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Summary

Chaotic synchronization has attracted much attention because of its potential appli-

cation in secure communication. Different chaos-based communication schemes are pro-

posed in literature: chaotic parameter modulation, chaotic additive masking, chaotic

switching, etc. System parameters play an important role in security problems, since

system parameters and initial conditions are often treated as secret keys in chaos-based

communication schemes. Although the parameter modulation scheme is a popular

chaos-based communication scheme, the modulated parameter in the classic parame-

ter modulation scheme can easily be broken. A definition of secure synchronization

evaluates the security of synchronization using control theoretic terms. This definition

requires the parameters (“password” candidate) satisfying antiadaptive and antirobust

properties. Based on this definition, the generalized Lorenz system with an unknown

parameter is thought to be a good candidate to implement secure synchronization.

The objective of the thesis is to give some criteria in the design of chaos-based com-

munication schemes, and to provide such a scheme with high security and robustness

as well.
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Firstly, an adaptive observer is constructed in this thesis, and proved to be an

exponential observer for the generalized Lorenz system. That is, it can estimate the

state and the unknown parameter of the generalized Lorenz system simultaneously. To

complete the proof, some dynamical properties of the generalized Lorenz system are

developed to show that a certain persistently exciting condition holds.

Secondly, it is shown that the unidentifiable parameter is a good choice for a secret

key, and a simple parameter identifiability technique based on differential 1-forms is

applied to check unidentifiability. In fact, if the system parameter is not identifiable,

it is obvious that there is no adaptive observer that can estimate the real parameter

value. Hence this kind of system satisfies the antiadaptive property to a certain extent.

Thirdly, a modified parameter modulation scheme is provided in this thesis. It

improves security in three aspects. One aspect is choosing an unidentifiable parame-

ter as the modulated parameter such that it is secure against parameter identification

techniques. The other two aspects are that the modulated parameter has more choices

in key space, and is generated by means of a cryptosystem, which is constructed by

a one-dimensional discrete system controlled by a ∆-modulated feedback. Numerical

simulations illustrate that the power analysis attack and return map attack are in-

effective in this scheme. In addition, the robustness of this scheme against uncertain

disturbance is also investigated both analytically and experimentally. The results show

that this scheme works properly if the uncertainty satisfies some given bounds.

Finally, this modified parameter modulation scheme is applied to a code division

multiple access system with direct sequences approach. Numerical simulations show

that the scheme achieves lower bit error rate (BER) values even if there is noise in the

transmission channel.

Keywords: Chaotic synchronization, parameter modulation scheme, generalized

Lorenz system, persistently exciting, adaptive observer, identifiability, cryptography,

∆-modulated feedback, code division multiple access.
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Chapter 1

Introduction

1.1 Background

There has been tremendous interest in the chaotic system over the past decades.

The chaotic system is characterized by sensitivity on the initial condition, random be-

haviour, a continuous broadband spectrum and decaying correlation function. These

properties coincide with the requirements of secure communication and cryptography.

Therefore chaos has potential application in several functional blocks of a digital com-

munication system: compression, encryption, modulation.

Most communication schemes are based on synchronization of two chaotic systems.

Synchronization means concurrent change of the states of two or more systems. Accord-

ing to [25]: “synchronize” means to concur or agree in time, to proceed or to operate

at exactly the same rate, to happen at the same time [1]. Trajectories of chaotic sys-

tems diverge from each other exponentially even with a tiny difference in initial values.

Chaotic systems intrinsically defy synchronization, because even two identical systems

starting at nearly the same initial conditions would develop an unsynchronized man-

ner. Nevertheless, [2] showed that it is possible to achieve synchronization in chaotic

systems in 1990. Their scheme was viewed as a master-slave (driver-response) system

[3]. The master system drives a part of the slave system, which has different initial con-

ditions from the master system. To reach synchronization, the two (or more) chaotic

systems adjust their motions to common behaviour [4]. The pioneer work in [2] at-

tracted tremendous interest in the secure communication field, and synchronization of

1

 
 
 



Chapter 1 Introduction

chaotic system has grown to be one of the richest areas during the past decades.

The pioneer work in [2] and several popular chaos-based communication schemes

are reviewed in the following.

The authors in [2] considered an n-dimensional chaotic system ruled by the following

equation u̇ = f(u) where u = {u1, . . . un} is the state variable and f is an n-dimensional

function.

Divide the system into two subsystems

{
v̇ = g(v, w),

ẇ = h(v, w),
(1.1)

where u = [{v, w}, v = {u1, . . . um}, w = {um+1, . . . , un}, g = {f1, . . . fm}, and h =

{fm+1, . . . , fn}. This equation defines the driver system. Now define a new subsystem

w′ = h(v, w′), w′(t0) 6= w(t0),

where t0 is the initial time. This equation represents the response system whose trajec-

tory is guided by the driver system by means of the driving signal v. In this framework,

synchronization is defined as the identity between the trajectories of w(t) and w′(t),

i.e., lim
t→∞

‖w′ − w‖ → 0, which is assured if all the Lyapunov exponents [5, 6] of the

response system are negative [4, 2]. Reference [2] further shows its method by a Lorenz

system

driver





ẋ = σ(y − x),

ẏ = −xz + rx− y,

ż = xy − bz,

response

{
ẏ′ = −xz′ + rx− y′,

ż′ = xy′ − bz′.

(1.2)

The Lyapunov exponents of the response system are (−1.81,−1.86) by numerical

calculation with parameters σ = 10, b = 8/3, r = 60 [2].

Some popular chaos-based communications schemes are additive masking, chaotic

shift keying, chaotic parameter modulation, chaos shift keying, chaotic frequency mod-

Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

ulation and chaotic cryptosystem. The following text focuses on three schemes: addi-

tive masking, parameter modulation and chaotic cryptosystem. Most of the schemes

consist of two parts: a transmitter (driver system), which generates the chaotic signal

and transmits it with the information signal, and a receiver (response system), which

synchronizes with the driver system and decodes the information from the transmitted

signal.

One of three schemes is chaotic signal masking [7, 8, 9]. The sender can add a given

message to a chaotic signal directly and send it to the receiver as a driving signal.

The receiver can extract the message by using the synchronization error between the

driving and the regenerated signals. However, the message is required to be weaker

than the chaotic mask signal. This method is sensitive to channel noises and parameter

mismatches [10]. An observer-based approach for chaotic synchronization is provided

to reduce the effect of channel noises in [9]. The transmitter and the receiver are

constructed as the following, respectively:

transmitter

{
ẋ = Ax + f(x, y′) + Bd + Ls,

y′ = CT x + s = y + s,

receiver

{
˙̂x = Ax̂ + f(x̂, y′) + Bd + L(y′ − ŷ),

ŷ = CT x̂,

(1.3)

where s ∈ R is the information signal and y′ ∈ R is the transmitted chaotic signal and

drives the receiver. The recovered signal is achieved by sR(t) = y′(t)− ŷ(t) and can be

asymptotically recovered at the receiving end of the communication.

The second scheme of chaos-based communication is known as chaotic modulation

[7, 11, 12]. In this idea, the information signal modifies the system states or parameters

through an invertible procedure. References [7] and [8] are the first publications using

chaotic modulation. In [7] and [8], the transmitter and the receiver are constructed as

Lorenz systems

transmitter





u̇ = σ(v − u),

v̇ = ru− v − 20uw,

u̇ = 5uv − bw,

receiver





u̇s = σ(vs − us),

v̇s = ru− vs − 20uws,

u̇s = 5uvs − bws.

(1.4)

Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

The coefficient b of the transmitter equals 4.4 if the binary bit is “1”, and equals

4.0 if the binary bit is “0”. At the receiver, the modulation is detected by forming

the difference between the transmitted signal and the reconstructed driving signal.

Observer-based adaptive synchronization for communication is provided in [13, 14, 15].

At the receiving end, an adaptive observer is designed as the receiver, and the message

is extracted through estimating the unknown parameter. For example, in [13], the

author considered the following system:

transmitter

{
ẋd = Axd + φ0(yd) + B

∑m
i=1 θiφi(yd),

yd = Cxd,
(1.5)

where xd ∈ Rn, yd ∈ Rl are the state and output vector, respectively, and θ =

[θ1, . . . , θm]T is the parameter vector (possibly representing the message). It is assumed

that A, B, C and φi are known. An adaptive observer is designed at the receiver:





ẋ = Ax + φ0(yd) + B
[ ∑m

i=1 θ̂iφi(yd) + θ̂0G(yd − y)
]
,

y = Cx,

θ̂i = ψi(yd, y), i = 0, 1, . . . ,m,

(1.6)

where x ∈ Rn, y ∈ Rl, θ0 ∈ R and G ∈ Rl is the vector of weights and ψ′is are

suitably defined functions. The persistent excitation (PE) property of φi(yd) ensures

the convergence of parameter estimation.

In [16, 17], chaotic cryptography is provided for improving the degree of security. In

this method, chaotic synchronization, combined with the classical cryptography tech-

nique, is used to enhance security. The chaos-based scheme for secure communication

includes three steps: 1) encryption; 2) synchronization; 3) decryption. Two communi-

cations channels are used to send an encrypting signal and driving signal respectively in

[16] instead of one channel in [17]. For example, in [17] the authors used Chua’s circuit

and an n−shift cipher to implement their method, and the encrypter and decrypter

are

Encrypter





v̇1 = 1
C1

[G(v2 − v1)− f(vR)],

v̇2 = 1
C2

[G(v1 − v2) + i3],

i̇3 = 1
L
[−v2],

Decrypter





˙̂v1 = 1
C1

[G(v̂2 − v̂1)− f(vR)],

˙̂v2 = 1
C2

[G(v̂1 − v̂2) + î3],
˙̂i3 = 1

L
[−v̂2],

(1.7)

Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

where vR(t) is the transmitted signal, v2(t) is the key signal, p(t) denotes the message

signal, f(vR) = GbvR + 1
2
(Ga − Gb)(|vR + E| − |vR − E|), C1, C2, L, Ga, Gb, G and E

are system parameters. The transmitted signal vR is v1 − e(p(t)), where e(p(t)) is the

encrypted signal defined below:

e(p(t)) = f1 · · · f1(f1(︸ ︷︷ ︸
n

p(t), v2(t)), v2(t) · · · v2(t))︸ ︷︷ ︸
n

,

f1 is a nonlinear function,

f1(x, k) =





(x + k) + 2h, −2h ≤ (x + k) ≤ 2h,

(x + k), h < (x + k) < h,

(x + k)− 2h, h ≤ (x + k) ≤ 2h,

h is chosen such that p(t) and v2(t) lie within (−h, h). The recovered encrypted signal

ê(p(t)) is defined as ê(p(t)) = v̂1 − vR. One has ê(p(t)) → e(p(t)) when the synchro-

nization is achieved.

In contrast to a synchronization-based technique, chaos has also been used to design

a cryptosystem based on direct applications of chaotic transformations to plaintexts. A

cryptosystem is an algorithm that converts an original message, referred to as plaintext,

into a random message, referred to as ciphertext, and recovers the message in its original

form [18]. Chaos and cryptography have many common features, such as sensitivity

and ergodicity. Matthews [19] was the first to design a cryptosystem based on a discrete

chaotic system. Then Habutsu et al. [20] constructed a chaotic block cipher using a

skew tend map. Baptista [21] developed a cryptosystem in which initial condition and

system parameter were chosen as keys. Kocarev used a systematic procedure to create

a chaos-based cipher by means of a logistic map in [22]. Based on discretization of

the skew tent map, a new secure cryptosystem was constructed by Masuda in [23].

Pareek et al. [18] proposed a symmetric block cipher that does not explicitly use

the system parameter as secret key. However, these parameters are generated by an

external secret key. This algorithm will be adopted with proposed scheme in this

thesis. In this proposed scheme, this algorithm is used to construct a cryptosystem

based on a one-dimensional discrete system controlled by a ∆-modulated feedback, and

the cryptosystem is one component of a modified parameter modulation scheme.

Electrical, Electronic and Computer Engineering
University of Pretoria
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1.2 Motivations

Security is an important aspect of synchronization. Research on synchronization has

been boosted mainly by its possible use in secure communication and encryption. The

chaos-based communication schemes are expected to be secure because of two reasons:

1) it is difficult to extract the hidden message by any spectrum method owing to the

broadband spectrum; 2) when a set of system parameters are treated as encryption key,

it is impossible to recover the message without precise knowledge about them [24, 25].

However, some research shows that most chaos-based schemes have a low level of

security. The nonlinear dynamical forecasting method is the first attack method in

literature, which is proposed by Short et al. in [26, 27]. It can extract the chaotic

carrier signal in chaotic additive masking and some chaotic modulation schemes. Then

the message can be obtained by removing the carrier signals from transmitted cipher-

text signal. Power spectral analysis and return map are the other two powerful attack

methods, and even they do not require the structure of the chaotic systems. Pérez and

Cerdeira [28] designed the return map method to extract the message masked by a

chaotic signal. For a discrete time series {xi}n
i=1, one plots each xi against its successor

value xi+1. This is called a return map [6]. The attractor of the return map changes

when one of the system parameters changes. Low-pass filter and quantization are used

in power spectral analysis and the generalized synchronization method [29]. The plain-

text can be recovered after quantizing the low-pass filtered signal, which is a modified

ciphertext (transmitted signal). For example, when the parameter b changes in (5.2)

with the message signal in the parameter modulation method, the amplitude of the

transmitted signal’s low-frequency spectrum will change. So the message signal can be

recognized through investigating the variation of the amplitude. The parameter esti-

mation or parameter identification technique is also a powerful attack method. From

the viewpoint of control theory, some adaptive and robust control methods can esti-

mate the system parameters, hence they can be considered as possible attack methods

[24, 25].

Besides the security problem, robustness against uncertain perturbation is another

important problem. For example, there is unavoidable error when the chaotic map

is executed by a computer, because the real number is represented by a binary bits

sequence of finite length in a digital computer. Errors may result in some serious

problems, such as short cycle length or nonideal distribution and correlation function

Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

[30, 31]. However, most research focuses on the influence of uncertainty on security.

Little work has been done on robustness against uncertainty. Uncertainty will make the

chaotic orbits stray from the real ones (without error). After a number of iterations,

the chaotic orbits may be completely different from theoretical ones [32]). Therefore

the chaotic cipher cannot work properly.

There is an interesting paradox between security and robustness, which has been

pointed out in [33, 34, 25]. Generally high security implies high sensitivity. Many

chaos-based communication schemes may be decrypted by using approximate para-

meter values, because they are not sufficiently sensitive to parameter mismatch [35].

Nevertheless, there are unavoidable parameter perturbation and parameter mismatch

in the practical environment. Robust synchronization means that synchronization is

achieved even if there are parameter perturbation and parameter mismatch. Obviously,

a balance has to be reached between these two aspects. A trade-off between security

and robustness can be achieved at the cost of some other factors. For example, using

high-dimension chaotic systems and more parameters will achieve a good balance be-

tween the two aspects at the expense of memory cost and encryption time in software

and hardware implementation.

1.3 Objectives

The objectives of this thesis are to give some criteria in the design of chaos-based com-

munication schemes, and to provide such a scheme with high security and robustness

as well.

The chaotic synchronization has been formulated into an observer design problem by

control theory [24, 36, 37]. Hence, one of the objectives is to give some criteria in control

theoretic terms, such that the chaos-based communication schemes are secure against

some popular attacks. The other objective is to provide a practical scheme based on

the criteria. Moreover, the scheme also works properly when there are perturbations

in the parameters or transmission channel.

Electrical, Electronic and Computer Engineering
University of Pretoria
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1.4 Contributions

In this study, the above problems on security and robustness will be considered. Ref-

erence [24] suggested a definition of secure synchronization and the generalized Lorenz

system with an unknown parameter, which are the original motivation of this thesis.

Chapter 3 gives a proof of an exponential observer for the generalized Lorenz system,

which shows that the unknown parameter can be estimated. Hence the unidentifiable

parameters are recommended as the secret key. Chapter 3 also provides a modified

Lorenz system with unidentifiable parameters such that this system satisfies the re-

quirements of secure synchronization to a certain extent. A new parameter modulation

scheme is provided in Chapter 4 to improve security in three aspects: unidentifiable

parameter, large key space and complex parameter generating process. Numerical sim-

ulations show that this scheme is secure against power analysis attack and return map

attack. The analysis of the robustness of this scheme gives some sharp upper bounds

of uncertainty. The modified parameter modulation scheme is applied in Chapter 5 to

the CDMA system. In the application and analysis of the robust problem, the trade-off

between security and robustness is also considered. Satisfactory robustness is obtained

by degrading security.

The main contributions are listed below:

1. An exponential observer is constructed to achieve synchronization for a general-

ized Lorenz system with an unknown parameter;

2. To improve security, unidentifiable parameters are chosen as the secret key. The

parameter identifiability technique based on differential 1-forms is also applied to

test the security of the system parameters in chaos-based communication schemes;

3. A modified parameter modulation communication scheme, which is based on a 1-

D discrete system controlled by a ∆-modulated feedback, is proposed to improve

security. A cryptosystem is constructed by this 1-D discrete system in order

to generate the modulated parameter. This generating process enlarges the key

space and increases the difficulty of decryption. Hence security is improved in

this scheme.

4. The proposed modified parameter modulation scheme is robust under errors or

uncertainties within a certain range. Simulations show that selecting appropriate

Electrical, Electronic and Computer Engineering
University of Pretoria

8

 
 
 



Chapter 1 Introduction

parameters can improve the robust property at the expense of security.

5. The modified parameter modulation scheme is applied to a direct sequences

code-division-multiple-access (DS-CDMA) scheme. Some encryption steps are

simplified to ensure that the CDMA system is robust, when there is noise in the

transmission channel.

1.5 Outline of thesis

The thesis is organized as follows. Chapter 2 introduces some preliminary knowledge,

which will be used in the following chapters. It consists of the basis of the cryptosystem

and two powerful breaking methods, power analysis attack and return map attack.

At the beginning of Chapter 3, the definition of secure synchronization and the

generalized Lorenz system are introduced. The authors of [24] formulated the synchro-

nization problem as an observer design problem. Then a conjecture is proposed

Conjecture: The generalized Lorenz system allows secure synchronization.

In this chapter, a kind of adaptive observer proposed in [38] is constructed to achieve

synchronization for the generalized Lorenz system with one unknown parameter, and is

proved to be an exponential observer. This result shows that the unknown parameter

of the generalized Lorenz system can be estimated. To complete the proof, some dy-

namical properties of the generalized Lorenz system are found by analytic techniques.

To protect the parameter against different kind of parameter identification methods,

the identifiability of system parameters should be checked during the design of a chaos-

based communication scheme. Identifiability can be treated as the criterion to measure

the security of the parameter. The linear algebraic method based on differential 1-

forms [39, 40] is used to test the identifiability of the chaotic system. This method is

illustrated through studying the identifiability of a modified Lorenz system.

To improve the security of chaotic synchronization, a modified parameter modula-

tion scheme is proposed in Chapter 4, which uses an encryption function to modulate

the parameter. The encryption function is implemented by a one-dimensional discrete

system controlled by a ∆-modulated feedback. This discrete system is proved to be a

chaotic self-map when parameter a belongs to (
√

2, 2). Hence it is suitable to imple-
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ment an algorithm as proposed in [18]. Numerical simulations show that the scheme

is secure against power spectral analysis and return map attack. The robustness of a

cryptosystem, the important component of the proposed modified parameter modula-

tion scheme, is investigated analytically and experimentally in the last part of Chapter

4. In order to prevent the uncertainty from destroying the cryptosystem, this chapter

also gives the upper bounds of the uncertainties, which appear in initial conditions and

system parameter.

The last chapter considers a chaos-based code-division-multiple-access (CDMA)

system with direct sequence (DS) approach, to which some results in the previous

chapters are applied. Numerical simulations show that CDMA system has good per-

formance when both the transmission channel and synchronization channel carry noises.
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Chapter 2

Preliminary knowledge

2.1 Chapter outline

This chapter introduces some preliminary knowledge, which will be used in the fol-

lowing chapters. Section 2.2 introduces power analysis attack and return map attack,

which are two popular attacks for chaos-based communication schemes. Section 2.3

gives the basic structure, general assumption and attacks of the general cryptosystems,

which helps the reader to understand this thesis well.

2.2 Power spectral and return map attack methods

Different methods have been proposed to attack chaos-based communication schemes.

In chaotic masking schemes, the transmitted message can be extracted using different

methods: power spectral analysis, return map analysis, autocorrelation and cross-

correlation analysis, etc [28, 29, 41]. Return map, correlation analysis and generalized

synchronization technique are used to extract the transmitted message for chaotic

switching or modulation schemes [28, 29, 42]. For the scheme with encryption tech-

nique proposed in [17], the authors in [43] used the nonlinear dynamic forecasting

techniques to extract the encrypted message.

This thesis focuses on improving security of the parameter modulation scheme. The
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Chapter 2 Preliminary knowledge

modulated parameter in many schemes has two values corresponding to transmitted

bit ‘1’ or ‘0’ [8, 44]. That is why many attacks, such as return map, power analysis and

generalized synchronization attacks, can extract the transmitted message. In order to

illustrate the pathology of the schemes proposed in [8, 44], only power analysis and

return map attacks are considered as they are enough to distinguish the values of the

modulated parameter, and the other attacks are not considered.

Although several chaos-based communication schemes are reviewed in Chapter 1,

the exact definition of synchronization is not given there. Hence in this section a

widely used definition is introduced. Then two attack methods, power analysis and

return map, are presented to break a typical parameter modulation scheme [44].

Different notions of synchronization are proposed for chaotic systems in literature

[45, 46, 47], such as identical synchronization, generalized synchronization and phase

synchronization. Identical synchronization is the strongest and most frequently used

definition, and this thesis focuses on this definition.

