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PREFACE

The examples in this thesis serve not only to illustrate the abstract ideas of the
thesis but to introduce notation that shall be used consistently throughout the
thesis. The index of symbols follows after this preface. Hence many concrete
examples of C*-algebras will be given.

The first chapter of the thesis sets the ground work for the thesis and has
three dominant themes.

The first theme (Chapter 1, section 1) is the anti-unitization of a C*-algebra,
where we embed a C*-algebra as a closed 2-sided ideal of another C*-algebra
which lacks an identity. This embedding gives us licence to treat any C*-algebra
as a C*-algebra without an identity for our purposes. This of fundamental im-
portance in the thesis : it is an appropriate first theme.

The second theme (Chapter 1, section 2) is the representation of an abstract C*-
algebra in terms of more concrete C*-algebras : the C*-algebra of all continuous
complex valued functions which vanish at infinity on a locally compact Hausdorff
space, the C*-algebra of all bounded operators on a Hilbert space and the Double
Centralizer Algebra. These representations formed the frameworks in which the
problems of the thesis was solved. The bulk of Chapter 1, section 2 focusses on
the latter two representation theories. The second representation theory which
is well established is attacked from the viewpoint of theory of a *-representation,
a *-algebraic concept void of the norm. In particular for C*-algebras, we look at
irreducible and non-degenerate *-representations, the former being the stronger
condition. The well known second representation theory is a non-degenerate
*-representation which uses irreducible cyclic *-representations in its construc-
tion : the crux is the bijective correspondence between irreducible cyclic *-
representations and pure states. We furnish amongst the concrete examples, an
example of a *-representation which is non-degenerate but far from the being
irreducible.

The Double Centralizer Algebra Representation theory is the least known. We
introduce it as an improved left regular representation by showing the inade-
quacy of the left regular representation. Indeed, the solution to this inadequacy
is a triumph of the school of solving the problem by looking at it in a more
abstract setting. Hence, we build up the theory from the very general theory
of the category of semigroups which will provide reasons for the definitions of
a double centralizer, which otherwise would appear as if it were plucked out
of the air. We then move the theory up into the category of rings where we
vindicate our efforts by demonstrating the preservation of the ideal structure
of the original C*-algebra in the Double Centralizer Algebra. Finally, we move
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the theory up into the category of C*-algebras where we show that it solves the
problem associated with the left regular representation. Moreover, the struc-
ture inherits all the benefits that are associated with the former two categories.
To demystify the Double Centralizer Algebra Representation theory, we furnish
concrete examples of the Double Centralizer Algebra Representation of two well
known C*-algebras.

We end off the second theme appropriately by contrasting the Universal Repre-
sentation and the Double Centralizer Algebra Representation. We first represent
the Double Centralizer algebra of a C*-algebra as a subspace of the C*-algebra
of all bounded operators on the same Hilbert space used in the representation
of the original C*-algebra. However, not to give the false impression that the
Double Centralizer Algebra Representation is a special case of the Universal
Representation, we furnish a concrete example which establishes the Double
Centralizer Algebra Representation as having its own merits over the Universal
Representation and will therefore be regarded as a representation theory in its
own right.

Just as much as the existence or absence of an identity element played a central
role, there are other special types of elements of the C*-algebra, namely, the
normal elements. These have a representation theory that we call the Func-
tional Calculus since the normal elements can be represented as functions of a
function algebra. We develop three corollaries which will be used extensively
in the thesis. One of these corollaries involves a factorization of a normal ele-
ment. To redress the bias towards normal elements, we resort to the Universal
Representation which enables any element in a C*-algebra to be viewed as a
bounded operator on a Hilbert space, enabling us to apply a factorization or
decomposition known as the Polar Decomposition which we take as the second
local representation of the arbitrary element, normal or non normal. Just as in
the case of normal elements, a list of corollaries used extensively in the thesis
is developed. We end off by relating the two local representations in an impor-
tant result and applying the Functional and Polar Decomposition Theorem in
the context of the quotient C*-algebra to yield small but important results as
demanded by the mathematics which follows in the thesis.

We start Chapter 2 off by proving the lifting of the problem of zero divisors
affirmatively. The proof rests on a bootstrapping argument: we first quickly
prove the result for the case of positive zero divisors using the Orthogonal De-
composition Corollary and then prove for the general case by virtue of the Polar
Decomposition with the aid of the Functional Calculus. We further prove the
result affirmatively for the lifting of self adjoint zero divisors. The remainder of
the chapter is occupied with proving the lifting problem of the more general case
of n-zero divisors. We start by first proving it for the case of a commutative C*-
algebra by an elegant interplay between the two global representation theories of
the Universal Representation and the C*-algebra represented as the C*-algebra
of all continuous complex valued functions which vanish at infinity on a locally
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compact Hausdorff space. The result is then next proved affirmatively in the
case of a Von Neumann C*-algebra where the proof is short and simple by virtue
of the abundance of projections in a Von Neumann C*-algebra. In fact, we iso-
late the property, the Von Neumann Lifting Lemma, which makes the lifting
easy in the Von Neumann C*-algebra case. We then step into the fundamentally
important paradigm of Non Commutative Topology which gives birth to a spe-
cial C*-algebra which we call a SAW*-algebra that has a special property which
mimicks the Von Neumann Lifting Lemma responsible for lifting n-zero divisors
in Von Neumann C*-algebras. The special property in question is the prop-
erty of possessing orthogonal local units. This is the primary motivation of the
SAW*-algebra which eventually is the dominant theme in proving not only the
problem of lifting n-zero divisors in the general C*-algebra but also the problem
of lifting the property of the nilpotent element. We show the importance of the
paradigm of Non Commutative Topology by demonstrating how the important
C*-algebraic properties of a σ-unital C*-algebra, possessing orthogonal local
units, being a Von Neumann C*-algebra and most of all a Corona C*-algebra,
a special kind of SAW*-algebra, originate from this paradigm. We use a spe-
cific case to demonstrate the commutative origin of the Corona C*-algebra, the
key to the affirmative lifting of the property of n-zero-divisors in any C*-algebra.

Before showing the significance of the construction of the corona of a C*-algebra
to solving the lifting property of n-zero-divisors in any C*-algebra, we demon-
strate properties of the corona C*-algebra that point to this direction : local
properties of the corona translate into global properties of the finer double
centralizer algebra representation. The significance of the construction of the
corona of a C*-algebra with regards to the lifting of the property of n-zero divi-
sors is then pinpointed : the corona of every non-unital σ-unital C*-algebra is
a SAW*-property and the local unit associated with the SAW*-algebra like its
counterpart in the case of an identity element of a C*-algebra with an identity
has a norm of exactly one.

The lifting of the property of n-zero divisors in the corona of any non-unital
σ-unital C*-algebra is initiated by the SAW*-algebra property of possessing or-
thogonal local units, very similar in approach to the case of a Von Neumann
C*-algebra. The orthogonality of the pair is exploited by a use of the Polar
Decomposition Theorem to produce the desired perturbations.

When we prove the lifting of the property of n-zero divisors in the general
C*-algebra, we essentially reduce the problem to the case of the corona by set-
ting up the same scenario as in the case of the corona. Namely, we construct
closed essential ideals from the given closed ideal and show that it is without loss
of generality that the general C*-algebra can be taken as a non-unital σ-unital
C*-algebra. In constructing closed essential ideals from the given closed ideal,
we make use of what we call the pseudo-pythagorean inequality. In construct-
ing σ-unitalness, we work purely in the C*-algebra generated by the finitely
many elements defining the lifting problem. In constructing the non-unitalness
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of the C*-algebra, we resort to the stable algebra contruction which embeds the
original C*-algebra in the non-unital stable algebra as a 2-sided closed ideal.
Intuitively, this stable algebra is the C*-algebra of the infinite matrices whose
entries are elements of the C*-algebra. The reduction occurs when we construct
the corona of the essential ideal which is a non-unital and σ-unital C*-algebra
and hence lift the property of n-zero divisor. The construction by annihila-
tors used in the closed essential ideal then dumps all the elements not of the
original C*-algebra safely away, retaining the bona fide elements of the ideal of
the original C*-algebra to do their job of lifting the property of n-zero divisors
affirmatively.

Buoyed by our success in lifting the property of n-zero divisors, we attack a
closely related property : the property of a nilpotent element. This is the
theme of Chapter 3, and to start off we prove the result affirmatively in simple
cases where the degree of nilpotency is 2. Much of the machinery developed in
chapter 2 is used again to shoot down these simple cases. For the general case
of lifting nilpotent elements of any degree n, we prove this affirmatively by first
lifting the property in the corona of a non-unital, σ-unital C*-algebra and then
reducing the problem of lifting it in the general C*-algebra exactly as in the case
of lifting n-zero divisors. To prove the result in the corona a non-unital, σ-unital
C*-algebra, once again, the Von Neumann algebra was the benchmark. The key
was in establishing a triangular form for a nilpotent element relative to a finite
commutative set of elements in the corona. This triangular form for a nilpotent
element occurs naturally in a Von Neumann algebra. More importantly, we can
lift this triangular form although not totally with a clever use of the properties
of a hereditary C*-subalgebra. However for the purposes of proving the lifting of
nilpotent elements, this partial lifting suffices. The approach directly constructs
from the coset of the nilpotent element of the corona, an element of the double
centralizer algebra which is nilpotent. The trick is to construct the element as a
sum of elements which annihilate each other. These summands are constructed
via the functional calculus all within the framework of the finite commutative
set involved in the triangular form of the nilpotent element.

For the general case of lifting nilpotent elements in the general C*-algebra,
the reduction of the problem to the case of the corona of a non-unital, σ-unital
C*-algebra proved successful using an identical argument as in the case of lifting
n-zero divisors.

In chapter 4, we explore the new frontier of lifting the more general property of
a polynomially ideal element in a general C*-algebra. We quickly show that this
is not possible : we demonstrate the topological obstruction to this lifting in
the C*-algebra of all continuous functions on the unit interval. The topological
obstruction is the property of connectedness in the complex plane. We how-
ever salvage the situation by establishing a criterion under which polynomially
ideal elements can be lifted : when the property of a finite orthogonal family
of projections can be lifted. This criterion rests on our ability to lift nilpotent
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elements along with the lifting of the commutative property associated with an
invertible element which we prove by a lovely interplay between Tietze’s exten-
sion theorem and the Stone Weierstrass theorem as well as the lifting of positive
invertible elements of which we give two independent proofs.
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Chapter 1

Introduction

1.1 C*-algebra : Preliminaries

For the purposes of making this dissertation as self contained as possible and
fixing the basic definitions as used in this dissertation, we state the following
definitions and some of the basic theorems which are of fundamental importance
in the thesis.

An algebra over a field F is a ring A that is simultaneously a vector space over
F with the same addition; the ring multiplication and the scalar multiplication
are related as follows:

(αx)y = α(xy) = x(αy) (1.1)

for all x, y ∈ A and α ∈ F. All vector spaces and algebras will be taken over the
complex number field C unless otherwise stated.

An algebra A is commutative if xy = yx for all x, y ∈ A.

Example 1 Let Mn(C) denote the set of all the n × n matrices with entries
taken from the complex number field C. Then Mn(C) is an algebra over the field
C: under matrix addition and multiplication, it forms a non-commutative ring
over C; it is an n2 - dimensional vector space over C when equipped with the
usual scalar multiplication; the ring multiplication and the scalar multiplication
are related as in (1.1).

A *-algebra is an algebra over C with a map x 7→ x∗ on A into itself such that
for all x, y ∈ A and complex λ ∈ C:

(a) (x+ y)∗ = x∗ + y∗

(b) (λx)∗ = λ̄x∗

1
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(c) (xy)∗ = y∗x∗

(d) x∗∗ = x

where the map x 7→ x∗ is called an involution. A *-homomorphism of a *-algebra
A into a *-algebra B is a linear mapping which preserves the ring multiplication
and the involution.

Example 2 Consider the map *:Mn(C) → Mn(C)|x 7→ x∗ where x∗ is the
conjugate transpose of the n× n matrix x. Then, Mn(C) is a *-algebra over C
under the operation *.

A normed algebra is a normed vector space A which is an algebra where the
multiplication is related to the norm as follows:

‖ xy ‖ ≤ ‖ x ‖‖ y ‖ (1.2)

A normed *-algebra is a normed algebra which is a *-algebra. If the algebra is
complete with respect to the norm, it is called a Banach *-algebra.

The involution in a normed *-algebra is continuous if there exists a constant
M > 0 such that ‖ x∗ ‖ ≤ M · ‖ x ‖ for all x; the involution is isometric if
‖ x∗ ‖ = ‖ x ‖ for all x. Two normed *-algebras are isometrically *-isomorphic
if there exists a *-isomorphism (bijective *-homomorphism) φ : A → B such
that ‖ φ(x) ‖ = ‖ x ‖ for all x in A.

A norm on a *-algebra satisfies the C*-condition if

‖ x∗x ‖=‖ x ‖‖ x∗ ‖ (x ∈ A) (1.3)

Consequently, if the involution is isometric, the norm satisfies the strong C*-
norm condition:

‖ x∗x ‖= ‖ x ‖2 (x ∈ A) (1.4)

We shall call a Banach *-algebra a C*-algebra if the strong C*-norm condition
(1.4) is satisfied.

Example 3 Consider each x ∈ Mn(C) as an operator on the n - dimensional
vector space Cn. Consider the operator norm on Mn(C) defined by:

‖ x ‖= max|γ|≤1|x(γ)|

where γ ∈ Cn and | · | is the usual Euclidean norm on the n - dimensional vector
space Cn. By virtue of the Cauchy-Schwartz inequality on Cn, ‖ x ‖≤

√
nK

where K is the maximum of the Euclidean norms of the rows of the matrix x
taken as elements of Cn.

Then Mn(C) is a C*-algebra.

2
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The strong C*-norm condition (1.4) implies that the involution is isometric:
‖ x ‖2 =‖ x∗x ‖ ≤ ‖ x∗ ‖‖ x ‖ whence ‖ x ‖ ≤ ‖ x∗ ‖. Analogously ‖ x∗ ‖2 =
‖ (x∗)∗x∗ ‖ = ‖ xx∗ ‖ ≤ ‖ x ‖‖ x∗ ‖ whence ‖ x∗ ‖ ≤ ‖ x ‖. Hence the C*-
algebra condition (1.4) is equivalent to both the conditions that the involution
is isometric and the C*-condition (1.3). In fact, it was a highly non-trivial
problem to show that a Banach *-algebra which only satisfies the C*-condition
(1.3) has an isometric involution [Chapter 3, Theorem 16.1 [8]]. Consequently
the C*-norm condition and the strong C*-norm condition is equivalent in the
setting of a Banach *-algebra and a C*-algebra can be defined equivalently as a
Banach *-algebra that satisfies the C*-norm condition (1.3). We shall however
continue to define a C*-algebra as a Banach *-algebra that satisfies the the
strong C*-norm condition (1.4) since this strong C*-norm condition is useful in
the solution of many problems of the thesis.

Example 4 We can view Mn(C) as the space of all the bounded operators on
the finite dimensional Hilbert space Cn. More generally, the space of all bounded
operators on a Hilbert space H, B(H), is a C*-algebra: the operator norm on
B(H) satisfies the strong C*-norm condition [see Theorem 2.4.2 [10]].

If there exists an element e in the C*-algebra A such that xe = ex = x for all x
in A, then A is called a C*-algebra with identity. We call e the identity element.
Not all C*-algebras have an identity. The latter case is more common among
C*-algebras which occur in applications.

Example 5 (Non Commutative C*-algebra with an identity) Mn(C) is
a C*-algebra with the n× n unit matrix defined by:



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


as the identity element, e.

Example 6 (Non Commutative C*-algebra without an identity) A com-
pact operator on a Hilbert space H, is an operator with the property that image
of the unit ball of the Hilbert space, H, is relatively compact in H. Since all
compact sets are bounded, a compact operator is a bounded operator. In fact,
the set of all compact operators,K(H), is a norm-closed *-subalgebra of B(H).

If H is an infinite dimensional Hilbert space, then the identity operator e(x) = x
for all x ∈ H is not a compact operator since the unit ball of H, BH, is com-
pact if and only if H is a finite dimensional normed space [Chapter II, Theorem
1.2.6 [25]]. Hence, the space of all compact operators on an infinite dimensional
Hilbert space H is a non-commutative C*-algebra without an identity.

3
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Example 7 (Commutative C*-algebra with an identity) The Banach space
C(K) of continuous complex-valued functions on a compact Hausdorff space K
with the sup norm is a C*-algebra under point-wise multiplication and point-wise
complex conjugation : (fg)(t) = f(t)g(t) and f∗(t) = f(t), is a commutative
C*-algebra with identity e, the constant 1 - map on X, defined by:

e(t) = 1 for all t in X.

Example 8 (Commutative C*-algebra without an identity) Let C0(X)
be the Banach *-algebra of all continuous complex-valued functions on a locally
compact Hausdorff space which vanishes at infinity, with respect to the operations
of point-wise multiplication, point-wise addition, point-wise complex conjugation
and the supremum norm. Then C0(X) is a C*-algebra which will not possess
an identity unless X is compact.

In 1967, B.J. Vowden showed how to embed a C*-algebra A without an identity
into a C*-algebra which has an identity, Ae. Ae is the direct sum A ⊕ C as
vector spaces, with the following operations:

(a) (x, λ)(y, µ) = (xy + µx+ λy, λµ)
(b) (x, λ)∗ = (x∗, λ̄)
(c) ‖ (x, λ) ‖=‖ x ‖ +|λ|

The element (0, 1) which we denote as e, is the identity of Ae and the map
i : A→ Ae|x 7→ (x, 0) is an isometric *-isomorphism (embedding). Formally:

Theorem 1 (Unitization) (Chapter 1.1, Proposition 1.5, [19]) If A is a C*-
algebra without an identity, there exists a norm on Ae which satisfies the strong
C*-norm condition (1.4) and extends the original norm on A (A is isometrically
embedded).

Since we have assumed the strong C*-norm condition (1.4) on A, A will trivially
have an isometric involution. A is a maximal closed 2-sided ideal of Ae.

Up into the 1960’s, much of the work on C*-algebras centered around the rep-
resentation theory of these algebras. Let A be a C*-algebra. We often analyze
the C*-algebra A by means of an isometric *-isomorphism Φ on A onto a more
concrete C*- algebra. We call the isometric *-isomorphism Φ, a representation
of the C*-algebra A. The representation of a C*-algebra is a major topic of this
chapter and will be studied in depth in the next section, Chapter 1.2. Some of
the key results of the thesis has been the result of the interplay of different ways
of representing the entire C*-algebra A.

4
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The Commutative Case:

Theorem 2 (Gelfand Naimark Theorem I) (Chapter 1.1, [8]) Let A be a
commutative C*-algebra. Then there exists a locally compact Hausdorff space X
such that A is isometrically *-isomorphic to the C*-algebra C0(X). In the case
that A has an identity, X is compact and hence A is isometrically *-isomorphic
to C(X), the C*-algebra of all continuous complex-valued functions on a compact
Hausdorff space X.

