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For gas turbines, the demand for high-performance, more efficient and longer-life turbine 

blades is increasing. This is especially so, now that there is a need for high-power and 

low-weight aircraft gas turbines. Thus, the search for improved design methodologies for 

the optimisation of combustor exit temperature profiles enjoys high priority. Traditional 

experimental methods are found to be too time-consuming and costly, and they do not 

always achieve near-optimal designs. In addition to the above deficiencies, methods 

based on semi-empirical correlations are found to be lacking in performing three-

dimensional analyses and these methods cannot be used for parametric design 

optimisation. Computational fluid dynamics has established itself as a viable alternative 

to reduce the amount of experimentation needed, resulting in a reduction in the time 

scales and costs of the design process. Furthermore, computational fluid dynamics 

provides more insight into the flow process, which is not available through 

experimentation only. However, the fact remains that, because of the trial-and-error 

nature of adjusting the parameters of the traditional optimisation techniques used in this 
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field, the designs reached cannot be called “optimum”. The trial-and-error process 

depends a great deal on the skill and experience of the designer. Also, the above 

technologies inhibit the improvement of the gas turbine power output by limiting the 

highest exit temperature possible, putting more pressure on turbine blade cooling 

technologies. This limitation to technology can be overcome by implementing a search 

algorithm capable of finding optimal design parameters. Such an algorithm will perform 

an optimum search prior to computational fluid dynamics analysis and rig testing. In this 

thesis, an efficient methodology is proposed for the design optimisation of a gas turbine 

combustor exit temperature profile. The methodology involves the combination of 

computational fluid dynamics with a gradient-based mathematical optimiser, using 

successive objective and constraint function approximations (Dynamic-Q) to obtain the 

optimum design. The methodology is tested on three cases, namely: 

 
(a) The first case involves the optimisation of the combustor exit temperature profile 

with two design variables related to the dilution holes, which is a common 

procedure. The combustor exit temperature profile was optimised, and the pattern 

factor improved, but pressure drop was very high. 

 
(b) The second case involves the optimisation of the combustor exit temperature 

profile with four design variables, one equality constraint and one inequality 

constraint based on pressure loss. The combustor exit temperature profile was also 

optimised within the constraints of pressure. Both the combustor exit temperature 

profile and pattern factor were improved. 

 
(c) The third case involves the optimisation of the combustor exit temperature profile 

with five design variables. The swirler angle and primary hole parameters were 

included in order to allow for the effect of the central toroidal recirculation zone on 

the combustor exit temperature profile. Pressure loss was also constrained to a 

certain maximum.  

 
The three cases show that a relatively recent mathematical optimiser (Dynamic-Q), 

combined with computational fluid dynamics, can be considered a strong alternative to the 
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design optimisation of a gas turbine combustor exit temperature profile. This is due to the 

fact that the proposed methodology provides designs that can be called near-optimal, when 

compared with that yielded by traditional methods and computational fluid dynamics alone. 

 

Keywords: combustor exit temperature profile, computational fluid dynamics, 

mathematical optimisation, gradient-based optimisation algorithm, successive 

approximation algorithm, temperature profile, design methodology 
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Variable Description                Unit 

  

a  Approximated curvature of the objective subproblem  - 

A  Approximated Hessian matrix of the objective function  - 

A  Combustor casing area      m2 

Aa  Annulus area         m2 
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D  Diffusion coefficient       - 
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  Species        - 

______________________ 

♦ Problem-dependent 
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∨
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kg  Gas thermal conductivity             W/m K 
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Le  Length scale of ε       m 
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airm   Air mass flow rate                 kg/s 
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mk  Mass fraction of species k       - 

n  Local coordinate normal to the wall     - 

  Number of design variables      - 

Number of holes       - 
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Nu  Nusselt number       - 

______________________ 

♦ Problem-dependent 
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NuD  Nusselt number of the droplet      - 
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p(x)  Penalty function       - 

p(z)  pdf of mixture fraction variance z     - 

P3  Air pressure at the combustor inlet               Pa 
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q  Heat flux        W 

Q  External heat source term       J 

QD  Rate of heat conduction to the droplet surface per unit area  W 

r  Radius         m 

rD  Radius of the droplet       m 
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OT   State temperature of oxidiser       K 
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♦ Problem-dependent 
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Variable Description                Unit 

 

T  Temperature        K 
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T0  Reference temperature      K 

