the short-run, which perhaps differ from 

the long run.  

 

Given the fact that one of the objectives is to recover the structural contemporaneous 

parameters in the system, a short discussion on their expected signs will be informative. A 

priori expectations are that a positive movement in the ALSI will result in an appreciation of 

the exchange rate (i.e. a decrease in R/$). As the ALSI rise, it is likely that foreign investors 

will seek to gain from the increases in stock returns. The result is a higher demand for South 

African Rand. Also, a positive movement in the ALSI is expected to have a positive impact 

on the interest rate through the wealth effect in the economy. This can be seen as a high 

frequency monetary response effect. 

 

A depreciation (increase) in the R/$ exchange rate is expected to induce a positive effect on 

the ALSI. Commodity shares have the greatest market capitalisation on the Johannesburg 

stock exchange. Since the companies earn foreign currency, these stocks tend to be Rand-

hedged shares. Therefore, if the R/$ exchange rate depreciated (increased) the companies’ 

Rand-profits are expected to increase, thereby pushing up the share prices. Furthermore, a 

depreciation in the R/$ exchange rate is also expected to result in an increase in the interest 

rate. Since a depreciating Rand implies higher imported prices, and therefore inflation 
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pressures, it can be expected that monetary authorities may increase interest rates when the 

Rand depreciates, and decrease interest rates when the Rand appreciates. 

 

As far as a change in the interest rate is concerned, the usual intuition applies. An increase in 

the interest rate is expected to have a negative effect on the ALSI. This effect can be thought 

of as the standard discount dividend model, where an increase in the interest rate (i.e. 

discount rate) results in lower stock prices. Lastly, a positive change in the interest rate is 

expected to have decreasing effect (appreciation) on the exchange rate. The monetary 

approach to exchange rate determination suggests that an increase in domestic interest rates 

relative to foreign rates will result in an appreciation of the domestic currency. 

 

To summarise the expected causalities between the three variables: 

 

 An increase in the ALSI is expected to result in an appreciation (decrease) in the R/$ 

exchange rate (i.e. a negative relationship). On the other hand, a depreciation 

(increase) in the R/$ exchange rate is expected to result in an increase in the ALSI 

(i.e. a positive relationship). The net effect between changes in any of the two 

variables will be either positive or negative depending on which direction dominates.  

 

 A depreciation (increase) in the R/$ exchange rate is expected to result in an increase 

in the Tbill (i.e. a positive relationship), while it is expected that an increase in the 

Tbill will result in an appreciation (decrease) in the R/$ exchange rate (i.e. a negative 

relationship). Once again, the net effect between changes in any of the two variables 

will be either positive or negative depending on which direction dominates.  

 

 An increase in the Tbill is expected to result in a decrease in the ALSI (i.e. a negative 

relationship), while an increase in the ALSI is expected to result in an increase in the 

Tbill (i.e. a positive relationship). The net effect between changes in any of the two 

variables will be either positive or negative depending on which direction dominates.  
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7.3 ESTIMATING THE CONDITIONAL COVARIANCE MATRIX OF 

THE SYSTEM 

 

The methodology outlined in chapter 5 contains two steps. Each of the two steps is 

implemented in this section and a detailed discussion of the results is given. This empirical 

application puts the importance of structural analysis into perspective and highlights the 

possible mistakes than can be made when using only reduced-form estimates.    

 

7.3.1 Step 1: Estimating the exogenous conditional covariance matrix driven by 

the structural innovations in the system 

 

The first step is to estimate the Rigobon and Sack (2003) GARCH model as in equation 5.18. 

The parameters of interest in this model are matrix C, matrix Π  and matrix Λ . All three 

these matrices are contained in equation 5.18. This representation of the GARCH model 

allows one to retrieve the structural contemporaneous coefficients through equation 5.19. It 

also allows one to retrieve the GARCH behaviour through equation 5.14. For expositional 

reasons the equations are again presented below: 

 
2

1t3x31t3x3ht hh −− ηΛ+Π+ψ= . (5.14) 
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The estimation process is conducted along the following steps. First a VAR of lag order 1 is 

estimated to obtain consistent estimates for the reduced-form residuals. The lag length was 

tested using the Scwartz information (SC) criterion, the Hannan-Quinn Information criteria 

(HQ) and the Akaike Information criteria (AIC). One lag was selected based on two reasons. 

At 1 lag the residuals obtained are stationary, while this lag length also represent a trading 

week. The results are presented in table 7.1. 

 

Table 7.1: Test statistics and choice criteria for selecting the order of the VAR 

model  

 
 Lag AIC SC HQ 

0 -15.72468 -15.70003 -15.71502 

1  -17.19704  -17.09844  -17.15841 

2 -17.19512 -17.02257 -17.12750 

3 -17.18351 -15.93700 -17.08692 

4 -17.17511 -15.85466 -17.04955 

 
 Source: Own calculations 

 

All three criteria indicate a lag length of one for the VAR7. From the VAR the reduced-form 

residuals ( t,iv ) are retrieved. Figure 7.2 shows the reduced-form residuals. 

 

 

 

 

                                                 
7 The estimation results of the VAR are given in Appendix B.1. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 69

 

 

Figure 7.2: The reduced-form residuals from the VAR estimation 
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Once the reduced-form residuals are recovered, the Rigobon and Sack (2003) GARCH 

model (equation 5.18) can be estimated8. The maximum likelihood estimation technique is 

employed using the BHHH logarithm. Before the matrices of interest are recovered, some of 

the results from the estimated GARCH model are discussed.  

 

As mentioned in chapter 5, the estimated GARCH model is also a reduced-form model in 

the sense that the volatility of the structural innovations is not modelled separately. Although 

the model enables one to retrieve structural coefficients, it doesn’t distinguish explicitly 

between the conditional covariance of the structural innovations and the conditional 

covariance endogenous to the system.  