We construct the locally compact Hausdorff spaceX as follows: LetX = A†, the
Gelfand space of the C*-algebra A, denote the set of all the non-zero complex-
valued algebra-homomorphisms on A. The Gelfand space, A†, is a subset of
the unit ball of the continuous dual of A, taken as a normed space [Chapter
V.7, Proposition 7.3 [9]]. The topology on A†, is the topology of point-wise
convergence or equivalently, the weak*-topology. Now recall the fact that the
unit ball of the continuous dual of A is weak*-compact. Further, depending on
whether or not the zero - homomorphism belongs to the weak*-closure of A†,
the Gelfand space A† becomes locally compact or compact, respectively. The
latter case arises when A has an identity [Chapter V, Proposition 5 [9]].

The representation is the Gelfand transform which is an isometric *-isomorphism
of A onto C0(X). The Gelfand transform, ,̂ is the mapˆ : A → C0(X)|a 7→ â
where â is the point-evaluational functional restricted to the Gelfand space,
A† ⊆ A∗, evaluated at a : â : A† → C|φ 7→ φ(a).

The Non-commutative case :

The hint for a representation of a non-commutative C*-algebra is offered by
the finite dimensional case. The C*-algebra, Mn(C) [Chapter 1.1, Example 3],
is a prototype of a finite dimensional C*-algebra, of dimension n2: there exists
a finite dimensional Hilbert space Cn such that Mn(C) can be identified as the
C*-algebra of all bounded operators on the Hilbert space Cn. In fact, if A is a
finite dimensional C*-algebra, then A is isometrically *-isomorphic to C*-direct
sum

∑m
k=1

⊕
Ak, where each Ak is isomorphic to the matrix algebra of nk×nk

complex matrices, Mnk
(C) [Chapter VI.3, Proposition 3.14 [9]]. Consequently,

A has an identity.

The C*-direct sum
∑m

k=1

⊕
Ak is vector space direct sum of all the Ak’s,

where we define addition, multiplication, addition and scalar multiplication on∑m
k=1

⊕
Ak point-wise and the C*-norm as follows:

‖ x ‖= sup1≤k≤m ‖ xk ‖

where x = (x1, . . . , xk, . . . , xm) with xk ∈ Ak.

5

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



Therefore each finite dimensional C*-algebra is a isometrically *-isomorphic to
a *-subalgebra of the space of all bounded operators B(H) on some finite di-
mensional Hilbert space H =

∑m
k=1

⊕
Cnk . Consider each Ak as the space of

all operators on the Hilbert space Cnk . Set H as the finite Hilbert direct sum∑m
k=1

⊕
Cnk . Take the *-subalgebra as the operators on

∑m
k=1

⊕
Cnk of the

form of the direct sum
∑m

k=1

⊕
Tk where Tk ∈ Ak = B(Cnk).

In fact each separable C*-algebraA is isometrically *-isomorphic to a *-subalgebra
of the space of all bounded operators B(H) on some separable Hilbert space H
[Chapter VI.22 Proposition 22.13, [9]]. For the general C*-algebra A, we fortu-
nately have the following analogous representation:

Theorem 3 (Gelfand Naimark Theorem II) (Chapter 1.1, [8] ) Let A be
any C*-algebra. Then A is isometrically *-isomorphic to a norm-closed *-
subalgebra of bounded linear operators on some Hilbert space.

For a detailed introduction of theorem 2, the reader is referred to [9]. A detailed
explanation of theorem 3 is given in section 1.2.

The rich structure on a C*-algebra, A, allows us to define the following concepts
of a self adjoint, normal, projection, positive and invertible element as well as
the concept of the spectrum of an element in a C*-algebra by analogy to the
theory of operators on Hilbert spaces:

An element x in A is called self adjoint if x∗ = x; x is normal if x∗x = xx∗;
x is idempotent if x2 = x; x is a projection if x∗ = x = x2; x is invertible if
xy = yx = 1 for some y in A and provided A is unital; if A is unital, then 1∗ = 1
and consequently, if x is invertible the (x∗)−1 = (x−1)∗.

Clearly self-adjoint elements are normal and hence the C*-algebra generated
by these elements are commutative. In fact, x is normal if and only if x belongs
to some commutative *-subalgebra of A.

For an element x in A, the spectrum of x in A , σA(x), is defined to be the set
of all those complex numbers λ such that x−λ1 has no inverse in A. In the case
that, A has no identity, the spectrum σA(x) is defined to be the same as σAe(x)
where Ae is the C*-algebra which is the unitization of A [see Theorem 1]. We
can do away with a case by case definition of the spectrum using the concept of
an adverse. Define a new operation ◦ on A as follows: x ◦ y = x+ y − xy.

This operation is a measure of the difference between the sum and the product
of two elements. Now, the operation is associative and has 0 as the unit. We
say x has an adverse y if and only if x ◦ y = y ◦ x = 0. For the case of A having
an identity, x has an adverse if and only if 1− x is invertible. In the case where
A has no identity, y is an adverse of x in A, forces y to be in A. Hence we define
the spectrum of x in A, σA(x), as follows:

6
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Definition 1 (Chapter 5, section 5, Proposition 5.8 [9]) Let x be an element
in the C*-algebra A. Then a non-zero complex number λ belongs to σA(x) if
and only if λ−1x has no adverse in A. Further, 0 /∈ σA(x) if and only if A has
an identity and x−1 exists in A.

The element x in the C*-algebraA is positive, x ≥ 0, provided that x is hermitian
and its spectrum in A, σA(x), consists entirely of nonnegative real numbers.
Kaplansky showed that this is equivalent to the existence of a y in A such
that x = y∗y. If A+ denotes all the positive elements, then A+ forms a closed
(convex) cone with vertex 0 [Chapter 3, section 12, Theorem 12.3 [8]]. Recall
that a cone with vertex 0, is a non-empty subset K of the vector space A, such
that:

(a) If x ∈ K, then λx ∈ K for all λ ≥ 0 (the ray 0x belongs to K)
(b) Whenever x, y ∈ K,x+ y ∈ K.

Hence K is closed with respect to convex combinations (i.e convex). Further,
the cone is proper: it cannot contain both a and −a unless a = 0 (λ ∈ C is in
the spectrum of a if and only if −λ is in the spectrum of −a.)

Treating the C*-algebra A as a real vector space, the fixed cone K = A+ defines
a partial order ≤ (the antisymmetry of the partial order ≤ is by virtue of the
cone being proper) as follows:

If a, b ∈ A, then a ≤ b if and only if b− a ∈ A+.

The resulting (partial) order allows us to treat A as an ordered vector space
[Chapter III.1 Proposition 1.1.1 [25]] and satisfies the following conditions:

Definition of Order by the Cone

(a) a ≥ 0 ⇔ a ∈ A+ (1.5)

Partial Order Axioms

(b) a ≤ a (1.6)
(c) a ≤ b ≤ c⇒ a ≤ c (1.7)
(d) a ≤ b ≤ a⇒ a = a (1.8)

Compatibility with vector space operation Axioms

(e) a ≤ b, 0 ≤ λ ∈ R ⇒ λa ≤ λb (1.9)
(f) a ≤ b, c ∈ A⇒ a+ c ≤ b+ c (1.10)

By the Gelfand Naimark Theorem I (theorem 2) we can add a further two
inequalities which we shall use later on in the thesis [see proof of Chapter 2,
Theorem 2.2.5, [13]].

7
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(g) If 0 ≤ a ≤ b, then ‖ a ‖≤‖ b ‖ (1.11)
(h) If A has an identity and a, b ∈ A+, then a ≤ b⇒ 0 ≤ b−1 ≤ a−1

(1.12)

We have seen examples of C*-algebras without an identity. However, all C*-
algebras A have an approximate identity. An approximate identity is a fixed net
of elements eα in A such that limα eαx = limα xeα = x for any x in A. If the
net can be indexed by the set of positive counting numbers then the C*-algebra
is σ − unital . In fact, the approximate identity can be chosen such that it is
bounded by 1 (‖ eα ‖≤ 1 for all α), and is increasing (if α ≤ β, then eα ≤ eβ).
[Chapter 1, Proposition 13.1, [8] ].

Prior to the advent of K-theory, it was desirable that every C*-algebra had
an identity; if it did not, an identity was immediately adjoined to it by em-
bedding it with a *-isometric isomorphism into a C*-algebra with an identity
[Theorem 1]. In a total reverse of this trend, with the advent of K-theory and
crossed products, if A is a C*-algebra, it is desirable that it does not have an
identity. In the case that it does have an identity, we remove the identity by
embedding it with a *-isometric isomorphism into the stable algebra A

⊙
K(H),

where K(H) denotes the C*-algebra of all compact operators on a separable in-
finite dimensional Hilbert Space. The stable algebra A

⊙
K(H) is a C*-algebra

without an identity, and can be regarded as the spatial tensor product of the
C*-algebras A and K(H). In the thesis, this recent trend is of fundamental
importance and we formally note:

Theorem 4 (Anti-Unitization) If A is a C*-algebra with an identity, there
exists a C*-algebra, the stable algebra A

⊙
K(H), such that A embeds by a

*-isometric isomorphism into A
⊙
K(H) as a closed 2-sided ideal.

The proof and description of this anti-unitization process is found in appendix
B of the thesis.
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1.2 C*-algebra : Global Representations

Some of the key results of the thesis has been the result of the interplay of
different ways of representing the entire C*-algebra. This is what we mean
by the title ’global representation’, as opposed to the representation of the
individual elements of the C*-algebra, the topic of the next section, Chapter
1.3. In section 1.2.1, we define the concept of a *-representation of a C*-algebra
along with the different types of *-representations. In section 1.2.2. we then go
onto describing the Universal representation and in section 1.2.3, we describe
the Double Centralizer Algebra representation. These are both particular types
of global representations critical to the thesis. Finally, in section 1.2.4, we relate
these two global representations.

1.2.1 The Concept of a *-Representation

Let A be an algebra. We often analyze the algebra A by means of a homomor-
phism Φ on A into a more concrete algebra: the algebra of all linear endomor-
phisms on some vector space H. We call the homomorphism Φ, an operator set
on H indexed by the set A : A behaves as an indexing set. Alternatively, we
call the homomorphism Φ, a representation of the algebra A. If the dimension
of H is n ∈ N, we call Φ an n-dimensional representation of A. Formally, a
representation of the algebra A is an operator set Φ indexed by A such that:

(a) Φλa = λΦa

(b) Φa+b = Φa + Φb

(c) Φab = ΦaΦb

If Φ is one-to-one, that is, Ker(Φ) = 0, Φ is called faithful.

Example 1 (A representation of a real algebra) Let A be the complex num-
ber field C viewed as a 2 dimensional vector space over R with basis vectors
{1, i}. We shall now represent each complex number z of the algebra A more
concretely as a linear endomorphism on the vector space R2.

Treating A as a two dimensional R - vector space, for each fixed element z
of the algebra A, let Lz denote the left multiplication map on the finite dimen-
sional vector space A:

Lz : A→ A|x 7→ zx

Consequently, if z = a+ bi then the matrix associated with the linear transfor-
mation Lz with respect to the ordered basis (1, i) will be the matrix Mz:

Mz =
(
a −b
b a

)
Then the homomorphism Φ : A → M2(R)|z 7→ Mz is a faithful representation
of A : all the conditions (a) - (c) above are met, where λ ∈ R.

9
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We now construct more examples of representations of algebras. For this, we re-
sort to the concept of a group algebra of a group where an algebra is constructed
from a given group. We now give an example of a group algebra:

Example 2 (Group Algebra) Consider the finite additive group Z2 = {0, 1}.
We shall use the multiplicative notation to denote the group operation of addi-
tion modulo 2. Let A be the group algebra CZ2 of the finite group Z2. As a
vector space, CZ2 is the set of all the complex valued functions which has the set
Z2 as its domain, denoted by CZ2 , equipped with the usual vector space addition
of point-wise addition and vector space scalar multiplication of point-wise scalar
magnification.

Consider 0∗, 1∗ ∈ CZ2 where 0∗, 1∗ are the characteristic functions χ{0} and
χ{1} respectively. Then {0∗, 1∗} forms a basis for the C - vector space CZ2 .
Hence the typical elements of CZ2 are the formal sums α0∗+β1∗ where α, β ∈ C.

In order to construct an algebra, we define vector multiplication in terms of
the basis elements 0∗ and 1∗; if a, b ∈ Z2 and their sum in Z2 is ab, then:

a∗b∗ = (ab)∗

Example 3 (A representation of a complex algebra) Let A be the com-
plex algebra CZ2 as defined in Example 2. We treat A as a 2 dimensional vector
space over C with basis vectors {0∗, 1∗}. We shall now represent each element z
of the algebra A more concretely as a linear endomorphism on the vector space
C2.

Treating A as a two dimensional C - vector space, for each fixed element z
of the algebra A, let Lz denote the left multiplication map on the finite dimen-
sional vector space A:

Lz : A→ A|x 7→ zx

Consequently, if z = α0∗ +β1∗ then the matrix associated with the linear trans-
formation Lz with respect to the ordered basis (0∗, 1∗) will be the matrix Mz:

Mz =
(
α β
β α

)
Then the homomorphism Φ : A → M2(R)|z 7→ Mz is a faithful representation
of A : all the conditions (a) - (c) above are met, where λ ∈ C.

Analogously, if A is a *-algebra, we represent a *-algebra A by means of a
*-homomorphism Φ on A into the concrete *-algebra of all bounded linear op-
erators on some Hilbert space H, B(H): a *-representation is a representation
with the additional conditions that it preserves the involution and the vector
space H is a Hilbert space.
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Formally, let A be a *-algebra. Then the *-homomorphism Φ on A into the
*-algebra of all bounded linear operators on some Hilbert space H, B(H), is
called a *-representation of the *-algebra A. Formally, a *-representation of the
*-algebra A is an operator set Φ indexed by A where each Φa is a bounded
linear operator, such that:

(a) Φλa = λΦa (1.12)
(b) Φa+b = Φa + Φb (1.13)
(c) Φab = ΦaΦb (1.14)
(d) Φa∗ = (Φa)∗ (1.15)

Equivalently, a representation Φ of the underlying algebra A on H, a Hilbert
space with inner product (·|·), is a *-representation provided that:

(Φa(ξ)|η) = (ξ|Φa∗(η)) for all ξ, η ∈ H

where each Φa is a bounded linear operator on H.

Example 4 Let A be the complex number field C as defined in Example 1. If
we equip A with the operation of complex conjugation as the involution , then
A is a *-algebra over the real field R. We take B(H) as M2(R). Taking Φ
as in Example 1, to show that Φ is a *-representation, it suffices to show that
Φz∗ = (Φz)∗. This is immediate on noticing that:

Mz∗ =
(

a b
−b a

)
and that the adjoint of the matrix Mz [see Example 1] is nothing but the trans-
pose (we are working in a real vector space) and hence yields the matrix Mz∗ .

Analogously,we define a representation of an abstract C*-algebra as a bounded
*-homomorphism into the concrete C*-algebra of all bounded linear operators
on some Hilbert space H, in order to remain in the category of C*-algebras. For-
tunately it is equivalent to work in the purely algebraic category of *-algebras:
any *-homomorphism from a C*-algebra into a C*-algebra is bounded [Chapter
VI.3 Theorem 3.7 [9]].

Example 5 (Representation of a C*-algebra) Consider the Gelfand space
A† of a commutative C*-algebra A with an identity e. Let Φ be any one of the
non-zero algebra homomorphism on A. We shall also call Φ a non-zero multi-
plicative linear functional. Treating C as M1(C), Φ is a one - dimensional repre-
sentation of the C*-algebra A, viewed as an algebra: Φ : A→M1(C)|z 7→ Φ(z)
where Φ(z) is a 1× 1 matrix.

Now, Φ turns out to be a *-representation of A : Φ(a∗) = Φ(a) for all a ∈ A.
This follows as a consequence [Chapter VI.2, Proposition 2.5 [9]] of the fact that
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every C*-algebra is symmetric [Chapter VI.7 Theorem 7.11 [9]] : (1 + a∗a)−1

exists for all a ∈ A [see Chapter VI.2, Proposition 2.5 [9] for other characteri-
zations of symmetry].

Examples 1 and 3, suggest a natural way of constructing *-representations of
a C*-algebra A via the left multiplication map. Such representations are not
too far from being exhaustive 1 in the following sense: suppose for a given
C*-algebra A, there are two *-representations Φ and Φ′ on the Hilbert spaces
H and H′ respectively; we do not distinguish between Φ and Φ′, calling them
equivalent, if there exists a vector space isomorphism f : H −→ H′ such that

f ◦ Φa = Φ′
a ◦ f for all a ∈ A.

In the more general case of f being a vector space homomorphism, we call f an
Φ,Φ′ intertwining Hilbert space homomorphism.

Example 6 (Equivalent Representation) Let A be the complex number field
C as defined in Example 4. Then we take B(H) as M2(R) and Φ as in Ex-
ample 4 as our *-representation. Consider another *-representation Φ : A →
M2(R)|z 7→ M′

z where M′
z is the same matrix of transformation as defined

in Example 1 except that it is written with respect to a different ordered basis
(1,−i).

Then the change of basis matrix from the basis (1, i) to the basis (1,−i) es-
tablishes the equivalence of the *-representations Φ and Φ′.

We have now defined and illustrated the concept of a *-representation of a C*-
algebra. In practise, we require the *-representation to fulfill more stringent
requirements for it to be useful as a tool to represent the original C*-algebra.
The two conditions are the condition of being an irreducible *-representation
and the condition of being non-degenerate *-representation.

1Chapter IV.3, Proposition 3.9 [9]. This fact rests upon the existence of a fixed vector
η0 in the Hilbert space H of the representation Φ which single handedly generates the entire
Hilbert space H as follows:

H =
⋃

a∈A
{Φa(η0)}
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1.2.1.1 Irreducible *-representation

Given a *-representation Φ, a vector subspace U , of the Hilbert space H, is an
Φ − invariant subspace of the operator set Φ when Φa[U ] ⊂ U for all a in A.
The *-representation Φ , is called irreducible when no nontrivial subspace of the
Hilbert space is a Φ - invariant subspace.

Example 7 Any *-representation on a one dimensional Hilbert space is irre-
ducible. Hence for any commutative C*-algebra A with an identity, every Φ ∈ A†
is an irreducible *-representation [Example 6].

If the above example is of any value, we need to assume that the Gelfand space
A† is non-empty. We now give examples of Gelfand spaces of commutative C*-
algebras with identity that are non-empty and a Gelfand space of commutative
Banach *-algebra that is empty:

Example 8 (Non-empty singleton Gelfand space) Let A be the complex
number field C viewed as a C*-algebra. Then the identity map e(x) = x for all
x ∈ C is a non-zero multiplicative linear functional.

This is the only one. Note that A† is one dimensional: the Gelfand space A† is
a subset of the unit ball of the continuous dual of the one dimensional C-vector
space, C. The algebraic dual is one-dimensional. Therefore, the continuous dual
is also one-dimensional and is spanned by any non-zero vector, in particular,
e(x) = x. Now Φ(xy) = Φ(x)Φ(y) iff λxy = λxλy iff (λ2 − λ)xy = 0 for all
x, y ∈ C iff λ = 0 or λ = 1.

Note that the C*-algebra C is the only C*-algebra which is a field. This follows
from the 1-1 correspondence between the maximal ideals of a C*-algebra which
has an identity and the non-zero multiplicative linear functionals [Chapter V.7
Proposition 7.4 [9] ]: any field only has the trivial ideal {0} as the sole maximal
ideal; consequently, by the Gelfand Naimark Theorem 1 (Theorem 2), the C*-
algebra is a C(K) where K is a singleton set.