Identical Synchronization [45]: Two continuous-time dynamical systems ẋ = f(x)

and ẋ′ = f ′(x′) are said to synchronize identically if

lim
t→∞

‖ x(t)− x′(t) ‖= 0

for any combination of initial states x(0) and x′(0).

From a communications perspective, one may think of the two systems as the

transmitter and the receiver. This definition means that the state of the receiver

system converges asymptotically to that of the transmitter, which is similar to the

definitions proposed in [1, 48].

In Chapter 1, it was mentioned that security is an important problem in chaos-

based communication schemes, and power analysis and return map are two powerful

attack methods, which do not require prior knowledge of the chaotic system. In the

following these two methods are illustrated to attack a parameter modulation scheme

based on the Lorenz system.

The author in [44] designed an observer-based receiver to synchronize with a given

transmitter with unknown parameters. Then the approach is applied to chaos-based

secure communication. The efficiency of the scheme is represented through a Lorenz

Electrical, Electronic and Computer Engineering
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system described by 



ẋ1 = −σ1x1 + σ2x2,

ẋ2 = rσ1 − x2 − x1x3,

ẋ3 = x1x2 − bx3.

(2.1)

It is well known that system (2.1) exhibits chaotic behaviour with the standard para-

meters (σ1, σ2, r, b) = (10, 10, 28, 8/3). The transmitted signal is for synchronization x1.

The parameter σ1 is modulated by the binary encoded plaintext, so that it is σ1 + 2.5

if the plaintext bit is ‘1’ and σ1 − 2.5 if the plaintext bit is ‘0’. So system (2.1) can be

described as an uncertain system



ẋ1

ẋ2

ẋ3


 =



−10 10 0

28 −1 0

0 0 −8/3







x1

x2

x3


 +




0

−x1x3

x1x2


−




1

0

0


 yθ,

y = Cx =
[
1 0 0

]
x = x1

(2.2)

where the uncertainty θ = ∆σ1 = ±2.5. An observer-based receiver is constructed as



ˆ̇x1

ˆ̇x2

ˆ̇x3


 =



−10 10 0

28 −1 0

0 0 −8/3







x̂1

x̂2

x̂3


 +




0

−x̂1x̂3

x̂1x̂2


−




1

0

0


 yθ̂ + L(x1 − x̂1),

θ̂ = −5y(x1 − x̂1),

(2.3)

where L =
[
0 38 0

]T

.

It is important that the bit duration is much larger than the convergence time of

the adaptation law. In comparing Figure 2.2a) with Figure 2.2b), it is found that the

uncertainty θ is estimated exactly, and the transmitted signal can be recovered from

the estimated parameter values.

But this method has a low degree of security. Making use of power analysis attack or

return map attack, the transmitted signal can be decoded without the prior information

of the Lorenz model [29, 28]. Assume the transmitted signal is y(t), the power analysis

attack method is a procedure consisting of three steps [29]:

1. the transmitted signal y(t) is squared;
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Figure 2.1: Illustration of observer (2.3): (a) the plaintext; (b) the estimated parameter

θ̂.

2. a low-pass filter to y2(t) is employed;

3. the low-pass filtered y2(t) is binary quantized.

Figure 2.2 and Figure 2.3 illustrate the procedure. Figure 2.2a) is the plaintext. Figure

2.2b) is the transmitted signal containing messages, that is, the transmitted signal x1.

Figure 2.3a) shows the low-pass filtered squared ciphertext signal, that is, x2
1 is low-pass

filtered. Then this signal is binary quantized to obtain the recovered plaintext, which

is shown in Figure 2.3b). In comparing Figure 2.2a) with Figure 2.3b), it is obvious

that power analysis exhibits good performance in recovering the plaintext.

Now consider the return map attack method. For a discrete time series {xi}n
i=1,

one plots each xi against its successor value xi+1. This is called a return map in [6].

Assume that the transmitted signal is x1. Starting from the initial point, Xn denotes

the n-th local maximum of x1, and Yn denote the n-th local minimum. As described

by Perez and Cerdeira [28], the return maps Xn+1 vs Xn and Yn+1 vs Yn are not used

directly, the linear combinations

An =
Xn + Yn

2
, and Bn = Xn − Yn,

are used instead to get better results. The return map An vs Bn has a simple attractor,

which is shown in Figure 2.4. A small change in the parameters of the transmitter
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Figure 2.2: Power analysis attack: (a) the plaintext; (b)the ciphertext x1.
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Figure 2.3: Power analysis attack: (a) low pass filtered squared ciphertext signal; (b)

the recovered plaintext.
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Chapter 2 Preliminary knowledge

affects the attractor of the chaotic system. It is obvious that each segment is split into

two strips in the return map. The reason is that the switching between two parameter

values results in the switching between two parallel strips of each segment. According

to the line in which the point (An, Bn) falls, one can easily unmask the current value

of the plaintext.
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20

25

30

35

40

A
n

B
n

Return map

Figure 2.4: Return map: An vs Bn.

2.3 Chaos-based cryptography

When performing cryptanalysis on an cryptosystem, the general assumptions are those

listed below [49]:

• Public channel: An opponent has access to the transmission channel such that

he knows an arbitrary segment of the ciphertext.

• Public structure: An opponent knows the structure of the encryption system and

a priori probability of the key that is used. Under these conditions, only the

key is kept secret to the intruder. This requirement is referred to as Kerckhoff’s

principle.

The analysis of discrete-value cryptosystems is based on a model that characterizes

a cryptosystem by five sets [33, 49, 50]:
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Chapter 2 Preliminary knowledge

• the plaintext space P is the set of possible plaintexts;

• the ciphertext space C is the set of possible ciphertexts;

• the key space K is the set of possible keys;

• two function spaces E and D are the sets of possible encryption and decryption

transformations, respectively. For each key k ∈ K, there exists an encryption

function ek ∈ E and a corresponding decryption function dk ∈ D such that

dk(ek(p)) = p for every plaintext p ∈ P .

For example, Block cipher mentioned in [22], one of the encryption systems, is

a static transformation Fk : P → C, which transforms a relatively short string in

plaintext space to a string in ciphertext space under control of a secret key, where

P , C and k denote the plaintext space, ciphertext space and secret key, respectively.

Let the plaintext p = {p0, p1, . . .}, then each plaintext block pi ∈ P is encrypted such

that

Fk : {p0, p1, . . .} → {Fk(p0), Fk(p1), . . .}.

The crucial measure for the quality of a public channel cryptosystem is security,

which is its capability to withstand the attempts of an intruder to gain the information

of the plaintexts. The security of a cryptosystem is evaluated by means of attacks,

which try to break the system. Attacks on a cryptosystem can be distinguished ac-

cording to the opponent’s access to additional information. They are enumerated as

follows, ordered from the hardest type of attack to the easiest [33, 49]:

• Ciphertext-only: The opponent possesses a string of ciphertext y.

• Known-plaintext: The opponent possesses a string of plaintext x, and the corre-

sponding ciphertext y.

• Chosen plaintext: The opponent has obtained temporary access to the encryp-

tion machinery. Hence he can choose a plaintext string x and construct the

corresponding ciphertext string y.

• Chosen ciphertext: The opponent has obtained temporary access to the decryp-

tion machinery. Hence he can choose a ciphertext string y and construct the

corresponding plaintext string x.
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In each of these four attacks, the main intention is to determine the secret key, or

one of its equivalent forms, which allows the opponent to decrypt arbitrary ciphertexts.

Exhaustive key search is another kind of attack, which defines the highest upper bound

of computational effort for breaking a given cipher. In this way, any cipher can be

attacked with an effort that is proportional to the size of the key space.

To resist common attacks, two general design principles of practical ciphers are

confusion and diffusion. As mentioned in [22], the first property means “spreading out

of the influence of a single plaintext digit over many ciphertext digits so as to hide

the statistical structure of the plaintext. An extension of this idea is to spread the

influence of a single key digit over many digits of ciphertext”. Thus the statistical

structure of the plaintext is difficult to obtain through studying the ciphertext. The

second property means “use of transformations which complicate dependence of the

statistics of ciphertext on the statistics of plaintext” [22].

2.4 Summary and conclusion

This chapter introduces some preliminary knowledge, which will be used in the follow-

ing chapters. The basic structure and general assumption of the general cryptosystems

will help the reader to understand why only system parameters are considered when

discussing the security problem. Power analysis attack and return map attack will be

used in Chapter 3. The chosen ciphertext attack will also be considered in Chapter 3.

Electrical, Electronic and Computer Engineering
University of Pretoria

18

 
 
 



Chapter 3

Adaptive synchronization of

generalized Lorenz system

3.1 Chapter outline

This chapter gives some criteria in the design of chaos-based communication schemes.

Section 3.2 is an overview of this chapter. Section 3.3 and Section 3.4 introduce some

preliminary knowledge. Section 3.3 consists of the basis of a kind of adaptive observer

and the state affine form [51, 38]. Section 3.4 introduces the definition of secure syn-

chronization and the generalized Lorenz system. In Section 3.5, the adaptive observer

introduced in Section 3.3 is constructed and proved to be an exponential observer for

the generalized Lorenz system. Section 3.6 is the application of parameter identifiabil-

ity to chaotic synchronization. The conclusion is given in Section 3.7.

3.2 Introduction

According to a fundamental assumption in cryptography, Kerckhoff’s principle, the

intruder knows the details of the cryptosystems, including the design and the imple-

mentation, except the secret key. In many proposed chaotic synchronization schemes,

some initial conditions and parameters are treated as the key. It is usually difficult

to recover the hidden message without knowing the exact value of the key. Hence the
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Chapter 3 Adaptive synchronization of generalized Lorenz system

security of the parameter is an important problem for chaotic synchronization.

However, a number of references point out that many adaptive and robust control

techniques can estimate the true parameter value. Moreover, a few works focus on how

to evaluate the security and performance of chaos-based communication schemes. For

this problem, [24] gives a definition of secure synchronization using control theoretic

terms. Secure synchronization includes two properties: antiadaptive and antirobust

secure. Antiadaptive secure means that there is no adaptive law to estimate the pa-

rameter (“password” candidate). Antirobust property is similar to distinguishability;

different system parameter values result in different system states. Based on this defin-

ition, [54] presents a new class of chaotic synchronization with an unknown parameter,

the generalized Lorenz system. This system is thought to be a good candidate to im-

plement secure synchronization. The reason is that the unknown parameter may not

be estimated by a class of adaptive observer. Details can be found in Section 3.4. The

next section introduces a kind of adaptive observer proposed in [38].

In Section 3.5, it will find more properties of the generalized Lorenz system with an

unknown parameter, and thus show that its state and unknown parameter can actually

be estimated by the adaptive observer introduced in Section 3.3. To complete the work,

the output of this system is proved to satisfy PE property through investigating some

dynamical properties of the generalized Lorenz system. It is noted that this proof of

PE property is new in literature although [24] mentioned that it may hold owing to

the transitivity property. Moreover, the adaptive observer is successfully constructed

to estimate the state and parameter of the generalized Lorenz system, and it is also

proved to be an exponential observer. This implies that this system is not a good

candidate to implement secure synchronization, according to the definition of secure

synchronization proposed in [24]. Both theoretic proof and numerical simulations are

provided.

Regarding the method to choose a parameter as secret key, [52] claims that an

identifiable parameter may be a good choice, because the parameter is difficult to be

found through a brute force attack (exhaustive search of the key space). However,

identifiability implies that it is possible to determine an estimated parameter (secret

key) by parameter identification techniques. Therefore Section 3.6 shows that the

unidentifiable parameter based on differential 1-forms [39, 40] is a good choice for the

secret key. The linear algebraic method is used to test the identifiability of the chaotic

Electrical, Electronic and Computer Engineering
University of Pretoria

20

 
 
 



Chapter 3 Adaptive synchronization of generalized Lorenz system

system. A modified Lorenz system is utilized to illustrate this method and to design a

chaos-based communication scheme.

3.3 An exponential adaptive observer

Synchronization of the chaotic system is a popular research topic because of

its possible use in secure communication. Synchronization has been formulated as an

observer design problem from a control viewpoint [36, 37]. In a real system, there

are always measurement errors of parameter values. Hence the adaptive observer is

designed to estimate the parameters and state variables simultaneously. Convergence

of estimated parameters to their true values and the rate of convergence are closely

related to the PE property of certain signals. Thus the definition of PE is given before

introducing the adaptive observer proposed in [38]:

Definition 1 [53]: A vector function w : R → Rn is persistently exciting (PE) if

there exist α1, α2, T > 0 such that

α1I ≤
∫ t+T

t

w(s)wT (s) ds ≤ α2I, ∀t ≥ 0. (3.1)

The PE condition requires that w(s) oscillates sufficiently in space so that the

integral of the matrix w(s)wT (s) is uniformly positive definite over any interval of

length T , although the matrix w(s)wT (s) is singular for all s. The condition has

another interpretation in scalar form [53]

α1 ≤
∫ t+T

t

(wT (s)x)2 ds ≤ α2, ∀t ≥ 0, |x| = 1,

where x ∈ Rn, which appears as a condition on the energy of w in all directions.

The authors in [38] considered a linear time varying multiple input multiple output

system of the form

{
ẋ(t) = A(t)x(t) + B(t)u(t) + Ψ(t)θ,

y(t) = C(t)x(t),
(3.2)

where x(t) ∈ Rn, y(t) ∈ Rm and u(t) ∈ Rl are the state, output and input vectors,

respectively; A(t), B(t), C(t) and Ψ(t) are known matrices of appropriate dimensions
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which are piecewise continuous and uniformly bounded in time; and θ ∈ Rp is an

unknown constant vector. The following summarizes the main results of [38]:

Condition 1. There exists a bounded time-varying matrix K(t) ∈ Rn×m such that

the system τ̇(t) = [A(t)−K(t)C(t)]τ(t) is exponentially stable.

Condition 2. There exist positive constants α1, β1, T1 such that

α1I ≤
∫ t+T1

t

ΥT (s)CT (s)Σ(s)C(s)Υ(s) ds ≤ β1I, ∀t ≥ t0,

for some t0 ≥ 0 and some bounded positive definite matrix Σ(t) ∈ Rm×m, where

Υ(t) ∈ Rn×p is the solution of Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Ψ(t).

Condition 2 is a PE condition typically required for parameter identification. Un-

der Condition 1 and 2, the following theorem provides a global exponential adaptive

observer for system (3.2):

Theorem 3.1: Suppose Condition 1 and 2 hold. Let Γ ∈ Rp×p be any symmetric

positive definite matrix. Then the following system




˙̂x = [A(t)−K(t)C(t)]x̂(t) + B(t)u(t) + K(t)y(t) + Ψ(t)θ̂ + Υ(t)
˙̂
θ(t),

˙̂
θ(t) = ΓΥT (t)CT (t)Σ(t)[y(t)− C(t)x̂(t)],

Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Ψ(t),

(3.3)

is a global exponential adaptive observer for system (3.2) in the sense that for any

initial conditions x(t0), x̂(t0), θ̂(t0) and any θ ∈ Rp, the errors x(t)− x̂(t) and θ− θ̂(t)

exponentially decay to zero when t →∞.

Remark 1: If the PE does not hold, the simulation shows that the identification

of parameter may fail. The synchronization can be achieved if all the states of the

generalized Lorenz system tend to zero. Note that the generalized Lorenz system is

not chaotic if the PE does not happen for some parameters.

The above result also can be applied to a class of nonlinear system, which can be

described by a state affine representation [51, 38].
{

ẋ(t) = A(u(t), y(t))x(t) + ϕ(u(t), y(t)) + Φ(u(t), y(t))θ,

y(t) = Cx(t),
(3.4)

where θ is an unknown constant or slow time varying vectors, and the components of

A(u(t), y(t)), ϕ(u(t), y(t)) and Φ(u(t), y(t)) are continuous functions depending on u

and y, and uniformly bounded.
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In the following, the Lorenz system and generalized Lorenz system are written in a

state affine form. First consider following famous Lorenz chaotic systems,





ẋ1 = −σ1x1 + σ2x2,

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,

y = x1,

(3.5)

where y is the output, σ1, σ2, ρ and β are positive parameters. Assume that parameter

ρ is unknown, then system (3.5) can be represented as

ẋ =




ẋ1

ẋ2

ẋ3


 =



−σ1 σ2 0

0 −1 −y

0 y β







x1

x2

x3


 +




0

y

0


 θ

= A(y)x + Φ(y)θ,

(3.6)

where

x =




x1

x2

x3


 , A(y) =



−σ1 σ2 0

0 −1 −y

0 y β


 , Φ(y) =




0

y

0


 and θ = ρ.

In [24] the authors defined the generalized Lorenz system,

dη

dt
=




(λ1 + λ2)η1 + η2

−λ1λ2η1 − (λ1 − λ2)η1η3 − 1
2
(τ + 1)η3

1

λ3η3 + K1(τ)η2
1


 ,

y = η1,

(3.7)

where η =
[
η1 η2 η3

]T

and K1(τ) =
λ3(τ + 1)− 2τλ1 − 2λ2

2(λ1 − λ2)
. It also can be rewritten

as state affine form,

dη

dt
=




(λ1 + λ2) 1 0

−λ1λ2 0 −(λ1 − λ2)η1

0 0 λ3







η1

η2

η3


 +




0

−1
2
η3

1

λ3−2λ2

2(λ1−λ2)
η2

1


 +




0

−1
2
η3

1

λ3−2λ1

2(λ1−λ2)
η2

1


 θ

= A(y)η + ϕ(y) + Φ(y)θ,

(3.8)
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where

A(y) =




(λ1 + λ2) 1 0

−λ1λ2 0 −(λ1 − λ2)y

0 0 λ3


 , ϕ(y) =




0

−1
2
y3

1

λ3−2λ2

2(λ1−λ2)
y2

1


 ,

Φ(y) =




0

−1
2
y3

1

λ3−2λ1

2(λ1−λ2)
y2

1


 and θ = τ.

3.4 Secure synchronization and generalized Lorenz

system

As mentioned in Chapter 1, many robust and adaptive control methods can be treated

as possible attacks against synchronization-based communication schemes. The au-

thors in [24] gave a definition of secure synchronization using control theoretic terms,

and provided a new design of a class of chaotic system to overcome the aforementioned

drawbacks of those communication schemes. This section recalls the main results of

[24], which will be used in the following sections. The following nonlinear system with

parameter vector µ is considered,

ẋ = f(x, t, µ), x ∈ Rn, µ ∈ Rm, (3.9)

where µ is a “password” candidate and possible unknown.

Definition 2 [24]: If there exists an auxiliary output, y = h(x) ∈ Rp, p < n, such

that the following system is a smooth asymptotic observer for the solution x(t), t ≥ t0,

˙̂x = f(x̂, t, µ) + ϕ(h(x), h(x̂, x̂, µ), x, x̂ ∈ Rn, µ ∈ Rm, (3.10)

then system (3.9) is said to achieve a static synchronization of a solution x(t), t ≥ t0.

If there does not exist any adaptive observer of the form





˙̂x = f(x̂, t, µ̂) + ϕ(h(x), h(x̂), x̂, µ̂),

˙̂µ = ψ(µ̂, h(x), h(x̂), x̂, t),

(3.11)
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Chapter 3 Adaptive synchronization of generalized Lorenz system

where x, x̂ ∈ Rn, µ ∈ Rm, then the synchronization is said to be antiadaptive secure

with respect to the parameter µ.

If there exists a positive constant K such that

limt→∞‖x(t)− x̃(t)‖ ≥ K(µ̄− µ̃),

where µ̄ and µ̃ are chosen from a compact set and substituted into system (3.9) and

(3.10), respectively, then the synchronization is said to be antirobust secure with re-

spect to the parameter µ.

If the synchronization is both antiadaptive and antirobust secure, then the synchro-

nization is said to be secure synchronization.

To motivate the definition, some cases are listed where the synchronization is not

secure.

Proposition 3.2 [24]: Suppose system (3.9) with output has the form
{

ẋ = A(y, t)x + ϕ(y, t) + BΦ(y, t)[α1(µ), . . . , αk(µ)]T ,

y = h(x) = Cx,
(3.12)

where x ∈ Rn, y ∈ Rp, µ ∈ Rs, A(y, t), B, C and Ψ(x) are known matrices with appro-

priate dimensions. In addition, A and Φ are matrices with uniformly Lipschitz entries.

If there exist matrices L and R, a positive definite symmetric matrix S, and a real

number T such that the following condition holds,

S(A(y, t) + LC) + (A(y, t) + LC)T S = Q < 0, SB = CT R, (3.13)

then system (3.12) has the following adaptive observer,
{

˙̂x = A(y, t)x̂ + LC(x̂− x) + ϕ(y, t) + BΦ(y, t)p̂,

p̂ = ΦT (y, t)RT C(x− x̂).
(3.14)

Proposition 3.2 implies that the synchronization between (3.12) and (3.14) is not

antiadaptive secure. RankB ≤ RankC is a necessary condition for (3.13).

Corollary 3.3 [24]: Antisecure synchronization with password decryption. If the

conditions of Proposition 3.2 and the following condition holds,
∫ t+T

t

ΦT (y, τ)BT BΦ(y, τ)dτ ≥ KIk×k > 0, for all t ≥ t0,
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where T and K are two positive real constants, then p̂ → p := [α1(µ), . . . , αk(µ)]T

when t →∞.

The above results shows that some known chaotic systems, such as Chua’s circuit

and Lur’s system, may not be good candidates for secure synchronization. For exam-

ple, it has been shown in [10] that the well-known Chua’s circuit can be adaptively

synchronized based on the idea described in Proposition 3.2. Reference [24] claims that

a good candidate should have some components that are detectable but not observable.