 

Table 7.2: The structural coefficients from matrix B: Contemporaneous 

interaction between the financial assets (z-statistics in brackets) 

  

 

ALSI    = 

 

0.0309R$ 

 

-0.165Tbill 

 

 (0.857) 

 

(-7.094)  

R$    = 0.026ALSI 0.002Tbill  

 (4.395) (0.342) 

 

 

Tbill    = 0.012ALSI 0.061R$  

 (4.009) 

 

(2.709)  

 Source: Own calculations 

 

                                                 
8 The full table of the estimation results is given in Appendix B.2. 
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The matrix B  that contains the contemporaneous interaction between the three variables is 

estimated and the values are contained in table 7.2. From the table it is evident that there are 

significant contemporaneous effects between the three variables.  The first equation in table 

7.2 is the ALSI equation. As a priori expectations would suggest, changes in the ALSI are 

influenced contemporaneously by changes in the short-term interest rate. This equation can 

be seen as an exchange rate augmented Gordon-type dividend discount model, where the 90-

day Tbill is the discount rate. The R/$ exchange rate does have a positive sign (which is 

counterintuitive), however the coefficient is not statistically significant. Given the fact that 

the ALSI is an index, it may be that in the short run the effect of the exchange rate is 

cancelled out at an aggregate level across the listed shares. This finding is also consistent with 

Yang (2003)9. 

 

On a weekly basis the change in the Tbill is affected by the change in the R/$ exchange rate 

as well as the ALSI. The interest rate equation in table 7.2 can be interpreted as a short-run 

monetary policy response equation. Due to the nature of monetary policy in South Africa, 

there is a definite increasing conditional correlation between short-term interest rates and the 

exchange rate.  

 

From the contemporaneous influence in the exchange rate equation, movements in the 

interest rate do not influence the exchange rate. Although economic theory dictates that the 

interest rates determine movements in the exchange rate in the long run, this is not 

necessarily the case in the short run and specifically on a weekly basis. This also explains the 

asymmetric effect that South Africa experiences with regard to monetary policy. Short-term 

interest rates are much more likely to respond to changes in the exchange rate than the 

exchange rate to changes in the interest rate. A possible explanation for this phenomenon is 

that it is easier to anticipate short-term interest rate movements than exchange rate 

movements.  Therefore, when the short-term interest rate changes, the movement has 

already been discounted in the exchange rate. However, because the exchange rate 

                                                 
9 The findings of Yang (2003) are briefly discussed in chapter 6. 
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movements are so difficult to anticipate, it is very difficult to discount the movements in the 

short-term interest rate.  

 

From the estimated results it is also evident that changes in the ALSI influence the exchange 

rate contemporaneously, although by very small margins. However, the sign is 

counterintuitive. It indicates that a positive movement in the ALSI will result in an exchange 

rate depreciation that is contrary to a priori expectations. A possible explanation for the 

effect might lie in the relationship between the interest rate and the other two variables. 

When the interest rate decreases, the ALSI increases (for reasons explained above). Investors, 

who took advantage of higher interest rate differentials between South Africa and other 

countries, might decide to move their funds out of the country when the domestic interest 

rate decreases. Therefore, stocks and money market instruments are not seen as substitutes. 

The investors might not choose to invest their funds in the ALSI, anticipating an increase in 

stocks for various reasons. The reasons range from institutional guidelines that prohibit 

investment in certain stocks to portfolio balance considerations where only a certain amount 

of the portfolio might for example be invested in emerging market stocks. The resulting 

outflow of capital will result in a depreciation of the currency.       

 

As far as the conditional covariance matrix of the structural coefficients is concerned, it can 

be recovered if matrix Π  and matrix Λ  are known. Equation 5.14 defines the form of the 

structural innovations. Table 7.3 gives the estimates of these matrices as recovered from the 

GARCH estimation. The coefficients were restricted to be positive and some of the 

parameters satisfy this constraint. 

  

It should be clear that the structural innovations exhibit GARCH behaviour. The structural 

innovations to the ALSI are a function of past shocks to the ALSI itself, as well as some 

significant volatility spillovers from the Tbill. The structural innovations to the R/$ exchange 

rate also exhibit GARCH behaviour, but there are no significant spillovers from other 

variables. Lastly, the Tbill has GARCH behaviour with some spillovers from structural 

innovations to the R/$ exchange rate. This is perhaps not surprising due to the nature of 
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monetary policy in South Africa. Movements in the exchange rate are likely to induce 

movements in the interest rate via possible impacts on domestic inflation. Figure 7.3 shows 

the conditional variances of the structural innovations to the individual variables.  

 

Table 7.3: Estimates of conditional variance parameters of the structural 

innovations ( exogenous,tH ) 

 
 

Parameters Coefficient Standard errors 
11Π  0.844 0.0326 

22Π  0.623 0.052 

33Π  0.198 0.028 
   
11Λ  0.206 0.046 

13Λ  0.503 0.088 

22Λ  0.236 0.045 

32Λ  0.011 0.006 

33Λ  0.139 0.096 
Source: Own calculations 

 

In equation form, the GARCH equations for the structural innovations are presented by: 

 

2
1tR/$,

2
1tTBill,1tTBill,tTBill,

2
1tR/$,1tR/$,tR/$,

2
1tTBill,

2
1tALSI,1tALSI,tALSI,

η0.011η0.144h0.198h

η0.236h0.623h

η0.503η0.206h0.844h

−−−

−−

−−−

⋅+⋅+⋅=

⋅+⋅=

⋅+⋅+⋅=

 (7.2) 

 

Figure 7.3 shows that the variance of the structural innovations picks up the major periods of 

high volatility in these variables. For example, during the Asian crisis in 1997/8 there were a 

series of huge structural innovations (i.e. external shocks) to the ALSI. This shows up in the 

conditional variance of structural innovations to the ALSI. The other two variables also show 
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an increase in volatility during this period. It is possible that all three variables experienced 

structural shocks and the contagion introduced by the crisis affected all three variables 

directly. Also, during the second half of 2001 South Africa experienced a large depreciation 

in its currency that was not due to movements in the interest rate or the ALSI. Therefore, in 

this system one would expect that the increase in the conditional volatility will show up in the 

volatility of the structural innovations to the R/$ exchange rate.  This is indeed the case and 

shows up in figure 7.3. 