We give another more sophisticated example of a non-empty Gelfand space
where the cardinality of the Gelfand space is exactly the cardinality of the con-
tinuum.

Example 9 (Non-Empty Gelfand space) Let the C*-algebra A = C(K).
Then the non-zero multiplicative linear functionals are precisely the point-evaluational
functional Θx where x ∈ K:

Θx : C(K) → C|f 7→ f(x)

If we define K as the compact unit interval [0, 1] of the real line R, then each
point-evaluational functional is distinct: the point e where e(x) 7→ x is the
identity map on [0, 1], separates the functionals: Θx(e) = x.

13
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As a non-example, we give an example of an empty Gelfand space of a commuta-
tive Banach *-algebra. Our example must come from a (commutative) Banach
*-algebra that does not have an identity since every such Banach *-algebra A
has at least one multiplicative linear functional: we can assume A is not a field
[the Banach *-algebra C is the only Banach *-algebra which is a field] and hence
has a non-invertible element which generates a principal ideal which by Zorn’s
Lemma can be embedded into a maximal ideal [Chapter 12, Lemma 12.3, [28]].

Example 10 (Empty Gelfand space) (Chapter II, example 9.3 [16]) Let A
be L1([0, 1]), the Banach space of all complex valued functions which are abso-
lutely summable (Riemann integrable) on the compact unit interval [0, 1]. The
norm is the usual Riemann integral:

‖ f ‖=
∫ 1

0
|f(x)|dx for all f ∈ C[0,1]

Note that f Riemann integrable implies f bounded. We take as our multipli-
cation operation, the convolution product, f ∗ g, of the functions f and g of
L1([0, 1]) which is the function defined as the following indefinite integral:

(f ∗ g)(x) =
∫ x

0
f(t)g(x− t)dt for all x ∈ [0, 1]

Then ‖ (f ∗ g) ‖ is an iterated integral which is dominated by ‖ f ‖‖ g ‖.
Defining the involution as point-wise complex conjugation, L1([0, 1]) is a Ba-
nach *-algebra with an isometric involution.

First note that the functions in L1([0, 1]) which are identically zero on some
neighbourhood of 0, [0, ε], form a dense subset of L1([0, 1]). By the nature of
the involution, such a function, f , is nilpotent: there exists a natural number n
such that fn = 0 since fk(x) = 0 for all x ∈ [0, kε]. Hence if Φ is a multiplica-
tive linear functional, then Φ(f) = 0 for all such f . Therefore Φ is zero for all
g ∈ L1([0, 1]) since it is continuous.

Note that L1([0, 1]) does not satisfy the strong C*-norm condition (1.4): set
f(x) = χ[0, 1

2 ]. Then f∗ = f and (f ∗f∗) = 0. Hence ‖ f ‖= 1
2 but ‖ f ∗f∗ ‖= 0.

14
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1.2.1.2 Non-degenerate *-representation

The *-representation Φ , is called non-degenerate when the ranges of Φa, a ∈
A, span H and {Φa|a ∈ A} separates points in the Hilbert space H, that is,⋂

a∈AKer(Φa) = 0 . In fact, we shall show later that the two conditions are
logically equivalent to each other.

Proposition 1 (Irreducible Implies Non-degenerate) All irreducible
-representations are non-degenerate.

Proof. Define the null space of a *-representation Φ, N(Φ), as the set {η ∈
H|Φa(η) = 0 for all a ∈ A}. Note that N(Φ) =

⋂
a∈AKer(Φa). Hence N(Φ)

is closed and trivially Φ - invariant subspace of H. If Φ is irreducible, then its
null space N(Φ) is either the trivial subspace {0} or the entire Hilbert space H.
The latter case is not possible since Φ is non-zero. The former case shows that
{Φa|a ∈ A} separates points in the Hilbert space H.

Q.E.D

Example 11 All irreducible representations are non-degenerate representations.
Hence, any element of the Gelfand space of a C*-algebra is a non-degenerate
representation [see Example 7].

The following example is a non-degenerate *-representation on a C*-algebra A
which fails to be anywhere near to being *-irreducible. We define the C*-algebra
A as follows:

Definition 1 Let (Ω,B(Ω), µ) is a σ-finite measure space: B(Ω) is the smallest
σ - algebra of subsets of Ω which supersets the set of all open sets of Ω. Then
let A be the C*-algebra L∞(Ω,B(Ω), µ) of all essentially bounded Borel measur-
able complex valued functions defined on a set Ω equipped with a locally compact
Hausdorff topology where µ is a complex valued regular Borel measure defined
on B(Ω).

A function f is essentially bounded if and only if |f | ≤M µ-almost everywhere.
The L∞ - norm : ‖ f ‖∞= inf{M | |f | ≤ M µ − almost everywhere}, sat-
isfies the strong C*-norm condition [Chapter 1.1, equation 1.4]. The involution
is pointwise-conjugation.

The assumption that Ω is a locally compact Hausdorff space is needed to estab-
lish the existence of a regular Borel measure on Ω. This results from the fact
that C0(Ω)∗ = M(Ω) where M(Ω) denotes all the regular Borel measures on
Ω which follows from the local compactness of Ω [Theorem 9.16 [21]] and the
fact that there are non-zero bounded linear functionals on C0(Ω) : C0(Ω)∗ 6= ∅
[Hahn Banach Theorem for normed spaces, Proposition 6.1.7 [20]].

The assumption of a σ-finite measure space, (Ω,B(Ω), µ), is needed in antic-
ipation of an application of the Radon Nikodyn theorem for Complex mea-
sures [Chapter 6, Theorem 6.12 [23]]which is based on the Radon Nikodyn

15
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theorem [Chapter 6, Theorem 6.10 [21]] where the σ-finiteness of µ cannot be
dropped: the measure space (N,A, µ) where N is the set of all natural numbers,
A = {N, ∅, {1},N\{1}} and µ is the counting measure; any measure on N is
absolutely continuous with respect to µ.

Example 12 (Non-degenerate but far from being irreducible) Consider
the Hilbert space H = L2(Ω,B(Ω), µ) of all square integrable functions on the
measure space (Ω,B(Ω), µ) [Definition 1]. Now, for each g ∈ L∞(Ω,B(Ω), µ)
we define the associated multiplication operator Mg ∈ B(H:

Mg : u 7→ gu where gu(x) = g(x)u(x) ∀x ∈ Ω.

since gu ∈ L2(Ω,B(Ω), µ) since |g(x)| ≤ M for all x ∈ Ω except on a measure
zero set for some M > 0. The map

Φ : L∞(Ω,B(Ω), µ) → B(H)|g 7→Mg

is a non-degenerate *-representation of the C*-algebra L∞(Ω,B(Ω), µ) which is
far from irreducible.

Firstly, we show each Mg ∈ B(H). Let us denote the norm on the Hilbert
space H = L2(Ω,B(Ω), µ) and the operator norm of the bounded operators on
H = L2(Ω,B(Ω), µ) as ‖ · ‖H and ‖ · ‖ respectively. Then ‖Mg ‖= sup‖u‖H≤1 ‖
gh ‖H≤‖ g ‖∞:

‖ gu ‖2H=
∫
Ω
|gu|2dµ ≤‖ g ‖2∞

∫
Ω
|u|2dµ =‖ g ‖2∞‖ u ‖H .

Since M∗
g = Mḡ, Maf+bg = aMf + bMg, Mfg = MfMg we conclude that Φ is

a *-representation.

The map Φ is non-degenerate : the constant 1 -map, e(x) = 1 for all x ∈ Ω , is
the identity for L∞(Ω,B(Ω), µ) ⊂ L2(Ω,B(Ω), µ); Me is hence the identity op-
erator on H = L2(Ω,B(Ω), µ); therefore Φ separates points in the Hilbert space.

The map Φ is far from *-irreducible: let S be any measurable subset of Ω of
non-zero measure; set V = {u ∈ L2(Ω,B(Ω), µ)| u(s) = 0 for almost all s ∈
S}; then V is a subspace of H and is Φ-invariant since Mg[V ] ⊂ V for all
g ∈ L∞(Ω,B(Ω), µ).

The σ - finiteness of the measure space is needed in showing that H is non trivial
: it contains all the constant functions on Ω since µ is a complex measure. This
follows from the string of equalities∫

k2dµ =
∫
k2hd|µ| ≤ k2

∫
d|µ| = k2|µ|(Ω) <∞ k ∈ R

since there exists a complex valued Borel measureable function h such that
|h(x)| = 1 for all x ∈ Ω which is the Radon Nikodyn derivative of µ with re-
spect to the bounded positive measure |µ| [Theorem 6.12 [23]].

16
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As promised earlier, we show that the two conditions defining a non-degenerate
*-representation are equivalent. Let the orthogonal complement of N(Φ) ,
N(Φ)⊥ , be called the essential space of the *-representation Φ. Now let R(Φ)
be the closed linear span of {Range(Φa)|a ∈ A}. Now N(Φ)⊥ = R(Φ) [Chap-
ter VI, Prop 9.6 [9]] and we have a decomposition of the Hilbert space H:
H = N(Φ)⊕R(Φ) into two closed Φ − invariant subspaces. Therefore, the two
conditions of Φ being non-degenerate is satisfied by N(Φ) = 0. From now on,
we require

All *-representations to be at least non-degenerate.

17
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1.2.1.3 Irreducible Cyclic *-representations

We now relate the concepts of an irreducible *-representation and a multiplica-
tive linear functional as hinted at by Example 7 for a commutative C*-algebra
with an identity. In the context of an arbitrary C*-algebra, we need to impose
more restrictions on the irreducible *-representations and the multiplicative lin-
ear functionals:

In any C*-algebra, there is a bijective correspondence between the irreducible
cyclic *-representations and pure states.

Let A be an arbitrary C*-algebra. A pure state of A is a special type of positive
functional on A. A positive functional on A is a linear functional p such that
p(x∗x) ≥ 0 for all positive elements x∗x in A. A cyclic representation Φ of a
C*-algebra A is a *-representation of the C*-algebra A on a Hilbert space H
which has the additional property of the existence of a vector x0 ∈ H such that
{Φa(x0)|a ∈ A} is dense in H. We call this vector x0 a cyclic vector. This
then forces Φ to be non-degenerate. The above correspondence is the crux of
the famous Gelfand Naimark Theorem II [Chapter 1.1, Theorem 3].

We first describe the concept of a positive functional on a C*-algebra as in-
tegrals before we describe the concept of a pure state.

Example 13 (Positive Functionals: Integrals) Let A be the C*-algebra
C([0, 1]), of the complex valued functions on the unit interval [0, 1]. Then p :
C([0, 1]) → C where:

p : f 7→
∫ 1

0
f(x)dx where

∫ 1

0
f(x)dx is the usual Riemann integral

is a positive linear functional on C([0, 1]) : the positive elements of C([0, 1])
are precisely the real valued functions whose range is a subset of R+0.

Since the Riemann Integral was developed from first defining the integral of
a step function on the interval [0, 1], the Riemann Integral depends on the
concept of length of special sets: intervals, which reside on the ordered real line.
By virtue of the Lebesgue measure on the real line, the concept of length was
extended to sets which are not intervals: the Lebesgue measure of the Cantor
set is zero. Further, the Lebesgue integral extended the Riemann integral to
allow the integration of Lebesgue measurable functions: non Riemann integrable
functions like χQ∩[0,1] has a Lebesgue integral of 0. As a further generalization
of the Riemann integral, the abstract Lebesgue integral allows us to integrate
functions defined on an arbitrary measure space: continuity hence has been
relaxed and the sets can assume forms which are not necessarily intervals; the
sets nevertheless still conform to the geometric requirement of a measurable
space:

18
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Example 14 (Positive Functionals: Integrals without intervals) Let A
be the C*-algebra L∞(µ) of all essentially bounded A - measurable complex val-
ued functions defined on a set Ω where (Ω,A, µ) is a measure space: A is a σ -
algebra of subsets of Ω and µ is a positive measure defined on A.

Then p : L∞(µ) → C where:

p : f 7→
∫
Ω
f(x)dµ where

∫
Ω
f(x)dµ is the abstract Lebesgue integral

is a positive linear functional on L∞(µ) : the positive elements of L∞(µ) are
precisely the real valued functions whose range is a subset of R+0.

In order to completely abandon the sets which have a geometric character and
hence integrate functions over arbitrary sets, we resort to the concept of a
positive linear functional.

Example 15 (Positive Functionals: Integrals over arbitrary sets) Let A
be the C*-algebra B(H) of all the bounded operators on some Hilbert space H.
Then p : B(H) → C where x0 is a fixed vector in the Hilbert space H:

px0 : T 7→ (Tx0|x0) where (Tx|x) is the quadratic form associated with the
sesquilinear form corresponding to the operator T ∈ A

is a positive linear functional on B(H) : T is a positive operator in B(H) if
and only if (Tx|x) ≥ 0 for each x ∈ H [Chapter 2.4 Definition 2.4.5 [10]].

If T is a positive operator in B(H) , then we can regard (Tx0|x0) as the norm
of the fixed vector x0 with respect to the sesquilinear form induced by the pos-
itive operator T : the sesquilinear form corresponding to a positive operator T
induces a semi-norm ‖ · ‖ on H, ‖ x0 ‖= (Tx0|x0) [Chapter II.3 Proposition
3.1.7, Chapter VI.2 Proposition 2.4.11 [25]].

The above example shows that for a given C*-algebra, positive functionals or
integrals abound: for each fixed vector x0 of the Hilbert space H we can associate
a positive functional. Further, by the above example, we can associate a positive
linear functional or integral with a *-representation of a C*-algebra :

Example 16 (Positive Functionals: Integrals associated with *-repres
-entation) Let Φ be a *-representation of a C*-algebra A on a Hilbert space
H. Let x0 be a fixed vector in the Hilbert space H. Then we define a positive
functional px0 on the C*-algebra A as follows:

px0 : A→ C|a 7→ (Φa(x0)|x0)

where (Φa(x)|x) is the quadratic form associated with the sesquilinear form cor-
responding to the operator Φa: Φa is a positive operator when a is a positive
element.
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The converse of Example 16 is true for a general C*-algebra, A:

Given a positive functional p on A, there exists a *-representation Φ of A on
some Hilbert space H with a vector x0 ∈ H such that px0 = p where px0 is
constructed from Φ as in Example 15. [Chapter VI.19, Proposition 19.6 [9]]

In fact, the construction used in example 16 establishes a 1- 1 correspondence
between the set of all positive linear functionals on a C*-algebra A and the
set of all equivalence classes of cyclic *-representations Φ of the C*-algebra A
[Chapter VI. 19, Theorem 19.9 [9]] : set x0 in the construction to be the cyclic
vector of the cyclic *-representation.

If we impose a further condition on the set of positive functionals, we can in
fact establish a 1-1 correspondence with the set of all equivalence classes of irre-
ducible cyclic *-representations [Chapter VI.20, Theorem 20.4 [9] / Proposition
4.5.3 [10]]. The condition required of the positive functional is it to be inde-
composable. We call such a positive linear functional a pure state. A positive
functional p on a C*-algebra A is indecomposable if any positive linear func-
tional q on A it dominates is of the form λp for some 0 ≤ λ ≤ 1. p dominates q
if the restriction of p to the positive cone A+ is greater then the restriction of q
to the positive cone A+ as positive real valued functions.

The construction of the unique (up to equivalent classes) irreducible cyclic *-
representation associated with a pure state p on the C*-algebra A rests on the
following construction:

Theorem 1 (Chapter 4, Proposition 4.5.1 [10]) Let p be a state of a C*-algebra
A. Then the set Lp = {a ∈ A|p(a∗a) = 0} is a closed left ideal of A and in
particular, p(b∗a) = 0 whenever a ∈ Lp and b ∈ A. We call the set Lp the left
kernal of the pure state p. The equation:(

a+ Lp|b+ Lp

)
= p(b∗a) where a, b ∈ A

defines a positive definite inner product
(
·|·

)
on the the quotient linear space

A/Lp.

We take the unique completion of the pre-Hilbert space A/Lp as the Hilbert
space H associated with the cyclic *-representation Φ constructed from the
pure state p .
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1.2.2 The Universal Representation : A Non-Degenerate
*-Representation

We now describe the universal representation of a C*-algebra A. The essence
of this representation is to represent the C*-algebra A as a norm-closed *-
subalgebra of the space B(H) of all bounded operators on some Hilbert space
H. The key to establishing an isometric *-isomorphism with this *-subalgebra
lies in the abundance of *-representations of A which distinguishes points of the
C*-algebra A:

Definition 2 (Reduced C*-algebra) Let A be a C*-algebra. Then let S =
{Φα|α ∈ Λ} be a family of *-representations of A, where Λ is the indexing set.

We say S separates or distinguishes points if for any non-zero element a in the
C*-algebra, there exists a *-representation Φα0 ∈ S such that Φα0

a ∈ B(Hα0) is
not the zero-operator on Hα0 . Equivalently, a 6= a′ implies that there exists an
α0 ∈ Λ such that Φα0

a 6= Φα0
a′ as operators on Hα0 .

If A has such a set S of *-representations, we say that A is reduced.

Theorem 1 (Chapter VI.10 Proposition 10.6 [9]) If A is a reduced C*-algebra
then it is isometrically *-isomorphic with a norm-closed *-subalgebra of B(H)
for some Hilbert space H. The isometric *-isomorphism is an isometric one-to-
one *-representation of the C*-algebra A.

Proof. Let S = {Φα|α ∈ Λ} be a family of *-representations of the C*-algebra
A , where Λ is the indexing set. Then

H = Σ⊕α∈Λ Hα

the Hilbert space direct sum of the Hilbert spaces Hα associated with each of
the *-representations Φα. Our candidate for the *-representation Θ will be

Θ : A→ B(H)| a 7→
∑⊕

Φα
a

where Θ maps each element a in A to the Hilbert direct sum
∑⊕

Φα
a of the

bounded operators Φα
a ∈ B(Hα) and Θa ∈ B(H) is of the form Σ⊕p∈Λ Φp

a, the
direct sum of the family {Φp

a ∈ B(Hp)| a ∈ A}:∑⊕
Φα

a : H → H| (xα)α∈Λ → (Φα
a (xα))α∈Λ

We can take the direct sum since each Φp
a ∈ B(Hp) is bounded by ‖ a ‖: each

*-representation Φp is a *-homomorphism on a C*-algebra A into a C*-algebra
B(Hp); hence each Φp is continuous and ‖ Φp ‖≤ 1 [Chapter VI Theorem 3.7
[9]]; it follows that ‖ Φp(a) ‖ ≤ ‖ a ‖.
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Then Θ is a *-homomorphism between the C*-algebra A and the C*-algebra
B(H) by equations (1.12) - (1.15), Chapter 1.2.1. Once we show that Θ is
one-to-one then we are done since any one-to-one *-homomorphism from a C*-
algebra into a C*-algebra is an isometric *-isomorphism [Chapter VI.8, Proposi-
tion 8.8 [9]]. Then the range is complete and hence closed. Θ is 1-1 by virtue of
the fact that S separates the points of A: for any non-zero a in the C*-algebra,
there exists a *-representation Φα0 ∈ S such that Φα0

a ∈ B(Hα0) is not the
zero-operator on Hα0 .

Q.E.D

Now every C*-algebra A is reduced. In fact, A is reduced by the family of all
irreducible cyclic *-representations or equivalently, in the language of functional
analysts, has enough pure states on A to separate the points in A.