Hence the generalized Lorenz system is suggested for secure synchronization in [24].

The following generalized Lorenz system is defined in [54]:

ẋ =

[
A 0

0 λ3

]
x +




0

−x1x3

x1x2


 , A =

[
a11 a12

a21 a22

]
, (3.15)

where x =
[
x1 x2 x3

]T

, λ3 ∈ R, and A has eigenvalues λ1, λ2 ∈ R such that

−λ2 > λ1 > −λ3 > 0. (3.16)

Moreover, the generalized Lorenz system is said to be nontrivial if it has at least one

bounded solution that goes neither to zero nor to a limit cycle.

Reference [54] shows that there exists a nonlinear change of coordinates, z = Tx,

which transforms (3.15) into the generalized Lorenz canonical form:

ż =




λ1 0 0

0 λ2 0

0 0 λ3


 z + cz




0 0 −1

0 0 −1

1 τ 0


 z, (3.17)

where z =
[
z1 z2 z3

]T

, c =
[
1 −1 0

]
and the parameter τ ∈ (−1,∞). System

(3.17) is state equivalent to the following form (see [24]

dη

dt
=




(λ1 + λ2)η1 + η2

−λ1λ2η1 − (λ1 − λ2)η1η3 − 1
2
(τ + 1)η3

1

λ3η3 + K1(τ)η2
1


 , (3.18)

where η =
[
η1 η2 η3

]T

and K1(τ) =
λ3(τ + 1)− 2τλ1 − 2λ2

2(λ1 − λ2)
. The corresponding
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coordinate change and its inverse are [24]

ηT =

[
z1 − z2 λ1z2 − λ2z1 z3 − (τ + 1)(z1 − z2)

2

2(λ1 − λ2)

]
, (3.19)

zT =

[
λ1η1 + η2

λ1 − λ2

λ2η1 + η2

λ1 − λ2

η3 +
(τ + 1)η2

1

2(λ1 − λ2)

]
. (3.20)

Consider system (3.18) with the output η1(t) and its uniformly bounded trajectory

η(t), t ≥ t0, there exists an exponential observer for system (3.18) (Theorem 3.4 in

[24],

dη̂

dt
=




l1 1 0

l2 0 0

0 0 λ3


 η̂ +




λ1 + λ2 − l1

−λ1λ2 − l2

0


 η1 +




0

−(λ1 − λ2)η1η̂3 − 1 + τ

2
η3

1

K1(τ)η2
1


 , (3.21)

where l1 and l2 are negative real numbers.

Proposition 3.4 [24]: Consider system (3.18) with τ = τmast and system (3.21)

with τ = τsl, for sufficiently small |τmast − τsl|, the following inequality holds,

limt→∞|η̂i(t)− ηi(t)| ≤ Cup
i (l1, l2)|τmast − τsl|, i = 1, 2, 3,

where Cup
i (l1, l2) > 0, i = 1, 2, are some parameters converging to zero if (1/2)(l1 ±

2
√

l21 + 4l2) → −∞, while Cup
3 (l1, l2) > 0 does not depend on l1,2. For all values of l1,2,

it holds that
d(η3 − η̂3)

dt
= λ3(η3 − η̂3) + K1(τmast − τsl)η

2
1.

From Definition 2 and Proposition 3.4, antirobust security is obtained. Moreover,

Proposition 3.2 is not applicable to system (3.18) because the second equality in (3.13)

does not hold. Hence these properties exclude plenty of possible attacks, although they

cannot provide full-scale security. Based on the above analysis, the following conjecture

is formulated (Conjecture 3.9 in [24]):

Conjencture 3.5: The generalized Lorenz system allows secure synchronization.
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3.5 Adaptive synchronization for generalized Lorenz

system

3.5.1 Dynamical properties of generalized Lorenz system

This subsection focuses on investigating some dynamical properties of the following

system

dη

dt
=




(λ1 + λ2)η1 + η2

−λ1λ2η1 − (λ1 − λ2)η1η3 − 1
2
(τ + 1)η3

1

λ3η3 + K1(τ)η2
1


 , (3.22)

where η =
[
η1 η2 η3

]T

and K1(τ) =
λ3(τ + 1)− 2τλ1 − 2λ2

2(λ1 − λ2)
. From equation (3.22)

and equation (3.17) it is easy to get an equivalent system




η̇1 = λ1η1 + (λ1 − λ2)z2,

ż2 = λ2z2 − η1z3,

ż3 = λ3z3 + η2
1 + (1 + τ)η1z2.

(3.23)

The following assumption is needed in later text:

Assumption 1: The states of system (3.22) and their time derivatives are continuous

and bounded.

Remark 2: The proofs of the boundness of Lorenz type systems are reported in [55]

and [56]. As for some specific types of chaotic systems, the corresponding proof is given

only for some special parameter region [57]. Therefore the above boundness hypotheses

in Assumption 1 are reasonable. It is also helpful to note that, under Assumption 1,

η1(t) is uniformly continuous by applying the Mean Value Theorem.

For the parameter τ , [54] shows that the region τ < −λ2

λ1
is need to be considered

since (3.16) must be met. Therefore this section consider the region τ < −λ2

λ1
from now

on.

System (3.23) has three equilibria O0(0, 0, 0) and

O1,2(∓
√

λ1λ2λ3

(λ2 + λ1τ)
,± λ1

λ1 − λ2

√
λ1λ2λ3

(λ2 + λ1τ)
,

λ1λ2

λ2 − λ1

)
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Obviously, O0 is unstable. The characteristic polynomial for O1,2 is

λ3 − (λ1 + λ2 + λ3)λ
2 +

λ3(λ
2
2 + τλ2

1)

λ2 + λ1τ
λ + 2λ1λ2λ3 = 0.

It is possible to make O1 and O2 both stable or unstable, for example, they are stable

when τ < τ0, while unstable when τ > τ0, where τ0 = −λ2
2

λ2
1

(λ1+λ2+λ3)+2λ1

(λ1+λ2+λ3)+2λ1
. Therefore the

following assumption is made:

Assumption 2: System (3.22) has three unstable equilibria.

Suppose system (3.22) is chaotic, then it satisfies the following obvious properties

which will be used in the proofs of some lemmas:

• at least one solution of the system does not go to zero, or to infinity, or to a limit

cycle;

• for any finite T < ∞, it is impossible that the derivatives of any state variable of

system (3.22) keeps its signs, i.e., neither η̇i(t) > 0 for t ≥ T , nor η̇i(t) < 0 for t ≥ T ,

i = 1, 2, 3 (see [56] and [57];

• the states ηi(t) are not always zero on any interval (α, β), that is, ηi(t) 6≡ 0 on any

(α, β), i = 1, 2, 3 [56] and [57].

Lemma 3.6: For system (3.22), there exists a time t1 such that η3(t1) > 0(< 0) for

t ≥ t1 if K1(τ) > 0(< 0).

Proof: Conversely, for any t1 > 0, there exists t′ > t1 such that η3(t
′) < 0(> 0) and

η̇3(t
′) = 0 if K1(τ) > 0(< 0). Now λ3η3(t

′) > 0(< 0), which contradicts the fact that

λ3η3(t
′) = −K1(τ)η2

1(t
′) < 0(> 0). This ends the proof. ¤

The following Lemma 3.7 follows in a similar way as Lemma 4 of [56] or Lemma 1

of [57].

Lemma 3.7: Assume η̇1(t) 6≡ 0 for t ∈ (−∞, +∞). If there exists β such that

η̇1(β) = η̈1(β) = 0, then t = β is not an extreme value point of η1(t).

Let

Ḟ = −aF + aF 2 − be−dt, (3.24)

where a < 0, b > 0, d > 0, the initial value F (0) ∈ (1
2
, 1) and Ḟ (0) < 0. Its solution is

[58]

F (t) = −e−
1
2

dt

√−ab

a

Jv+1(x) + C1Yv+1(x)

Jv(x) + C1Yv(x)
, where v = −a

d
, x = 2

√−abe−1/2 dt

d
,

(3.25)

Electrical, Electronic and Computer Engineering
University of Pretoria

29

 
 
 



Chapter 3 Adaptive synchronization of generalized Lorenz system

C1 is determined by F (0), Jv(x) and Yv(x) are the first and second kind of Bessel

function respectively, and are defined by the formulas:

Jv(x) = (
x

2
)v

∞∑

k=0

(−1)k(x
2
)2k

k!Γ(v + k + 1)
, Yv(x) =

Jv(x) cos πv − J−v(x)

sin πv
, (3.26)

with Γ(x) the Gamma function. The formula for Yv(x) is valid for v 6= 0,±1,±2, . . ..

For a nonnegative integer n,

Yn(x) =
2

π
Jn(x) lg

x

2
− 1

π

n−1∑

k=0

(n− k − 1)!

k!

(2

x

)n−2k

− 1

π

∞∑

k=0

(−1)k
(2

x

)n+2k ψ(k + 1) + ψ(n + k + 1)

k!(n + k)!
,

(3.27)

where ψ(1) = −C, ψ(n) = −C +
∑n−1

k=1 k−1, −C is the Euler constant [59].

Lemma 3.8: Suppose F (t) > 0 for t ≥ 0 and b is bounded in equation (3.24), then

there exists t1 > 0 independent of b such that F (t1) = F (0).

Proof: It is easy to know that F (t) < 1 for all t > 0. In fact, let t1 ∈ (0 +∞) be

the first point such that F (t1) = 1, then Ḟ (t1) < 0. This is impossible since F (0) < 1.

Let x = 2
√−abe−1/2 dt

d
, then x tends to zero when t is sufficiently large. Now Jv(x) tends

to zero and J−v(x) tends to infinite since v > 0. If v is not an integer,

lim
t→∞

F (t) = lim
t→∞

−e−
1
2

dt

√−ab(x
2
)−(v+1)

a sin (π(v + 1))Γ(−v)

sin (πv)Γ(−v + 1)

(x
2
)−v

= lim
t→∞

−e−
1
2

dt

√−ab

a
(−a

d
)

2d

2
√−abe−1/2 dt

= 1.

Now the result follows from the fact that F (0) ∈ (1
2
, 1). The case that v is an integer

follows from a similar proof. ¤

Theorem 3.9: Suppose system (3.22) is chaotic, then there exists a finite time ∆t so

that η1(t) has at least one extremum in the interval (t0, t0 + ∆t) for any t0 ≥ 0.

Proof: Conversely, for any increasing sequence {∆ti}∞1 with limi→∞ ∆ti = +∞, there

exists a sequence {ti}∞1 such that η1 has no extreme on (ti, Ti), where Ti := ti + ∆ti.

Note that η1(t) is monotonic on [ti, Ti], then without loss of generality one can suppose

{ti}∞1 is increasing, limi→∞ ti = +∞, η1(ti) is a minimum, and η1(Ti) a maximum. Since

system (3.22) and system (3.23) are state equivalent, system (3.23) is considered for

convenience. Now there are the following two cases.

Case I: η1(ti)− η1(Ti) tends to zero when i →∞.
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Since η1(ti)−η1(Ti) tends to zero when i →∞, one can suppose η1(Ti)−η1(ti) < εi,

where εi is positive and tends to zero when i → ∞. By Assumption 1 one knows

that η̇1(t) < M1εi holds for all t ∈ (ti Ti), where M1 is a positive constant. Then

|z2(Ti)−z2(ti)| < M3εi by equation (3.23). Similarly it follows that both ż2(t) and ż3(t)

tend to zero for t ∈ (ti Ti) when i tends to infinity. Thus (η1(Ti), z2(Ti), z3(Ti)) tends

to one of the three equilibria. In the following only the case that (η1(Ti), z2(Ti), z3(Ti))

tends to O0 is considered. For the other cases, it can be proved in a similar way after

a coordinate change (η1, z2, z3)−O1,2. There are three subcases:

I.I) If η1(Ti) = 0, then η̇2(Ti) = 0. Hence η̈1(Ti) = 0, and it contradicts Lemma 3.7

since η1(Ti) is a maximum.

I.II) If η1(Ti) > 0, then η̇1(Ti) = 0 and η̈1(Ti) = (λ1 − λ2)ż2(Ti) < 0. Thus

ż2(Ti) < 0 for λ1 − λ2 > 0. However, by equation (3.23) one knows that z3(Ti)

becomes sufficiently small when ∆ti becomes sufficiently large, therefore z2(Ti) =

− λ1

λ1−λ2
η1(Ti) and ż2(Ti) = (− λ1λ2

λ1−λ2
− z3)η1(Ti) > 0. This is a contradiction.

I.III) If η1(Ti) < 0 and K1(τ) < 0, then it follows from Lemma 3.6 that η3(ti) < 0

for sufficiently large i. From equation (3.22) one knows η̇2(ti) < η1(−λ1λ2 − (λ1 −
λ2)η3 − 1

2
(τ + 1)η2

1) < 0. However η̈1(ti) = η̇2(ti) > 0 since η1(ti) is a minimum. It is a

contradiction.

I.IV) If η1(Ti) < 0 and K1(τ) = 0, then limt→∞ η3(t) = 0, which is impossible since

the system is chaotic.

I.V) If η1(Ti) < 0 and K1(τ) > 0, it is obvious that η1(ti) < 0 and η3(ti) > 0. Let

f =
z2

η1

, then

ḟ(t) = af(t) + af 2(t)− z3(t), f(ti) =
λ1

λ2 − λ1

, (3.28)

where a = λ2 − λ1 < 0. It is easy to obtain z2(ti) > 0 and ż2(ti) > 0 since η̈1(ti) >

0 and η̇1(ti) = 0. Thus ḟ(ti) < 0. If η̇1(t) = 0 for some point t, then f(t) =
λ1

λ2−λ1
, that is, f(t) = f(ti). If it can be proved that there exists an integer N so

that the function y = f(t) travels through the line y = λ1

λ2−λ1
in the t-y plane for every

i > N when t ∈ (ti Ti), then η1(t) reaches the maximum before t = Ti. Now this is

proved in the following.
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Let f = −1 + F , then

Ḟ (t) = −aF (t) + aF 2(t)− z3(t), F (ti) =
λ2

λ2 − λ1

. (3.29)

From equation (3.22) and transformation (3.20), one knows that for t ∈ (ti Ti),

z3(t) = η3(ti)e
λ3(t−ti) + ε(t),

where

ε(t) =
(τ + 1)

2(λ1 − λ2)
η2

1(t) + K1(τ)eλ3(t−ti)

∫ t

ti

e−λ3(s−ti)η2
1(s)ds > 0.

It is obtained that the following equations for F (t) and another function F1(t),

Ḟ = −aF (t) + aF 2(t)− η3(ti)e
λ3(t−ti) − ε(t),

Ḟ1 = −aF1(t) + aF 2
1 (t)− η3(ti)e

λ3(t−ti).
(3.30)

Let the two equations have the same initial values, that is, F1(ti) = F (ti) = λ2

λ2−λ1
,

then it follows from Ḟ (t) < Ḟ1(t) that 0 < F (t) < F1(t). It follows from (3.30) that

Ḟ − Ḟ1 = −a(F (t)− F1(t)) + a(F 2(t)− F 2
1 (t))− ε(t)

≥ −a(F (t)− F1(t))− ε(t).
(3.31)

Thus

0 > F (t)− F1(t) > −e−a(t−ti)

∫ t

ti

easε(s)ds, for t ∈ (ti Ti).

Then it follows from Lemma 3.8 that there exists a time ti1 ∈ (ti Ti) independent of

η3(ti) such that F1(ti1) = F1(ti). In a similar way, one can prove that there exists a time

ti3 ∈ (ti1, Ti) independent of η3(ti) such that F (ti3) = 1/2 + F (ti)/2 ∈ (F (ti), 1). Since

ε(t) is sufficiently small, there exists a time ti2 ∈ (ti1, ti3) such that F (ti2) = F (ti), that

is, there exists a time ti2 < Ti for every i > N such that η1(ti2) reaches its maximum,

where N is a sufficiently large number. This contradicts the hypothesis that η1(t) is

monotonic for t ∈ (ti, Ti).

By the above four subcases, it concludes that Case I does not happen. Therefore

the second case is considered.

Case II: η1(ti)− η1(Ti) does not tend to zero when i →∞.

Since ∆ti tends to infinity, one chooses ∆ti ≥ 22i. Let η1(tm1) = 1
2
(η1(Ti)− η1(ti)),

then either tm1 − ti or Ti − tm1 is greater than 22i−1. Without loss of generality,

let Ti − tm1 ≥ 22i−1. Then there exists a time tm2 ∈ (tm1, Ti) such that η1(tm2) =
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Figure 3.1: Illustration for η1(t) and z2(t) in Case II.

(η1(Ti)−η1(tm1))/2. It is obvious that either tm2− tm1 or Ti− tm2 is greater than 22i−2.

After repeating the above process for i times, two times tmi and tMi are obtained such

that η1(tMi) − η1(tmi) < 1
2i (η1(Ti) − η1(ti)) and tMi − tmi ≥ 2i (see Figure 3.1 for

illustration.)

Following the same way in Case I, η1(tMi) and η1(tmi) tend to one of the three

equilibria. For the same reason as in Case I, only the equilibrium O0 is considered.

From subcase I.I) one knows that η1(Ti) > 0. Thus one can suppose that −εi =

η1(tmi) < 0 < η1(tMi) = εi and limi→∞(tMi − tmi) = +∞.

Since z2(Ti) < 0, there exists a time t02 such that z2(t02) reaches 0 for the first time.

Firstly it is proved that z2(t) is decreasing on (tmi, min(tMi, t02)). Since η1(t) < εi for

t ∈ (tmi, tMi), one can assume, without loss of generality, that |η3(tmi)| < −λ1λ2

λ1−λ2
. Let t01

be the time at which η1(t01) = 0. Then by η̇1(t01) > 0 one has η2(t01) > 0. It obviously

follows from (3.22) that η̇2(t) < 0 on (tmi, t01) and η̇2(t) > 0 on (t01 tMi). Now by

(3.20) one knows that ż2 = λ2η̇1+η̇2

λ1−λ2
< 0 for t ∈ (tmi t01), and ż2 < λ2

λ1−λ2
(λ2η1 + η2) < 0

for t ∈ (t01, min(tMi, t02)) for z2(t) = λ2η1+η2

λ1−λ2
> 0.

Since z2(Ti) < 0, there exists a time te so that η1(te) is positive and reaches z2(te)

for the first time. Let δ = η1(te), then te must be less than tMi. In fact, if z2(t) > εi on

(tmi tMi), then η̇1(t) = λ1η1 + (λ1− λ2)z2 > −λ2εi, thus η1(tMi) > εi which contradicts

η1(tMi) = εi.

Let g =
η1

z2

, after a simple computation one has the following formula from equation

(3.23) for t ∈ (tmi, t01)

ġ = −a− ag + g2z3, g(t01) = 0. (3.32)
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If t01 − tmi tends to infinity with i, then z3(
t01+tmi

2
) and η3(

t01+tmi

2
) are sufficiently

small on (tmi t01). Since g(t) < 0 for t ∈ (tmi, t01) and g(t01) = 0, there exists a time

tm0 ∈ ( t01+tmi

2
, t01) such that g(tm0) = −1

2
, that is, η1

z2
(tm0) = −1

2
. Hence, by equation

(3.23), η̇1(tm0) = (2λ2−λ1)η1 and ż2(tm0) = (2λ2−z3)η1. By coordinate change (3.20),

one knows η̇2(tm0) = (−4λ2
2 +3λ1λ2−z3(λ1−λ2))η1 > 0; however equation (3.22) gives

η̇2(tm0) = (−λ1λ2 − (λ1 − λ2)η3 − 1
2
(1 + τ)η2

1)η1 < 0, which is a contradiction. Hence

{t01 − tmi : i = 1, 2, · · · } is bounded.

Since t01 − tmi is a finite time independent of i and tMi − tmi tends to infinity ,

tMi − t01 tends to infinity too. It is assumed that |z3(tmi)| < − λ1λ2

2(λ1−λ2)
by the same

reason of the boundedness of |η3(tmi)|. It follows from equation (3.28) that f(t) becomes

small enough after a long time. Hence η̇1(t) > λ1

2
η1(t) for t ∈ ( tmi+tMi

2
, tMi). Then it

follows from η̇1(tmi) > 0 that z2(tmi) > λ1

λ1−λ2
εi. Now one obtains |η1(t)| < λ1−λ2

λ1
z2 for

t ∈ (tmi t01) because η̇1(t) = λ1η1(t) + (λ1 − λ2)z2(t) > 0. From equation (3.23) it

follows that

ż2(t) = λ2z2(t)− η1(t)z3(t) > λ2z2(t) +
λ2

2
z2(t) =

3

2
λ2z2(t).

Thus

z2(t01) > e
3
2
λ2(t01−tmi)z2(tmi).

Similarly one has

δ = z2(te) > e
3
2
λ2(te−t01)z2(t01)− δM, where M is a positive constant,

=⇒ δ >
1

1 + M
e

3
2
λ2(te−t01)z2(t01) >

1

1 + M

λ1

λ1 − λ2

e
3
2
λ2(te−tmi)z2(t01)εi.