 

The Tbill, which follows monetary policy closely, is subject to movements in the repurchase 

rate set by the South African Reserve Bank. These policy movements can be seen as external 

shocks to the system that will be picked up by the variance of the structural innovations to 

Tbill. 

 

One of the conditions for the system to be identified is that the structural innovations exhibit 

zero covariance. Therefore, the conditional covariance matrix of the structural innovations is 

a diagonal matrix. This assumption is not restrictive if the fact is considered that most 

macroeconomic applications assume that these shocks are uncorrelated. 

 

Once the system has been identified, it is possible to recover the actual structural innovations 

( t,iη ) from the reduced-form residuals based on the fact that the reduced-form shocks are a 

function of the structural innovations and the contemporaneous parameters10. The recovered 

structural innovations are presented in figure 7.4. It is furthermore possible to obtain the 

variation of the variable that is explained within the system by a structural equation. This 

portion for each variable is obtained by simply subtracting the structural innovations to each 

variable from the total change in each variable. The remainder should be what is explained of 

the variable by other variables. Figure 7.5 shows the endogenous explained variation of the 

variables. The difference between the lines in figure 7.1 and figure 7.4 gives figure 7.5 - the 

endogenous explained variation of the variables. 

                                                 
10 See equation 5.16 for the relationship between the contemporaneous equations and the reduced-form residuals from the 
system.  
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Figure 7.3: Conditional variances of the exogenous structural innovations 
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Figure 7.4: The exogenous structural innovations to the variables 
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Figure 7.5: The endogenous explained variation: the difference between the total 

change in the variables and the structural innovations 
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Once the system has been identified and the conditional covariance matrix of the structural 

innovations has been determined, it is possible to model the conditional covariance matrix of 

the endogenous explained variation (presented in figure 7.5) of the system.  

 

7.3.2 Step 2: Estimating the endogenous conditional covariance matrix of variables 

in the system 

  

The second step of decomposing the conditional covariance matrix of the system is to model 

the endogenous explained variation of the conditional variances of the individual variables. 

The explained part of the variables has been recovered by subtracting the structural 

innovations from total variation of the variables. The data generating process of the 

explained variation will determine which process is used to model the conditional covariance 

matrix. Furthermore, the explained variation of the individual variables is likely to exhibit 

GARCH behaviour since a shock in one variable will result in increased or decreased 

movements in the other variables, resulting in clustered movements throughout the system.  

 

The conditional covariance matrix of the explained variation of the system will not be 

diagonal. The contemporaneous parameters insure that there exists some correlation in 

movements between variables. It is therefore necessary to model this process through a 

multivariate set-up that captures this non-zero conditional covariance. Therefore, a restricted 

version of the traditional BEKK model (as outlined in section 4.2.1) is chosen to model the 

conditional covariance matrix of the explained portion of the system. The model is restricted 

so that the jkA matrix and jkG matrix in equation 4.5 are diagonal. 
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The BEKK model estimation is estimated through maximum likelihood using the BHHH 

logarithm. Using the notation as presented in equation 4.6, the estimation of the conditional 

covariance matrix is given in equation 7.3.  It is clear that there exist significant GARCH 

effects in and between the variables11. Figure 7.6 shows the conditional variance of the 

endogenous explained variation of the variables while figure 7.7 presents the conditional 

covariance between the endogenous explained variations of three variables  
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 (7.3) 

 

From figure 7.6 it is evident that the endogenous explained variance increase dramatically 

in periods of financial crisis. This observation is problematic from a portfolio management 

perspective. It implies that it will be very difficult to keep a portfolio diversified at a stable 

level across time. Figure 7.7 for the conditional covariance matrices confirms this and 

shows that the co-movement between the variables tends to be around zero in periods of 

relative tranquility. However, in periods of high volatility, there appears to be high co-

movement between these variables that might result in less (more) diversification to a 

portfolio than in tranquil times. This is furthermore confirmed by the conditional 

correlation coefficients between the variables displayed in figure 7.8.  

 

                                                 
11 The full table of the estimation results is given in Appendix B.3. 
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Figure 7.6: The conditional variance of the endogenous explained variation of the 

variables 
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According to figure 7.8 the conditional correlation between the ALSI and the R/$ 

exchange rate tend to fluctuate in the region of -0.80. This implies that a positive change in 

the ALSI generally leads to a negative change (appreciation) in the R/$ exchange rate. 

However, since 1998 there are greater and more frequent spikes in the conditional 

correlation towards zero. This suggests that the effect of R/$ movements on the ALSI 

starts to dominate the effects of the ALSI on the R/$ exchange rate. Because of the 

dominance of Rand-hedge shares (especially since 1998) on the Johannesburg stock 

exchange, a positive movement (appreciation) of the R/$ exchange rate will result in a 

positive movement in the ALSI.   