Let a denote any non-zero element of the C*-algebra A. Let us assume that
A has enough pure states to separate its points. Then there exists a pure
state p such that p(a) 6= 0. The *-representation, Φp, of A associated with the
pure state px0 on the Hilbert space Hp is an irreducible cyclic *-representation
with a non-zero cyclic vector x0 in Hp. Now, Φp

a 6= 0 - operator in B(Hp) :
(Φp

a(x0), (x0)) = p(a) 6= 0 [see Example 15]. The converse is established simi-
larly.

We now show that every C*-algebra A has enough pure states on A to sep-
arate the points of A. We assume without loss of generality that the C*-algebra
has an identity since every positive functional p on a C*-algebra A is extend-
able[Chapter VI.19 Proposition 19.9 [9]] : p is extendable if p can be extended
to a positive functional on Ae, the C*-unitization of A. We take Ae as A in the
case where A does not have an identity. We need the following lemma:

Lemma 1 (Pure states separates positive elements) Let a0 be an arbi-
trary non-zero fixed positive element of the C*-algebra Ae. There exists a pure
state p such that p(a0) 6= 0. Equivalently, every C*-algebra Ae has enough
irreducible *-representations to separate its positive elements.

Proof. There exists a positive functional p on Ae such that p(e) = 1 and
p(a∗0a0) =‖ a0 ‖2 6= 0 [Chapter 3, Theorem 18.1, [8] ]. Since Ae has an identity
and an isometric involution, p is continuous and ‖ p ‖= p(e) = 1 [Chapter 4,
Theorem 22.11, [8] ]. Equivalently, there exists a positive functional p with
norm 1 such that p(a0) 6= 0. [Chapter 5, Theorem 29.9, [8]]

Q.E.D

Using the canonical construction of Example 16, we now show that the existence
of a pure state that separates the non-zero positive elements of a C*-algebra im-
plies the existence of other pure states that separate arbitrary non-zero elements
of the C*-algebra.
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Lemma 2 Let a be an arbitrary non-zero fixed element of the C*-algebra Ae.
If there exists a pure state p such that p(a∗a) 6= 0 then there exists another pure
state p′ such that p′(a) 6= 0.

Proof. Let Φ be the irreducible cyclic *-representation with a cyclic vector x0

on the Hilbert space Hp associated with the pure state p via the construction
used in Example 16. Then, p(a∗a) 6= 0 implies that the operator Φa is not the
0-operator on (Hp, ‖ · ‖):(

Φa∗a(x0)|x0

)
=

(
Φa∗Φa(x0)|x0

)
=

(
Φa(x0)|Φa(x0)

)
= ‖ Φa(x0) ‖2 6= 0.

Therefore Φa is not the 0-operator on Hp.

Consequently by the Polarization Identity, there exists a vector y0 ∈ Hp such
that the quadratic form (Φa(y0), y0) 6= 0. Then using the construction of Ex-
ample 16, we construct another positive functional, py0 , on A for the same
*-representation Φ. This completes the proof since py0(a) = (Φa(y0), y0) 6= 0.
py0 plays the role of the required p′.

Q.E.D

We can therefore conclude that :

Theorem 2 (Pure states separates points of C*-algebra) Let a0 be an ar-
bitrary non-zero fixed element of the C*-algebra Ae. There exists a pure state p
such that p(a0) 6= 0. Equivalently, every C*-algebra Ae has enough irreducible
*-representations to separate its positive elements.

and the famous Gelfand Naimark Theorem II [Theorem 3, Chapter 1.1] follows
immediately from Theorem 1:

Gelfand Naimark Theorem II Any C*-algebra A is isometrically *-isomorphic
with a norm-closed *-subalgebra of B(H) for some Hilbert space H. Conse-
quently, the isometric *-isomorphism Π is an isometric one-to-one *-representation
of the C*-algebra A.

Let S(A) be the set of all the pure states on the C*-algebra, A. Let S =
{Φp|p ∈ S(A)} be the family of irreducible cyclic *-representations of the C*-
algebra A which is in bijection with the set of all pure states S(A) via the
construction used in Example 16. The Hilbert space H is the Hilbert space
direct sum Σ ⊕p∈S(A) Hp of the Hilbert spaces Hp associated with each of
the *-representations Φp. We call this the universal Hilbert Space. The *-
representation Θ : A→ B(H) = B(Σ⊕p∈S(A) Hp) where Θ maps each element
a in A to the Hilbert direct sum

∑⊕
Φp

a of the bounded operators Φp
a ∈ B(Hp),

is called the universal representation of the C*-algebra A.

Finally, we show that the universal representation meets the minimum require-
ment of being a non-degenerate *-representation:
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Theorem 3 The universal representation is non-degenerate

Proof. Each irreducible cyclic *-representation is trivially non-degenerate.
Therefore each cyclic *-representation Φp where p ∈ S(A) is non-degenerate and
hence the universal representation which is the Hilbert direct sum Σ⊕p∈S(A) Φp

is also non-degenerate [Chapter VI.9 Theorem 9.15 [9]].

Q.E.D
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1.2.3 The Double Centralizer Algebra Representation
(DCAR)

Let A be any C*-algebra. Then A can be identified with some norm closed *-
subalgebra of the concrete C*-algebra of all bounded operators on the universal
Hilbert space H [Gelfand Naimark Theorem II]. The left multiplication maps
provided a natural way, aided by the fact that a one-to-one *-homomorphism
from a C*-algebra into a C*-algebra is an isometric *-isomorphism, of construct-
ing isometric *-isomorphic embeddings into some B(H).

Example 17 Recall the C*-algebras, C and L∞(Ω,B(Ω), µ) [Chapter 1.2.1,
Examples 1, 12]. In the case of L∞(Ω,B(Ω), µ), since H = L2(Ω,B(Ω), µ)
contains the constant 1 -map, e(x) = 1 for all x ∈ Ω, Φ is a one-to-one *-
homomorphism into B(H): f 6= g ⇒ Lf (e) 6= Lg(e).

Note that unlike in the case of L∞(Ω,B(Ω), µ), there was no need to construct a
Hilbert space associated with the *-representation : the C*-algebra C turned out
to be a Hilbert space itself and we took C as the Hilbert space H associated with
the representation. We can always do this in the category of Banach spaces.

1.2.3.1 Left Regular Representation : Category of Banach
Spaces

All C*-algebras are Banach spaces and shall be take as such here.

Definition 3 (Left Regular Representation (LRR)) The left regular rep-
resentation Θ of a C*-algebra A is the map Θ : A → B(A)|a 7→ La where
La : A→ A| x 7→ ax.

where B(A) is the more concrete Banach space of all bounded operators on the
C*-algebra A taken as a Banach space [compare Chapter 1.2.1, Example 1]. We
need the following lemma to establish that Θ is an isometric isomorphism in
the category of Banach spaces:

Lemma 3 (Chapter VIII Proposition 1.8 [24]) Let A be a C*-algebra and a be
any element in A. Then:

‖ a ‖ = sup{‖ ax ‖ | x ∈ A ‖ x ‖≤ 1} (1.16)
= sup{‖ xa ‖ | x ∈ A ‖ x ‖≤ 1} (1.17)

It is now immediate that Θ is an isometric isomorphism:

Theorem 4 Let A be any C*-algebra. The left regular representation Θ : A→
B(A)|a 7→ La where La : A→ A| x 7→ ax is an isometric isomorphism from the
C*-algebra A taken as a Banach space into the Banach space B(A)
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1.2.3.2 Inadequacy of LRR in Category of C*-algebras

Under the left regular representation, elements of the C*-algebra are represented
as bounded operators on the C*-algebra A taken as a Banach space, B(A),
rather than as bounded operators on some Hilbert space B(H). Stepping up
into the category of C*-algebras where the involution is defined, we have the
problem that if T is a bounded operator on A, then the canonical involution T ∗

is an operator on the dual space, A∗, of all bounded linear functionals on A.
The dual A∗ need not remain in the category of C*-algebras:

Example 18 Let A, taken as a Banach space, be L∞([0, 1],M[0,1], λ[0,1]), the
Banach space of all essentially bounded functions on the unit interval [0, 1] en-
dowed with the restricted Lebesgue measure, λ[0,1] : the Lebesgue measurable set
[0, 1] ⊂ R induces the sigma algebraM[0,1] = {[0, 1]

⋂
A|A is Lebesgue measureable

subset of R}. Then the dual (L∞([0, 1],M[0,1], λ[0,1]))∗ contains L1[0, 1] which
when given the convolution as a product no longer satisfies the C*-algebra norm
condition [Chapter 1.2.1, Example 10].

We want to remain in the category of C*-algebras. Therefore the left regular
representation of a C*-algebra A falls short in this regard.

1.2.3.3 DCAR : Category of Semigroups

The above example illustrated how the multiplication operation can be respon-
sible for the problem of leaving the category of C*-algebras. To address this
problem, we now shift focus on the multiplication operation of the C*-algebra.
We shall study the multiplication operation in the general context of the cate-
gory of a semigroup:

Definition 4 (Semigroup) A semigroup is a set equipped with a single asso-
ciative operation which assigns to every pair of element in the set a new element
which we call their product.

We see an immediate benefit of working in the more general category of semi-
groups: the left regular representation of a semigroup remains in the category
of semigroups.

Example 19 Let A be any C*-algebra. Then A with the ring multiplication
is a semigroup. The set {La|a ∈ A} of all left multiplication maps La : A →
A| x 7→ ax is a semigroup under the operation of function composition.

In order to solve the problem of leaving the category of C*-algebras, we study
the left multiplication maps in the context of a more general class of maps called
the left centralizer maps .

Definition 5 (Left Centralizer) A left centralizer map on the semigroup A
is a map L : A→ A such that

L(x)y = L(xy) for all x, y ∈ A (1.18)
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In order to emphasize the associative law, we define the action of L on x, L(x) ,
as the product of the map L with the element x, Lx, and hence equation (1.18)
can be written in the associative notation (Lx)y = L(xy).

We denote the set of all left centralizers by Γl(A) which is a semigroup un-
der function composition. Hence the set {La|a ∈ A} of all left multiplication
maps is a sub-semigroup of Γl(A). A sub-semigroup of Γl(A) is a subset of Γl(A)
which is a semigroup in its own right. The more abstract concept of the left
centralizer map will not on its own solve the problem of leaving the category
of C*-algebras when we return to viewing A as a C*-algebra. We need a new
construct : the double centralizer which we shall define in the context of a
semigroup. In short a double centralizer is a pair made out of a left and a right
centralizer map, which we define next. We shall see later that this turns out to
be equivalent to defining a double centralizer on a C*-algebra where we enforce
the condition that the left and right centralizer maps are bounded operators on
the C*-algebra.

Definition 6 (Right Centralizer) First we define a right centralizer on A on
the semigroup A as a map R : A→ A such that

xR(y) = R(xy) for all x, y ∈ A (1.19)

Example 20 Let A be any C*-algebra. Then A with the ring multiplication is
a semigroup. The set {Ra|a ∈ A} of all right multiplication maps Ra : A →
A| x 7→ xa is a right centralizer on A. Note that the set of all right multiplica-
tion maps form a semigroup under the operation of function composition where
RaRa′ = Ra′a. Let us denote the set of all right centralizers by Γr(A). Then
Γr(A) is a semigroup under function composition and the set {Ra|a ∈ A} of all
right multiplication maps is a sub-semigroup of Γr(A).

Again, in order to emphasize the associative notation, we define the action
of R on x, R(x) , as the product of the map R with the element x, xR, so
that equation (1.19) can be written in the more suggestive associative notation
x(yR) = (xy)R. We now define the double centralizer on a semigroup A which
solves the problem of leaving the category of C*-algebras:

Definition 7 (Double Centralizer) The double centralizer on a semigroup
A is an ordered pair (L, R) of A→ A maps with the condition

xL(y) = R(x)y for all x, y ∈ A. (1.20)

Equation (1.20) becomes x(Ly) = (xR)y if L is a left centralizer and R is a
right centralizer. The set, Γ(A), of all double centralizers on the semigroup A
forms a semigroup by defining multiplication as follows:

(L,R) · (L′, R′) = (L ◦ L′, R′ ◦ L′) (1.21)

where ◦ is function composition.
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Example 21 Let A be any C*-algebra . Then A with the ring multiplication
is a semigroup. The ordered pair of maps (La, Ra) for some fixed a ∈ A where
La and Ra are the left and right multiplication maps defined as in Examples 19
and 20, respectively, is a double centralizer on the semigroup A: xLay = xRay
for all x, y ∈ A. Further, (La, Ra) · (La′ .Ra′) = (Laa′ , Raa′).

Example 22 (Multiplicative Identity) Let A be any semigroup. Let 1A de-
note the identity map on A, 1A : A → A|x 7→ x. The pair (1A, 1A) is a double
centralizer on A. The pair (1A, 1A) is the multiplicative identity with respect to
the semigroup Γ(A) of all the double centralizers on A.

1.2.3.4 Embedding Theorem I : Category of Semigroups

We are now ready to embed the C*-algebra, A , taken as a semigroup into the
semigroup, Γ(A) , of all the double centralizers on A. Let Ψ be the map on
A into Γ(A) defined as Ψ : A → Γ(A)| a 7→ (La, Ra). We call Ψ the double
representation of the C*-algebra A. It is immediate that Ψ is a one-to-one
semigroup-homomorphism from the following proposition which is a corollary
of Lemma 3:

Proposition 1 (Corollary 2.4 [2]) The C*-algebra A is a faithful semigroup.
A faithful semigroup is a semigroup which does not have a pair of distinct fixed
elements a, b with the property that ax = bx for all x ∈ A or xa = xb for all
x ∈ A. Equivalently, a 6= b implies La 6= Lb and Ra 6= Rb.

The faithfulness of the C*-algebra contracts the double centralizer semigroup
Γ(A) as a sub-semigroup of all left centralizers Γl(A) [see Theorem 2, [1] ] as
follows:

Theorem 5 Let A be a C*-algebra taken as a semi-group with respect to the
ring multiplication. If (L,R) is a double centralizer on A, then for a given right
(left) centralizer R (L) there is a unique left (right) centralizer L (R) which has
the property that (L,R) is a double centralizer, that is, satisfies equation (1.20).

The map π : Γ(A) → Γl(A)| (L,R) 7→ L is a one-to-one semigroup homomor-
phism. Γ(A) can therefore be regarded as left centralizers that have the additional
property of having a right centralizer map that satisfies equation (1.20). In the
case that A is commutative, since the concepts of a left and a right centralizer
coincides, π is onto and we write Γ(A) = Γl(A).

In fact, Γ(A) is the largest sub-semigroup of Γl(A) which contains the set of all
left multiplication maps {La| a ∈ A} as a two-sided semigroup ideal of Γl(A).
A two-sided semigroup ideal of Γl(A) is a sub-semigroup of Γl(A) which absorbs
products in Γl(A): for each element T in the ideal, TL,LT are members of the
ideal for each L ∈ Γl(A).
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Since the map Θ : A→ Γl(A)| a 7→ La is a one-to-one semigroup homomorphism
[A is faithful], we can identify A with the set {La| a ∈ A} in the category of
semigroups. Therefore:

Theorem 6 (Representation Theory I) Let A be a C*-algebra taken as a
semigroup with respect to the ring multiplication. Then A is a two-sided semi-
group ideal of the semi-group Γl(A) where the sub-semigroup Γ(A) of all the
double centralizers of A is the largest sub-semigroup of Γl(A) which contains A.

Proof. The proof that the sub-semigroup Γ(A) of all the double centralizers of
A is the largest sub-semigroup of Γl(A) which contains A, will give the origin
of the definition of the double centralizer, equation (1.20).

Let S be any sub-semigroup of Γl(A) which contains the 2-sided semigroup
ideal I = {La| a ∈ A}. Once we show that for each left centralizer L in S, there
exists a R : A→ A such that (L,R) is a double centralizer, we are done.

Since I is an ideal, LxL = Lw(L,x) where w(L,x) is an element in A. Conse-
quently,

LxL(y) = w(L,x) · y for all y ∈ A

which is precisely equation (1.20).

Q.E.D

In the case where Γ(A) = Γl(A), the above representation theory becomes re-
dundant. This occurs, for instance, when A is commutative. We can still salvage
the above representation theory by showing that the double centralizer semi-
group Γ(A) is still the largest semigroup containing A as a two-sided semigroup
ideal in the following sense:

1.2.3.5 Embedding Theorem II : Category of Semigroups

The double representation Ψ : A → Γ(A)| a 7→ (La, Ra) is a one-to-one semi-
group homomorphism. Hence, we identify the C*-algebra A taken as a semi-
group with the semigroup Ψ(A) ⊂ Γ(A) which is a two-sided ideal of Γ(A).

Let the C*-algebra A taken as a semigroup be an essential two-sided ideal of the
semigroup S. We shall call the semigroup S the over-semigroup. An essential
two-sided semigroup ideal, A, is a two-sided semigroup ideal with the additional
condition of being essentially faithful with respect to the entire semigroup S :
there are no two distinct pair of elements r, s in the over-semigroup S such that
ra = sa or ar = as for all a ∈ A.

Example 23 (Remark 3.1.3, [13]) The C*-algebra A taken as a semigroup is
an essential two-sided ideal of the double centralizer semigroup Γ(A).
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Let Rs : S → S and Ls : S → S denote the left and right multiplication maps
on the over-semigroup S. Since A is a two-sided ideal of S, the restriction of
Rs and Ls to the ideal A ⊂ S, which we denote as Ls|A and Rs|A respectively,
produces a pair of additive centralizers on the semigroup A.

Now, the double representation Ψ|S : S → Γ(A)|s 7→ (Ls|A, Rs|A) is a semi-
group homomorphism from the over-semigroup S into the semigroup of double
centralizers Γ(A). Since A is an essential two-sided semigroup ideal, Ψ|S is
a one-to-one homomorphism: we identify the over-semigroup S with the sub-
semigroup Ψ|S(S) of the double centralizer semigroup Γ(A).

Theorem 7 (Representation Theory II) Let A be the C*-algebra taken as
a semigroup with respect to the ring multiplication. The double centralizer semi-
group Γ(A) is the largest semigroup which contains A as an essential two-sided
semigroup ideal.

Having accounted for the origin of equation (1.20), we give an intuitive per-
spective of the requirement imposed by equation (1.21). The last equation of
Example 21 illustrates a reason for the requirement imposed by equation (1.21).
There is a deeper reason: equation (1.21) enables many theorems that apply
to left centralizers Γl(A) on commutative semigroups A, to generalize to non-
commutative semigroups A, if the double centralizers Γ(A) are considered.

Example 24 If A is a commutative C*-algebra, then A is a commutative semi-
group with respect to the ring multiplication. Then if A has a cancellation law:

xa = xb⇒ a = b and ax = bx⇒ a = b for all a, b, x ∈ H

then so does the semigroup, Γl(A), of left centralizers on A [Theorem 1, [1]].

If the general C*-algebra A has a cancellation law then so does Γ(A) [Theo-
rem 3, [1]].