Since η̇1 > λ1

2
η1, one has

η1(tMi) > e
λ1
2

tMi−tmi
2 η1(tmi +

tMi − tmi

2
) > e

λ1
2

tMi−tmi
2 δ > εi,

which contradicts η1(tMi) = εi. ¤
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3.5.2 Adaptive synchronization with PE condition

Consider system (3.22) with the output y = η1(t); it can be rewritten as a state affine

form,

dη

dt
=




(λ1 + λ2) 1 0

−λ1λ2 0 −(λ1 − λ2)η1

0 0 λ3







η1

η2

η3


 +




0

−1
2
η3

1

λ3−2λ2

2(λ1−λ2)
η2

1


 +




0

−1
2
η3

1

λ3−2λ1

2(λ1−λ2)
η2

1


 τ

= A(y)η + ϕ(y) + Φ(y)τ,

y = Cη(t) = η1(t),

where

A(y) =




(λ1 + λ2) 1 0

−λ1λ2 0 −(λ1 − λ2)y

0 0 λ3


 , ϕ(y) =




0

−1
2
y3

1

λ3−2λ2

2(λ1−λ2)
y2

1


 ,

Φ(y) =




0

−1
2
y3

1

λ3−2λ1

2(λ1−λ2)
y2

1


 , C =

[
1 0 0

]
.

Let

K(t) =




λ1 + λ2 − l1

−λ1λ2 − l2

0


 ,

by (3.3) and (3.4), the following adaptive observer is constructed for system (3.22):

dη̂

dt
=




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 η̂ +




λ1 + λ2 − l1

−λ1λ2 − l2

0


 η1 +




0

−1
2
η3

1

λ3−2λ2

2(λ1−λ2)
η2

1


 +




0

−1
2
η3

1

λ3−2λ1

2(λ1−λ2)
η2

1


 τ̂ + Υ(t) ˙̂τ,

˙̂τ(t) = ΥT (t)CT (t)[η1(t)− C(t)η̂(t)],

Υ̇(t) =




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 Υ(t) +




0

−1
2
η3

1

λ3 − 2λ1

2(λ1 − λ2)
η2

1


 ,

(3.33)

where li < 0, i = 1, 2. Synchronization between (3.22) and (3.33) is achieved if

lim
t→∞

|η(t) − η̂(t)| = 0, that is, the above observer is an asymptotically stable observer
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for system (3.22). As mentioned in Section 3.3, the observer is asymptotically stable

under Condition 1 and 2. Condition 1 is proved in [24]. The difficulty is to prove that

Condition 2 holds, that is Υ1(t) is PE. In order to prove Condition 2, it needs some

properties of η1(t) and PE conditions.

Lemma 3.10: Suppose that system (3.22) is nontrivial and there exists a finite time

∆t so that η1(t) has at least one extremum in the interval (t0, t0 + ∆t) for any t0 ≥ 0,

then η1(t) is PE.

Proof: For any t0 > 0, if there exist a positive constant α > 0, a finite time ∆t0,

and a time t′ in [t0, t0 + ∆t0] such that |η1(t
′)| > α, and α and ∆t0 are independent

of time t0, then there exists δ > 0 independent of time t0 such that |η1(t)| ≥ α
2

for all t ∈ [t′ − δ, t′ + δ] ⊂ [t0, t0 + ∆t] since the derivation of η1(t) is bounded

according to Assumption 1. Hence the PE condition (3.1) is satisfied. If the above

α and ∆t0 do not exist, then for any positive integer i and M
2i , and any increasing

sequence {∆ti} with ∆t1 > 4∆t and limi→∞ ∆ti = +∞, there exists a sequence {ti}
such that |η1(t)| < M

2i on [ti, Ti] for all i, where M := supt≥0 |η1(t)| and Ti := ti + ∆ti.

Note that ∆ti
2

> 2∆t and η1 has at least one extremum in the interval (t0, t0 + ∆t) for

any t0 ≥ 0, there exists a t′ ∈ [ti + ∆ti
2

, Ti] such that η1(t
′) is a maximum, therefore

one has η̈1(t
′) = (λ1 + λ2)η̇1(t

′) + η̇2(t
′) = η̇2(t

′) < 0. Note also that |η1| < M
2i on

[ti, Ti] and η̇3 = λ3η3 + K1(τ)η2
1, therefore, when ∆ti is sufficiently large, η3(t) will

become sufficiently small such that −λ1λ2 − (λ1 − λ2)η3(t)− 1
2
(1 + τ)η2

1(t) > 0 for all

t ∈ [ti + ∆ti
2

, Ti]. If η1(t
′) ≥ 0, then by (3.22) one has η̇2(t

′) ≥ 0, which contradicts the

previously obtained η̇2(t
′) < 0. In case of η1(t

′) < 0, it follows from ∆ti
2

> 2∆t that

there must exist a t′′ ∈ [ti +
∆ti
2

, t′) or (t′, Ti] such that t′′ is the nearest minimum point

to t′. A similar proof also leads to a contradiction. ¤

Lemma 3.11 [60, 53]): Let a > 0, and the input u(t) be PE in the one-dimensional

system ẋ = −ax + u(t), then the solution x(t) is also PE.

Remark 3: Lemma 3.11 is a simplified version compared to the original versions in

[61, 60, 53].

Lemma 3.12: Let x(t) be a scalar function of time, and suppose x(t) and ẋ(t) are

continuous and bounded, then x2(t) is PE if x(t) is PE.

Proof: Since x(t) is PE, there exist α1, α2, T > 0 such that

α1I ≤
∫ t1+T

t1

x2(s) ds ≤ α2I, ∀t1 ≥ 0.
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Then there exists a time t2 ∈ (t1, t1 + T ) such that x2(t2) ≥ α1

T
. Since ẋ is bounded,

one has |x(t′)−x(t′′)| = |ẋ(ξ)||t′− t′′| ≤ M |t′− t′′|, where M > 0 and ξ ∈ (t′, t′′). Thus

there exists δ > 0 independent of time t1 such that x2(t) ≥ α1

2T
for all t ∈ [t2−δ, t2 +δ].

Then it is obvious that
∫ t1+T

t1

x4ds ≥
∫ t2+δ

t2−δ

x4ds ≥ 2δ(
α1

2T
)2. ¤

Now, Υ(t) is rewritten in the following form

Υ̇(t) =




l1 1 0

l2 0 0

0 0 λ3


 Υ(t) +




0

(λ2 − λ1)yΥ3 − 1
2
y3

λ3 − 2λ1

2(λ1 − λ2)
y2


 , (3.34)

where y(t) is the output of system (3.22), that is, η1(t). Apply the following transfor-

mation to (3.34)

ζ =




1 1 0

−a2 −a1 0

0 0 1


 Υ = PΥ, a1 + a2 = l1, −a1a2 = l2, (3.35)

then

ζ̇ =




a1 0 0

0 a2 0

0 0 λ3


 ζ +




(λ2 − λ1)yΥ3 − 1
2
y3

−a1[(λ2 − λ1)yΥ3 − 1
2
y3]

λ3 − 2λ1

2(λ1 − λ2)
y2


 . (3.36)

Remark 4: From Lemma 3.11 it is easy to know that Υ3(t) or ζ3(t) is PE since Lemma

3.10 has already proved that η1(t) is PE.

Note that it can make a1, a2 < 0 by choosing properly l1 and l2 in (3.35), therefore

it is assumed from now on that a1 < 0 and a2 < 0.

Lemma 3.13: There exist α1, α2, ∆t > 0 such that

α1I ≤
∫ t+∆t

t

Υ2
3(s) ds ≤ α2I, ∀t ≥ 0

and there is at least one local maximum of Υ3 in [t, t + ∆t].

Proof: Since Υ3(t) is PE, it always finds appropriate α1, α2, ∆t > 0 such that

α1I ≤
∫ t+∆t

t

Υ2
3(s) ds ≤ α2I, ∀t ≥ 0.
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The proof of the lemma is by contradiction. If the result does not hold, then by

following the same way as in Theorem 3.9, there exist two increasing sequences {ti}∞1
and {Ti}∞1 such that ti and ∆ti = Ti − ti > 0 tend to infinity, and Υ3(t) is monotonic

on [ti, ti + Ti]. For the same reason in case II of Theorem 3.9, one can assume that

|Υ(Ti)−Υ(ti)| < εi where εi is a sufficiently small positive number when i is sufficiently

large. It follows from (3.34) and Assumption 1 that Υ3(t) and Υ̇3(t) are bounded,

therefore |Υ̇3(t)| < Mεi on (ti, Ti), where M is a positive constant. However, by

Theorem 3.9 there exist ti < t′, t′′ < Ti such that y2(t′′) − y2(t′) = θ, where θ is

a positive constant. Let b = λ3−2λ1

2(λ1−λ2)
< 0, then |Υ̇3(t

′′)| = |λ3Υ(t′′) + by2(t′′)| =

|Υ̇3(t
′) + λ3(Υ(t′′) − Υ(t′)) + b(y2(t′′) − y2(t′))| > |bθ| − (M − λ3)εi > Mεi when εi is

sufficiently small. This contradiction ends the proof. ¤

Lemma 3.14: Let a = (λ2 − λ1) < 0, then f(t) = ayΥ3(t)− 1
2
y3(t) is PE.

Proof: Let b = λ3−2λ1

2(λ1−λ2)
< 0, then it follows from Υ̇3(t) = λ3Υ3(t) + by2(t) that

f(t) =
a

λ3

yΥ̇3(t)− 2ab + λ3

2λ3

y3 =
a

λ3

yΥ̇3(t)− λ1

λ3

y3,

and Υ3(t) < 0 from Lemma 3.6. From Lemma 3.13, there exists t1 ∈ (t, t + ∆t) such

that Υ̇3(t1) = 0 and

y2(t1) =
1

b
(Υ̇3(t1)− λ3Υ3(t1)) ≥ λ3

b

√
α1

∆t
,

where ∆t and α1 are defined in Lemma 3.13. Since y(t) and Υ̇3(t) are uniformly con-

tinuous, there exists δ > 0 independent of time t such that |aΥ̇3(t)| < λ1λ3

4b

√
α1

∆t
and

λ1y
2(t) > λ1λ3

2b

√
α1

∆t
for t ∈ [t1− δ, t1 + δ]. Therefore |f(t)| = | y

λ3
(aΥ̇3(t)− λ1y

2(t))| > ε

for all t ∈ [t1 − δ, t1 + δ] ⊂ [t, t + ∆t], where ε is a positive constant. Hence

∫ t+∆t

t

f 2(s)ds >

∫ t1+δ

t1−δ

f 2(s)ds > 2εδ. ¤

Theorem 3.15: Under Assumption 1 and Assumption 2, observer (3.33) is an expo-

nential observer for system (3.22) under the output y = η1(t).

Proof: By the transformation (3.35) one has Υ1(t) =
1

a1 − a2

(a1ζ1 + ζ2) and ai <

0, i = 1, 2, thus

Υ̇1 =
(a1(a1ζ1 + f) + (a2ζ2 − a1f))

a1 − a2

=
1

a1 − a2

(a2
1ζ1 + a2ζ2) = a1Υ1 − ζ2. (3.37)

It follows Lemma 3.14 that f(t) = (λ2 − λ1)yΥ3 − 1
2
y3 is PE, then from Lemma 3.11

and equation (3.36) one has ζ2(t) is PE. Similarly Υ1(t) is also PE. As mentioned
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Figure 3.2: Phase plot when τ = 0.5: a)η1 vs η2, b) η2 vs η3.

above, Condition 1 is proved in [24]. Condition 2 holds from the fact that Υ1(t) is PE.

Theorem 3.1 in [38] shows that observer (3.33) is an exponential observer for system

(3.22). ¤

Remark 5: For system (3.22) with output η1(t), the authors of [24] proved that it

cannot achieve synchronization by certain kinds of observer, owing to the unknown

parameter τ . Now, without additional conditions, observer (3.33) is proved that it can

estimate the states and the unknown parameter at the same time. Hence the conjecture

does not hold.

3.5.3 Numerical illustration

In [24], the authors illustrated that system (3.22) cannot be synchronized without

knowing the exact τ with the parameters λ1 = 8, λ2 = −16, λ3 = −1 and τ = 0.5.

Now, selecting l1 = −28, l2 = −180, numerical simulations show the efficiency of the

observer (3.33) with the same parameters. First, one computes the three equilibria

and the eigenvalues of the corresponding Jacobian matrices. Obviously, O0(0, 0, 0)

is unstable since λ1 > 0. After a simple computation, the other two equilibriums

are obtained: O1(3.266, 26.128, 5) and O2(−3.266, 26.128, 5). The Jacobian matrices

corresponding to O1 and O2 have the eigenvalues 15.434 and −12.217±10.385i. Figure

3.2 plots the trajectories of system (3.22), which shows that system (3.22) is chaotic

when τ = 0.5.
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Figure 3.3: The trajectories of system (3.38) when τ = 0.5.
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Figure 3.4: The synchronization errors between (3.22) and (3.33) when τ = 0.5.

To test that Condition 1 holds, Figure 3.3 plots the trajectories of the following

system:

dx

dt
=




l1 1 0

l2 0 (λ2 − λ1)η1

0 0 λ3


 x, (3.38)

where x = [x1, x2, x3]
T and the initial condition is [2 3 4]T . Obviously, all the trajec-

tories tend to zero quickly, which shows that Condition 1 holds. Figure 3.4 shows the

synchronization errors between system (3.22) and (3.33). Figure 3.5 shows that the

unknown parameter τ is estimated exactly, which implies that parameter τ cannot be a

password. The initial values of system (3.22) and (3.33) are [1 2 3] and [2 3 4 3 2 −1 2],

respectively. The two figures show that both the state and the unknown parameter of

(3.22) can be estimated.

The other two sets of system parameters are chosen to show the efficiency of the

observer (3.33) for system (3.22) with different parameter τ ,
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Figure 3.5: The parameter estimation value when τ = 0.5.
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Figure 3.6: Phase plot when τ = 0: a)η1 vs η2, b) η2 vs η3.

1. λ1 = 20, λ2 = −36, λ3 = −3 and τ = 0, l1 = −20, l2 = −50;

2. λ1 = 23.8, λ2 = −30.8, λ3 = −3 and τ = −0.07, l1 = −20, l2 = −50.

The initial conditions are the same as the case τ = 0.5. Figure 3.6 and 3.10 show that

system (3.22) is chaotic under these two sets of parameters. As illustrated in Figure

3.7 and 3.11, Condition 1 still holds. The synchronization between system (3.22) and

(3.33) is achieved as shown in Figure 3.8 and 3.12. Figure 3.9 and 3.13 show that the

unknown parameter τ is estimated exactly. These four figures, Figure 3.8, 3.9, 3.12

and 3.13, show that the adaptive observer (3.33) successfully estimates the state and

parameter τ simultaneously.
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Figure 3.7: The trajectories of system (3.38) when τ = 0.
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Figure 3.8: The synchronization errors between (3.22) and (3.33) when τ = 0.
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Figure 3.9: The parameter estimation value when τ = 0.
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Figure 3.10: Phase plot when τ = 0.07: a)η1 vs η2, b) η2 vs η3.
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Figure 3.11: The trajectories of system (3.38) when τ = 0.07.
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Figure 3.12: The synchronization errors between (3.22) and (3.33) when τ = 0.07.
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Figure 3.13: The parameter estimation value when τ = 0.07.

3.6 On the application of parameter identifiability

to the security of chaotic synchronization

As mentioned in Chapter 2, a fundamental assumption of all kinds of cryptosystems,

as first stated by A. Kerckhoff [62], is:

• public structure: an opponent knows the structure of the encryption system and

the a priori probability of the key that is used. This requirement is referred to

as Kerckhoff’s principle.

Kerckhoff’s principle means that the intruder knows the details of the cryptosystems,

including the design and the implementation, except the secret key. That is, the

security of the cryptosystem should depend only on the key. In many proposed chaotic

synchronization schemes, some initial conditions and parameters are treated as the key.

It is believed that recovering the hidden message is difficult without the exact values

of the key. Hence the security of the parameter is an important problem for chaotic

synchronization.

The authors in [52] claimed that it is very difficult to find an identifiable parameter

by a brute force attack (exhaustive search of the key space), because the uniqueness

of the parameter is directly linked to the parameter identifiability concept. Hence

this kind of parameter vector may be a good choice for the secret key. However,

this claim is incomplete. Identifiability describes the one-to-one property of the map

from the parameter to the measured output. Therefore the identifiable parameter is

harmful to the security of the parameter. The authors in [63] made use of the notion
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Chapter 3 Adaptive synchronization of generalized Lorenz system

of identifiability and parameter identification technique to estimate the parameters

by the output. There are other different methods to realize parameter identification

[64, 65, 25]. The above results show that that identifiable parameter is not a good

choice for the key.

To protect the parameter against all kinds of parameter identification techniques,

the identifiability of the parameter should be checked during the design of a chaos-

based communication scheme. To test the identifiability, the authors in [52] used the

input/output relation approach based on a technique of Gröbner bases and a charac-

teristic set for polynomial systems. However, it is very complex to compute Gröbner

bases or characteristic set for general polynomial systems. This section uses definitions

of identifiability and the linear algebraic method based different 1-forms introduced in

[39, 40]. This method simplifies the computation and deals with systems described by

meromorphic functions, which are more general than the polynomial systems discussed

in [52].

In order to discuss the security of chaos-based communication schemes, [24] intro-

duces the concept of secure synchronization. This definition requires the synchroniza-

tion to be antiadaptive secure and antirobust secure. However, it is difficult to verify

these two properties. If one system parameter is not identifiable, it is obvious that

there is no adaptive observer which can estimate the real parameter value. Hence this

kind of system satisfies the antiadaptive property to a certain extent.

3.6.1 Preliminary knowledge about identifiability

Before stating the main results, in this subsection some basis of identifiability is recalled

from [40]. Consider the following nonlinear system

{
ẋ = f(x, p, u), x(0, p) = x0,

y = h(x, p, u),
(3.39)

where x ∈ Rn, u ∈ Rm and y ∈ Rl are the system state, input and output, respectively,

the constant parameter vector p belongs to a simply connected subset Ω ⊂ Rq. It

is assumed that x0 is independent of p and rank∂h(x, p, u)/∂x = q. The functions

f(x, p, u) and h(x, p, u) are meromorphic functions on a simply connected open subset

M × Ω × U of Rn × Rq × Rm. An input u(t) : [0, T ] → U is said to be an admissible
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Chapter 3 Adaptive synchronization of generalized Lorenz system

input if equation (3.39) admits a unique (local) solution, where U is a simply connected

open subset of Rm. The following definitions are from [66] and [40].

Definition 3 [40]: System (3.39) is said to be x0 identifiable at p through an admis-

sible input u(t) (on [0, T ]) if there exists an open set Ω0 ⊂ Ω containing p such that for

any two parameters p1, p2 ∈ Ω0, p1 6= p2, the corresponding solutions of equation (3.39)

exist on [0, ε] ⊂ [0, T ], and their corresponding outputs y(t, p, x0, u) 6= y(t, p, x0, u) on

[0, ε].

In order to study some generic properties of identifiability, a topology for the input

function space is introduced. For any T > 0 and a positive integer N , CN [0, T ] denotes

the space of all functions on [0, T ] which have continuous derivatives up to order N . A

topology of the space CN [0, T ] is the one associated with a well-defined norm:

‖r(t)‖ =
N∑

i=0

max
t∈[0,T ]

|r(i)(t)|, for r(t) ∈ CN [0, T ].

Definition 4 [40]: System (3.39) is structurally identifiable if there exist a T > 0,

and a positive constant N , and three open and dense subsets M0 ⊂ M, Ω0 ⊂ Ω, U0 ⊂
CN

U [0, T ] such that system (3.39) is x0-identifiable at p through u, for every (x0, p, u) ∈
M0 × Ω0 × U0.

Definition 5 [40]: System (3.39) is said to be algebraically identifiable if there exist

a T > 0, a positive constant k, and a meromorphic function Φ : Rq×R(k+1)m×R(k+1)l →
Rq such that

det
∂Φ

∂p
6= 0

and

Φ(p, u, u̇, . . . , u(k), y, ẏ, . . . , y(k)) = 0

hold on [0, T ] for all (p, u, u̇, . . . , u(k), y, ẏ, . . . , y(k)), where (p, x0, u) belongs to an open

and dense subset of Ω×M ××CN
U [0, T ]; u̇, . . . , u(k) are the corresponding derivatives

of u; and ẏ, . . . , y(k) are the corresponding derivatives of y.

Definition 6 [40]: System (3.39) is said to be identifiable with partially known

initial conditions xj(0), j = i1, . . . , is, is ∈ {1, . . . , n} if there exist a positive constant

k and a meromorphic function Φ : Rq × Rs × R(k+1)m × R(k+1)l → Rq such that

det
∂Φ

∂p
6= 0,
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Chapter 3 Adaptive synchronization of generalized Lorenz system

and

Φ(p, xi1(0), . . . , xis(0), u(0+), u̇(0+), . . . , u(k)(0+), y(0+), ẏ(0+), . . . , y(k)(0+)) = 0

hold for all (p, xi1(0), . . . , xis(0), u(0+), u̇(0+), . . . , u(k)(0+), y(0+), ẏ(0+), . . . , y(k)(0+)),

belonging to an open and dense subset of Rq × Rs × R(k+1)m × R(k+1)l → Rq.

The structural identifiability is also called geometric identifiability. It is used to

characterize the one-to-one property of the map from the parameter to the system

output. The algebraic identifiability enables one to obtain the parameter from solving

the algebraic equation based on system input and output.

Denote Y =
⋃∞

k=0 span{dy, dẏ, . . . , dy(k)}, X = span{dx}, P = span{dp}, U =⋃∞
k=0 span{du, du̇, . . . , du(k)}. Assume the initial conditions are partially known for

xj(0), j = i1, . . . , is, is ∈ {1, . . . , n}, define Xp = span{dxj, j = 1, . . . , is}.

Theorem 3.16 [40]: System (3.39) is algebraically identifiable if and only if P ⊂
(Y + U).

Theorem 3.17 [40]: 1) If

X
⋂

(Y + P + U) = X
⋂

(Y + U), (3.40)

then system (3.39) is algebraically identifiability if and only if it is structurally identi-

fiable;

2) If system (3.39) is algebraically identifiable, then (3.40) holds.