 

Figure 7.8 also indicates that the conditional correlation between the ALSI and the Tbill 

tend to fluctuate around -0.3, indicating that the changes in the Tbill are the dominant 

effect between the two variables. An increase (decrease) in the Tbill will result in a decrease 

(increase) in the ALSI. The conditional correlation between the Tbill and the R/$ exchange 

rate tend to fluctuate around zero – except in times of high volatility (e.g. 1998). The 

conditional correlation then tends to be strongly positive. Monetary policy in South Africa 

reacts to movements in the exchange rate (because of possible inflation threats). A 

depreciation of the exchange rate therefore leads to an increase in the Tbill.   
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Figure 7.7: The conditional covariance between the explained portions of the 

variables 
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  Figure 7.8: The conditional correlation between the variables 
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In order to calculate the total conditional covariance matrix of the system of assets, the 

endogenous explained conditional covariance matrix is added to the exogenous conditional 

covariance matrix of the structural innovation as explained in equation 7.4.  

 

exogenous,tednogenous,ttotal,t HHH +=  (7.4) 

 

A comparison between the two-step structural approach outline in this research, and the 

traditional “reduced-form” approaches (outlined in chapter 4) is made. Figure 7.9 shows the 

conditional variance of the three variables modelled under the two different approaches. 

total,tH  is calculated using the traditional “reduced-form” BEKK model as specified in 

equation 4.5. Then, total,tH  is calculated using the two-step structural approach (by first 

applying step 1 and then step 2).  The conditional variance for each variable, as determined 

by the different methods, is displayed in figure 7.9. 

 

Figure 7.9: Total conditional variance – “two-step” structural approach vs. 
“reduced-form” approach 
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Figure 7.9 show that the conditional variance of both methods follows the same pattern.  

They pick up the same periods of high volatility and periods of tranquillity. However, with 

the two-step structural approach the estimation methodology provides more information 

than the “reduced-form” approaches. The two-step approach allows for the structural 

analysis of the volatility within and between variables. This additional information allows for 

analysis of the conditional covariance matrix of the system in a more complex manner than 

otherwise possible. For example, it might be informative to know which percentage of the 

volatility of a variable is determined within the system and which part outside the system by 

structural innovations. Figure 7.10 presents this breakdown based on the total conditional 

variance of each asset and the conditional variance of the structural innovations as estimated 

in the two-step approach. 

 

Figure 7.10: Total variance decomposition – structural (exogenous) vs. explained 
(endogenous) 
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Figure 7.10 makes it clear that almost all the volatility in the ALSI is due to factors other than 

the R/$ exchange rate and the Tbill rate. These factors are the latent factors in the model 
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explained by the structural innovations. They might include the gold price, GDP growth and 

company specific factors. There are three reasons for the possible small spillovers from the 

R/$ exchange rate and the Tbill to the ALSI. First, given the fact that the ALSI is a broad 

index of shares that react differently to changes in the exchange rate and the interest rate, it 

might not be surprising that at an aggregate level, these two variables do not contribute a lot 

to volatility of the ALSI.  Second, investors might only react to changes in the interest rate 

and exchange rate when they perceive them to be fundamental changes that are not short run 

in nature. Third, changes in the ALSI due to changes in the exchange rate and the interest 

rate might be mitigated using weekly data, i.e. daily volatility movements cancel one another 

out on a weekly basis. 

 

As far as the contribution of the structural innovations to the total variance of the R/$ 

exchange rate is concerned, one can see that the contribution is also small. The endogenous 

variables inside the system again do not contribute too much to volatility. The latent factors 

to the exchange rate, captured by the structural innovations, explain most of the volatility. 

These are factors like the demand for currency due to trade between South Africa and 

foreign countries. The interest rate and the ALSI represent two different asset classes. If 

there is money moving between these variables without flowing in or out of the country, 

their effect on the exchange rate should be relatively small, given the size and significance of 

the contemporaneous parameters. It could be seen in periods of high uncertainty when 

capital flowed out of South Africa; movements in the interest rate and the ALSI explain 

more of the volatility in the exchange rate12. This pattern of volatility is also consistent with 

the flow-oriented models of exchange rate as opposed to the stock-oriented or portfolio-

balance approaches for the South African exchange rate. The portfolio-balance approach 

focuses on the capital account where the stock market and interest rates play an important 

role. In the flow-oriented models the focus is on the current account or the trade balance. If 

the stock market and interest rate were the dominant factors in determining the exchange 

                                                 
12Periods of high uncertainty include the first free elections in South Africa and the following year (1994/5), the Asian crisis 

(1997/8), the Russian crisis (1999) and the attack on the World Trade Center (2001). 
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rate (as the portfolio-balance approach suggests), a higher degree of spillovers inside the 

system was likely. 

 

Movements in the variables in the system explain a significant percentage of the total 

conditional variance of the Tbill rate. This contribution can be explained by the market’s 

reaction to expected monetary responses (which is a structural innovation) and to changes in 

either the exchange rate or the ALSI. One can see that in the periods of uncertainty, 

spillovers from the other two variables to the Tbill increased dramatically.  Since the effect of 

structural innovations (e.g. monetary policy) on the volatility of the Tbill is less, it is an 

indication that market participants view monetary authorities to be very proactive in acting 

on the new information. Movements in the ALSI and the exchange rate will be factored into 

the Tbill for anticipation of possible monetary policy reaction. 

 

 

7.4 CONCLUSION 

 

Most multivariate GARCH models estimate the total conditional covariance matrix between 

variables. These “traditional” models do not distinguish between external shocks (i.e. the 

structural innovations) and internal shocks (i.e. the explained changes). These models use 

reduced-form parameters in the estimation process.  

 

This chapter gave an alternative methodology to estimate the total conditional covariance 

between variables. The methodology decomposes the conditional covariance matrix into a 

covariance matrix for the structural innovations and a covariance matrix for the endogenous 

explained variation of the system. The methodology also allows one to obtain the structural 

parameters from a system of endogenous equations without imposing any “invalid” 

restrictions on the system. Once the structural parameters in the system are identified, it is 

possible to distinguish between the structural innovations to a variable (the latent factors) and 

the explained portion for the variable determined within the system. The conditional 

covariance is then modelled separately using two different multivariate GARCH models. 
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Using the decomposition, more information is available to the researcher on the conditional 

covariance of the system.  