Example 25 The commutative C*-algebra C has a cancellation law yet the
commutative C*-algebra C([0, 1]) does not have a cancellation law; define x(t), a(t)
and b(t) as follows:

x(t) =
{

0 : 0 ≤ t ≤ 1
2

2t− 1 : 1
2 ≤ t ≤ 1

a(t) =
{

2t : 0 ≤ t ≤ 1
2

−2t+ 2 : 1
2 ≤ t ≤ 1

b(t) =
{

1 : 0 ≤ t ≤ 1
2

−2t+ 2 : 1
2 ≤ t ≤ 1

30

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



and note that xa = xb yet a 6= b.

We now make note of a simple yet fundamentally important observation:

Theorem 8 If A is a C*-algebra with an identity e, then Γl(A) = Γ(A) =
{La| a ∈ A} = A. Therefore the above representation theories are redundant.

Proof. Any centralizer (L, R) is of the form (LL(e), RR(e)) since L(x) =
L(ex) = (Le)x = LL(e)(x) for all x in A. Similarly, since e is a right identity,
R(x) = R(xe) = xeR = x(eR) = RR(e)(x) for all x.

Q.E.D

We now consider the double representation Ψ : A→ Γ(A) | a 7→ (La, Ra) in the
category of rings to highlight the merits of the double representation, Ψ, and
move a step closer to showing that the Representation Theory II [Theorem 7]
does in fact hold in the category of C*-algebras.

1.2.3.6 DCAR : Category of Rings

Consider the C*-algebra A as a ring. In order to impose a ring structure on
the double centralizer semi-group Γ(A), we need an additive structure. For this
purpose, we restrict our attention to the subset of additive centralizers on A :
Φ(A). An additive centralizer on A is a double centralizer ,(L,R), on A with the
additional condition that both L and R are additive maps on A. This restriction
guarantees the distributivity of the multiplication operation on Γ(A) over the
addition operation on Γ(A).

We then define the addition on Φ(A) as follows:

(L1, R2) + (L2, R2) = (L1 + L2, R1 +R2) (1.22)

and the subset of additive centralizers Φ(A) becomes a ring with an identity.
The double centralizer (0A, 0A) where 0A is the zero map A → A|a 7→ 0 is the
0-element of the ring. Further, the set of all the additive left (right) centralizers
Φl(A) (Φr(A)) is closed with respect to addition and hence is a ring.

It turns out that the restriction to additive centralizers exists only in name
[see Theorem 7, [1]]:

Theorem 9 Let A be a C*-algebra. Then Γ(A) = Φ(A) : Γl(A) = Φ(A) and
Γr(A) = Φ(A).

Just as in the category of semigroups, the faithfulness of the C*-algebra con-
tracts the double centralizer ring Γ(A) as a subring of all the left centraliz-
ers Γl(A) : replace the term ”semigroup” with the term ”ring” in theorem 5.
Therefore, the representation theory I (theorem 6) carries over word for word,
replacing the term ”semigroup” with ”ring”:
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Theorem 10 (Representation Theory I) Let A be a C*-algebra taken as
a ring. Then A is a two-sided ring ideal of the ring, Γl(A), of all the left
centralizers, where the sub-ring Γ(A) of all the double centralizers of A is the
largest sub-ring of Γl(A) which contains A.

The same is true for the representation theory II (theorem 7). The double
representation Ψ : A→ Γ(A) | a 7→ (La, Ra) embeds the C*-algebra A taken as
a ring into the ring , Γ(A), of double centralizers on A : Ψ is a one-to-one ring
homomorphism. Therefore we can identify A with the sub-ring Ψ(A):

Theorem 11 (Representation Theory II) Let A be the C*-algebra taken as
a ring. The double centralizer ring Γ(A) is the largest ring which contains A as
an essential two-sided ring ideal.

Viewing the double representation Ψ in the category of ring makes good sense
in light of the following theorem. We first introduce some terminology:

Definition 8 Taking the C*-algebra A as a ring, I is an ideal of A if it is a
sub-ring (a subset of A which is a ring in its own right) of A and a semigroup
ideal of A viewed as a semigroup with respect to ring multiplication. A right
(left) ideal of A is an additive subgroup of A closed with respect to right (left)
multiplication. A is an additive group with respect to ring addition and an addi-
tive subgroup of A is a subset of A that is a group in its own right with respect to
the ring addition. An ideal I of A is proper as long as it is not the trivial ideal A.

A left (right) ideal I of the C*-algebra A taken as a ring, is modular if there
exists an e ∈ A such that A−Ae ⊂ I, (A− eA ⊂ I) or equivalently, x− xe ∈ I
(x− ex ∈ I) for all x ∈ A : we say e is a right (left) identity for A modulo I. A
(two-sided) ideal is modular if it is modular both as a left and as a right ideal.
Then it is not hard to show that either the left or right identity modulo I serves
as both the left and right identity modulo I

An ideal is a maximal modular ideal if it is a proper modular ideal with the
property that any other modular ideal that contains it, is the entire ring A.

Example 26 (Maximal Modular Ideal) For the case of a commutative C*-
algebra, the map which associates each non-zero multiplicative linear functional
in the Gelfand space , A†, of the C*-algebra A, with its kernal is a bijective cor-
respondence between the set of all modular maximal ideals of A and the Gelfand
space A† of the C*-algebra [Chapter V.7 Proposition 7.4 [9]].

The following theorem, which follows from Theorem 9 [1], has deep implications
since a lot of information about a C*-algebra rests upon the structure of its
maximal modular ideals [Chapter V, Proposition 5.12 [9]]:
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Theorem 12 (Preservation of Modular Ideal Structure) Let A be a C*-
algebra taken as a ring. Then any maximal modular right, left or two-sided ideal
J in A can be extended to a maximal ideal J ′ of the same kind in Γ(A) such
that (La, Ra) ∈ J ′ if and only if a ∈ J . This is a one-to-one correspondence
between the maximal modular ideals in A and the maximal modular ideals of the
same type in Γ(A) which do not contain the set {(La, Ra)| a ∈ A}.

We first furnish examples of ideals in C*-algebras to give substance to Definition
8.

Example 27 (Ideals in Commutative C*-algebra) Let A be the commu-
tative C*-algebra C(K). By the commutativity of A, the concept of an ideal,
right ideal and left ideal coincide. Ideals are plentiful: the set I = {f ∈
C(K) | f is zero on S ⊂ K} is an ideal of A; for any fixed function f in
A, < f >= fA is an ideal of A which we call a principal ideal generated by f .

Example 28 (Ideals in Non-Commutative C*-algebra) Let A be the non-
commutative C*-algebra M2(C). Then A has no proper ideals except the trivial
ideal {0}.

Suppose I 6= {0} is a proper ideal of A. Choose a non-zero non-invertible
matrix x in I:

x =
(
a11 a12

a21 a22

)
On pre- and post-multiplying the matrix x by the elementary matrix e11 which
has 1 as the first row - first column entry and 0 elsewhere, the following matrix
exists in the ideal I : (

a11 0
0 0

)
Since the post(pre) multiplication by matrices effect the elementary column (row)
operations, we can assume without loss of generality that a11 6= 0: if x 6= 0 then
we can perform the row and column operation to arrange this. Dividing out row
1 by a11, we end up with the matrix:(

1 0
0 0

)
Effecting the elementary row and column operations we also end up with the
matrix: (

0 0
0 1

)
The sum of the above two matrices is the identity 1− matrix. This contradicts
the assumption that I, which is closed under addition, is proper.
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However define y as the following matrix:

y =
(

1 0
0 0

)
Then yA is a proper right ideal of A. Ay∗ is a proper left ideal of A.

Note that the above example also shows that Mn(C), the space of all opera-
tors on a finite dimensional Hilbert space, has no proper ideals except the trivial
ideal {0}. We therefore search for non-trivial proper ideals for the space of op-
erators on infinite dimensional Hilbert spaces.

Let H be the infinite dimensional Hilbert space l2 of all the square summable
complex valued sequences. Then it is well known that the set of all the compact
operators on l2 is an ideal of the C*-algebra B(H) [see Chapter VI.2.6 Corollary
2.6.3 [25]].

A compact operator on l2 maps the open unit ball of l2 to a relatively com-
pact subset of l2. Compact operators are the next step up in complexity from
the operators of finite rank : operators whose range is a finite dimensional sub-
space. Hence all finite rank operators are compact and l2 has a rich supply of
them: for every finite dimensional subspace, V , of l2, the associated projection
PV : l2 → l2 | x 7→ y where y ∈ V and z ∈ V ⊥ and x = y + z is the unique
decomposition of x relative to these closed subspaces, is a finite rank operator.
If V has orthonormal basis (ei)1≤i≤n, then PV (x) =

∑n
i=1(x, ei)ei.

Since the unit ball Bl2 of l2 is not compact, the ideal of compact operators
is void of the identity operator e : l2 → l2 | x 7→ x which is equivalent to it being
proper.

We now give the first application of the concept of a modular ideal. Let us
consider A as a left (right) A - module over itself •A ( A•). Then the left (right)
ideal I can be regarded as a left submodule of A or rather •A (A•) and we can
construct the factor left (right) A - module, •A/I (A•/I). Then e+I will be the
right (left) identity of the factor module •A/I (A•/I). In the case of I being a
two-sided ideal, the factor ring A/I will have an identity: e+ I, where e is the
left and right identity modulo I.

Example 29 Let A be a C*-algebra with an identity e. Then all ideals are
modular ideals : the identity e is the identity modulo the ideal. Hence the
concept of a modular ideal exists in name only.

Example 30 Let A be the C*-algebra C0(Ω). Then the ideal I = {0} is not
a modular ideal : the only possible candidate for the identity modulo I is the
constant one function, e : Ω → C | ω 7→ 1 since we require x − xe = 0 for all
x ∈ C0(Ω).
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Let Ω = R with the usual norm topology. Then Ω is a non-compact locally
compact set. Now, the larger the ideal I the greater the chance of the existence
of an identity e modulo I. Consider the ideal I of all complex valued functions
in C0(Ω) which vanish on the set {0} ⊂ R : I = {f ∈ C0(R) | f(0) = 0}.
Then any function e ∈ C0(Ω) which evaluates to 1 on the subset {0} ⊂ R is an
identity modulo I : x− xe is zero on {0} for all x ∈ C0(Ω).

The concept of a modular ideal has further implications in the spectrum of x
in A, σA(x). In the case that A has an identity, the concept of a modular ideal
and an ideal coincide and we have:

Proposition 2 (Chapter V.5 Proposition 5.11, [9] ) An element a of an algebra
A with an identity e has a left (right) inverse if and only if a does not belong to
any maximal left (right) ideal of A.

For the case of the C*-algebra A not having an identity e, recall that 0 6= λ
is in the spectrum of a in A, σA(x) if and only if λ−1a has no adverse in A
(Definition 1, Chapter 1.1). We then have:

Proposition 3 (Chapter V.5 Proposition 5.12, [9] ) Let A be a C*-algebra.
Then a has a left (right) adverse if and only if a is not a right (left) identity
modulo any modular maximal left (right) ideal.

The proof of proposition 3, provides a method of constructing modular ideals
from the element λ−1a which does not have an adverse if 0 6= λ ∈ σA(a).

1.2.3.7 DCAR : Category of C*-algebras

Having vindicated the double representation of the C*-algebra A in the cate-
gory of rings, we now show that the double representation of the C*-algebra A
in the category of C*-algebras exists and has a form which is not too different
from the form in the category of rings [see Theorem 11, Representation Theory
II]. To this end, we define a Banach *-algebra structure on the ring of double
centralizers, Φ(A), on A which satisfies the C*-norm condition.

We define the involution on the ring of double centralizers Φ(A) using the invo-
lution on the C*-algebra A as follows [see Theorem 6, [1]]:

Proposition 2 Let A be a C*-algebra. Consider the double centralizer (L, R) ∈
Φ(A) on A. We define the involution (L)a of the left centralizer L : A → A as
the map (L)a : A → A | x 7→ (L(x∗))∗. Similarly, the involution , (R)a, of the
map R : A→ A as the map (R)a : A→ A | x 7→ (R(x∗))∗.
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Since ((L)a)a = L and ((R)a)a = R, the involution:

∗ : Φ(A) → Φ(A)|{L, R} 7→ {(R)a, (L)a} (1.23)

defines an involution on Φ(A).

The following example will give a clue to the above definition:

Example 31 Let A be a C*-algebra. Let Φ(A) be the ring of all (additive)
centralizers on A. Then the double representation Ψ : A→ Φ(A) | a 7→ (La, Ra)
is a ring homomorphism that preserves the involution:

Ψ : A→ Φ(A) | a∗ 7→ (La, Ra)∗

since (La, Ra)∗ = (La∗ , Ra∗)

A vector space structure is imposed by the following scalar multiplication:

λ(L,R) = (λL, λR) (1.24)

where λ ∈ C. The ring of double centralizers Φ(A) then becomes a *-algebra,
and the double representation Ψ a *-algebra homomorphism. We are now left
with equipping the double centralizer algebra with a norm that satisfies the
strong C*-norm condition [Chapter 1.1, equation 1.4)]. We now give an outline
of the strategy.

By theorem 4, we have already established that the left regular representation
Θ : A→ B(A)|a 7→ La where La : A→ A| x 7→ ax is an isometric isomorphism
from the C*-algebra A taken as a Banach algebra into the Banach algebra B(A)
of all bounded operators on the Banach space A which is the C*-algebra taken
as a Banach space. Symmetrically by Lemma 3, the above is true for the right
multiplication map Ra where Ra : A → A| x 7→ xa. Consequently, in analogy
with the C*-direct sum norm, defining the norm on the pair (La, Ra) as follows:

‖ (La, Ra) ‖= sup{‖ La ‖, ‖ Ra ‖}

forces the double representation Ψ : A→ Φ(A) to be an isometric *-isomorphism
from the normed *-algebra A into the normed *-algebra Φ(A) provided that
the other centralizers of Φ(A) are bounded operators on the C*-algebra A taken
as a Banach space. We will then also define the norm of such centralizers by
taking the larger of the operator norms of the left and right centralizer of the
pair. By the faithfulness of the C*-algebra A, this is in fact the case [see Lemma
1, Corollary [1]]:

Theorem 13 Let A be a C*-algebra. Then taking A as an algebra over the field
C, if T : A → A is a left (right) centralizer , then T : A → A is homogenous.
Consequently, if T is an additive left (right) centralizer, T is a linear map on
the C*-algebra taken as a Banach space.
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Further for any centralizer (L,R) ∈ Φ(A), both L and R are bounded operators
on the C*-algebra taken as a Banach space. This follows from the completeness
of the C*-algebra A as a metric space [see Theorem 14, [1]].

The following defines a norm on the *-algebra of the double centralizers (L,R)
on the C*-algebra Φ(A):

‖ (L,R) ‖= sup{‖ L ‖, ‖ R ‖} (1.25)

The above norm satisfies the C*-norm condition [Chapter 1.1, equation (1.4)]
and the *-algebra, Φ(A), of the double centralizers on the C*-algebra A is a
C*-algebra with the identity e = (1A, 1A) which we shall denote henceforth as
M(A). Briefly,

Theorem 14 Let A be a C*-algebra. Then the double centralizer algebra M(A)
is a C*-algebra with an identity (1A, 1A).

The double representation Ψ : A → M(A)|a 7→ (La, Ra) of A is a one-to-one
*-homomorphism from the C*-algebra A into the C*-algebra M(A). Hence
any C*-algebra, A, is isometrically *-isomorphic to a closed self-adjoint ideal in
M(A).

In light of Representation Theory I and II for the category of rings [see The-
orem 10, 11], we have the following representation theory in the category of
C*-algebras:

Theorem 15 (The Double Centralizer Algebra Representation Theory)
(Theorem 3.1.8 [13]) Let A be a C*-algebra. Let M(A) denote the C*-algebra of
all the double centralizers on A. Then the double centralizer algebra, M(A), is
the largest C*-algebra with an identity which contains A as an (closed) essential
ideal : the C*-algebra A is a closed 2-sided ideal of the C*-algebra M(A) which
is essentially faithful with respect to M(A), taken as an over-ring of A.

We end of this section with two examples of the double centralizer algebra of
two well known C*-algebras without identity. The proofs of these two examples
can be found in Appendix A of the thesis.

Example 32 (Double Centralizers on Commutative C*-algebra) Let A
be the C*-algebra C0(Ω). Then the double centralizer algebra, M(A), is the set
of all bounded continuous functions, Cb(Ω), on the locally compact space Ω.

Example 33 (Double Centralizers on Non-Commutative C*-algebra)
Let A be the C*-algebra K(H). Then, the double centralizer algebra, M(A), is
the set of all bounded operators, B(H), on the Hilbert space H.
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1.2.4 The DCAR and the Universal Representation

We now conclude the section on the global representation of a C*-algebra by
relating the two global representations, namely, the Double Centralizer Algebra
representation and the Universal representation.

The Universal Representation of the C*-algebra A, Φ : A → B(H) where H
is the universal Hilbert space, is a non-degenerate *-representation. By the
double centralizer algebra representation, the C*-algebra A is an ideal of the
double centralizer C*-algebra M(A). Then

Theorem 16 (Chapter I, Lemma I.9.14 [12]) There exists a unique *-representation
Φ of the double centralizer algebra M(A) on the same universal Hilbert space H
extending Φ : the restriction of Φ to A is Φ.

We construct the *-representation Φ of the double centralizer algebra M(A) as
follows:

Construction 1 (Extension of the Universal Representation) Since the
the ranges of Φa, a ∈ A, span the universal Hilbert space H, it suffices to define
each operator Φm ∈ B(H) where m ∈M(A) on the subset V =

⋃
a∈A{Φa(H)}.

Now, each vector v ∈ V is of the form Φa1(u1) for some a1 in the ideal A
and u1 in the universal Hilbert space H. Then the following definition of Φ is
well defined, by the existence of the approximate identity of the C*-algebra A:

Φm(v) = Φm(Φa1(u1)) = Φma1(u1)

for each m ∈M(A) and v ∈ V .

Although we can associate a *-representation with the Double Centralizer Rep-
resentation of the C*-algebra A, the Double Centralizer Representation has its
own merits. In particular, it preserves the ideal structure of the C*-algebra [
see Theorem 12, Chapter 1.2.3]. This is important since the key theme of this
thesis is lifting 2 properties from the quotient C*-algebra to the original C*-
algebra. The quotient C*-algebra is related to the closed two-sided ideals of the
C*-algebra in the following fundamental way:

Proposition 4 Let A denote a C*-algebra and I a closed 2-sided ideal of A.
Then I is self-adjoint and A/I , endowed with the natural involution algebra
structure and the quotient norm, is a C*- algebra. Further π : A → A/I the
quotient map, is a *-homomorphism where ‖ π ‖≤ 1.

As opposed to the purely algebraic concept of a 2-sided ideal [Chapter 1.2.3,
Examples 27 - 30], we shift our focus onto closed 2-sided ideals.

2We shall define this term later on. For now its meaning is not needed.
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1.2.4.1 Closed 2-sided Ideals in C*-algebras

With regard to Proposition 4, the closed two-sided ideals of an abstract C*-
algebra are of critical importance. Commutative C*-algebras furnish a rich
supply of closed two-ideals of a topological nature [cf Chapter 1.2.3, example
27]:

Example 34 (Closed Two-sided Ideals : Commutative C*-algebra with
an identity) (Chapter 3, Theorem 3.4.1 [10]) Let A be the C*-algebra C(K).
Then for every closed ideal I of C(K) there exists a closed subset S, of K such
that I is the set of all functions vanishing on the S : I = {f ∈ C(K)|f |K = 0}.
Conversely, if S ⊂ K is a closed subset of K, then the set of all functions van-
ishing on K is a closed ideal of C(K).