Theorem 3.18 [40]: System (3.39) is identifiable with known xj(0), j = i1, . . . , is

if and only if P ⊂ (Y + U) + Xp, or equivalently P⋂
(Y + U) + Xp = P .

3.6.2 Identifiability and security of the parameter

Generally, the chaos-based communication scheme includes two parts:

(Transmitter)

{
ẋ = f(x, p, m), x(0) = x0,

y = h(x, p, m),

(Receiver)

{
˙̂x = f̂(x̂, y, p), x̂(0) = x̂0,

ŷ = ĥ(x̂, y, p, ),

(3.41)
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where m represents the hidden message, p is the constant parameter vector, f and

h describe, respectively, the chaotic dynamic system and the process of hiding the

message m(t). When the synchronization is achieved, limt→∞ |x − x̂| = 0, and the

hidden message m is recovered at the receiver end. Generally the initial condition x0

is assumed to be unknown and the parameter vector p is treated as the secret key. It

is also assumed that the intruder cannot recover the message m(t) through the output

y without knowledge of the parameter vector p. According to Kerkhoff’s assumption

[62], the intruder knows the details of the transmitter and receiver, except the key.

That is, the intruder knows the functions f, f̂ , h and ĥ, except the parameter vector p.

Hence the security of the chaos-based communication scheme depends on the security

of the parameter vector p.

The identifiability of p implies that it is possible to determine the parameter p by

the output. If the parameter is not identifiable, the only way of finding the parameter

is by searching every possible parameter value in the key space, that is, a brute force

attack. Then one can measure the possibility of finding the parameter. Hence, to

prevent the intruder from determining the parameter, one should choose a parameter

that is not identifiable. The identifiability of the parameter should be tested before

designing a chaos-based communication scheme. The authors in [40] give the defini-

tions and the necessary and sufficient conditions of identifiability. All the results are

obtained in a single framework: the linear algebraic framework. Compared with the

Gröbner bases approach and characteristic set approach in [52], this method greatly

simplifies the computation and is applicable to more general systems defined by mero-

morphic functions. To illustrate this method, the identifiability of the Lorenz system

is considered, 



ẋ = σ1y − σ2x, x(0) = x0,

ẏ = ρx− y − xz, y(0) = y0,

ż = xy − βz, z(0) = z0,

(3.42)

the output is the first state variable x. It is well known that system (3.42) exhibits

chaotic behaviour with the standard parameters, (σ1, σ2, ρ, β) = (10, 10, 28, 8/3). As-

sume that the initial values are unknown, all the parameters σ1, σ2, ρ and β are un-

known. In addition, assume σ1 6= σ2. Under this condition, system (3.42) may also

exhibit chaotic behaviour. According to Theorem 3.16 and 3.17 introduced above,

for system (3.42), Xp ⊂ Y since the initial value of the output x is known. Hence

the algebraic identifiability is equivalent to identifiability with known partially initial

conditions.
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Let θ = [σ1, σ2, ρ, β]T , compute

dẋ = a1dθ − σ2dx + σ1dy, (3.43)

dẏ = a2dθ + (ρ− z)dx− dy − xdz, (3.44)

dż = a3dθ + ydx− xdy − βdz, (3.45)

where a1 = [y,−x, 0, 0], a2 = [0, 0, x, 0] and a3 = [0, 0, 0,−z]. Then one has

dẍ = (ȧ1 + σ1a2)dθ + σ1(ρ− z)dx− σ2dẋ− σ1dy − σ1xdz. (3.46)

From equation (3.43) and (3.46), it is obtained that

σ1dy = −a1dθ + σ2dx + dẋ,

σ1xdz = (ȧ1 + σ1a2)dθ + σ1(ρ− z)dx− σ2dẋ− dẍ− σ1dy
(3.47)

If x 6= 0, substitute equation (3.47) into the following equation,

dx(3) = ä1dθ − σ2dẍ + σ1dÿ = c1dθ + c2dx + c3dẋ + c4dẍ, (3.48)

where

c1 = ä1 + σ1[ȧ2 − a2 − a1

σ1

− a1

σ1

x2 + (
1

σ1

− ẋ

σ1

x + βx)(ȧ1 + a1 + σ1a2)

= [g1, g2, g3, g4],
(3.49)

and
g1 = βρx, g2 = −x3 − ẋ− ẍ + ẋ

x
(x + ẋ)− β(x + ẋ),

g3 = σ1βx, g4 = σ1ρx− (1 + σ2)(x + ẋ),
(3.50)

c2, c3 and c4 are the functions with respect to (θ, x, ẋ, ẍ) such that equality (3.48) holds.

For k ≥ 3, it is easy to compute that

dx(k) = c
(k−3)
1 dθ + (c2dx + c3dẋ + c4dẍ)(k−3). (3.51)

It follows from equation (3.51) and (3.49) that

∂(x(3), x(4), x(5), x(6))

∂(σ1, σ2, ρ, β)
=




g1 g2 g3 g4

ġ1 ġ2 ġ3 ġ4

g̈1 g̈2 g̈3 g̈4

g
(3)
1 g

(3)
2 g

(3)
3 g

(3)
4




. (3.52)

By equation (3.50), the column vectors [g1, ġ1, g̈1, g
(3)
1 ]T and [g3, ġ3, g̈3, g

(3)
3 ]T are linearly

dependent. Therefore, system (3.42) is not algebraically identifiable.
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Define a new parameter vector θ′ = [σ1ρβ, σ2, β]T . From equation (3.48), the fol-

lowing equation is obtained for k ≥ 3

dx(k) = c′(k−3)
1 dθ′ + (c2dx + c3dẋ + c4dẍ)(k−3),

where

c′1 = [f1, f2, f3] = [x, g2, g4 − σ1ρx].

If the set of functions {f1, f2, f3} is linearly independent, the rank of Jacobian matrix
∂(x(3),x(4),x(5))

∂(σ1ρβ,σ2,β)
is 3.

If the set of functions {f1, f2, f3} is linearly dependent on [0, T ], that is, there exists

three different parameters a1, a2, a3, different from zero, such that

a1f1 + a2f2 + a3f3 = 0 (3.53)

holds on [0, T ]. Then equation (3.53) is a second order differential equation. By

the Poincaré-Bendixon Theorem [67], a second order differential equation cannot ex-

hibit chaotic behaviour. It is contradictory to the chaotic solution of equation (3.42).

Hence the set of functions {f1, f2, f3} is linearly independent, and the rank of matrix
∂(x(3),x(4),x(5))

∂(σ1ρβ,σ2,β)
is 3. Therefore the new parameter vector θ′ is algebraically identifiable.

That is, the parameter vector θ′ can be determined uniquely through the output. If

the parameter ρ or σ1 is known, then the other parameters can be determined through

the output. The parameters ρ or σ1 is a good choice for a secret key. It should be

noted that system (3.42) is identifiable if σ1 = σ2.

3.6.3 Two applications of the theory of identifiability

A modified parameter modulation scheme

System (3.42) is used to construct a modified parameter modulation scheme. Let

(σ1, σ2, ρ, β) = (13, 10, 28, 8/3). Note that σ1 6= σ2, and the parameter σ1 is unknown

to the intruder. For the classical parameter modulation scheme [8][44], the parameter

σ1 is modulated by binary encoded plaintext, so that it is σ1 + δ if the plaintext bit is

‘1’, and σ1 − δ if the plaintext bit is ‘0’, where δ is a constant. The proposed method

consists of three steps.
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Step 1 (Encryption) Let B = [B0, B1, . . . , Bn] be the plaintext bit sequence, where

Bi = Bi1Bi2 . . . Bik is a plaintext block of length k bits. Let bi =
∑k

j=1 2j−1Bij + 1 and

ρi = 28 + bi/2
k.

Step 2 (Synchronization) Construct an adaptive observer as introduced in [51] to

estimate the state and parameter. When synchronization is achieved, |ρi − ρ′i| < ε,

where ρ′i is the estimated parameter and ε is a small enough positive constant.

Step 3 (Decryption) Let ρ̂i be the nearest integer to ρ′i, then the bit sequence

information Bi is recovered from binary representation of 2k(ρ̂i − 28).

Remark 6: The selection of k depends on ε. The smaller the parameter ε is, the

larger the k is. Hence one should select an exponential observer before implement-

ing this communication scheme. In the classical parameter modulation method, the

parameter has two states corresponding to ‘1’ or ‘0’ of the plaintext. This method

only transmits one bit when synchronization is achieved. Compared with the classical

parameter modulation scheme, ρ has more choices in the modified parameter scheme.

It can choose 2k different values in the interval (28, 29]. The plaintext Bi is a block

of k-bits, thus this method can also transmit more information. If the parameter ρ

has more choices, the return map and the power analysis attacks cannot recover the

plaintext through the output, which is shown in [68]. The intruder cannot obtain the

plaintext without the precise value of bi. From the above analysis it follows that the

parameter ρ cannot be determined by the output if the parameter σ1 is unknown.

Hence, the only way of finding the actual parameter value of ρ is brute force attack,

since system (3.42) is not identifiable. For this attack, the intruder needs to search 2k

times to find the actual parameter ρ from the interval (28, 29]. That is, the intruder

has a possibility of 1/2k to find the parameter.

Security against chosen ciphertext attack

This subsection shows that system (3.42) is secure against the chosen ciphertext attack

proposed in [50]. The following chaos-based communication scheme was proposed in
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[69]

(Transmitter)





ẋ = σ1y − σ2x,

ẏ = (ρ− µ)[x + m(t)] + µx− y − [x + m(t)]z,

ż = [x + m(t)]y − βz,

(3.54)

(Receiver)





ẋ1 = σ1y1 − σ2x1,

ẏ1 = (ρ− µ)[x + m(t)] + µx1 − y1 − [x + m(t)]z1,

ż1 = [x + m(t)]y1 − βz1,

(3.55)

where m(t) is the message signal and σ1 = σ2. Once the synchronization is achieved,

x = x1 and the message m(t) is recovered by stripping away x(t). In the receiver

equation (3.55), the input is s = x + m(t), and the output is x1. A chosen-ciphertext

attack is adopted to analyze the parameters in [50]. When s is constant, system (3.55)

has a fixed point,
(

(−βs(ρ− µ)

(−s2 + βµ− b)
,

(−βs(ρ− µ)

(−s2 + βµ− b)
,

(−s2(ρ− µ)

(−s2 + βµ− b))

)
.

Selecting different values of s, one obtains a number of equations with respect to the

parameters ρ, µ and β, then they can be solved from these equations.

Now, system (3.42) is used to construct system (3.54) and (3.55), that is, let σ1 6= σ2.

Then the chosen ciphertext attack cannot determine the parameter vector. The receiver

system has a fixed point when s is a constant,
(

(βσ2s(ρ− µ)

(βσ2 + s2σ2 − βµσ1)
,

βσ1s(ρ− µ)

(βσ2 + s2σ2 − βµσ1)
,

σ2s
2(ρ− µ)

(βσ2 + s2σ2 − βµσ1))

)
.

Let a1 = βσ2ρ, a2 = βσ2µ, a3 = βσ2, a4 = σ2, a5 = βµσ1. Obviously, if µβ3σ3
2 6= 0,

σ1, σ2, ρ, β, µ can be determined if and only if a1, a2, a3, a4, a5 can be determined. Let

C1 =
(βσ2s(ρ− µ)

(βσ2 + s2σ2 − βµσ1)
= (a1 − a2)s/(a3 + s2a4 − a5),

then one has

(a1 − a2)s− (a3 + s2a4 − a5)C1 = 0. (3.56)

Substitute different values of s into equation (3.56), the following linear equations are

obtained, 


c1 −c1 −C11 −c2
1C11 C11

c2 −c2 −C12 −c2
2C12 C12

c3 −c3 −C13 −c2
3C13 C13

c4 −c4 −C14 −c2
4C14 C14

c5 −c5 −C15 −c2
5C15 C15







a1

a2

a3

a4

a5




= Ap′ = 0,
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where p′ = [a1, a2, a3, a4, a5], s takes different values c1, c2, c3, c4, c5 and the correspond-

ing C1 = C11, C12, C13, C14, C15. Then a1, a2, a3, a4, a5 cannot be determined uniquely,

since A is singular.

In fact, s can be treated as an input or an known parameter in system (3.55). In

the same way in the analysis of system (3.42), one also can obtain equation (3.56),

and prove that system (3.55) is not identifiable. That is, the parameters cannot be

determined from the output.

3.7 Summary and conclusion

In this chapter synchronization is achieved for the generalized Lorenz system with an

unknown parameter. The synchronization implies that this system is not suitable to

implement secure synchronization. This result is based on investigating some dynam-

ical properties and the PE condition of this system. Parameter identifiability is used

to evaluate whether the parameter of a chaotic system is secure in a chaos based com-

munication scheme. A linear algebraic method based on differential 1-forms is used to

test the identifiability of more general system.
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Chapter 4

Security and robustness

of a modified parameter modulation

communication scheme

4.1 Chapter outline

This chapter provides a modified parameter modulation communication scheme to

improve security. This scheme and its security analysis are given in Section 4.2. The

modified parameter scheme is based on a cryptosystem constructed by a 1-D discretized

chaotic map controlled by a ∆-modulated feedback, which is proved to be chaotic when

parameter a belongs to (
√

2, 2]. The idea comes from [16] and [17]. The modulated

parameter is generated by this cryptosystem and selected according to the criteria

in Section 3.6. Hence the parameter has more choices in key space and is difficult

to be recovered without the information of this cryptosystem. In Section 4.3, the

robustness of this scheme against uncertainty or noise is studied. This study is also

important because a large error could make the cryptosystem go astray from real value.

The upper bounds are obtained so that the cryptosystem works properly in practical

implementation. Numerical simulation shows that the upper bounds are sharp. The

last section is the summary and conclusion.
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4.2 Improving the security of chaotic synchroniza-

tion with a ∆-modulated cryptographic tech-

nique

Based on conventional cryptographic techniques, various chaos-based schemes have re-

cently been developed [16, 17]. A common feature of these methods is the utilization

of state variables of the chaotic systems as keys in the encryption algorithms. For

parameter modulation schemes, more secure methods were proposed in [70, 68]. In

this section, a modified parameter modulation scheme is proposed to improve security

further. The numerical simulation shows that two popular attacks are ineffective when

using the modified parameter modulation scheme and the parameter has a high degree

of security. In this modified parameter modulation scheme, a continuous chaotic system

with a parameter is used to transmit encoded message. The parameter is generated

by a cryptosystem which offers it many choices corresponding to transmitted bit ‘0’

or ‘1’, and thus protection against power analysis and return map attack. The cryp-

tosystem is constructed by using a one-dimensional discrete-time system controlled by

a ∆-modulated feedback, which is quite different from [18] that uses a logistic map.

The first reason why the proposed scheme uses this ∆-modulated system is the sim-

plicity and speciality of ∆-modulation, which makes it an attractive choice for control

practitioners. Yet, little attention has been paid to the chaotic property of this kind of

system. Another reason is that the result can easily be extended to high-dimensional

∆-modulated control systems, which will make the cryptosystem more secure. The

complex behaviour of this simple control system due to ∆-modulated feedback has

been investigated in [71], [72]–[73]. When some parameter a > 2 in this particular one-

dimensional discrete system, the system is chaotic [74, 72] but not a self-map. Note

that the construction of a cryptosystem needs a self-map. In this section, the system

is proved to be chaotic and also a self-map when a ∈ (
√

2, 2].

Subsection 4.2.1 proves that the one-dimensional discrete system controlled by a

∆-modulated feedback is chaotic when the parameter a ∈ (
√

2, 2]. Then two basic

requirements for security and the framework of proposed method are given in subsection

4.2.2. With the help of the Lorenz system and a secure cryptosystem based on a ∆-

modulated feedback control system, the modified parameter modulation scheme is also

illustrated in detail in subsection 4.2.2. Finally, the security of this scheme is analyzed
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of a modified parameter modulation communication scheme

by numerical simulations.

4.2.1 A one-dimensional discrete system controlled by a ∆-

modulated feedback

As mentioned above, a chaotic discrete self-map is used to construct a secure chaotic

cryptosystem. Hence the one-dimensional discrete time chaotic system [74, 72] is in-

troduced:

x+ = ax−∆sgn(ax), (4.1)

where

sgn(x) =

{
1, x ≥ 0,

−1, x < 0,

x+ denotes the system state at the next discrete time, a is a real number, and ∆ is a

positive constant. In [72], the authors proved that (4.1) is chaotic when |a| > 2. This

section considers 1 < |a| ≤ 2. For simplicity, only consider a ∈ (1, 2]. This map will be

proved to be chaotic and maps an interval to itself, when the parameter a ∈ (
√

2, 2].

Hence, it can be used to implement a similar cryptographic algorithm as proposed in

[18]. Based on this algorithm, a modified parameter modulation scheme is illustrated.

By performing a state transformation y = x/∆, a new map is obtained

y+ = f(y), where f(y) =

{
ay − 1, y ≥ 0,

ay + 1, y < 0.
(4.2)

When a = 2, this map is equivalent to Baker’s map, which is chaotic [75]. Hence the

following only considers the case a ∈ (1, 2). When a ∈ (1, 2), f is surjective on [−1, 1).

Before stating the main result, the following well-known and frequently used definitions

are recalled from [5]. The symbol fn(x) denotes f . . . (f(x))︸ ︷︷ ︸
n

.

Definition 1 [5]: Consider a map: F : I → I, where I is an interval, F is

topologically transitive on I if for any two open sets U, V ⊂ I there exists an integer

n > 0 such that fn(U) ∩ V 6= ∅.

Definition 2 [5]: Consider a map: F : I → I, where I is an interval, F has

sensitive dependence on initial conditions if there exists a δ > 0 such that, for any
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x ∈ I and any neighbourhood N of x, there exist a y ∈ N and an n > 0 such that

|F n(x)− F n(y)| > δ.

Definition 3 [5]: Let X be a metric space. A map F : X → X is said to be

chaotic on X if

1. F is transitive;

2. the periodic points of F are dense in X;

3. F has sensitive dependence on initial conditions.

In the above definitions F may not be continuous (c.f. [5]). The following lemma

can be found in [76] and [77].

Lemma 4.1: If a >
√

2, then

1. there is an integer n such that fn(J) = [−1, 1), where J is a subinterval in [−1, 1);

2. f is topologically transitive;

3. f has sensitive dependence on initial conditions.

In order to prove that the periodic points of f is dense, define Vn = {x|fn(x) =

0, x ∈ [−1, 1), x 6= 0} and x̂n = min{x|x ∈ Vn ∩ [0 1)}. Obviously, the number of the

points in Vn is 2n at most. From equation (4.2), one can obtain that fn(−x) = −fn(x)

if f i(x) 6= 0, i = 1, 2, . . . , n− 1. In the neighbourhood of the discontinuous point 0, one

has limx→0− fn(x) = −fn(0).

Lemma 4.2: The set
⋃∞

i=1 Vi is dense on I = [−1, 1).

Proof: Owing to a > 1, for any open interval U in I which does not include 0, the

length of f i(U) is larger than the length of f i−1(U). Hence there exists an integer n

such that fn is continuous on U and 0 ∈ fn(U). Then there is a point x ∈ U such that

fn(x) = 0, and thus x ∈ Vn and
⋃∞

i=1 Vi is dense on I. ¤

Lemma 4.3: For any integer N , there exists an integer m > N such that fm(0) ∈
[−1,−1/a] or fm(0) ∈ [1/a, 1).
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Proof: If 0 is a periodic point with period k, then fNk+1(0) = −1.

If 0 is not a periodic point and this lemma does not hold, then there exists an

integer N1 such that fn(0) 6∈ [−1,−1/a] ∪ [1/a, 1) for all the integer n ≥ N1. If

x0 = fN1(0) ∈ (−1/a, 0), then x1 = fN1+1(0) ∈ (0, 1/a). Following the same way, it is

obtained that xi = fN1+i(0) < 0 when i is even and xi = fN1+i(0) > 0 when i is odd.

After a simple computation, it is obtained that x2i = [a2i(ax0 + x0 + 1) − 1]/(a + 1).

Because 0 is not a periodic point, x0 6= −1/(a + 1). Hence there exists an even integer

2i such that x2i > 0 or x2i ≤ −1/a. It contradicts x2i ∈ (−1/a, 0). For the other case

x0 ∈ [0, 1/a), the same conclusion is obtained similarly. ¤

Lemma 4.4: Assume a >
√

2, for any integer k > 0, there exist an integer n

and xn+1 ∈ Vn+1, such that n > k, xn+1 < x̂n < x̂k and (xn+1, x̂n) ∩ Vi = ∅, i =

1, 2, . . . , n + 1.

Proof : For any integer k > 0, it follows from Lemma 4.1 that there exists Nk

such that fNk([0, x̂k]) = [−1, 1). Hence [0, x̂k] ∩ Vi 6= ∅ for all i ≥ Nk. Therefore,

for any integer k, there exists an integer N > max{k,Nk} such that x̂m < x̂k for all

m > N . Apply Lemma 4.3 for this integer N , then there exists an integer n > N such

that fn(0) ∈ [−1,−1/a] or fn(0) ∈ [1/a, 1). Now the first case of fn(0) ∈ [1/a, 1) is

considered. This case includes the following two subcases: (0, x̂n)∩Vi = ∅ for all i < n

and (0, x̂n) ∩ Vi 6= ∅ for some i < n.

i) If (0, x̂n)∩ Vi = ∅ for all i < n, then fn([0, x̂n]) = [fn(0), 0] ⊃ [−1/a, 0] and fn is

continuous on [0, x̂n]. Hence there exists a point x′ ∈ [0, x̂n] such that fn(x′) = −1/a.