 

The methodology was applied to a system of variables, including the All Share index on the 

Johannesburg stock exchange (ALSI), the South African Rand/ US Dollar exchange rate and 

the South African 90-day Treasury bill interest rate. Significant contemporaneous effects and 

volatility spillovers were identified between the variables, while GARCH effects were 

identified within both the structural innovations and the explained portion of the variables. 

From the results it was possible to determine the volatility generated in a specific variable, i.e. 

is it generated by exogenous structural shock or by endogenous interaction between 

variables? In the case of the ALSI very little volatility is generated because of movements in 

the R/$ exchange rate or the Tbill interest rate. For the R/$ exchange rate, it also appears as 

if latent factors to the model determine most of the volatility in the currency. These latent 

factors include demand for foreign currency because of trade. Finally, the volatility of the 

short-term interest rate appears to be driven to a large extent by movements in the R/$ 

exchange rate and the ALSI. The interest rate equation represents a high-frequency monetary 

response function. It appears as if the market reacts to movements in the exchange rate and 

stock prices in anticipation of a monetary authority response.   
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C h a p t e r  8  

 

IMPULSE RESPONSES AND AN APPLICATION  

TO PORTFOLIO RISK MANAGEMENT 

 

 

8.1  INTRODUCTION 

 

The proposed decomposition of the covariance matrix of a system with endogenous 

variables, utilising the GARCH models, provides more information than the traditional 

reduced-form GARCH models. Firstly, it is possible to identify the structural parameters. 

Secondly, it is possible to identify the structural innovations or latent factors and thirdly it is 

possible to identify the explained variation of variables. Given this information one can 

model the time-varying volatility of each part separately. This information is valuable, for a 

structural innovation or external shock to one variable will influence the behaviour of other 

assets differently through the structural contemporaneous parameters. The behaviour of the 

variance and covariance implied by the model can be more clearly understood by 

investigating impulse response functions.  This chapter focuses on how the movement in 

variables reacts to structural innovations from outside the system. Firstly structural 

innovations are applied to variables one at a time. There after, an application to portfolio risk 

management is illustrated.  

 

 

8.2  IMPULSE RESPONSE FUNCTIONS 

 

The structural innovations or latent factors are recovered from the model that was estimated 

in chapter 7. In each case a temporary two standard deviation shock is applied to the 

structural innovations of the variables. For expositional reasons the shock is introduced in 

the fourth period. The variance and covariance between the variables in the system are then 

simulated.  
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Figures 8.1, 8.2 and 8.3 show the variance of each variable in response to a shock. It can be 

seen that in each case the variance of the variables reacts greatly to a structural shock on 

themselves. The variables also react to shocks in other variables but to a lesser extent. The 

R/$ and Tbill react greatly to shocks from outside, while the ALSI reacts to a lesser extent to 

structural innovations from outside. This is understandable if considered that the R/$ is 

driven by many factors other than the ALSI and the interest rate – especially in the short run. 

The Tbill is also very prone to shocks from outside. Since it is a short-term interest rate, it is 

very sensitive to monetary policy responses. 

 

To compare the conditional covariance between the variables, each variable is shocked in the 

same manner as before. The covariance is displayed in figures 8.4, 8.5 and 8.7. The 

covariance displays a wide range of patterns in response to the various identified shocks. The 

reactions in the covariance evolve from the contemporaneous interactions between variables 

identified in table 7.2. For expositional purposes, each of the covariance movements is 

discussed. 

 

Figure 8.1: Impulse response due to a shock to ALSI 
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Figure 8.2: Impulse response due to a shock to R/$ 
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Figure 8.3: Impulse response due to a shock to Tbill 
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First of all the reaction of the covariance between the ALSI and the R/$ exchange rate to 

each shock is discussed. Shocks to the ALSI tend to make the covariance between the ALSI 

and the R/$ exchange rate more positive over the subsequent following weeks. This effect 
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arises because a positive shock to the ALSI tends to be followed by additional shocks to the 

ALSI, which have a positive impact on the R/$ exchange rate. Positive shocks to the R/$ 

exchange rate also make the covariance between the ALSI and the R/$ positive, but to a 

much lesser extent. Once again is this because shocks to the R/$ exchange rate are likely to 

be followed by more shocks. Through the contemporaneous parameters, the exchange rate 

has a positive effect on the ALSI, while the ALSI also impacts positively on the R/$ 

exchange rate. By contrast, interest rate shocks tend to make the covariance between the 

ALSI and the R/$ exchange rate more negative going forward. Shocks to the Tbill have a 

negative effect on the ALSI and an insignificant positive effect on the R/$ exchange rate 

(through the contemporaneous parameters). The ALSI effect dominates the R/$ effect, 

resulting in a negative covariance going forward. 

 

Figure 8.4: Impulse response due to a shock to ALSI 
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Figure 8.5: Impulse response due to a shock to R/$ 

 

-5

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Weeks

Pe
rc

en
ta

ge
 c

ha
ng

e

Covariance ALSI, R/$ Covariance ALSI, Tbill Covariance R/$, Tbill

 

 

Figure 8.6: Impulse response due to a shock to Tbill 
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As far as the covariance between the ALSI and the Tbill is concerned, a similar pattern arises 

when there is a shock to the ALSI. Shocks to the ALSI make the covariance between the 

ALSI and the Tbill more positive in the following weeks. The effect of the shock is however 

much smaller due to the negative impact of the Tbill on the ALSI going forward. The 

negative contemporaneous effect between the ALSI and the Tbill mitigates the effect of 

shocks to the ALSI. The covariance between the ALSI and the Tbill becomes more negative 

following a shock to the exchange rate. A positive shock to the exchange rate increases both 

the ALSI and the Tbill. However, the Tbill increase dominates, increasing by almost twice as 

much as the ALSI. Through the Tbill’s large negative contemporaneous effect on the ALSI, 

the covariance between them is negative going forward. After a shock to the Tbill, the 

covariance between the two variables becomes more negative, following directly from the 

large negative effect of the Tbill on the ALSI. 