T3  Temperature of air at the combustor inlet     K 

T4avg  Average temperature at the combustor exit     K 

T4max  Maximum individual temperature at the combustor exit   K 

T4peak  Maximum temperature in average radial profile    K 

TD  Droplet temperature       K 

tD  Viscous damping time      s 

Tg  Gas temperature       K 

Tw  Wall shear stress                  Pa 

u  Velocity in the x-direction               m/s 

U*  Dimensionless mean velocity      - 

uA  Velocity of air                 m/s 

uD  Velocity of droplet                m/s 

ui  Instantaneous velocity in the i-th direction             m/s 

ui  Three-dimensional velocity field               m/s 

ui
’  Fluctuating part of velocity in the i-th direction            m/s 

Uj  Velocity of the jet                m/s 
c

iV   Correlation velocity cV  in direction i              m/s 

Vk  Component of diffusion velocity of species k    - 

Vk,j  Diffusion velocity of species k in the direction j            m/s 

kw   Reaction rate of species k                 W 

Tw   Reaction rate                  W 

w  Velocity difference between product and parent droplet            m/s 

______________________ 

♦ Problem-dependent 
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Variable Description                Unit 

 

wk  Reaction rate of species k      - 

x  Design vector                   ♦ 

x*  Optimum design variable                 ♦ 

y  Droplet distortion       - 

  Coordinate from the wall      m 
0

FY   State mass fraction of fuel      - 

0
OY   State mass fraction of oxidiser     - 

y+  Wall unit for law-of-the-wall      - 

YD  Fuel vapour mass fraction      - 

YDs  Fuel vapour mass fraction at the droplet’s surface   - 

YF  Mass fraction of fuel       - 

Yk  Mass fraction of species k      - 

Ymax  Maximum jet penetration 

YO  Mass fraction of oxidiser      - 

yp  Distance from point P to the wall      m 

z  Mixture fraction variance       - 

 

Greek symbols 

 

α  Penalty function parameter for inequality constraint   - 

β  Penalty function parameter for equality constraint   - 

kβ   Penalty parameter       - 

jδ   Specified move limit for i-th design variable    ♦ 

∆fnorm   Normalised step size       - 

δi  Move limit on i-th design variable     - 

______________________ 

♦ Problem-dependent 

 

 
 
 



 

 xx

Variable Description                Unit 
 

 

∆Poverall Change in overall pressure drop      - 

∆xi  Step size for i-th design variable     ♦ 

∆xnorm   Normalised step size       - 

ε  Rate of dissipation of turbulence      - 

θ  Angle                         degrees 

iµ   Penalty parameter       - 

tµ   Turbulent viscosity                Pa s 

µ  Kinematic viscosity               ms/s  

lµ   Liquid viscosity                Pa s 

µg  Gas kinematic viscosity              ms/s 

tυ   Kinematic viscosity                m2/s 

ρ  Density               kg/m3 

jρ   Penalty parameter       - 

ρ3  Density of air at the combustor inlet             kg/m3 

ρD  Droplet density              kg/m3 

ρg  Average gas density              kg/m3 

ρi  Density of the mixture             kg/m3 

ρk  Density for each species k             kg/m3 

σ  Surface tension                 N/m 

σD  Droplet surface tension coefficient     - 

σt  Effective turbulent Prandtl number     - 

τ  Stress                    Pa 

τB  Characteristic breakup time      s 

τD  Droplet relaxation time      s 

τE  Eddy life time        s 

______________________ 

♦ Problem-dependent 

 

 
 
 



 

 xxi

Variable Description                Unit 

 

We  Weber number        - 

τij  Stresses in the i-th and j-th direction               m/s 

τTR  Transit time scale       s 

ω  Turbulent vorticity       - 

Oscillatory frequency                          1/s 

  

Subscripts 

 

3  Combustor inlet 

4  Combustor exit 

A  Air 

B  Breakup 

D  Droplet 

F  Fuel 

g  Gas 

i  Index 

  Index 

INT  Interaction 

j  Index 

k  Species 

  Source 

m  Mass source 

max  Maximum 

norm  Normalised 

O  Oxidiser 

opt  Optimum 

______________________ 

♦ Problem-dependent 
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Subscripts 

 

P  Point 

s  Surface 

t  Turbulent 

TR  Transit 

 

Abbreviations 

CFD  Computational fluid dynamics 

RANS   Reynolds-averaged Navier-Stokes equation 

RSM   Reynolds stress method 

LES   Large eddy simulation 

DNS  Direct numerical simulation 

SMD  Sauter mean diameter 
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