Further, the maximal ideals of C(K) are those closed ideals for which the cor-
responding closed subset of K (on which all the functions of the ideal vanish)
consists of a single point.

The above one-to-one correspondence between the closed subsets of the compact
Hausdorff space K and the closed two-sided ideal of C(K) also holds for the
C*-algebra C0(Ω) [Chapter 7.4, Theorem 7.4.2 [17]] :

Example 35 (Closed Two-sided Ideals : Commutative C*-algebra with-
out an identity) Let A be the C*-algebra, C0(Ω). Then for every closed
ideal I, of C0(Ω) there exists a closed subset K, of Ω such that I = {f ∈
C0(Ω)|f |K = 0}.

Proof. This follows from the proof of Theorem 3.4.1 [10], once we establish
the existence of a compact set Fε ⊂ Ω such that |f(p)| ≥ ε ∀p ∈ Fε for every
ε ≥ 0 where f ∈ C0(Ω).

Since f vanishes at infinity, there exists a compact subset K ⊂ Ω such that
|f(p)| ≤ ε for all p outside of K; consequently, the set {p ∈ Ω | |f(p)| ≥ ε} =
|f |−1[C\B(0; ε)] is a closed subset of the compact set K by the continuity of |f |.

The correspondence between the closed sets and the closed two-sided ideals of
C0(Ω) is one-to-one.

All compact Hausdorff spaces are normal. A topological space is normal if the
topology is fine enough to distinguish disjoint closed sets. We need the normality
to apply Tietze’s extension theorem to establish the one-to-one correspondence
in the case of C(K). For the case of a locally compact space Ω, normality need
not follow although the one-to-one correspondence is still valid:

Example 36 [Non Compact, Locally Compact Hausdorff but Not Nor-
mal](Deleted Tychonoff Plank) The crux of this construction is the non-preservation
of normality on taking topological products.
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Consider the ordinal spaces W ∗(ω1) = [0, ω1] and W ∗(ω) = [0, ω] which consist
of all the ordinals from 0 up to and including the first uncountable ordinal ω1

and the first non finite ordinal ω, respectively. The first uncountable ordinal ω1

exists in ZFC since all sets have a bijection to a unique cardinal and the set of
subsets of the set of all natural numbers ω is a set. A cardinal is an ordinal
which has no bijection with itself and any section of it. Both these spaces are
well ordered by the set membership condition ∈, and are endowed with the inter-
val (order) topology. The ordinal spaces, W ∗(ω1) and W ∗(ω), are then compact
Hausdorff spaces and hence the product space W ∗(ω1) ×W ∗(ω) is a compact
Hausdorff space. We call this space the Tychonoff Plank T .

The Deleted Tychonoff Plank T∞ is the subspace topology that results from delet-
ing the point (ω1, ω) from T : T∞ = T\{(ω1, ω)}. It is therefore an open sub-
space (points are closed in T ) of the compact Hausdorff space T and we therefore
conclude that it is a locally compact Hausdorff space.

The Deleted Tychonoff Plank T∞ is not normal: there can be no disjoint open
sets separating the closed sets A = {ω1} × (W ∗(ω)− {ω}) and B = (W ∗(ω1)−
{ω1})× {ω}.

However, there is a large class of locally compact Hausdorff spaces which are
normal:

Example 37 (Normal Spaces: Metrizable, Non-Metrizable) All compact
Hausdorff spaces and metric spaces are normal.

The set of all reals, R, with the usual norm topology along with the set of all
rationals Q taken as a subspace of the reals with the norm topology along the
Cantor dust, are non-compact metric spaces.

Let the doubleton set {0, 1} be endowed with the discrete topology. Then, by
Tychonoff’s theorem, the product space {0, 1}R of the compact space , {0, 1},
is compact. This space is not sequentially compact since R is not countable
[Chapter 16, Example 16.38, [29]]. Therefore, it is not metrizable since it is
both compact but not sequentially compact.

Example 38 (Non-Metrizable, Locally compact and Normal) Consider
the ordinal space, W (ω1), which is the set of all countable ordinals, {σ | σ ∈ ω1},
where ω1 is the first uncountable ordinal.

The ordinal space, W (ω1), is well ordered by the set membership condition ∈,
and it is endowed with the interval (order) topology.

The ordinal space, W (ω1), is then a non-compact locally compact Hausdorff
space. Since it is not first countable : ω1 does not have a countable neighbour-
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hood basis, W (ω1) is not metrizable. Therefore, it stands a chance of being not
normal. Fortunately, W (ω1) is normal [Chapter 5, 5.11 [31]].

Example 39 (Normal but not Locally Compact Hausdorff Spaces) The
set of all rationals Q taken as a subspace of the reals with the norm topology is
a normal metric space by example 2. However, since the only compact subsets
are finite, compact sets have an empty interior and Q is not locally compact.

Example 40 (Not Normal and Not Locally Compact) The set of all re-
als, R, endowed with the cocountable topology is not locally compact: only finite
sets can be compact. Further it is trivially not normal since every pair of open
sets has a non-empty intersection.

In contrast to the commutative C*-algebras, non-trivial ideals, let alone closed
ideals, in the non-commutative C*-algebra, B(H), of all bounded operators on
a Hilbert space H are rare [Chapter 1.2.3, Example 28].

Example 41 (Closed Ideals in Non-Commutative C*-algebra) Let A be
the C*-algebra, B(H), of all bounded operators on an infinite dimensional Hilbert
space H. It is well known that the set of all compact operators, K(H), on the
Hilbert space H is a closed two-sided ideal of A [Chapter VI.2.6, Corollary 2.6.3
[25]]. If I is a closed ideal of B(H), then I ⊇ K(H) or I = {0} [Chapter VIII.4
Proposition 4.10, [24]]. Further, if H is separable, then the set of all compact
operators, K(H), is the only non-trivial closed two-sided ideal.

As opposed to the Double Centralizer Algebra Representation, the Universal
Representation falls short with regards to shedding light on the structure of
the closed 2-sided ideals of the C*-algebra, A, regarded as a norm closed *-
subalgebra of B(H). First and foremost, the universal Hilbert space is extremely
large and ideals in bounded operators on this Hilbert space are difficult to
compute. We end off with the following examples:

Example 42 Let A be the C*-algebra, C[−π, π], of all the complex valued con-
tinuous functions on the compact interval [−π, π]. By the Stone-Weierstrass
Theorem, this C*-algebra is separable : it is a separable metric space, that is,
has a countable dense subset in the form of the polynomials in z and z with
coefficients taken from Q×Q ⊂ C.

From the universal representation, we can construct a subspace U of the univer-
sal Hilbert space H which is separable and A embeds isometrically *-isomorphically
into B(U) [Chapter VI.22, Proposition 22.13 [9]].

There is only one possible non-trivial closed ideal in B(U) while C[−π, π] has
as many closed two sided ideals as there are closed subsets of [−π, π].

We now construct a *-representation of the separable C*-algebra, C[−π, π], on
a separable Hilbert space:
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Example 43 Let A be the C*-algebra C[−π, π]. Consider the measure space
Σ = ([−π, π],M[−π,π], λ[−π,π]) where λ[−π,π] be the Lebesgue measure restricted
to the Lebesgue measurable set [−π, π] ⊂ R : the sigma algebra M[−π,π] =
{[−π, π]

⋂
A|A is Lebesgue measureable subset of R}.

Consider the Hilbert space H = L2(Σ) of all square integrable functions on
the measure space Σ . Then H is non trivial : it contains all the constant func-
tions on [−π, π] since λ is a finite measure.

Since λ is a finite measure, C[−π, π] ⊂ L∞(Σ) ⊂ L2(Σ). For each g ∈
C([−π, π]) ⊂ L2(Σ) we define the associated left multiplication operator Mg

on H = L2(Σ) as follows [Chapter 1.2.1, Example 12]:

Mg : h 7→ gh where gh(x) = g(x)h(x) ∀x ∈ [−π, π].

where gh ∈ L2(Σ) since L2(Σ) is an algebra and Mg is a bounded operator with
norm less than or equal to ‖ g ‖∞:

‖ gh ‖2H=
∫
[−π,π]

|gh|2dλ ≤‖ g ‖2∞
∫
[−π,π]

|h|2dλ ≤ 2π ‖ g ‖2∞.

where ‖ · ‖H denotes the norm on the Hilbert space H = L2(Σ) .

Since M∗
g = Mḡ, Maf+bg = aMf+bMg, Mfg = MfMg, the map Φ : C[−π, π] →

B(L2([−π, π],M[−π,π], λ[−π,π])) | g 7→ Mg is a *-representation which is one-
to-one since H has the identity map e : [−π, π] → [−π, π] | x 7→ x. We are
now done since a *-isomorphism between two C*-algebras is an isometric *-
isomorphism.

L2(Σ) is a separable Hilbert space since the countably many functions en(t) =
eint where n ∈ N form an orthonormal basis. Hence the only closed two-sided
ideal is the set of all compact operators. On the other hand, C[−π, π] has as
many distinct closed two-sided ideals as there are closed subsets of [−π, π].
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1.3 C*-algebra : Local Representations

As mentioned in the beginning of the previous section, Chapter 1.2, we now de-
scribe representations of the individual elements of the C*-algebra. Just as the
global representation of the C*-algebra played a critical role in the key results
of the thesis, the local representations also played a critical role.

The first local representation theory is by virtue of the Gelfand Naimark the-
orem I, Chapter 1.1, for commutative C*-algebras and hence only applies to a
special type of element: a normal element. In fact, an element x in the C*-
algebra A is normal if and only if x belongs to some commutative *-subalgebra
of A. Then with the aid the Gelfand Naimark theorem I, we can develop a func-
tional calculus for normal elements of the C*-algebra. A functional calculus for
a fixed normal element x represents the element x as a continuous function on
a compact space and allows the definition and computation of the element f(x)
which we call the result of applying f to x, where f is a continuous complex
valued function on some compact space.

1.3.1 Local Representation Theory I: The Functional Cal-
culus for Normal Elements

The benefit of the functional calculus for normal elements, is the reduction of
problems in C*-algebras encountered in this thesis, to problems in the more
familiar function algebras. A function algebra is a pair (A,K) where K is a
fixed compact Hausdorff space and A is a subalgebra of C(K). Further, A is
itself a commutative C*-algebra under a norm which may or may not coincide
with the supremum norm of C(K) where :

(i) A vanishes nowhere on K : for each x in K, f(x) 6= 0 for some f ∈ A.

(ii) A separates points of K : for x, y ∈ K where x 6= y, there exists a f ∈ A
such that f(x) 6= f(y).

Let C∗(x) denote the closed commutative *-subalgebra of the C*-algebra A
generated by the normal element x. Then with the aid of the Gelfand Naimark
Theorem I, we have the following representation theory:

Theorem 1 [Local Representation Theory I : The Functional Calculus
for Normal Elements] (Chapter 2, Prop 8.4, [8]) Let A be a C*-algebra with
an identity, e, and x a normal element of A. Then there exists an onto isomet-
ric *-isomorphism Φ : C(K) → C∗(x) ⊂ A | f 7→ f(x) where K is, σA(x), the
spectrum of x in A, which is a non-empty compact set.

In the case where A does not have an identity, we enforce the additional con-
dition that f vanishes at 0: f(0) = 0 if 0 ∈ σA(x). Then Φ has the following
properties:

43

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



(a) Φ(e) = 1 where e is the constant one map on σA(x)
(b) Φ(1σA(x)) = x where 1σA(x) is the identity map on σA(x)
(c) If fi → f in C(σA(x)) uniformly, then Φ(fi) → Φ(f) in C∗(x) ⊂ A

where property (a) only applies for a C*-algebra with an identity. The identity
map, 1σA(x) : ω 7→ ω, on σA(x), is called a functional representation of the
normal element x. More generally, the element f(x) in the C*-algebra generated
by x, has a functional representation as the continuous complex valued function
f ∈ C(σA(x)). In particular, if x is a positive element of the C*-algebra A,
setting f to be the square root function √ on the spectrum, σA(x), of x in
A, defines the C*-algebra element

√
x in A: σA(x) ⊆ R+0 where R+0 is the

positive part of the real line and the square root function vanishes at 0.

Example 1 Let A be the C*-algebra Mn(C). Then the normal elements are
precisely the n×n matrices that are diagonalizable: have an orthornormal basis
of eigenvectors. The spectrum consists entirely of the eigenvalues of the matrix.

Consider the normal matrix x given by :

x =

 9 5 −4
−8 −4 4
2 2 0


which has 0, 1 and 4 as its eigenvalues. Therefore K = σA(x) = {0, 1, 4} and the
square root function on K is precisely the interpolating second order polynomial
function p(x) = a2x

2 + a1x
1 + a0 with the conditions p(0) =

√
0, p(1) =

√
1

and p(4) =
√

4. Computation yields a2 = − 1
6 , a1 = 7

6 , a0 = 0. Therefore, the
square root of x is the matrix p(x) where p(x) = − 1

6x
2 + 7

6x.

We end off this section with three corollaries of the Local Representation Theory
I which we shall need frequently later on. We shall phrase these corollaries in
the language of orthogonal elements. We state a definition of orthogonality in
a C*-algebra, suggested by Dr. Duvenhage, based on the following observation.
In the proof where a one-to-one correspondence between the pure states and the
irreducible cyclic *-representations is established [cf. Chapter 1.2.1, Theorem
1], each pure state induced an inner product (·|·) on the C*-algebra A as follows:

(x|y) = p(y∗x) for each x, y ∈ A

from which the Hilbert space which is associated with the cyclic *-representation
was constructed. Since (y|x) = p(x∗y), setting p to be the identity function gives
us the following definition of orthogonality:

Definition 1 (Orthogonal) Two elements x, y in the C*-algebra A are or-
thogonal if and only if x∗y = 0 = 0∗ = y∗x. In the case when x and y are both
positive or even self adjoint, the condition is equivalent to xy = yx = 0.
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Example 2 Let A be the C*-algebra C[0, 1] (example 25, chapter 1.2.3.). Then
the positive elements x(t) and y(t) where y(t) is defined as:

y(t) =
{
−2t+ 2 : 0 ≤ t ≤ 1

2
0 : 1

2 ≤ t ≤ 1

are orthogonal.

Corollary 1 [Orthogonal Decomposition For Self Adjoint Elements](
Chapter VI, Section 7, Proposition 7.16 [9]) For every self adjoint element x of
the C*-algebra A, there exists a unique pair of orthogonal positive elements x+

and x− : x+x− = 0 = x−x+ such that:

x = x+ − x−

We call x+ and x− the positive orthogonal parts of x. Further ‖ x+ ‖≤‖ x ‖
and ‖ x− ‖≤‖ x ‖

Corollary 2 (Functional Factorization For Normal Elements) Let x be
any normal element in A and f be any continuous function on σA(x) which
vanishes at 0 : f(x) ∈ A. If we can write f as the point-wise product of two
other functions of the same type: f = gh, then the element f(x) = g(x)h(x)
with g(x), h(x) ∈ A. We call g and h factors of f . The condition of vanishing
at 0 is irrelevant if A has an identity and 0 /∈ σA(x).

Proof Firstly, consider the C*-algebra C(σA(x)) of all complex valued contin-
uous functions on the spectrum, σA(x), of x in A, which is a compact subset of
C. Then by the Stone Weierstrass theorem on C(σA(x)), there exists sequences
of polynomials which do not have constant terms which we shall denote as pg

n

and ph
n, which converge uniformly to the functions g, h, respectively, on the

compact set σA(x) ⊂ C:

pg
n → g and ph

n → g.

Then by the joint continuity of the product on the C*-algebra C(σA(x)):

pg
np

h
n → gh = f

The map Φ : C(σA(x)) → A|f 7→ f(x) of the Local representation theory I is a
*-homomorphism. Therefore

Φ(pg
np

h
n) = Φ(pg

n)Φ(ph
n) → Φ(f) = f(x)

Now, invoking the joint continuity of the product in C∗(x), the commutative
C*-algebra generated by the normal element x,

Φ(pg
n)Φ(ph

n) → g(x)h(x)
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By the uniqueness of the limit we are done.

Q.E.D

Corollary 3 Let a and b be two positive commuting elements of the C*-algebra
A. Then their product ab is positive and

√
ab =

√
a
√
b.

Proof.

(i) The element ab is positive.

If a and b are self-adjoint and commute, then (ab)∗ = b∗a∗ = ba = ab. There-
fore, ab is self adjoint.

If A does not have an identity, take A as the unitization C*-algebra Ae. Con-
sider B = C∗(a, b, e), the commutative ‖ · ‖ - closure of the *-algebra generated
by a, b and e. Then the spectrum σA(ab) of ab in A which is defined as the
spectrum, σAe(ab), of ab in Ae, is exactly the spectrum, σB(ab), of ab in the
C*-subalgebra B [Chapter VI, section 5, proposition 5.2 [9]]. Since B is com-
mutative, σB(ab) ⊂ σB(a)σB(b) ⊂ R+.

(ii)
√
ab =

√
a
√
b.

Consider ab as a normal (positive) element of the commutative C*-algebra
B = C∗(a, b, e). The square root function

√
·, is a continuous function on

the spectrum, σB(ab) ⊂ R+, of ab. Therefore
√
ab is an element of the com-

mutative C*-algebra B : by the Local Representation Theory I, we have an
onto isometric *-isomorphism Φ : C(σB(ab)) → C ∗ (ab) ⊂ B|

√
· 7→

√
ab. Sim-

ilarly,
√
a and

√
b are elements of the commutative C*-algebra B. Therefore

(
√
a
√
b)2 = (

√
a)2(

√
b)2 = ab.

Q.E.D

In the next section, we explore another local representation theory. The second
local representation theory is by virtue of the Universal representation where
the C*-algebra is embedded as a closed *-subalgebra of the space of all bounded
operators on the universal Hilbert space H. We can therefore view each ele-
ment as an operator on a Hilbert space and hence decompose it using the polar
decomposition. Unlike the Local Representation Theory I, this representation
works for all elements, normal or non-normal.
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1.3.2 Local Representation II: The Polar Decomposition

In the analogy between Mn(C) and the complex number field C, a complex
number z corresponded to an operator x ∈ Mn(C), the real numbers z = z
corresponded to self adjoint operators x∗ = x∗, the positive numbers z which
were characterized as having a positive square root, corresponded to the posi-
tive operator x which can be characterized as having a positive square root, a
complex number, z, which belongs to the unit circle [zz = 1] corresponded to a
unitary operator x defined as xx∗ = x∗x = 1 (the columns of unitary operators
consist of orthonormal vectors and unitary operators are exactly the isome-
tries : ‖ x(η) ‖=‖ η ‖ for all η ∈ Cn) and the decomposition of the complex
number z into its real and imaginary parts: z = Re(z) + Im(z)i corresponded
to the decomposition of the operator x into 1

2 (x + x∗) + i( 1
2 i(x − x∗)) where

1
2 (x+ x∗), 1

2 (x− x∗) are self adjoint operators. The analogy went even further:
the polar decomposition of the complex number z = eiθr where eiθ is a complex
number on the unit circle and r is the positive number

√
z∗z corresponded to

the decomposition of the operator x into the product up, where p is the positive
operator

√
x∗x and u is an unitary operator, or equivalently, an isometry.