 

The conditional covariance between the Tbill and the R/$ exchange rate is negative 

following a shock to the ALSI due to the contemporaneous interaction between the 

variables. After a shock to the R/$ exchange rate, the conditional covariance between the 

Tbill and the exchange rate increases by a large amount. This is due to both variables having 

a positive contemporaneous effect on one another. When the shock is to the Tbill, the 

covariance becomes slightly negative going forward. Once again the large negative effect of 

the Tbill on the ALSI dominates, but is mitigated by the other positive contemporaneous 

effects between the variables. 

 

Figures 8.1 through to 8.6 highlight the most important implications of identifying the 

contemporaneous parameters in the model. Understanding the source of the shock that 

drives a variable is crucial for accurately predicting the behaviour of assets going forward. 

Analysing the behaviour of a single variable in isolation could be misleading. Changes in a 

variable could be driven by an innovation to its own shock, or by endogenous responses to a 

shock to another variable. As has been seen in the figures, the sources of the shocks can have 

a very different implication for the second moments of the variables going forward. By 

recovering the contemporaneous parameters, the methodology allows one to determine the 
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source of the shock by looking at the contemporaneous movements in the other variables. 

Once the source of the shock is identified, the implication of the behaviour of variables 

going forward can be derived from the estimates. 

 

To illustrate the possible miscalculation of movements between variables the traditional 

“reduced-form” BEKK specification, as estimated in chapter 7, is used. Each variable is 

shocked by the same magnitude as the shocks applied before. The same impulse responses 

are simulated using the BEKK estimation, and compared to the impulse responses from the 

two-step approach. For expositional reasons, only the covariance movement between the 

ALSI and the R/$ exchange rate in response to different shocks is shown13.  

 

From figure 8.7 can be seen that when one ignores the contemporaneous interaction 

between variables, the reaction of the conditional covariance matrix, due to a shock to the 

ALSI, is overestimated for some period into the future. The reason is that the effect of the 

ALSI shock has a positive effect on the Tbill, which in turn mitigates the effect on the ALSI 

through its negative coefficient. The traditional BEKK estimation ignores this effect. Figure 

8.8 shows the reaction of the covariance between the ASLI and the R/$ due to a shock to 

the R/$. Once again the covariance is overestimated due to ignorance of the structural 

parameters. When the shock is to the Tbill, the covariance between the ALSI and the R/$ is 

underestimated using the traditional BEKK specification. 

                                                 
13 For a comparison between the responses of the other conditional covariances, see Appendix C.1.  
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Figure 8.7: Comparison: Impulse response due to a shock to ALSI 
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Figure 8.8: Comparison: Impulse response due to a shock to R/$ 
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Figure 8.9: Comparison: Impulse response due to a shock to the Tbill 
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8.3 AN APPLICATION TO PORTFOLIO RISK MANAGEMENT 

 

The previous section demonstrated that the conditional second moments of variables vary 

considerable over time as the relative volatilities of the underlying shocks shift. These 

observations would have important implications for forming portfolio decisions, managing 

risk and pricing derivative securities. To illustrate the practical implication of this, a simple 

risk management exercise is undertaken.  

 

Consider a portfolio that is evenly split between the ALSI index and a 90-day Treasury note 

(the 90-day Treasury note have duration of 0.25 years). The portfolio suffers a 0.5 percent 

loss if equity prices fall by 1 percent or if the Tbill rate increase by 800 basis points. It is 

assumed that the investor uses the BEKK specification outlined in chapter 7 to estimate the 

conditional variance and covariance between the variables. The same exercise is repeated 

using the two-step decomposition methodology outlined and proposed in this study. The 

percentage is calculated by which the investor’s estimate of the variance for the portfolio is 

mismeasured due to ignoring the contemporaneous effects between variables. Once again the 
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mismeasurement is calculated when there is a shock to the ALSI, the R/$ exchange rate and 

the Tbill. 

 

Figure 8.10, 8.11 and 8.12 show the mismeasurement of the portfolio when there is a shock 

to each variable. The figures give the percentage by which the investor overestimates or 

underestimates the portfolio variance relative to the two-step methodology. 

 

Figure 8.10: Percent portfolio variance mismeasurement due to a shock to the ALSI 
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Figure 8.11: Percent portfolio variance mismeasurement due to a shock to the R/$ 
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Figure 8.12: Portfolio variance mismeasurement due to a shock to the Tbill (in 

percent) 
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The figures show that when the contemporaneous effects between the variables are ignored, 

the variance of a portfolio is underestimated using the traditional BEKK specification. The 

effect is the greatest when the shock is to the interest rate, followed by shocks to the ALSI 

and lastly shocks to the exchange rate. The risk measurement implications of failing to 

account for spillovers across variables and contemporaneous effects between variables would 

likely be even more severe than the example suggests. The example assumes only a one 

period shock (i.e. a one week shock). If the structural innovations do appear for longer 

periods, the mismeasurement will be greater. Using traditional models the investor will be 

unable to measure the true impact, for he/she will be unable to identify the structural 

innovations. 