Then x′ ∈ Vn+1 and (x′, x̂n) ∩ Vi = ∅ for all i ≤ n + 1.

ii) If (0, x̂n) ∩ Vi 6= ∅ for some i < n, then there exists a maximal positive integer

k1, such that 0 < n − k1 < n and the point x̂n−k1 ∈ [0, x̂n]. Thus fn−k1([0, x̂n]) =

[fn−k1(0), fn−k1(x̂n)] and fn−k1(0) < 0 < fn−k1(x̂n). Now one proves that there exists

a point x1 ∈ (x̂n−k1 , x̂n) such that fn−k1(x1) = −fn−k1(0) < fn−k1(x̂n). If it does not

hold, then there is a point x2 ∈ (0, x̂n) such that fn−k1(x2) = −fn−k1(x̂n). Hence

fk1(fn−k1(x2)) = 0 and x2 ∈ Vn. It contradicts the definition of x̂n, hence −fn−k1(0) <

fn−k1(x̂n). Because fn−k1 is continuous and monotonic on (x̂n−k1 , x̂n), there is a point

x1 ∈ (x̂n−k1 , x̂n) such that fn−k1(x1) = −fn−k1(0). To find a point x′ ∈ Vn+1 in

(x1, x̂n) such that this lemma holds, it is also considered in two situations. Firstly, if

(x1, x̂n)∩Vi = ∅ for all i < n, that is, (−fn−k1(0), fn−k1(x̂n))∩Vi = ∅ for all i < k1, then
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fk1(−fn−k1(0)) = −fn(0) < fk1(fn−k1(x̂n)) = 0. Since fk1 is continuous on (x1, x̂n),

there exists a point x′ such that fn+1(x′) = f(fn(x′)) = f(−1/a) = 0. Hence x′ ∈ Vn+1

and (x′, x̂n) ∩ Vi = ∅ for i ≤ n + 1. Secondly, if (x1, x̂n) ∩ Vi 6= ∅ for some i < n, then

there exists a maximal positive integer k2 < k1 such that the point xn−k2 ∈ (x1, x̂n),

where xn−k2 ∈ Vn−k2 . Because the number of points in Vi is finite for all i ≤ n, one can

repeat the above procedure until a point x′ is found such that this lemma holds.

As for the second case of fn(0) ∈ [−1,−1/a], by the fact that limx→0− fn(x) =

−fn(0), the same conclusion is obtained. ¤

Lemma 4.5: The set of periodic points of f is dense in I = [−1 1) when a >
√

2.

Proof: For any interval [α, β] ⊂ [0, δ] where 0 < δ < 1/2, it follows from Lemma

4.2 that there is an xn ∈ Vn in (α, β). Since the number of the points in Vi is finite

for all i ≤ n, there exists also an xn+k ∈ Vn+k in (xn, β) such that (xn, xn+k) ∩ Vi = ∅
for all i ≤ n + k. Hence fn([xn, xn+k]) = [0, x̂k] and continuous on [xn, xn+k]. By

Lemma 4.4, there are two points xm+1 < x̂m in (0, x̂k) such that (xm+1, x̂m) ∩ Vi = ∅
for all i ≤ m + 1, where xm+1 is some point in Vm+1. Because fn is continuous

and monotonic on [xn, xn+k], there are two points x2 < x1 in (xn, xn+k) such that

fn(x2, x1) = (xm+1, x̂m) and (x2, x1) ∩ Vi = ∅ for all i ≤ m + n + 1. Therefore

fm+n([x2, x1]) = [−1/a, 0] and fm+n is continuous on [x2, x1]. Hence there exists a

small enough positive ε such that [x2, x1 − ε] ⊂ fm+n+1([x2, x1 − ε]) and fm+n+1 is

continuous on [x2, x1 − ε]. Therefore there is a periodic point in [α, β].

Now we consider any interval K ⊂ I. By Lemma 4.1, this K is contained in f i([0, δ])

for some i. Since the set of periodic points of f is dense in [0, δ], we can find a periodic

point p in [0, δ] and f i(p) in K. ¤

The idea in the proof for Lemma 4.4 comes from [78]. By Lemma 4.1 and 4.5, we

have the following theorem:

Theorem 4.6: The map defined in (4.2) is chaotic in I = [−1, 1) when a ∈ (
√

2, 2].
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4.2.2 Chaotic synchronization combined with cryptographic

technique

Basic requirements and the framework of the modified parameter modula-

tion scheme

As mentioned above, security is one of the most important problems in chaotic syn-

chronization. If a chaos-based scheme is secure, it must satisfy the following two basic

requirements:

1. The plaintext cannot be extracted when the opponent does not know the keys.

2. The keys have a high degree of security.

Obviously, many parameter modulation methods do not satisfy the first requirement.

The parameter in these methods has two states corresponding to ‘1’ and ‘0’. However,

the change of the parameters results in the change of the dynamic properties of the

chaotic system. Hence the power analysis or return map attack makes it easy to

distinguish the two states. With reference to the classical cryptography, the system

parameters of the chaotic systems can be treated as the secret key. However, as pointed

out in [24], many robust and adaptive control methods could be considered for possible

attack against a secure communication and encryption schemes. That is, the keys have

a low degree of security. To improve security, an encryption function is used to protect

the system parameter.

A continuous chaotic system is considered as below:
{

ẋ = f(x, p),

y = h(x),
(4.3)

where x ∈ Rn, y ∈ Rm and p ∈ Rl are the state variable, output, and parameter vector,

respectively. The classical parameter modulation method is to change the parameter p

with the binary encoded plaintext, namely, p has two states corresponding to ‘1’ or ‘0’

of the plaintext. The modified parameter modulation scheme consists of three steps:

1) encryption: p = e(P ), that is, a chaotic encryption function e is applied to

encrypt the plaintext P and produce the parameter p;
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2) synchronization: It is not difficult to construct an adaptive observer to estimate

the state and parameter at the same time, since many papers focus on this topic [51, 38];

3) decryption: P ′ = de(p′), the inverse of the encryption de is applied to recover

the plaintext, once the estimated parameter value p′ is obtained.

Without the encryption information, the opponents cannot know the plaintext,

even if they can estimate the parameters. In the following subsections, the proposed

scheme is illustrated by using a cryptographic algorithm introduced in [18].

Chaotic cryptosystem based on a ∆-modulated feedback control system

A chaotic cryptosystem proposed by Pareek et al. in [18] is based on the logistic map,

y = gλ(x) = λx(1− x). It is a symmetric key block cipher which utilizes the essence of

chaos, that is, sensitivity on initial condition as well as on system parameter. It should

be noted that the logistic map’s chaotic parameter range is 3.57 ≤ λ ≤ 4.

Now the basic procedure of encryption and decryption is recalled from [18]. Since

ASCII is an 8-bit code which represents 256 characters, the plaintext and the ciphertext

are divided into blocks of 8 bits,

P = P1P2 . . . Pn (plaintext) , C = C1C2 . . . Cn (ciphertext) ,

where Pi and Ci are single blocks of 8-bits, n is the block length of the plaintext/ciphertext.

An external 128-bits secret key K = K1K2 . . . K16, is also divided into blocks of 8 bits,

where Ki, the session key, consists of 8 bits, and the block length is 128/8=16. Let

i = 1, and take the following steps:

1) Define two real numbers Xs and Ns by:

Xs =
((K1)2 ⊕ (K2)2 ⊕ · · · ⊕ (K16)2)10

M
,

Ns = (K1 + K2 + . . . + K16) mod 256,

where M = 256 (M can be 2k for any integer k ≥ 8), Kj and (Kj)2 are the j-th session

key’s ASCII value and binary equivalent of the ASCII value, respectively, j = 1 . . . 16.

The notation ()10 is the decimal equivalent of the corresponding binary number, and

⊕ is the XOR operation. The result of XOR(S,T) is 1 (true) if either S or T, but not

both, is nonzero, and 0 (false) if both S and T are zero or nonzero.
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2) Choose a Kr randomly from {K1, . . . , K16}, and let X = (Xs + Kr

M
) mod 1 and

N = Ns + Kr, where x mod 1 = x− bxc, and bxc is the floor (also called truncation)

function.

3) Let λi =
(
(bYi + c) mod m

)
/200 + 3.57, where Yi = (bYi−1 + c) mod m, b =

16, c = 7,m = 81, Y1 = 0.

4) Define the encryption/decryption in the following way:

Ci = (Pi + bXnewMc) mod 256, (encryption),

Pi = (Ci + 256− bXnewMc) mod 256, (decryption),
(4.4)

where Xnew = gN
λi

(X), and gN
λi

(X) is obtained by iterating the logistic map gλi
(x) =

λix(1− x) for N times at X.

5) Put the symbols corresponding to the ASCII values of Ci/Pi obtained in Step 4)

as the ciphertext/plaintext. If i = n, then stop the algorithm, otherwise let Xs := Xnew,

Ns := Ci and i := i + 1, and go to Step 2).

In order to apply the ∆-modulated feedback control system to transmit information

by chaotic synchronization, system (4.2) is modified as:

xj+1 = Fa(xj) :=





round(Maxj)

M
− 1, xj ≥ 0,

round(Maxj)

M
+ 1, xj < 0,

(4.5)

where round(x) is the roundoff function, and for any integer k ≥ 10, xj belongs to the

set:

P = C = {0,± 1

M
, . . . ,±M − 1

M
}, with M = 2k. (4.6)

Compared with the chaotic range [3.57, 4] of the logistic map, the parameter of system

(4.2) has a wider chaotic range, (
√

2, 2]. Hence, to construct the above cryptosystem,

step 3) and step 4) are modified and the other steps are kept:

3′) Let ai =
(
(bYi + c) mod m

)
/200 + 1.42, where Yi = (bYi−1 + c) mod m, b =

16, c = 7,m = 96, and Y1 = 0. Obviously, ai ∈ [1.42, 2).

4′) Let Xnew be FN
ai

(X), where FN
ai

(X) is obtained by iterating Fai
for N times at

the point X. Then define the encryption/decryption in the following way:

Ci = (Pi + bXnewMc) mod 256, (encryption),

Pi = (Ci + 256− bXnewMc) mod 256, (decryption).
(4.7)
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To construct a new cryptosystem based on system (4.5), a parameter value M = 2k

is first selected for some k ≥ 10, then execute step 1), 2), 3′), 4′) and 5) to get a more

secure cryptosystem.

Detailed illustration of the modified parameter modulation scheme

Now the modified parameter modulation scheme is illustrated with the help of the

celebrated Lorenz system. According to (4.3), the Lorenz system with output is written

as 



ẋ1 = −σ1x1 + σ2x2,

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,

y = x1.

(4.8)

It is well known that the system exhibits chaotic behaviour with the standard para-

meters (σ1, σ2, ρ, β) = (10, 10, 28, 8/3). For the classical parameter modulation scheme

[44], the parameter σ1 is modulated by binary encoded plaintext, so that it is σ1 + δ if

the plaintext bit is ‘1’ and σ1 − δ if the plaintext bit is ‘0’, where δ is a constant. The

modified parameter modulation scheme consists of three steps.

Step 1 (Encryption) Let P = P0P1 . . . Pn be the plaintext sequence, where Pi is a

plaintext block of length 8 bits. Following the procedure introduced above, Xnew is

generated in step 4′) and Ci is obtained through (4.11). Let σ1 = 10+Ci/M , the index

r of Kr can be transmitted through the parameter ρ, that is, ρ = 28 + r/16.

Step 2 (Synchronization) Construct an adaptive observer as introduced in [51] to es-

timate the state and parameters simultaneously. When the synchronization is achieved,

one has |σ1 − σ′1| < ε and |ρ− ρ′| < ε, where σ′, ρ′ are the estimated parameters and ε

is a small enough positive constant.

Step 3 (Decryption) At the receiver end, the same Xnew can be generated by the

discrete chaotic system in step 4′), once r is estimated. Then Pi is obtained through

(4.11).

Remark 7: In the classical parameter modulation method, the parameter p has

two states corresponding to ‘1’ or ‘0’ of the plaintext. This method only transmits one

bit when synchronization is achieved. Compared with the classical parameter modula-
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tion scheme, σ1 has more choices in the modified parameter modulation scheme. The

plaintext Pi is a block of 8 bits, thus this scheme also can transmit more information.

In addition, as pointed out in Section 3.6, the parameters σ1 and ρ are unidentifiable

if σ1 6= σ2. Hence they are secure against parameter identification techniques.

4.2.3 Security analysis with simulation results

Before the efficiency of the modified parameter modulation scheme is illustrated, nu-

merical simulations first show the security of the cryptosystem. In [18], it is mentioned

that a good cryptosystem should be sensitive with respect to the plaintext and the

secret key, and can map a given plaintext to a random ciphertext. These points are

shown through simulation as done in [18]. In the simulation let M = 210. Figure 4.1a)

shows the cryptosystem is sensitive to the plaintext. The specific plaintexts chosen are

‘Chaotic cryptosystem’ and ‘Qhaotic cryptosystem’. The 128-bits secret key is ‘wh91-

qa9g-k*xd/.’. This figure shows that the ciphertexts are completely different although

the plaintexts only have one different character. Figure 4.1b) shows the plaintext

‘Chaotic cryptosystem’ and its ciphertexts using two different keys ‘wh91-qa9g-k*xd/.’

and ‘wh91-q9ag-k*xd/.’. Figure 4.2a) shows the ASCII value distribution of plaintext

of approximate 3 000 characters generated randomly. The distribution is in the interval

[97, 122]. Figure 4.2b) shows the distribution of the corresponding ciphertext of Figure

4.2a). The distribution is almost uniform in the complete interval of ASCII values

[0, 255]. Hence the cryptosystem maps the plaintext to a random ciphertext. Without

the structure and parameters of the cryptosystem, the opponents cannot recover the

plaintext, even if they can estimate the parameter σ1. Hence it improves the security

of the parameter.

Now one uses system (5.2) to transfer the plaintext ‘Chaotic cryptosystem’ with

the secret key ‘wh91-qa9g-k*xd/.’. Figure 4.3a) is the ASCII value of the plaintext and

the corresponding ciphertext. Figure 4.3b) is the estimated value of the ciphertext Ci,

which is obtained by the adaptive observer introduced in [51]. The initial conditions of

state variables and estimated state variables x̂ are [0.1 0.2 0.3] and [0.4 0.5 0.6], respec-

tively. The initial conditions of estimated parameters p̂ and r̂ are both 1. As for the

other variables in the observer, Sx(0) = I, Sθ(0) = I and Λ(0) = [10 10 . . . 10]. As a

comparison, a classical parameter modulation scheme is used to transfer a bit sequence

[44], which is plotted in Figure 4.4a). In order to investigate the security of the modified
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Figure 4.1: ASCII value for plaintexts and the corresponding ciphertexts (connected

by lines), (a) using the same secret key; (b) using two different keys.
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Figure 4.2: (a) The distribution of plaintext; (b) the distribution of ciphertext.
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Figure 4.3: (a) The ASCII value of plaintext and the corresponding ciphertext; (b) the

estimated value of Pi.
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Figure 4.4: For the transmitted signal generated by the classical parameter modulation,

a) bit sequence and the result of power analysis, b) return map.
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Figure 4.5: For the transmitted signal generated by the proposed method, a) the result

of power analysis, b) return map.
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parameter modulation scheme, two popular attacks developed in [29, 28] are consid-

ered, that is, power analysis attack and return map attack. For the transmitted signal

generated by the classical parameter modulation scheme, the results of two attacks are

plotted in Figure 4.4. When the transmitted signal is generated by the modified para-

meter modulation scheme, the corresponding result is plotted in Figure 4.5. The power

analysis attack first filters the transmitted signal by a low-pass filter, and then recovers

the plaintext utilizing a binary quantizer. Figure 4.4a) plots the bit sequence and the

result of power analysis for the classical parameter modulation scheme. Figure 4.5a) is

the result of power analysis for the modified parameter modulation scheme. Compared

with Figure 4.4a), it is obvious that the attacker cannot recover the binary sequence ‘1’

or ‘0’ from Figure 4.5a). As described by Perez and Cerdeira [28], a small change in the

parameters of the sender affects the attractor of the chaotic system. Hence, a modified

return map (An, Bn) is defined by An =
Xn + Yn

2
, and Bn = Xn− Yn, where Xn and

Yn are the n-th local maximum and minimum of the transmitted signal, respectively.

In Figure 4.4b), the plot of the return map shows that all the segments are divided

into two parts. Figure 4.5b) shows that all the segments merge together for different

parameter. Then the attacker cannot distinguish the parameter variations. Hence,

the above two attack methods are ineffective in the modified parameter modulation

scheme.

4.3 Robustness of the encryption algorithm with

∆-modulated feedback control system

There is always parameter uncertainty in the practical implementation of the chaos-

based communication scheme. For example, there is unavoidable error when the chaotic

map is executed by a computer, because the real number is represented by a binary

bits sequence of finite length in digital computers. Therefore it is natural to consider

the effect of the uncertainty or error during the implementation of a chaos-based com-

munication scheme. It has been reported in [79, 80] that errors could result in serious

problems, such as short cycle length or nonideal distribution and correlation function,

when a chaotic system is implemented discretely in finite computing precision. The

influence of the finite computing precision on security is also studied in [30, 31].

In Section 4.2 a modified parameter modulation communication scheme is pre-

Electrical, Electronic and Computer Engineering
University of Pretoria

70

 
 
 



Chapter 4
Security and robustness

of a modified parameter modulation communication scheme

sented, where the cryptosystem based on a discretized chaotic map is an important

component. In this section, the robustness of the cryptosystem against error is stud-

ied. In this thesis, robustness means that the cryptosystem works properly under errors

or uncertainties within a certain range. This property is desirable because error will

make the chaotic orbits stray from the theoretical ones completely [32]. A subsequent

problem is that of what the upper bound of the error is if the cryptosystem is robust.

Before discussing the above problem, the following symbols are defined.

Definition 4: 1) bxc, floor function, is the maximal integer not greater than x;

2) frac(x) := x− bxc;

3) round(x), round-off function, is the nearest integer of x;

4) r(x) := x− round(x).

A discretized ∆-modulated feedback control system is defined as

xj+1 = Fa(xj) :=





round(Maxj)

M
− 1, xj ≥ 0,

round(Maxj)

M
+ 1, xj < 0,

(4.9)

where a ∈ [
√

2, 2]. For any integer k ≥ 10, xj belongs to the set:

P = C = {0,± 1

M
, . . . ,±M − 1

M
}, where M = 2k. (4.10)

The following step 4′) in the encryption algorithm, given in subsection 4.2.2, is

considered in this section. The reason is that the encryption process and decryption

process are executed in this step, and much attention are paid to the effect of the

uncertainties on these processes.

4′) Let Xnew be FN
ai

(X), where FN
ai

(X) is obtained by iterating Fai
for N times at

point X. Then define the encryption/decryption in the following way:

Ci = (Pi + bXnewMc) mod 256, (encryption),

Pi = (Ci + 256− bXnewMc) mod 256, (decryption).
(4.11)

Let X ′
new = Xnew + enew, where enew is the error. There are mainly two possible

sources to generate enew. One is an error of the parameter a, the other is an error of
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the initial value X. To ensure Ci = C ′
i, it suffices to let bXnewMc = bX ′

newMc, which

is equivalent to

0 ≤ frac(XnewM) + enewM < 1. (4.12)

The effect of errors of the parameter a and the initial value X is considered in the

following subsections. The notation N is fixed to be the iteration number defined in

step 4′) from now on.

4.3.1 The influence of initial value

For simplicity, let x0 be the initial value and x′0 = x0 + e0, where e0 is an error. Then

Max′0 = round(Max0) + r(Max0) + Mae0 and

x′1 = Fa(x
′
0) =

round(Max′0)
M

− sgn(x′0) = Fa(x0) +
i1
M

+ sgn(x0)− sgn(x′0),

where i1 = round(r(Max0) + Mae0). Let x1 = Fa(x0), then

x′1 =

{
x1, for i1 = 0 and sgn(x0) = sgn(x′0),

x1 + i1
M

+ sgn(x0)− sgn(x′0), for i1 6= 0 or sgn(x0) 6= sgn(x′0).
(4.13)

According to the definition of the round-off function, i1 does not equal 0 if |r(Max0)+

Mae0| ≥ 0.5. Let e1 = x′1 − x1, then

x′2 =

{
x2, for i2 = 0 and sgn(x1) = sgn(x′1),

x2 + i2
M

+ sgn(x1)− sgn(x′1), for i2 6= 0 or sgn(x1) 6= sgn(x′1),
(4.14)

where i2 = round(r(Max1) + Mae1) and x2 = Fa(x1). Let ej = x′j − xj and ij+1 =

round(r(Maxj) + Maej), where xj = F j
a (x0) and x′j = F j

a (x′0), j ≥ 1. Then the

following result is obtained:

Proposition 4.7: Assume that |e0| < 1/M and |ej| < (2M − 1)/(aM), for all

j ≥ 1. If M ≥ 28, e1 6= 0 and x0 6= 0, then |ej| ≥ 1/M for all j ≥ 2.

Proof: It follows from x0 6= 0 and |e0| < 1/M that sgn(x0) = sgn(x′0). By (4.13),

one has 1/M ≤ |e1| = i1/M ≤ 3/M < (2M − 1)/(aM). Therefore 6 ≥ |Mae1| ≥
√

2.