In practice, one computes the positive operator p and the isometry u by first
decomposing the n×n matrix x into the singular value decomposition: x = wdv
where v, w are isometries and d is a diagonal matrix whose non-zero entries are
positive real numbers. Then, setting p = v∗dv and u = v∗w∗ we have x∗ = pu
so that x = u∗p completes the polar decomposition. Formally:

Polar Decomposition in Mn(C) : Let H be a n-dimensional Hilbert space.
Then any operator x ∈ B(H) has a polar decomposition up where u is an isom-
etry and p the positive operator

√
x∗x. Hence p is uniquely determined by x but

the isometry u need not be unique. If x is invertible, then the isometry u is also
uniquely determined by x [Chapter 3, section 83, Theorem 1 [32]].

Unfortunately, the above breaks down in an infinite dimensional Hilbert space.
Consider the separable Hilbert space, l2, of all square summable sequences with
complex-valued entries:

Example 3 Let H be the separable Hilbert space, l2, of all square summable
sequences with complex-valued entries. Consider the left shift map L : l2 →
l2 | (x1, x2, x3, . . .) 7→ (x2, x3, . . .).

The positive operator p uniquely defined by the operator L will be the projec-
tion p : l2 → l2 | (x1, x2, x3, . . .) 7→ (0, x2, x3, . . .) since L∗ = R where R is the
right shift map R : l2 → l2 | (x1, x2, x3, . . .) 7→ (0, x1, x2, x3, . . .). Therefore if
L = up then u must be the left shift map L which is far from being an isometry
since it is not even one-to-one. However, the operator u is an isometry when
restricted to the closed subspace V = {(x1, x2, x3, . . .)|x1 = 0} which is the or-
thogonal complement of the kernal of L, (kerL)⊥.
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Note that unlike in the case of a finite dimensional Hilbert space where the
set of unitary operators coincide with the set of all isometries, the adjoint of L,
the right shift map R, is an isometry which is not a unitary operator : L is only
a left inverse. However, all unitary operators are isometries.

As hinted by the decomposition of the left shift map, L, as L = up where u is
an isometry when restricted to (kerL)⊥ which we shall call the initial space of
L, fortunately does hold for all operators on any Hilbert space [Chapter VII,
section 3, Theorem 3.11 [24]]:

Theorem 2 (Local Representation Theory II : Polar Decomposition)
Let H be any Hilbert space. Then any operator x ∈ B(H) has a polar decom-
position up where u is an isometry when restricted to the initial space of x,
(ker(x))⊥ and annihilates the orthogonal complement ker(x), which we call the
final space, while p is the positive operator

√
x∗x. Hence p is uniquely deter-

mined by x and we call u a partial isometry. If x = UP where P is a positive
operator and U shares the same initial and final space as u, then U = u and
P = p.

Consequently, any element x in a C*-algebra A, by virtue of the Universal
Representation, can be taken as an operator on a Hilbert space and hence has
a factorization x = up where u is a partial isometry and p the positive element
uniquely determined by x. We shall from now on denote it as |x| and call it the
modulus of x. Without a Hilbert space in the background, the concept of an
isometry makes no sense in the category of an abstract C*-algebra : a Banach
algebra which satisfies the C*-norm condition. However the concept of the
modulus does, as well as the concept of a unitary element which coincides with
the concept of an isometry only in the setting of a finite dimensional Hilbert
space. Now, for an invertible element x in a C*-algebra with an identity, there
is a decomposition up where p is the modulus,

√
x∗x, of x and u is an unitary

element : u∗u = uu∗ = 1. Formally:

Theorem 3 (Polar Decomposition for Invertible Element) (Chapter VI,
section 7, proposition 7.24 [9])Let A be a C*-algebra with an identity. Let x be
an invertible element. Then there is a unique unitary element u of A and a
unique positive element p of A such that x = up. In fact, p =

√
x∗x.

The proof of the above theorem does not require the Universal Representation.
The proof rests purely on the Local Representation Theory I of the normal ele-
ment x∗x.

Another type of element that receives a favourable treatment from the polar
decomposition are the self adjoint elements. This is due to the fact that the
polar decomposition of the operator x as x = up works hand in hand with the
adjoint operator x∗ : the adjoint x∗ has the polar decomposition x∗ = u∗p where
p = |x∗|.
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Theorem 4 Let x ∈ B(H) and x = u|x| be the unique polar decomposition of
x into the partial isometry u and modulus |x| =

√
x∗x. Then the adjoint x∗ has

the following unique polar decomposition x∗ = u∗|x∗| where |x∗| =
√
xx∗.

Proof. We prove the decomposition x∗ = u∗|x∗| by showing that

(u(η)| |x∗|(η)) = (η| x∗(η)) for all η ∈ H.

where (·|·) is the inner product on the Hilbert space H [Chapter 2, Proposi-
tion 2.4.3 [10]]. Consider the decomposition of H = Ker(x)⊥

⊕
Ker(x) into

the closed subspaces Ker(x) and its orthogonal complement Ker(x)⊥ which is
identical to the closure, Ran(|x|), of Ran(|x|). By the sesquilinearity of the
inner product, it suffices to establish the above equation for η ∈ Ker(x)⊥ and
η ∈ Ker(x) separately. Therefore we shall equivalently show that

(u(η)| |x∗|(η)) = (η| x∗(η)) for all η ∈ Ker(x)⊥ (1.26)

and

(u(η)| |x∗|(η)) = (η| x∗(η)) for all η ∈ Ker(x) (1.27)

We shall prove, as our first step, equation (1.26) by showing that the decom-
position x∗ = u∗|x∗| holds in the closed subspace Ker(x)⊥. Then we prove
equation (1.27) directly.

Step 1. x∗ = u∗|x∗| for all η ∈ Ker(x)⊥ = Ran(|x|).

In the construction of the partial isometry u of the polar decomposition of
x [see the proof of Chapter VIII Proposition 3.11 [24]], where x = u|x|, the
restriction of u to the closed subspace Ker(x)⊥ of the Hilbert space H, which
we denote as u, is an onto isometry from Ker(x)⊥ onto Ran(x). Therefore, the
adjoint of u, (u)∗ : Ran(x) → Ker(x)⊥, is the inverse, (u)−1, of u and is also
an isometry on the closed subspace Ran(x) [Chapter 2, Proposition 2.4.5. [10]].
Consequently,

u∗u = 1 for all η ∈ Ker(x)⊥ (1.28)

since (u)∗ is the restriction of u∗ to Ran(x).

But xx∗ = u|x||x|u∗ = ux∗xu∗ for all η ∈ H. Therefore

|x∗| =
√
xx∗ = u|x|u∗ for all η ∈ H (1.29)

since u|x|u∗u|x|u∗ = u|x||x|u = xx∗ for all η ∈ H by (1.28). Furthermore,

x = u|x| = u|x|u∗u for all η ∈ Ker(x)⊥ (1.30)
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by (1.28), so that from (1.29),

x = |x∗|u for all η ∈ Ker(x)⊥ (1.31)

Step 2. (u(η), |x∗|(η)) = (η, x∗(η)) for all η ∈ Ker(x)

Since Ker(x) is the final space of the partial isometry u of the polar decompo-
sition of x as x = up, u(η) = 0. Therefore,

(u(η), |x∗|(η)) = 0 for all η ∈ Ker(x).

Noting that Ker(x) = Ran(x∗)⊥ [Chapter VII Proposition 2.2.1 (c) [25]], it
follows that:

(η, x∗(η)) = 0 for all η ∈ Ker(x).

Step 3. u∗ is a partial isometry with initial space Ker(x∗)⊥: from Step 1, (u)∗

is an isometry on Ran(x), (u)∗ being the restriction of u∗ to Ran(x) which is
identical toKer(x∗)⊥. We leave it to the reader to show u∗ annihilatesKer(x∗).

By the uniqueness of the polar decomposition, we are done.

Q.E.D

To emphasize the favourable status received by self-adjoint elements with re-
gards to the polar decomposition, we note the following corollary:

Corollary 4 Let x be a self-adjoint element of the C*-algebra A taken as a C*-
subalgebra of B(H), the space of all bounded operators on its universal Hilbert
space H. If x = u|x| be the unique polar decomposition of x into the partial
isometry u and modulus |x| =

√
x∗x, then u and |x| commute and the partial

isometry u is also self adjoint.

Proof. By theorem 4 above, if x = u|x| then x∗ = u∗|x∗|. Since x = x∗,
x = u|x| = u∗|x| where u and u∗ are partial isometries with the same initial and
final space. Therefore by the uniqueness of the polar decomposition, u = u∗.
Finally, x = u|x| implies x∗ = |x|u∗ = |x|u.

Q.E.D
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1.3.3 The Functional Calculus [Local Representation The-
orem I] and The Polar Decomposition Theorem [Lo-
cal Representation Theorem II]

The polar decomposition theorem holds for all elements of the C*-algebra unlike
the functional calculus which only applies for normal elements. One of the
major setbacks with the polar decomposition theorem is the introduction of
elements which are not necessarily in the original C*-algebra : let A be the
C*-algebra identified as a closed *-subalgebra of the concrete C*-algebra of all
bounded operators on the universal Hilbert pace H; then the element x of the
C*-algebra can be identified with an operator in B(H) and hence has the polar
decomposition up where u is a partial isometry and p is the modulus

√
x∗x;

by the functional calculus, p belongs to the original C*-algebra but there is
no guarantee that u belongs to the C*-algebra A. This problem of u being
an element of the original C*-algebra does not exist for a special type of C*-
algebra, Von Neumann C*-algebras, which we shall meet later and for the case
of invertible elements [Chapter 1.3.2, Theorem 3]. However, we can alleviate
this problem with the following theorem which relates the functional calculus
and the polar decomposition into a result we shall need later on:

Theorem 5 (Functional Polar Decomposition theorem) Consider the
C*-algebra A as a closed *-subalgebra of the concrete C*-algebra of all bounded
operators on the universal Hilbert pace H [Gelfand Naimark Theorem II, chapter
1.2.2]. Consider the element x in the C*-algebra A ⊂ B(H) where x = u|x| is
the unique polar decomposition of x into the partial isometry u and modulus
|x| =

√
x∗x. Then for any continuous complex-valued function f on σA(|x|)

which vanishes at 0, uf(|x|) ∈ A.

Proof. The crux of the proof is the fact that up(|x|) is a member of the
C*-algebra A for any polynomial p which does not have a constant term : Let
p(z) =

∑n
i=1 aiz

i denote any polynomial in z without a constant term. Then

up(|x|) = u
( ∑n

i=1 ai|x|i
)

=
∑n

i=1 aiu|x|i =
∑n

i=1 aix|x|i−1. Since A is an alge-

bra with the elements x, |x| ∈ A, up(|x|) =
∑n

i=1 aix|x|i−1 is a member of A.

By the Stone-Weierstrass theorem, any continuous function f on the compact
subset σA(|x|) ⊂ R+ which vanishes at 0 is the uniform limit of a net of poly-
nomials, pi, on σA(|x|) which also vanishes at 0: that is, do not have constant
terms. The polynomials will be only in one variable z. Then, applying the Func-
tional Calculus to the self-adjoint element |x| of the C*-algebra A, Φ(pi) → Φ(f)
in A or equivalently (pi(|x|)) → (f(|x|)) in A. Therefore, by the continuity of the
product, u(pi(|x|)) → u(f(|x|)). Since u(f(|x|)) is the limit of the convergent
net u(pi(|x|)) in a complete space A, u(f(|x|)) ∈ A.

Q.E.D
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1.3.4 Local Representations in the Quotient C*-algebra

In this section we list applications of the Functional Calculus and the Polar
Decomposition in the context of the quotient C*-algebra which we shall need
later on.

Proposition 1 (Weak Polar Decomposition: Quotient C*-algebra) If x
is a positive [self-adjoint, normal] element of the C*-algebra A, then π(x) is a
positive [self-adjoint, normal] element of the quotient C*-algebra A/I . In fact,
π(x) is positive if and only if x is positive: the map π maps the positive cone
of A onto the positive cone of A/I. Further, if the pair of elements x, y in the
C*-algebra A are orthogonal, then the pair π(x), π(y) are orthogonal elements
of the quotient C*-algebra A/I .

Identifying A, A/I with a norm-closed *-subalgebra of the bounded linear op-
erators on their universal Hilbert space, if x = u|x| is the unique polar de-
composition of x into the partial isometry u and modulus |x| =

√
x∗x , then

π(x) = π(u)|π(x)| provided the partial isometry u belongs to A.3

Proof. The first part of the proof follows immediately from π being a *-
homomorphism and x = a∗a for some a ∈ A. We just prove the converse of the
first equivalence : note that π is a surjective map on A/I and if π(x) is positive
then there exists an a ∈ A such that π(x) = π(a)π(a)∗ = π(a)π(a∗) = π(aa∗).

For the second part of the proof, π(|x|) = π(
√
x∗x) =

√
π(x∗x) =

√
[π(x)]∗π(x) =

|π(x)| since
√
x∗x

√
x∗x = x∗x⇒ π(

√
x∗x

√
x∗x) = π(

√
x∗x)π(

√
x∗x) = π(x∗x).

Hence, π(x) = π(u)|π(x)|.

Q.E.D

Proposition 2 (Quotient Mapping Of The Functional Calculus For
Self Adjoint Elements) For any self-adjoint element x and any continuous
function f on σA(x) which vanishes at 0, we have π(f(x)) = f(π(x)).

Proof By the Stone-Weierstrass theorem any continuous function f on the
compact subset σA(x) ⊂ R which vanishes at 0 is the uniform limit of a net of
polynomials in one variable, pi, on σA(x) which also vanishes at 0: that is, do
not have constant terms. Then, applying the Functional Calculus to the self-
adjoint element x of the C*-algebra A, Φ(pi) → Φ(f) where Φ(f) ∈ C∗(x) ⊂ A.
Equivalently (pi(x)) → (f(x)) in A : each pi has no constant term so pi(x) is
also an element in A ⊂ Ae.

By the continuity of π : A→ A/I, π(pi(x)) → π(f(x)), the convergence taking
place in A/I. But π is a *-homomorphism so π(pi(x)) = pi(π(x)) which is a net
in A/I which converges to the element f(π(x)) ∈ A/I.

3This occurs for special types of C*-algebras: C*-algebras which are Von Neumann algebras
on some Hilbert space [see Theorem 4.1.10 [13]]. We shall explore Von Neumann C*-algebras
in Chapter 2.
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We now apply the Functional Calculus to the self adjoint element π(x): the
spectrum of π(x) = x+ I is a compact subspace of σA(x); let pr

i , f
r denote the

restrictions of pi, f ∈ C(σA(x)) to the compact subspace σA/I(x+ I) ⊂ σA(x),
respectively; then the uniform convergence of pi in C(σA(x)) to f ∈ C(σA(x))
implies the uniform convergence of pr

i in C(σA/I(x + I)) to fr ∈ C(σA/I(x));
hence pr

i (π(x)) converges to fr(π(x)).

Since pr
i (π(x)) = π(pi(x) + I), π(f(x)) converges to the limit fr(π(x)). We

are now done by the uniqueness of the limit.

Q.E.D

Remark. Since the above proposition only used the continuity and the *-
homomorphism of π , the above proposition should hold for all *-homomorphisms
since all *-homomorphisms of a C*-algebra into a C*-algebra are continuous
[Chapter VI. Theorem 3.7 [9]].

Our final corollary follows from the above Quotient Mapping Proposition of
the Functional Calculus for Self Adjoint Elements [Proposition 2].

Corollary 5 For any self-adjoint element x , π(x+) = π(x)+.

Proof By the Functional Calculus, the self-adjoint element x in A is represented
as the identity map, 1σA(x) : ω 7→ ω, on σA(x). Define the following continuous
function on σA(x) which vanishes at 0:

f(λ) =
{
λ : λ ≥ 0
0 : λ ≤ 0

Then x+ = Φ(f) = f(x) and applying the Quotient Mapping Of The Func-
tional Calculus For Self Adjoint Elements to the self adjoint element π(x) of the
C*-algebra A/I we are done.

Q.E.D
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Chapter 2

Lifting: Zero Divisors

2.1 Lifting Problem

We now solve with earnest, special types of lifting problems. We define the
lifting problem as follows:

Definition 1 (Lifting Problem) Let there be a n -ary property, P (y1+I, . . . , yn+
I), (algebraic, analytical, topological etc) that holds for the elements y1+I, . . . , yn+
I in the coarse quotient C*-algebra A/I. We say that the property P lifts to the
finer C*-algebra A provided that we can find elements x1, . . . , xn in the finer C*-
algebra, A, that are identified with the elements y1 + I, . . . , yn + I, respectively,
of the quotient C*-algebra A/I under the quotient map, such that P (x1, . . . , xn)
is true whenever P (y1 + I, . . . , yn + I) is true.

The relation π(xi) = yi + I for i = 1, . . . , n holds if and only if there exists
an element ai in the ideal I such that xi + ai = yi. Consequently, we can
rephrase the lifting problem of the n− ary property P to finding elements ai for
i = 1, . . . , n in the ideal I which you perturb the yi’s for i = 1, . . . , n, respec-
tively, such that the n− ary property P will hold also for the perturbed elements
xi, i = 1, . . . , n whenever it holds for the yi’s.

We now define a ring theoretic (algebraic) property on the C*-algebra A which
we take as a ring:

Definition 2 (Property of Zero Divisor) Let x be an element in the C*-
algebra A taken as a ring. Let the property P (x) be the ring-theoretic property
that the element x is a zero-divisor. A non-zero element x in the ring A is a
zero divisor when there exists a non-zero element y in the ring such that xy = 0.

More precisely, x is a left zero-divisor and y is a right zero-divisor. Since a
left zero-divisor implies the existence of a right zero-divisor and vice versa, we
make no distinction between the two concepts. We say x is a zero divisor with
respect to y. In the context of a commutative ring there is no distinction at all.
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Note that in the factor ring Z/nZ since any non-zero element x 6= 0 of the factor
ring is a zero divisor exactly when the greatest common divisor of x and n is
greater than one, and invertible exactly when the the greatest common divisor of
x and n is one, every non-zero element of the factor ring Z/nZ is either invertible
or a zero-divisor. In fact, in a commutative Noetherian ring R, the set of all
zero divisors is precisely the union of finitely many prime ideals. A Noetherian
ring, A, is a ring where any ascending chain of ideals I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . . is
eventually constant: from some point onwards, the In’s are all equal. A prime
ideal I is an ideal such that ab ∈ I implies a ∈ I or b ∈ I which has the
equivalent property that A/I is an integral domain.

Example 1 (Lifting Zero Divisors) Taking the C*-algebra A/I as a ring
and a non-zero element x + I in the quotient C*-algebra A/I, the property
P of the element x + I being a zero-divisor, P (x + I) is true, lifts when there
exists an element a in the ideal I such that the perturbed element x − a in the
finer C*-algebra A is also a zero-divisor: P (x− a) is true.

We prove the lifting problem of zero divisors affirmatively in the next section.
We now give examples of zero-divisors in C*-algebras:

Example 2 (Zero-Divisors in Non-Commutative C*-algebra) Let A be
the C*-algebra M2(C). Then the matrices x and y defined as:

x =
(

1 0
1 0

)
, y =

(
0 0
1 1

)
qualify x and y as zero-divisors: xy = 0.