 

It follows then directly that any risk measurement that uses the portfolio variance will be 

incorrect. Given measures like Value-at-Risk and Sharpe ratios that use total risk in their 

calculations, the investor will either over- or underestimate the risk of the portfolio 

depending on the variables and the direction of the shocks. 
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8.4 CONCLUSION 

 

In order to see how the second moments of the variables react to shocks in the structural 

innovations of variables, impulse responses were introduced. The impulse responses 

highlighted the fact that contemporaneous movements between variables constitute an 

important component of the behaviour of the variables. By ignoring the structural 

parameters in a system of variables, a researcher will be unable to recover the structural 

innovations to variables. These structural innovations are important for they determine how 

the second moments of assets will react going forward. Without this knowledge serious 

mismeasurement of portfolio variances are possible and as a result wrong investment 

decisions. 
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C h a p t e r  9  

 

SUMMARY AND CONCLUSION 

 

 

9.1 INTRODUCTION 

 

The primary objective of this study was two-fold. The first objective was methodological in 

nature and the second empirical. The methodology proposed in this research was used to 

estimate the structural relationships, of both the first and second moments, between three 

financial variables in the South African economy. This analysis allows the researcher to better 

understand the drivers behind volatility of financial variables. 

 

 

9.2 METHODOLOGY 

 

The methodology used in this research uses existing literature to solve some of the 

econometric problems encountered in modelling with financial variables. If one wants to 

analyse the structural relationships between variables, be it in the first or second moments, it 

is important to find consistent, efficient and unbiased estimates for the structural parameters. 

 

First, when dealing with a system of endogenous variables, the system is not identified. 

Without imposing any restrictions on the estimated reduced-form parameters, it is impossible 

to retrieve the structural parameters. The literature has solved this problem by placing 

restrictions on the system, thereby indirectly increasing the number of equations in the 

system. These restrictions vary in nature and application. However, most of these restrictions 

cannot be justified when estimating models with high-frequency data. In the short run many 

financial variables react different than what economic theory would suggest. Therefore, to 

solve this problem of identification, identification through heteroscedasticity has been 

implemented to identify the structural contemporaneous parameters. Since financial data 
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often exhibit conditional heteroscedasticity, the identification methodology is well suited for 

this type of analysis.  

 

Two structural GARCH models have been implemented in the proposed methodology. The 

first is the Rigobon and Sack (2003) model to identify the structural parameters and to obtain 

estimates for the conditional covariance matrix of the structural innovations. Once the 

system is identified, the portion of the volatility generated within the system is modelled 

using a multivariate BEKK specification. 

 

This approach allows one to solve the system simultaneously and obtain structural 

parameters of the system. More information is available of the data generating process that 

drives the volatility between these variables. It enables one to determine to what extent the 

volatility is generated by variables inside the system and the extent to which volatility is 

driven by structural innovations or latent factors outside the system. 

 

 

9.3 EMPIRICAL RESULTS 

 

The methodology outlined in this research is implemented to analyse a system of three 

financial variables in the South African economy. The All Share index of the Johannesburg 

stock exchange, the South African Rand / US Dollar exchange rate and the South African 

90-day Treasury bill rate was analysed. The system was solved simultaneously and the 

conditional covariance matrix was analysed. 

 

Significant contemporaneous effects were found between the three financial variables.  The 

ALSI is significantly influenced by the interest rate, while the exchange rate is significantly 

influenced by the ALSI. However, the exchange rate is not influenced significantly by the 

interest rate in the short run. This is consistent with what is observed in the South African 

economy. There exists an asymmetric relationship between the exchange rate and short-term 

interest rates in the short run. When the interest rate goes up, the exchange rate do not seem 
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to react in the short run on these movements (although in the long run the relationship 

holds).  However, when the exchange rate increases (i.e. depreciation) the interest rate reacts 

almost immediately14. This is supported by the empirical results in the research. The interest 

rate is positively influenced by both the ALSI and the exchange rate.   

 

With regard to the second moments, significant GARCH behaviour was detected in both the 

exogenous structural innovations as well as the endogenous explained variation of the 

variables. In the system with three variables most of the total volatility of the variables was 

generated by latent factors or the structural innovations. In periods of uncertainty, like the 

Asian crisis, the volatility generated inside the system increased relative to volatility from 

structural innovations.  

 

Impulse responses were simulated to detect how the different variances and covariances 

between the variables react. These impulse responses indicated that there might exist 

significant mismeasurement if the researcher ignores the contemporaneous effects between 

variables. Depending on the type of shock to the system, the covariance movements between 

variables will differ going forward. 

 

Finally an application to portfolio management was implemented to highlight the possible 

dangers that exist in ignoring the contemporaneous parameters. The result was compared to 

the BEKK specification to show the differences in the estimation of a portfolio variance. 

 

 

9.4 CONCLUDING REMARKS 

 

This study developed an alternative method to analyse the structural relationships between 

variables that are determined contemporaneously in a system.  It enables one to have a better 

understanding of the drivers of volatility inside and between variables. The empirical results 

                                                 
14 This reaction follows from the nature of monetary policy in South Africa. Since the inception of an inflation target by the 

South African Reserve Bank, short-term interest rates have been sensitive to changes in the exchange rate. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDee  WWeett,,  WW  AA    ((22000055))  



 106

indicate that spillovers from one variable to another constitute an important component of 

the behaviour of financial variables. The Rigobon and Sack model makes it possible to 

quantify these effects that have been difficult to estimate previously. By extending their 

research, this study uses a second model to determine how variable behaviour is driven not 

only inside the system but also by latent factors outside the system. 
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A p p e n d i x  A  

 

DERIVATION OF THE REDUCED-FORM ARCH MODEL 

 

 

Given the reduced-form innovations from equation 5.6 
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and the structural relationship as described by equation 5.2 the second moments of the 

reduced-form can be written as 
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Rigobon (2002) construct a VECH specification, where the expected conditional moments 

have a different structure. The expected conditional reduced-form residuals can be written in 

terms of t,jh  and t,ih . Define t,j
2

t,jh ωΕ≡ , t,i
2

t,ih ωΕ≡ and t,it,jt,ijh ωωΕ≡  then the 

conditional moments can be written as 
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By writing 2
1t−ε and 2

1t−η as a function of only two out of the three moments of the reduced-

form residuals gives 
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The restriction on the covariance of the structural innovation to be zero allows one to 

express the second moments as a function of only two reduced-form conditional moments. 