The proof proceeds by induction. When j = 2, 1 ≤ |i2| = |round(r(Max1)+Mae1)| ≤
8. Obviously, i2 < 2M − 1. If sgn(x1) = sgn(x′1), then |e2| = |i2/M | ≥ 1/M . If

sgn(x1) 6= sgn(x′1), then

|e2| = |i2/M + sgn(x1)− sgn(x′1)| > 2− i2/M > 2− (2M − 1)/M = 1/M.
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Assume that |ej| ≥ 1/M for some j ≥ 2. Then 0.5 < |r(Maxj) + Maej| < 2M − 0.5

and 1 ≤ |ij+1| ≤ 2M − 1. Following a similar analysis to the case j = 2, it is obtained

that |ej+1| ≥ 1/M . ¤

Corollary 4.8: Assume that M ≥ 28, |e0| < 1/M and |ej| < (2M − 1)/(aM), for

all 1 ≤ j < N . If x0 6= 0, then eN = 0 if and only if e1 = 0.

Proof: If e1 = 0, then

x′j = F j
a (x′0) = F j−1

a (Fa(x
′
0)) = F j−1

a (x′1) = F j−1
a (x1) = F j

a (x0) = xj

for all j ≥ 2. Therefore eN = x′N − xN = 0. If eN = 0 and e1 6= 0, it contradicts with

the conclusion of Proposition 4.7. Therefore it follows from eN = 0 that e1 = 0. ¤

According to Corollary 4.8, x′1 = x1 guarantees x′N = xN . Proposition 4.7 and

Corollary 4.8 imply that the initial error should be controlled at the second iteration,

otherwise it will be transferred to the next iteration and accumulated such that the

cryptosystem will not work properly. The following proposition gives an upper bound

of e0 to ensure x1 = x′1, and thus xN = x′N .

Proposition 4.9: Assume the parameter a equals 1 +
∑na

i=1 ai10−i, where na is a

positive integer, ai ∈ {0, 1, . . . , 9}. If |e0| < 10−na/(Ma) and r(Max0) 6= 0.5, then

x1 = x′1 for any nonzero initial value x0 ∈ P , and thus xN = x′N .

Proof: Since x0 ∈ P and |e0| < 1/M , sgn(x0) = sgn(x′0) and Mx0 is an integer.

Hence r(Max0) =
∑na

i=1 ci10−i, where ci ∈ {0, 1, . . . , 9}. Then maxx0∈P (|r(Max0)|) ≤
0.5 − 10−na . Therefore |r(Max0) + Mae0)| ≤ |r(Max0)| + |Mae0| < 0.5. It follows

from (4.13) that x1 = x′1. Then it follows from Corollary 4.8 that xN = x′N . ¤

The special case r(Max0) = 0.5 is ignored because this case does not occur for most

of the parameter values.

Example 4.3.1. Figure 4.6 and 4.7 plot the errors between the real value xi and the

corrupted value x′i for different e0. The X-axis is the number of iterations, and the

Y-axis is x′i−xi. In the simulation, a = 1.563, M = 256, x0 = 127/M, na = 3 and i =

1, 2, . . . , 10. For any possible initial value x0 ∈ P defined in (4.10), max(|r(Max0)|) =

0.499. The error is e0 = −0.99× 10−3/(aM) in Figure 4.6a). Figure 4.6b) shows that

xi 6= x′i when e0 = −1.01×10−3/(aM). In Figure 4.7 the error is e0 = −1×10−3/(aM).

By Proposition 4.9, if |e0| < 10−na/(Ma), then xi = x′i for all i ≥ 1, which is shown in
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Figure 4.6: The error between xi and x′i for different e0.
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Figure 4.7: The error between xi and x′i when e0 = −1× 10−3/(aM).
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Figure 4.6a). For these fixed parameter value and initial value, Figure 4.6b) shows that

it is possible to result in xi 6= x′i even if the error e0 is lightly larger than the bound,

and Figure 4.7 shows that the conclusion of Proposition 4.9 still holds when |e0| equals

10−3/(aM). Therefore the three figures show that the bound provided in Proposition

4.9 is sharp.

4.3.2 The influence of the parameter

Let a′ = a + ea, where ea is the error. Then

x′1 = Fa′(x0) =
round(Ma′x0)

M
− sgn(x0) = Fa(x0) +

k1

M
,

where k1 = round(r(Max0) + Meax0). Hence

x′1 =

{
x1, if k1 = 0,

x1 + k1

M
, if k1 6= 0,

(4.15)

where x1 = Fa(x0). Obviously, when |r(Max0) + Meax0| ≥ 0.5, k1 6= 0. Let ε1 =

x′1 − x1 = k1/M , then

x′2 = Fa′(x
′
1) =

round(M(a + ea)(x1 + ε1))

M
− sgn(x′1)

=
round(Max1)

M
− sgn(x1) +

k2

M
+ sgn(x1)− sgn(x′1),

where k2 = round(r(Max1) + Meax1 + M(a + ea)ε1). Let x2 = Fa(x1), then

x′2 =

{
x2, for k2 = 0 and sgn(x1) = sgn(x′1),

x2 + k2

M
+ sgn(x1)− sgn(x′1), for k2 6= 0 or sgn(x1) 6= sgn(x′1).

(4.16)

Let εj = x′j − xj and kj+1 = round(r(Maxj) + Meaxj + M(a + ea)εj), where

xj = F j
a (x0), x′j = F j

a (x′0), j ≥ 1, j ≥ 0 and ε0 = 0. A similar result to Proposition 4.7

is obtained, as below:

Proposition 4.10: Assume that |ea| < 1/(10M) and |εj| < (2M − 1.1)/((a +

0.1)M), j ≥ 1. If M ≥ 28, ε1 6= 0 and x0 6= 0, then |εj| ≥ 1/M for all j ≥ 2.

Proof: It follows from x0 6= 0 and |ea| < 1/(10M) that |ε1| = k1/M = 1/M <

(2M − 1)/((a− 0.1)M). In case j = 2,

1 ≤ |k2| = |round(r(Max1) + Meax1 + M(a + ea)ε1)| ≤ 3 < 2M − 1.
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According to (4.16),

ε2 =

{
k2

M
, if sgn(x1) = sgn(x′1),

k2

M
+ sgn(x1)− sgn(x′1), if sgn(x1) 6= sgn(x′1).

(4.17)

Because

|k2/M + sgn(x1)− sgn(x′1)| ≥ 2− k2/M > 1/M

and k2 ≥ 1, one has |ε2| ≥ 1/M . Suppose that |εj| > 1/M for some integer j ≥ 2, then

0.5 < |r(Maxj) + Meaxj + M(a + ea)εj| < (2M − 1.1) + 0.5 + 0.1 = 2M − 0.5.

Hence 1/M ≤ |kj+1| ≤ 2M − 1. Following a similar analysis to the case j = 2, it is

obtained that |εj+1| ≥ 1/M . ¤

Corollary 4.11: Assume that M ≥ 28, |ea| < 1/(10M) and |εj| < (2M−1.1)/((a+

0.1)M), 1 ≤ j ≤ N . If x0 6= 0 and xN = x′N , then xi = x′i for all i < N .

Note that there is the error ea in each iteration, thus ε1 = 0 is a necessary condition

for εN=0, which is different from Corollary 4.8. A sufficient condition to ensure xN =

x′N is

kj = 0 and sgn(xj−1) = sgn(x′j−1), 1 ≤ j ≤ N, (4.18)

that is, x′j = xj, 1 ≤ j ≤ (N − 1). The condition kj = 0 is equivalent to |r(Maxj) +

Meaxj| < 0.5. Since |r(Maxj)| < 0.5, sufficiently small ea can be found to satisfy

the above condition. Similar to the proof of Proposition 4.9, the following result is

obtained:

Proposition 4.12: Assume that parameter a equals 1+
∑na

i=1 ai10−i, where na is a

positive integer, ai ∈ {0, 1, . . . , 9}. If |ea| < 10−na/M and r(Max0) 6= 0.5, then x1 = x′1
for any nonzero initial value x0 ∈ P . Hence it is obtained that xN = x′N if xi 6= 0, and

r(Maxi) 6= 0.5 for all i < N .

Ensuring xN = x′N needs all r(Maxi) 6= 0.5, i < N , which is different from Propo-

sition 4.9. The reason is that the error ea is in every iteration step. In addition, it

is possible that x1 = x′1 when |ea| = 10−na/M , because |x0| < 1 for most of x0 ∈ P .

Combining Corollary 4.11 and Proposition 4.12 together, the following sufficient and

necessary condition is obvious:

Corollary 4.13: Assume that parameter a equals 1 +
∑na

i=1 ai10−i and na ≥ 1,

where na is a positive integer, ai ∈ {0, 1, . . . , 9}. If |ea| < 10−na/M , |εj| < (2M −
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1.1)/((a + 0.1)M), xi 6= 0 and r(Maxi) 6= 0.5 for all i < N , then xN = x′N if and only

if x1 = x′1.

Corollary 4.13 can be treated as a special case of the last subsection, that is, each

value xi is treated as an initial value, and the initial error e0 is generated by ea. Hence

the cryptosystem can work well if the condition in Proposition 4.9 holds in every

iteration step.

Example 4.3.2. The figures in Figure 4.8 plot the errors between the real value xi

and the corrupted value x′i for different ea. The X-axis is the number of iterations, and

the Y-axis is x′i−xi. The parameters M and i are the same as those in Example 4.3.1;

the other parameters are a = 1.751, x0 = 251/M . The error ea equals −10−3/M and

−1.02 × 10−3/M in Figure 4.8a) and 4.8b), respectively. Figure 4.8a) shows that the

conclusion of Proposition 4.12 still holds when ea equals the bound given in Proposition

4.12. If ea does not satisfy the condition in Proposition 4.12, it is possible that xi 6= x′i.

These two figures show that the bound in Proposition 4.12 is quite tight.

4.3.3 The influence of both e0 and ea

Let a′ = a + ea and x′0 = x0 + e0, where ea is the error of the parameter, e0 is the error

of the initial value. Then

x′1 = Fa′(x
′
0) =

round(M(a + ea)(x0 + e0))

M
− sgn(x′0)

=
round(Max0)

M
− sgn(x0) +

η1

M
+ sgn(x0)− sgn(x′0),

where η1 = round(r(Max0) + Meax0 + M(a + ea)e0). Hence

x′1 =

{
x1, η1 = 0 and sgn(x1) = sgn(x′1),

x1 + η1

M
+ sgn(x0)− sgn(x′0), η1 6= 0 and sgn(x1) = sgn(x′1),

(4.19)

where x1 = Fa(x0). Obviously, η1 6= 0 if and only if |r(Max0)+Meax0+M(a+ea)e0| 6=
0.5. Let θj = x′j − xj and ηj+1 = round(r(Maxj) + Meaxj + M(a + ea)θj), where

xj = F j
a (x0), x′j = F j

a′(x
′
0), j ≥ 1, then

x′j+1 =

{
xj+1, ηj+1 = 0 and sgn(xj) = sgn(x′j),

xj+1 +
ηj+1

M
+ sgn(xj)− sgn(x′j), ηj+1 6= 0 or sgn(xj) 6= sgn(x′j).

(4.20)

Similar to the analysis in subsections 4.3.1 and 4.3.2, the following results are obtained.
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Figure 4.8: The error between xi and x′i for different ea.
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Proposition 4.14: Assume that |ea| < 1/(10M), |θ0| < 1/M , and |θj| < (2M −
1.1)/((a + 0.1)M), j ≥ 1. If M ≥ 28, θ1 6= 0 and x0 6= 0, then |θj| ≥ 1/M for all j ≥ 2.

Proposition 4.15: Assume that parameter a equals 1 +
∑na

i=1 ai10−i, where na is

a positive integer, ai ∈ {0, 1, . . . , 9}. If r(Max0) 6= 0.5, |ea| < 10−na/M and |eax0 +

(a + ea)e0| < 10−na/M , then x1 = x′1 for any nonzero initial value x0 ∈ P . Hence it is

obtained that xN = x′N if xi 6= 0 and r(Maxi) 6= 0.5 for all i < N .

Proof: It follows from x0 ∈ P and |e0| < 1/M that sgn(x0) = sgn(x′0). Since

Mx0 is an integer, then r(Max0) =
∑na

i=1 ci10−i, where ci ∈ {0, 1, . . . , 9}. That is,

maxx0∈P (|r(Max0)|) ≤ 0.5− 10−na . Therefore

|r(Max0) + Meax0 + M(a + ea)e0| ≤ |r(Max0)|+ |Meax0 + M(a + ea)e0| < 0.5.

It means η1 = 0. According to (4.19), one has x1 = x′1. Then it follows from Proposition

4.12 that xN = x′N . ¤

Unlike the previous two cases, the errors e0 and ea affect the first iteration step

simultaneously. Hence η1 is more complex than i1 and k1, and this additional condition

|eax0 + (a + ea)e0| < 10−na/M is needed to ensure x1 = x′1.

Example 4.3.3. The figures in Figure 4.9 plot the errors between the real value xi

and the corrupted value x′i. The X-axis is the number of iterations, and the Y-axis

is x′i − xi. The parameters M , i, a and x0 are the same as those in Example 4.3.2.

The errors ea and e0 equal −0.5 × 10−3/M and −0.5 × 10−3/(aM) in Figure 4.9a),

respectively. In Figure 4.9b), ea = −0.9 × 10−3/M , and e0 = −0.7 × 10−3/(aM). In

Figure 4.9b), θi = x′i − xi 6= 0 because the condition |eax0 + (a + ea)e0| < 10−na/M is

violated, although e0 and ea are smaller than the bound given in Proposition 4.9 and

Proposition 4.12. Hence this condition is important in Proposition 4.15.

4.3.4 Selecting the appropriate parameter to improve the ro-

bust property

In the encryption algorithm in [81], parameter a is generated in Step 3′) by

3′) Let ai =
(
(bYi + c) mod m

)
/200 + 1.42, where Yi = (bYi−1 + c) mod m, b =

16, c = 7,m = 96, and Y1 = 0.
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Figure 4.9: The error between xi and x′i: a) ea = −0.5 × 10−3/M , e0 = −0.5 ×
10−3/(aM), b) ea = −0.9× 10−3/M , e0 = −0.7× 10−3/(aM).
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Step 3′) generates different ai corresponding to different Pi, which makes Pi more

secure. However, there is an interesting paradox between robustness and security

in chaotic communications. For different Pi, the algorithm is more robust if all the

parameters a′is are the same. According to the proof of Proposition 4.9, |e0| < 1/M

and |r(Max0) + Mae0| < 0.5 ensure that x1 = x′1 for a fixed parameter a. In order to

keep the algorithm robust under the different parameter ai, 1 ≤ i ≤ N , the following

inequality should be satisfied,

|e0| < min
1≤i≤N,x0∈P

(0.5− r(Maix0)

aiM

)
= min

1≤i≤N

(0.5−maxx0∈P (r(Maix0))

aiM

)
. (4.21)

When estimating the bound of ea in Proposition 4.12 for different parameter ai, the

following inequality

|ea| < 0.5−max1≤i≤N,x0∈P (r(Maix0))

M
< min

1≤i≤N,x0∈P

(0.5− r(Maix0)

x0M

)
(4.22)

should be satisfied to ensure that (4.18) holds. Hence the bound of ea or e0 can only

be the smallest value so that the algorithm is robust under the different parameter

ai. Since security is still guaranteed by the secret key, step 3′) is replaced by setting

a1 = a2 = . . . = aN = a. That is, the same a is selected to generate xnew for a

different Pi. This method has two advantages. The first advantage is to exclude the

case maxx0∈P (|r(Max0)|) = 0.5, so that Proposition 4.10 and Proposition 4.12 can be

applied. For example, if ai = 1.55 for some i and the initial value x0 = 10/M , then

r(Maix0) = 0.5. Hence Proposition 4.10 and Proposition 4.12 are not applicable. The

second advantage is that e0 or ea has a larger bound than that in Proposition 4.9 or

Proposition 4.12. For example, let M = 256, a1 = 1.561, a2 = 1.563, a3 = 1.567,

according to (4.21) and (4.22),

|e0| < min
{0.5− 0.494

1.561M
,
0.5− 0.499

1.563M
,
0.5− 0.497

1.567M

}
=

1× 10−3

1.563M
,

|ea| < min
{0.5− 0.494

M
,
0.5− 0.499

M
,
0.5− 0.497

M

}
=

1× 10−3

M
.

(4.23)

However if a1 = a2 = a3 = a = 1.561, then |e0| < 6 × 10−3/(1.561M) and |ea| <

6 × 10−3/M . Obviously, these bounds are larger than those in Proposition 4.9 and

Proposition 4.12.

Example 4.3.4. Let a = 1.561, M = 256, n = 10. When e0 = 4 × 10−3/(aM)

and x0 = 127/256, Figure 4.10a) plots the errors between the real value xi and the

corrupted value x′i. When ea = −4 × 10−3/M and x0 = 227/256, Figure 4.10b) plots
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the errors between the real value xi and the corrupted value x′i. When a1 = 1.561,

a2 = 1.563, a3 = 1.567, (4.23) shows that the upper bounds of the errors e0 and ea

are 1× 10−3/(1.563M) and 1× 10−3/M , respectively. Obviously, these two errors are

smaller than those in this example.

4.4 Summary and conclusion

In this chapter a modified parameter modulation scheme, combined with a crypto-

graphic technique, is proposed to improve security, and the robustness of this scheme

against uncertainty is investigated both analytically and experimentally. As a theoreti-

cal basis of the proposed communication scheme, a particular one-dimensional discrete

system controlled by a ∆-modulated feedback is proved to be chaotic when the para-

meter a is in (
√

2, 2]. This chaotic map is used to construct a secure cryptosystem,

which generates the parameter in the communication scheme. The complex parameter-

generating process improves the security of the communication scheme greatly, and

numerical simulation shows that the two popular attacks, power analysis attack and

return map attack, are ineffective in the modified parameter modulation scheme. Un-

certain perturbations are unavoidable in practical implementation of communication

schemes. The robustness of the cryptosystem is considered when there are uncertain-

ties in initial condition and system parameter. The upper bounds of the uncertainty

are also given to ensure that the iterations of the chaotic map do not stray from real

values.
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Figure 4.10: The error between xi and x′i, (a) e0 = 4×10−4/(aM); (b) ea = 4×10−3/M .
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Chapter 5

Application of chaotic

synchronization in CDMA

5.1 Chapter outline

In this chapter the results in Section 3.6 and Section 4.2 are applied to a direct sequence

code-division-multiple-access (DS-CDMA) scheme. The motivation and contribution

of this application are given in next section. Section 5.3 introduces the structure of

the DS-CDMA scheme. Numerical simulations given in Section 5.4 show that the bit

error rate (BER) performance of this scheme is good, even if there is noise in the

transmission channel. Section 5.5is the summary and conclusion.

5.2 Introduction

In the past few years, owing to rapid growth of the internet market and a

tremendous increase in the demand for wireless services, code-division-multiple-access

(CDMA) systems, more generally, spread spectrum signals, have been applied in sev-

eral existing wireless networks across the world, such as third-generation (3G) cellular

systems and wireless local area networks. In a CDMA scheme, all the users transmitted

the information simultaneously. A number of different transmitted signals occupy the

whole system bandwidth. At the receiver end, code sequences are used to separate

85

 
 
 



Chapter 5 Application of chaotic synchronization in CDMA

different users [82]. Many researchers on spread spectrum communications for wireless

personal and computer networks have addressed the CDMA system with the direct se-

quences approach, where all users transmit on the same band at the same time and are

distinguished only by means of a code signature. CDMA is also a promising technique

to improve the capacity of the current digital cellular system [83, 84]. In mobile com-

munication systems, multiple access to the common channel resources is vital. CDMA

has been selected as the main multiple access technology for 3G wireless systems.

The primary digital standards for cell phones in the United States are time-division-

multiple-access (TDMA), CDMA, and global system mobile (GSM) [85]. DS-CDMA

is a spread spectrum multiple access communication method that is expected to gain

a significant share of the cellular market [84].

Owing to its broadband power spectra and quickly decaying correlation functions,

chaotic signal is chosen as the spreading signal in the direct sequence spread spec-

trum communications and has found interesting application in CDMA mobile commu-

nications, which contributes to several improvements in communication security and

noise elimination. The generation of chaotic spreading sequences and synchronization

of chaotic spreading sequences are two important issues in the chaotic CDMA system

[86]. Reference [2] is the first work which studies the synchronization of chaotic systems

and suggests its application to secure communication. Mutually orthogonal chaotic se-

quences are generated and applied to spreading spectrum multi-users communication

in [87] and [88].

In this chapter the results in Section 3.6 and Section 4.2 are applied to a DS-

CDMA scheme. To improve security, an encryption/decryption function introduced in

Section 4.2 is employed in the transmitter/receiver, and an unidentifiable parameter

of the chaotic system is chosen as one of the secret keys. The generation of spreading

sequences is very important to increase the spectrum’s efficiency in a multi-user CDMA

system. Most chaos-based CDMA schemes use a chaotic map to generate spreading

sequences. In this chapter, a continuous chaotic system is employed and the local

extrema are chosen from the output of this system to generate spreading sequences.

By means of these spreading sequences, numerical simulations show that the DS-CDMA

scheme has a good performance, although the improvement of security degrades the

BER performance.
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5.3 A chaos-based DS-CDMA scheme

Figure 5.1: The DS-CDMA model.

The structure of the DS-CDMA scheme based on chaotic synchronization is illus-

trated in Figure 5.1. Generally, chaotic synchronization consists of two parts: the mas-

ter system and the slave system. The master system sends a driving signal such that

the state of the slave system can track the state of the master system. In this scheme the

master system generates K spreading sequences {y1(n)}N
n=1, {y2(n)}N

n=1, . . . , {yK(n)}N
n=1.