Given the above, the ARCH structure can be expressed as 
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where the A matrix is given by 
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A p p e n d i x  B . 1  

 

VECTOR AUTOREGRESSION ESTIMATES 

 

 

Table B.1: OLS Estimate of the reduced-form VAR 

 

 ALSI R/$ Tbill 

ALSI(-1)  0.1676 -0.020  0.022 

  (0.190)  (0.046)  (0.101) 

 [ 0.877] [-0.429] [ 0.220] 

    

R/$(-1)  0.322  0.003 -0.116 

  (0.769)  (0.189)  (0.409) 

 [ 0.418] [ 0.018] [-0.285] 

    

Tbill(-1)  0.151  0.116  0.420 

  (0.337)  (0.082)  (0.179) 

 [ 0.449] [ 1.405] [ 2.345] 

    

C -0.001  0.000  0.002 

  (0.003)  (0.000)  (0.001) 

 [-0.587] [ 0.323] [ 1.372] 

 

 R-squared 

  

0.055 

 

 0.070 

 

 0.184 

 Adj. R-squared -0.046 -0.029  0.096 

 Sum sq. resids  0.007  0.000  0.002 

 S.E. equation  0.016  0.004  0.008 

 F-statistic  0.544  0.708  2.105 

 Log likelihood  87.311  132.195  107.530 
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 Mean dependent -0.001  0.000  0.003 

 S.D. dependent  0.016  0.004  0.009 
Standard errors in ( ) & t-statistics in [ ] 

Source: Own calculations 
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A p p e n d i x  B . 2  

 

RIGOBON AND SACK GARCH MODEL ESTIMATE 

 

 

Given the notation below, the GARCH model estimate is given in the table B.2.  
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Table B.2: Maximum likelihood estimation: Rigobon and Sack model 

 

 

 

 

Coefficient Std. Error z-Statistic Prob. 

   

 

Beta(2) 0.030973 0.036115 0.857639 0.3911 

Beta(6) 0.001594 0.004656 0.342379 0.7321 

Beta(8) 0.061075 0.022546 2.708966 0.0067 

Beta(3) -0.164597 0.027008 -6.094441 0.0000 

Beta(7) 0.012230 0.003051 4.009083 0.0001 

Beta(4) 0.026636 0.006060 4.395411 0.0000 

 

11Λ  0.206196 0.046238 4.459472 0.0000 

13Λ  0.503403 0.088191 5.708123 0.0000 

22Λ  0.236836 0.045754 5.176245 0.0000 

32Λ  0.011506 0.069993 0.164389 0.8694 

33Λ  1.211745 0.096403 12.56964 0.0000 

 

11Π  0.843898 0.032641 25.85377 0.0000 

22Π  0.623898 0.052071 11.98167 0.0000 

33Π  0.198177 0.028450 6.965769 0.0000 

 

Log likelihood 7140.497     Akaike info criterion -27.62208 

Avg. log likelihood 13.83817     Schwarz criterion -27.50688 

Number of Coefs. 14     Hannan-Quinn criter. -27.57694 
Source: Own calculations 
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A p p e n d i x  B . 3  

 

BEKK GARCH MODEL ESTIMATE 

 

 

Given the notation below, the GARCH model estimate is given in the table B.3:  
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Table B.3: Maximum likelihood estimation: BEKK model 

 

 

 Coefficient Std. Error z-Statistic Prob. 

 

11c  0.0008 0.00005 16.648

 

0.0000 

21c  -0.0004 0.00003 -14.714 0.0000 

22c  0.0003 0.00002 9.990 0.0000 

31c  -0.0004 0.00011 -3.478 0.0005 

32c  -0.0009 0.00009 -10.273 0.0000 

33c  0.0008 0.00013 5.806 0.0000 

11g  0.8365 0.01144 73.123 0.0000 

22g  0.8045 0.00835 96.282 0.0000 

33g  0.9121 0.01567 58.177 0.0000 

11a  0.5102 0.02241 22.765 0.0000 

22a  0.6175 0.02094 29.484 0.0000 

33a  0.2810 0.02517 11.163 0.0000 

 

Log likelihood 4289.823

     

    Akaike info criterion 

 

-16.731 

Avg. log likelihood 8.394     Schwarz criterion -16.606 

Number of Coefs. 15     Hannan-Quinn criter. -16.682 
Source: Own calculations 
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A p p e n d i x  C . 1  

 

IMPULSE RESPONSES AND THE COVARIANCE  

BETWEEN ALSI AND TBILL 

 

 

Figure C.1.1: Comparison: Impulse response due to a shock to ALSI 
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Figure C.1.2: Comparison: Impulse response due to a shock to R/$ 
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Figure C.1.3. Comparison: Impulse response due to a shock to Tbill 
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A p p e n d i x  C . 2  

 

IMPULSE RESPONSES AND THE COVARIANCE  

BETWEEN TBILL AND R/$ 

 

 

Figure C.2.1 Comparison: Impulse response due to a shock to ALSI 
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Figure C.2.2: Comparison: Impulse response due to a shock to R/$ 
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Figure C.2.3: Comparison: Impulse response due to a shock to Tbill 
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