The synchronization in Figure 5.1 means that the signals ȳi are produced by the slave

system such that limt→∞ ‖yi − ȳi‖ = 0. Let E(yi) = 0 and ‖yi‖ = 1, then the autocor-

relation function between yi and yj is defined as [89]

Cij =
N∑

n=1

(
yi(n)− E(yi)

)(
(yj(n)− E(yj)

)

‖ yi ‖‖ yj ‖ =
N∑

n=1

yi(n)yj(n),

where E(yi) is the mean value of the sequence yi. These sequences yi have the following

properties:

Cii = 1, Cij,i6=j = εij ≈ 0, i, j = 1, 2, . . . , K, (5.1)

where the ε′ijs are sufficiently small positive numbers.

User k sends the information signal bk, which is encrypted to produce pk. The

elements of bk and pk are 1 or -1. The chaotic spreading sequence yk is multiplied by
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pk. Then the products are summed up to produce signal c(n), which is transmitted

through the channel. That is, c(n) =
∑K

k=1 pkyk(n), n = 1 . . . N , where N is the

length of the spreading sequences, K is the total number of users. The received signal

r(n) = w(n) + c(n), where w(n) is the white noise. For receiver i, the recovery is done

by the multiplication of r(n) and yi(n),

ri =
N∑

n=1

r(n)yi(n) =
N∑

n=1

( K∑

k=1

pkyk(n) + w(n)
)
yi(n)

=
N∑

n=1

piyi(n)yi(n) +
( K∑

k=1,k 6=i

N∑
n=1

yk(n)yi(n) +
N∑

n=1

w(n)yi(n)
)

= r̄i + re,

where r̄i =
∑N

n=1 piyi(n)yi(n). The decoding information is given

p̄i = sgn(ri) =

{
1, if ri ≥ 0,

−1, if ri < 0.

If re is sufficiently small, the decoding information recovers the accurate binary bit

pi. Hence the success of this detector depends on the amplitude of the noise and the

correlations between spreading sequences.

The following Lorenz system is chosen as the master system and generates a series

of chaotic sequences such that condition (5.1) is satisfied,





ẋ1 = −σ1x1 + σ2x2,

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,

y = x1.

(5.2)

The output is x1, which is transmitted to the slave system through the synchronization

channel. It should be noted that σ1 6= σ2. In this case, the result in Section 3.6 shows

that σ1 is not identifiable if x1 is the output. The local maximums of x2 produce a

discrete sequence {x̃}, whose i-th element x̃(i) is the i-th local maximum of x2. A

series of subsequences x̃i are defined in the following way:

x̃1(n) = x̃(n), x̃2(n) = x̃(n + τ1), . . . , x̃K(n) = x̃(n +
∑K

k=1 τk), n = 1, 2, . . . , N,

where τk is the positive integer and N +
∑K

k=1 τk is less than the length of x̃. The new

sequences {yi}, i = 1, 2, . . . , K, are obtained from normalized x̃i,

yi(n) =
x̃i(n)− E(x̃i)

‖x̃i − E(x̃i)‖ ,
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where E(x̃i) is the mean value of x̃i. Then it follows that E(yi) = 0 and ‖yi‖ = 1.

When K = 10, Figure 5.2 plots C1j and C2j, j = 1, . . . , 10. Figure 5.3 plots the

autocorrelation functions C1j and C2j for K = 20. The smaller the C ′
ijs are, the closer

the autocorrelation functions become to ideal. The larger N and τi are, the smaller

the C ′
ijs are.
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Figure 5.2: The autocorrelation function between yi and yj when K = 10, (a) i = 1

and j = 1, 2, . . . , 10, (b) i = 2 and j = 1, 2, . . . , 10.
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Figure 5.3: The autocorrelation function between yi and yj when K = 20, (a) i = 1

and j = 1, 2, . . . , 20, (b) i = 2 and j = 1, 2, . . . , 20.

The encryption and decryption in Figure 5.1 are carried out in the algorithm pro-

posed in Section 4.2. Step 2 and Step 5 are considered mainly.

2) Choose a Kr randomly from {K1, . . . , K16}, and let X = (Xs + Kr

M
) mod 1 and

N = Ns + Kr, where x mod 1 = x− bxc, and bxc is the floor (also called truncation)

function.

5) Choose the symbols corresponding to the ASCII values of Ci/Pi obtained in
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Step 4) as the ciphertext/plaintext. If i = n, then stop the algorithm, otherwise let

Xs := Xnew, Ns := Ci and i := i + 1, and go to Step 2.

To apply this algorithm in the DS-CDMA scheme, Step 5) needs some modification,

5’) Put the symbols corresponding to the ASCII values of Ci/Pi obtained in Step 4)

as the ciphertext/plaintext. If i = n, then stop the algorithm, otherwise let Ns := Ci

and i := i + 1, and go to Step 2.

That is, the variable Xs does not change in Step 5’). The reason is that the

influence of one symbol on the ciphertext in the decryption process is spread over

many plaintext symbols. For example, let the 128-bits secret key K =‘wh91-qa9g-

k*xd/.’, a ciphertext C = [170 161 69 252 176], then the corresponding plaintext

P = [243 59 155 124 228] if Kr choose K5 in every decryption process. Let C1 =

[171 161 69 252 176], then the corresponding plaintext P1 = [244 68 133 74 145].

The plaintexts P and P1 are completely different although only the first characters

of the ciphertexts are different. Hence it will worsen the performance of the BER

in the CDMA scheme. This modification is a trade-off between security and BER

performance. In addition, all the users choose the same Kr in Step 2. The index r of Kr

is transmitted through modulating the parameter σ1 in system (5.2), that is, σ1 = 10+

r/16. It is easy to estimate the parameter σ1 and the state variables simultaneously by

the slave system [38]. However, it cannot estimate σ1 without knowledge of parameter

ρ. Hence the parameter σ1 is secure.

5.4 Numerical simulation

Now numerical simulation is carried on to evaluate the BER performance of the CDMA

scheme illustrated in Figure 5.1. The following two definitions are needed in simulation.

The signal to noise ratio (SNR) is defined as [90, 91]

SNR = 10 log10

N∑
n=1

(
(c(n)− E(c)

)2

N∑
n=1

w2(n)

,
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where E(c) is the mean value of the transmitted signal c, and the mean value of the

noise w(n) is zero. The BER is defined as [92, 93]

BER = 0.5P (b(t) = 1|b̄(t) = −1) + 0.5P (b(t) = −1|b̄(t) = 1).

In practical implementations, it is not possible to maintain orthogonal codes for all

users, and thus multiple access interference arises. Successive interference cancellation

and parallel interference cancellation schemes are two simple methods to reduce multi-

ple access interference, therefore they are frequently used to improve the performance

of BER [90]. In the simulation we use the successive interference cancellation proposed

in [94].

In the simulation, subsection 5.4.1 is a standard image transmission. The perfor-

mance of BER is presented through transmitting 213 random data. In order to consider

the influence of synchronization on the BER performance, the simulation is carried on

in two subsections 5.4.2 and 5.4.3 for the case of the synchronization channel with noise

and without noise, respectively. A comparison between the proposed scheme illustrated

in Figure 1 and another two CDMA schemes is presented in subsection 5.4.4.

5.4.1 Image transmission in an AWGN channel

(a) (b)

Figure 5.4: The standard Lena (256× 256) image, a) original, b) recovered.

Since multimedia signals are the main information sources in wireless network ap-

plications, a standard image is transmitted by the first user through an additive white
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gaussian noise (AWGN) channel with SNR= 5. The number of users is K = 20. Figure

5.4a) is the original image, and 5.4b) is the corresponding recovered image. Comparing

the two figures reveals that the original image is almost recovered even if there is strong

noise in the transmission channel, which shows that this scheme is robust to channel

noise.

5.4.2 BER performance with perfect synchronization

Perfect synchronization means that the synchronization channel is not corrupted by

noise. To evaluate the statistical performance of the proposed scheme, 213 binary data

are generated randomly. In Figure 5.5 and 5.6, the length of spreading sequences is

N = 64. Figure 5.5 shows that the reduction in the BER is in relation to the increase

in SNR, where the number of users K equals 20 and 25, respectively. By assuming

that the highest acceptable level of BER equals 10−3 [95], it can be observed that

the performance is satisfactory when the SNR is greater than 5. Figure 5.6 plots the

performance of the BER when the number of users K = 30, 35 and 40. The level of

noise SNR ranges from -10 to 20. These figures show that the performance of the BER

becomes worse when the number of users increases. The performance is satisfactory

when the SNR is greater than 10. Figure 5.7 plots the performance of the BER when

the length of spreading sequences N equals 128. In order to investigate the influence

of the encryption algorithm on the BER performance, all these figures include two

lines. One line is the performance of the BER without the encryption/decryption

process. The other is the performance of the BER with the encryption/decryption

process. One ciphertext block influences not only the corresponding plaintext block,

but also the next block. Hence the improvement of security degrades the performance

of the BER. Figure 5.8 compares the BER performance when the length of spreading

sequences is N = 64 and N = 128, respectively. These figures show that the longer

the length, the better the BER performance is.

5.4.3 BER performance with synchronization error

In this case, the synchronization channel is corrupted by noise. For the master system,

the output is the first state of system (5.2), that is, x1. For the slave system, the

input is x1 + a sin(60t), where a is a positive real number. The performance of BER
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Figure 5.5: BER vs SNR, a) K=20, b) K=25.
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Figure 5.6: BER vs SNR, a) K=30, b) K=35, c) K=40.
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Figure 5.7: BER vs SNR, a) K=30, b) K=35, c) K=40.
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Figure 5.8: The performance of BER when N = 64 and N = 128, a) K=30, b) K=35,

c) K=40.
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is shown in Figure 5.9. Although the BER is lower than the performance in Figure

5.7, it is still satisfactory when the SNR is greater than 5, even if there is noise in the

synchronization channel.
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Figure 5.9: BER vs SNR, synchronization channel with noise, a) the noise is 0.01 ×
sin(60t), b) the noise is 0.03× sin(60t), c) the noise is 0.05× sin(60t).

5.4.4 Comparison with another two chaotic CDMA schemes

Reference [96] proposed a multi-user detection of a quasi-orthogonal chaotic CDMA

system based on novel optimal chaos synchronization. Figure 5.10 plots the BER

performances of this multi-user detectors and the scheme illustrated in Figure 5.1 in

an AWGN channel. These two schemes consider 50 users. The length of spreading

sequences of multi-user detectors is N = 512, and the length of the scheme in this

chapter is N = 128. By assuming that the highest acceptable level of BER equals 10−3
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[95], it can be observed that the performance of the scheme in this chapter is satisfactory

and better than the scheme in [96] when the SNR is greater than 10. Figure 5.11 plots

the BER performances of the scheme in [97] and the scheme illustrated in Figure 5.1.

The scheme in this chapter considers 40 users with the length of spreading sequences

N = 64 and N = 128. The scheme in [97] considers 20 users with N = 511. In

comparing with the scheme in [97], the scheme in this chapter considers more users

and shorter sequences. However, it achieves lower BER values when SNR≥ 10. Hence

the scheme in this chapter is better than the scheme in [97].
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Figure 5.10: BER performance of optimal CS multi-user detectors and the scheme in

this chapter.

5.5 Summary and conclusion

In this chapter we apply the results in Section 3.6 and 4.2 to a chaos-based DS-CDMA

scheme to improve security. The local extrema of a chaotic signal generated by a

continuous chaotic system is utilized to obtain spreading sequences. By means of these

spreading sequences, numerical simulation shows that the DS-CDMA scheme combined

with the cryptosystem in Section 4.2, constructed based on a chaotic map controlled

by ∆-modulated feedback, has a satisfactory performance even if there is noise in
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Figure 5.11: The empirical BER curves of the scheme in [97] and the scheme in this

chapter.

the transmission channel. There is an interesting paradox between security and BER

performance in the communication scheme. Improving the security while maintaining

a good BER performance is an interesting and meaningful research topic for future

work.
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Chapter 6

Conclusions

6.1 Summary

The objectives of this thesis are to give some criteria in the design of chaos-based com-

munication schemes, and to provide such a scheme with high security and robustness

as well.

Firstly, some dynamical properties of the generalized Lorenz system are found,

and an adaptive observer is constructed and proved to be an exponential observer for

the generalized Lorenz system. The dynamical properties are utilized to prove the

first state variable of the generalized Lorenz system, η1(t), to be PE. Then another

function, Υ1(t), is also PE, which is vital to estimate exactly the state and unknown

parameter of the generalized Lorenz system simultaneously. The results are also shown

by numerical simulations. The existence of such an adaptive observer implies that

the unknown parameter of the generalized Lorenz system cannot be a password, and

more effort is needed to achieve secure synchronization. This is the motivation for the

modified parameter modulation scheme in this thesis.

Secondly, it is shown that the unidentifiable parameter is a good choice for a secret

key, and a linear algebraic technique based on differential 1-forms is applied to check

unidentifiability. In fact, if a system parameter is not identifiable, it is obvious that

there is no an adaptive observer which can estimate the real parameter value. A

modified Lorenz system is utilized to illustrate this method and to design a chaos-based
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communication scheme. In the testing of parameter identifiability, the linear algebraic

technique based on differential 1-forms simplifies the computation and is applicable to

more general systems. In addition, the chaotic system with unidentifiable parameters

satisfies the antiadaptive property to a certain extent.

Thirdly, a modified parameter modulation communication scheme is provided in

this thesis, and the robustness of this scheme against uncertain disturbance is also

investigated both analytically and experimentally. The scheme is based on a cryp-

tosystem constructed by a 1-D ∆-modulated feedback chaotic map. The modulated

parameter is generated by this cryptosystem and selected according to the criteria in

Section 3.6. As a theoretical basis of the modified parameter communication scheme,

one proves that the one-dimensional discrete system controlled by a ∆-modulated feed-

back is chaotic when the parameter a is in (
√

2, 2]. The modulated parameter has more

choices in key space compared with classic parameter modulation schemes. In addition,

the complex parameter generating process improves the security of the communication

scheme greatly, and numerical simulations show that the two popular attacks, power

analysis attack and return map attack, are ineffective in the proposed communication

scheme. As for the robustness problem, the upper bounds of uncertainty are found

to ensure that this scheme works properly in practical implementation when the un-

certainty satisfies the bounds. Numerical simulations also show that the bounds are

sharp.

Finally, a novel chaos-based DS-CDMA scheme is constructed based on the results

in Section 3.6 and Section 4.2. To improve security, an encryption/decryption function

introduced in Section 4.2 is employed in the transmitter/receiver, and an unidenti-

fiable parameter of the chaotic system is chosen as one secret key. In this scheme,

a continuous chaotic system is employed and the local extrema are chosen from the

output of this system to generate spreading sequences. By means of these spreading

sequences, numerical simulations show that the DS-CDMA scheme combined with the

encryption/decryption function performs well even if there is noise in the transmission

channel.

Electrical, Electronic and Computer Engineering
University of Pretoria

100

 
 
 



Chapter 6 Conclusions

6.2 Assessment

In this thesis an adaptive observer is constructed for the generalized Lorenz system

with an unknown parameter, which shows that it is not easy to choose a good candi-

date for secure synchronization. Yet this result does not provide positive suggestions

for designing a secure communication scheme. Hence identifiability is chosen to test

whether system parameters are suitable for the secret key. It can be treated as a cri-

terion to achieve secure synchronization. Nevertheless, more refined theoretic analysis

is expected to be developed.

It should be pointed out that there is no straightforward procedure to prove that

a chaos-based communication scheme is secure, although parameter identifiability is

used to evaluate the security of the communication scheme. Hence the security of

the modified parameter modulation in this thesis against two important attacks does

not imply that the scheme is secure: other attacks may occur. On the other hand,

provable security against these two attacks is certainly a first step in the right direction

[22]. The analysis of the robust problem is presented by investigating the proposed

modified parameter scheme, while a general procedure of the robust analysis for general

communication schemes is still lacking.

6.3 Future work

To extend the research in this thesis further, one should take note of the following

directions.

1. The convergence of estimated parameters to their true values and the rate of

convergence are closely related to the PE property of certain signals. In this thesis

we only prove that the generalized Lorenz system satisfies the PE condition. It

is worth extending the result to more general chaotic systemss.

2. Chaotic synchronization has already been formulated into an observer design

problem by control theory. Reference [24] evaluates the security of chaotic syn-

chronization from the viewpoint of control theory. It is interesting to use the

concepts of identifiability, observability and inverse system to obtain more re-
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fined results on the security of chaotic synchronization.

3. The discrete chaotic systems controlled by a ∆-modulated feedback is an attrac-

tive choice for control practitioners. Hence the result achieved in this thesis will

be extended to high dimensional discrete chaotic systems to improve security

further.

4. There is an interesting paradox between security and robustness in chaos based

communication schemes. How to improve the security while maintaining robust-

ness property is an interesting and meaningful research topic for future work.

Electrical, Electronic and Computer Engineering
University of Pretoria

102

 
 
 



References

[1] I. I. Blekhman, A. L. Fradkov, H. Nijmeijer, and A. Y. Pogromsky, “On self-

synchronization and controlled synchronization,” Syst. Control Lett., vol. 31, no. 5,

pp. 299–305, 1997.

[2] L. Pecora and T. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett.,

vol. 64, no. 8, pp. 821–825, 1990.

[3] R. He and P. G. Vaidya, “Analysis and synthesis of synchronous periodic and

chaotic systems,” Phys. Rev. A, vol. 46, no. 12, pp. 7387–7392, 1992.

[4] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “The synchro-

nization of chaotic systems,” Phys. Reports, vol. 366, no. 1–2, pp. 1–101, 2002.

[5] R. L. Devaney, An Introduction to Chaotic Dynamical Systems. Redwood City:

Addison-Wesley, 1989.

[6] F. C. Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists

and Engineers. New York: Wiley, 1992.

[7] K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized

chaos with applications to communications,” Phys. Rev. Lett., vol. 71, no. 1, pp.

65–68, 1993.

[8] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz-

based chaotic circuits with applications to communications,” IEEE T. Circuits

Syst. I, vol. 40, no. 10, pp. 626–633, 1993.

[9] T.-L. Liao and N.-S. Huang, “An observer-based approach for chaotic synchro-

nization with applications to secure communications,” IEEE T. Circuits Syst. I,

vol. 46, no. 9, pp. 1144–1150, 1999.

103

 
 
 



REFERENCES

[10] T. Yang, “A survey of chaotic secure communication systems,” Int. J. Comput.

Cognition, vol. 2, no. 2, pp. 81–130, 2004.

[11] S. Bowong, F. M. Kakmeni, and M. S. Siewe, “Secure communication via parame-

ter modulation in a class of chaotic systems,” Commun. Nonlinear Sci. Numer.

Simulat., vol. 12, no. 3, pp. 397–410, 2007.

[12] T. Yang, “Secure communication via chaotic parameter modulation,” IEEE T.

Circuits Syst. I, vol. 43, no. 9, pp. 817–819, 1996.

[13] A. L. Fradkov, H. Nijmeijer, and A. Markov, “Adaptive observer-based synchro-

nization for communication,” Int. J. Bifurcat. Chaos, vol. 10, no. 12, pp. 2807–

2813, 2000.

[14] H. Huijberts, H. Nijmeijer, and R. Willems, “System identification in communica-

tion with chaotic systems,” IEEE T. Circuits Syst. I, vol. 47, no. 6, pp. 800–808,

2000.

[15] Y. Jin and Z. Qu, “Synchronization of Lorenz systems by adaptive observation,”

in Proc. American Control Conf., Denver, Colorado, 4–6 June 2003.

[16] Z.-P. Jiang, “A note on chaotic secure communication systems,” IEEE T. Circuits

Syst. I, vol. 49, no. 1, pp. 92–96, 2002.

[17] T. Yang, C. W. Wu, and L. O. Chua, “Cryptography based on chaotic systems,”

IEEE T. Circuits Syst. I, vol. 44, no. 5, pp. 469–472, 1997.

[18] N. K. Pareek, V. Patidar, and K. K. Sud, “Discrete chaotic cryptography using

external key,” Phys. Lett. A, vol. 39, no. 1–2, pp. 75–82, 2003.

[19] R. Matthews, “On the derivation of a ‘chaotic’ encryption algorithm,” Cryptologia,

vol. 13, no. 1, pp. 29–42, 1989.

[20] T. Habutsu, Y. Nishio, I. Sasase, and S. Mori, “A secret key cryptosystem by

iterating chaotic map,” in Advances in Cryptology—EUROCRYPT ’91. Berlin:

Springer, vol. 547, pp. 127–140, 1991.

[21] M. S. Baptista, “Cryptography with chaos,” Phys. Lett. A, vol. 240, no. 1–2, pp.

50–54, 1998.

[22] L. Kocarev and G. Jakimoski, “Logistic map as a block encryption algorithm,”

Phys. Lett. A, vol. 289, no. 4–5, pp. 199–206, 2001.

Electrical, Electronic and Computer Engineering
University of Pretoria

104

 
 
 



REFERENCES

[23] N. Masuda and K. Aihara, “Cryptosystems with discretized chaotic maps,” IEEE

T. Circuits Syst. I, vol. 49, no. 1, pp. 28–40, 2002.

[24] S. C̆elikovsky and G. Chen, “Secure synchronization of a class of chaotic systems

from a nonlinear observer approach,” IEEE T. Automat. Contr., vol. 50, no. 1,

pp. 76–82, 2005.

[25] C. Zhou and C. H. Lai, “Decoding information by following parameter modulation

with parameter adaptive control,” Phys. Rev. E, vol. 59, no. 6, pp. 6629–6636,

1999.

[26] K. M. Short, “Steps toward unmasking secure communications,” Int. J. Bifurcat.

Chaos, vol. 4, no. 4, pp. 959–977, 1994.

[27] K. M. Short, “Signal extraction from chaotic communications,” Int. J. Bifurcat.

Chaos, vol. 7, no. 7, pp. 1579–1597, 1997.
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