Let A be the C*-algebra of all the bounded operators on a separable Hilbert
space, H, such as l2. Equivalently, H has a countable orthonormal basis and
each operator x ∈ B(H) has a matrix representation [aij ] with countably infinite
rows and columns where each row and column is square summable.

We can embed the above matrices x, y ∈ M2(C) as the matrices diag[x, 0] and
diag[y, 0] in B(H), respectively. The matrix diag[x, 0] is the matrix where x is
embedded in the top left corner with all other entries zero. Then diag[x, 0] is a
zero-divisor.

Example 3 (Zero-Divisors in Commutative C*-algebra) Let A be the com-
mutative C*-algebra C[0, 1] of all continuous complex valued functions defined
on the unit interval [0, 1]. Define x(t) and y(t) as in Example 2, Chapter 1.3.1.
Then x(t) is a zero-divisor.

Let K be any closed subset of [0, 1] which is disjoint from the union of the
zeros of x(t) and y(t) which is the finite subset {0, 1}. Then let I denote the
ideal uniquely associated with the closed set K of all the functions which vanish
on K. Then x(t) + I and y(t) + I are zero-divisors of the factor ring A/I.
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2.2 Lifting Zero Divisors

Here we lift the property of a zero divisor from the quotient C*-algebra A/I
onto the C*-algebra A. Formally:

Theorem 1 (Lifting Zero Divisors) (Proposition 2.3 [3]) For any C*-algebra
A , we can lift the property of a zero divisor from the quotient C*-algebra A/I
onto the finer C*-algebra A.

Suppose x+ I is a zero divisor. Then there exists a non-zero element of A/I ,
y+I, such that xy+I = I where I is the zero element of the quotient C*-algebra
A/I : there exists elements x, y ∈ A− I such that their product xy ∈ I. There
exist elements a, b ∈ I of the ideal I such that (x − a)(y − b) = 0 where the
perturbed elements (x− a) and (y − b) are non-zero.

Proof Our plan of attack is as follows: we first show that the above theorem
holds for positive elements: x, y ≥ 0 [Step 1]; then we prove it for arbitrary
elements x, y by a ’bootstrapping argument’ facilitated by the polar decompo-
sition of x, y into their partial isometries and their positive moduli [Step 2].

Step 1: Lifting positive zero divisors Let x, y ≥ 0 where xy ∈ I. Let
us decompose the difference x− y, which is self-adjoint, into its unique orthog-
onal positive parts [Chapter 1.3.1, Corollary 1]:

x− y = (x− y)+ − (x− y)−

where (x− y)+, (x− y)− ≥ 0 and (x− y)+ · (x− y)− = 0. Then the elements a
and b defined as a = x− (x− y)+ and b = y − (x− y)−, are the required ideal
perturbations:

(1) a, b ∈ I: It suffices to show π(a) = π(x) − π((x − y)+) = 0. Equivalently,
π(x) = π((x− y)+). Note that a = b, so that π(a) = 0 if and only if π(b) = 0.

Observe that

π(x− y) = π((x− y)+)− π((x− y)−)

is the unique orthogonal decomposition of self-adjoint element π(x−y) [Chapter
1.3.4, Corollary 5]. But

π(x− y) = π(x)− π(y)

is another orthogonal decomposition of π(x − y) since the positive elements
π(x), π(y) [Chapter 1.3.4, Proposition 1] are orthogonal : π(x) · π(y) = 0.

Therefore, by the uniqueness of orthogonal decompositions, π(x) = π((x− y)+)
and π(y) = π((x− y)−).
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(2)(x− a)(y − b) = 0: This follows immediately from noting that (x−a), (y−b)
are the orthogonal elements (x− y)+, (x− y)−, respectively.

Step 2: Lifting arbitrary zero divisors Consider the elements x, y ∈ A− I
where their product xy ∈ I.

IdentifyA with a norm-closed *-subalgebra of the concrete C*-algebra of bounded
linear operators on its universal Hilbert space [Gelfand Naimark Theorem II,
Chapter 1.2.2]. Therefore we represent the elements x and y in their polar de-
composition form up [Chapter 1.3.2, Theorem 2] where p is a positive element
for which we have already affirmed the lifting of the property of zero divisors.
Now, instead of y we consider its dual y∗. This should not pose any diffi-
culty since we can recover y from y∗ by taking its adjoint. So we write x and
y∗ in terms of their polar decomposition form in B(H) : x = u|x| and y∗ = v|y∗|.

Suppose that we can show the existence of the elements a1, b1 ∈ I such that:

(|x| 12 − a1)(|y∗|
1
2 − b1) = 0. (2.1)

Then the elements a and b defined as a = u|x| 12 a1 and b = b1|y∗|
1
2 v∗ are the

required ideal perturbations for x and y :

(x− a)(y − b) = (u|x| − a)(|y∗|v∗ − b)

= (u|x| − u|x| 12 a1)(|y∗|v∗ − b1|y∗|
1
2 v∗)

= u|x| 12 (|x| 12 − a1)(|y∗|
1
2 − b1)|y∗|

1
2 v∗

= 0 [by(2.1)]

where the elements a and b are elements of the ideal I since a1, b1 ∈ I (I is
2-sided ideal in A ) and u|x| 12 , v|y∗| 12 ∈ A [Chapter 1.3.3, Theorem 5].

We now bootstrap : since the theorem is true for all positive elements, equa-
tion (2.1) is valid as long as we show |x| 12 |y∗| 12 ∈ I. This we prove by writing
|x| 12 |y∗| 12 as the limit of a convergent sequence in I (I is closed). This will vindi-
cate the use of y∗ over y. If the C*-algebra does not have an identity, we replace
it with the unitization C*-algebra Ae of A [Chapter 1.1, Theorem 1]. We define
the sequence as follows:

an = ( 1
n + |x|)− 3

2 (x∗x)(yy∗)( 1
n + |y∗|)− 3

2 .

Reexpressing each an as
(
( 1

n + |x|)− 3
2x∗

)
(xy)

(
y∗( 1

n + |y∗|)− 3
2

)
, we note that

each an ∈ I ⊂ A thereby allowing us to assume without loss of generality that
the C*-algebra has an identity. We show an ∈ I.
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Identify the commutative C*-algebra, C∗(|x|, e), the closure of the *-algebra
generated |x| and e in the unitization C*-algebra Ae of A, with the commuta-
tive C*-algebra, C(K) [Chapter 1.1, Theorem 2]. The normal element ( 1

n + |x|)
of C∗(|x|, e) is a strictly positive function in C(K) : its spectrum consists purely
of positive real numbers. Therefore the element ( 1

n + |x|)− 3
2 is a well defined

element of C∗(|x|, e) ⊂ Ae [Chapter 1.3.1, Theorem 1]. Similarly, ( 1
n + |y∗|)− 3

2

belongs to C∗(|y∗|, e) ⊂ Ae.

Since A is a 2-sided ideal of Ae,
(
( 1

n + |x|)− 3
2x∗

)
and

(
y∗( 1

n + |y∗|)− 3
2

)
is

an element of the original C*-algebra A. But I is a 2-sided ideal of A (in fact,
even of Ae, as direct computation shows). Therefore, we conclude that each an

is an element of the ideal I.

We are now left with showing that

lim
n→∞

an = lim
n→∞

(
1
n

+ |x|)− 3
2 (x∗x)(y∗y)(

1
n

+ |y∗|)− 3
2 = |x| 12 |y∗| 12 (2.2)

Case I : Spectrum of |x| and |y∗| do not contain the number 0 We
first prove equation (2.2) with the restriction that the spectrum of the positive
elements |x| and |y∗| do not contain 0 to motivate the definition of the sequence
an. This is needed to define the elements |x|− 3

2 and |y∗|− 3
2 .

Applying the Functional Factorization For Normal Elements corollary [Chapter
1.3.1, Corollary 2] to the normal element |x| where we set g(x) = x−

3
2 and

h(x) = x2 and f(x) = x
1
2 , we note that:

|x| 12 = |x|− 3
2 |x|2 = |x|− 3

2x∗x.

Similarly, (this is the reason for working with y∗)

|y∗| 12 = |y∗|2|y∗|− 3
2 = yy∗|y∗|− 3

2 .

Therefore,

|x| 12 |y∗| 12 = |x|− 3
2x∗(xyy∗)|y∗|− 3

2 .

Consider the continuous function kn : R+0 → R|x 7→ ( 1
n + x)−

3
2 . Recall that

g : R\{0} → R denotes the power function: g(x) = x−
3
2 . Then on any compact

subset K of R which does not contain the element 0, kn → g, the convergence
being uniform in C(K). Consequently, applying the Gelfand Naimark theorem
to the compact subsets of R which are void of the zero element, C(σAe

(|x|))
and C(σAe

(|y∗|)), we infer that Φ(kn) → Φ(g) = g(|x|) = |x|− 3
2 and Φ(kn) →

Φ(g) = g(|y∗|) = |y∗|− 3
2 , respectively. That is,
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|x| 12 |y∗| 12 = |x|− 3
2 (x∗xyy∗)|y∗|− 3

2

=
(

lim
n→∞

(
1
n

+ |x|)− 3
2
)
(x∗xyy∗)

(
lim

n→∞
(
1
n

+ |y∗|)− 3
2
)

= lim
n→∞

(
1
n

+ |x|)− 3
2 (x∗x)(y∗y)(

1
n

+ |y∗|)− 3
2 .

Case II : Spectrum of |x| and |y| contains the number 0 By the joint
continuity of the product, it suffices to show that:

limn→∞( 1
n + |x|)− 3

2 (x∗x) = |x| 12

since the proof of limn→∞(y∗y)( 1
n + |y∗|)− 3

2 = |y∗| 12 is similarly done. Although
the term |x|− 3

2 is undefined, we go about this problem as follows:

As before, identify the commutative C*-algebra C∗(|x|, e) with an identity, with
C(K) where K is the compact space of all non-zero multiplicative linear func-
tionals of C∗(|x|, e) [Chapter 1.1, Theorem 2]. Let f, fn denote the functional
representation of the C*-algebra element |x|, 1

n +|x| under the Gelfand transform

respectively : fn = ̂1
n + |x| ∈ C(K) and f = |̂x| ∈ C(K). Since the spectrum

of the positive element |x| is exactly the range of f , f is a positive valued func-
tion. The function fn = ̂1

n + |x| = 1̂
n + |̂x| = K 1

n
+ f is the positive valued

function f translated by the constant function K 1
n

: K → C|k 7→ 1
n . Therefore

fn ∈ C(K) is a strictly positive function. Consequently, the composite function
g ◦ fn ∈ C(K) where g(x) = x−

3
2 is a well defined function on K which corre-

sponds to the C*-algebra element ( 1
n + |x|)− 3

2 since the Gelfand transform of a
polynomial expression is the polynomial expression of the Gelfand transform.

In C(K), the sequence of functions g ◦ fn is an increasing sequence of posi-
tive valued functions on the compact space K. Then the increasing sequence of
continuous functions (g ◦ fn) · f2 on the compact space K, converges pointwise
to h ◦ f where h(x) = x

1
2 , which we shall denote as f

1
2 : for all k ∈ K such

that f(k) 6= 0, [(g ◦ fn) · f2](k) converges to f
1
2 (k); for all k ∈ K such that

f(k) = 0, [(g ◦ fn) · f2](k) = 0 which is equal to f
1
2 (k). Consequently, by Dini’s

theorem for compact Hausdorff spaces, (g ◦ fn) · f2 converges uniformly to f
1
2 .

Equivalently, limn→∞( 1
n + |x|)− 3

2 (x∗x) = |x| 12 . We state the version of Dini’s
Theorem we used:

Dini’s Theorem for compact spaces. (Chapter 8, Theorem 8.7 [21]) Let
K be a compact Hausdorff space. Suppose that F ⊂ C(K,R) where C(K,R) is
the space of all real valued functions on the compact space K, has the following
properties:

a) f, g ∈ F implies that there is an h ∈ F such that h ≥ f
∨
g.
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b) The function f0 defined by f0(k) = sup{f(k)|f ∈ F} is real valued and
continuous.

Then given ε > 0, there exists an f ∈ F such that ‖ f − f0 ‖< ε where the
norm ‖ · ‖ is the supremum norm on C(K).

where we set F = {(g ◦ fn) · f2|n ∈ N} and f0 = f
1
2 . Consequently, (g ◦ fn) · f2

converges uniformly to f
1
2 . Equivalently, limn→∞( 1

n + |x|)− 3
2 (x∗x) = |x| 12 .

Q.E.D

Buoyed by the success in lifting the property of a zero divisor, using essentially
the same techniques, we lift the property of positive zero divisors and self-adjoint
zero divisors from the quotient C*-algebra A/I onto the C*-algebra A:

Corollary 1 (Corollary 2.4, [3]) If x, y ∈ A+ with xy ∈ I, then there exist
a, b ∈ I with (x − a)(y − b) = 0 and (x − a), (y − b) ∈ A+. Further, if
x, y ∈ Asa with xy ∈ I, then there exist a, b ∈ I with (x − a)(y − b) = 0
and (x − a), (y − b) ∈ Asa where Asa denotes the self adjoint elements of the
C*-algebra A.

Proof. The first assertion follows from Step 1 of the proof of theorem 1. For
the second assertion, we shall construct the required ideal perturbations from
the following elements:

Consider A as a uniformly closed self-adjoint subalgebra of operators on its
universal Hilbert space H [Gelfand Naimark Theorem II, Chapter 1.2.2]. Let
x = u|x| and y = v|x| denote the polar decompositions of the self adjoint el-
ements x and y, respectively, in B(H). The partial isometries u and v are
self-adjoint and they commute with their respective moduli |x| and |y| [Chapter
1.3.2, Corollary 4]. They will therefore commute with the elements |x| 13 and
|y| 13 , respectively : the element |x| 13 resides in the commutative C*-algebra gen-
erated by u and |x|; likewise for the element |y| 13 .

Now, as in Step 1 of the proof of Theorem 1, consider the decomposition of
the difference |x| − |y|, which is a self-adjoint element in A, into its unique
orthogonal positive parts [Chapter 1.3.1, Corollary 1]:

|x| − |y| = (|x| − |y|)+ − (|x| − |y|)−

where (|x| − |y|)+, (|x| − |y|)− ≥ 0 and (|x| − |y|)+ · (|x| − |y|)− = (|x| − |y|)− ·
(|x| − |y|)+ = 0 : the positive parts (|x| − |y|)+ and (|x| − |y|)− commute and
we shall denote them as d1 and d2, respectively.
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We define the required ideal perturbations a and b as the self-adjoint elements
x− x1 and y − y1 respectively, where x1 and y1 are defined as:

x1 = (d1)
1
3u|x| 13 (d1)

1
3

y1 = (d2)
1
3 v|y| 13 (d2)

1
3

The elements a, b are self-adjoint elements of A : It suffices to show that
x1 and y1 are self adjoint. Since the elements u|x| 13 and v|y| 13 are elements of
A [Chapter 1.3.3, Theorem 5], x1, y1 ∈ A. Now u|x| 13 and v|y| 13 are self-adjoint
since the terms of the product commute and u and v are self adjoint. Therefore
x1, y1 are self adjoint : (d1)

1
3 and (d2)

1
3 are positive and hence self adjoint.

Since d1 and d2 commute:

(x− a)(y − b) = x1y1 = 0

and (x − a) and (y − b) are self adjoint elements. We are therefore left with
showing that:

a, b ∈ I: We show that π(a) = π(x − x1) = π(x) − π(x1) = 0 by showing
that π(x) = π(x1). π(b) = 0 is done similarly.

By the Quotient Mapping Of the Functional Calculus For Self Adjoint Ele-
ments [Chapter 1.3.4, Proposition 2] and its corollary [Chapter 1.3.4, Corollary
5]:

π(x1) = [
(
π(|x|)− π(|y|)

)
+
]
1
3π(u|x| 13 )[

(
π(|x|)− π(|y|)

)
+
]
1
3 (2.3)

Recall that |x| 12 |y∗| 12 ∈ I [Step 2 of the proof of Theorem 1]. Since y is self
adjoint, |x| 12 |y| 12 ∈ I. Therefore, |x||y| = |x| 12 (|x| 12 |y| 12 )|y| 12 is also an element
of the ideal I. Consequently the self adjoint elements π(|x|) and π(|y|) are
orthogonal. Hence, π(|x|) − π(|y|) is the unique orthogonal decomposition of
π(|x|)− π(|y|) :

(
π(|x|)− π(|y|)

)
+

= π(|x|). Equation (2.3) then becomes:

π(x1) = [π(|x|)] 1
3π(u|x| 13 )[π(|x|)] 1

3 (2.4)

= [π(|x| 13 )]π(u|x| 13 )[π(|x| 13 )] (2.5)

= π
(
|x| 13 (u|x| 13 )|x| 13

)
(2.6)

= π(x) (2.7)

the last equation being a consequence of the fact that u commutes with |x| 13 .

Q.E.D
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2.3 Lifting n-zero divisors : Abelian C*-algebra

2.3.1 Lifting n-zero divisors : Statement of Problem

We generalize the definition of a zero divisor [Chapter 2.1, Definition 2] of a
ring to a n-zero divisor of a ring as follows:

Definition 1 (Property of n-Zero Divisor) Consider an n -tuple of elements,
(x1, . . . , xn) , of a C*-algebra A taken as a ring. Let the n-ary property
P (x1, . . . , xn) be the ring-theoretic property that the non-zero n- tuple (x1, . . . , xn)
(none of the xi’s are the zero element) is a n-zero divisor. A non-zero n- tuple
(x1, . . . , xn) is a n-zero divisor when their product

∏
1≤i≤n xi = 0.

In this section, for special types of C*-algebras, we extend the lifting problem
of zero divisors to that of lifting n-zero divisors, which we define formally as:

Definition 2 (Lifting n-Zero Divisors) Taking the C*-algebra A/I as a ring
and a non-zero n - tuple (x1 +I, . . . , xn +I) in the quotient C*-algebra A/I, the
n-ary property P (x1 + I, . . . , xn + I) of the n - tuple (x1 + I, . . . , xn + I) being
a n-zero divisor, P (x1 + I, . . . , xn + I) is true, lifts when there exists a n - tuple
(a1, . . . , an) in the ideal I such that the perturbed n - tuple (x1−a1, . . . , xn−an)
in the finer C*-algebra A is also a zero-divisor: P (x1− a1, . . . , xn− an) is true.

The lifting problem of n-zero divisors from the quotient C*-algebra A/I onto
the C*-algebra A for special types of C*-algebras, will serve to motivate the
solution of the lifting problem of n-zero divisors for a general C*-algebra.

2.3.2 Lifting n-zero divisors : Commutative C*-algebras

Theorem 1 (Proposition 2.5 [3]) Provided A is a commutative C*-algebra,
if x1, . . . , xn are elements of A with

∏
1≤i≤n xi ∈ I, then there exist a1, . . . , an

in I with
∏

1≤i≤n(xi − ai) = 0.

Proof. Identify A with the C*-algebra C0(Ω). Then the closed ideal I can
be identified with closed set K ⊂ Ω on which the functions of I vanish :
I = {f ∈ C0(Ω) | f |K = 0} [Chapter 1.2.4, Example 35]. Therefore, the
hypothesis

∏
1≤i≤n xi ∈ I forces at least one of the xi to be 0 at each point

p ∈ K.

Now identify C0(Ω) ↪→ L∞(Ω,B(Ω), µ) [Chapter 1.2.1, Example 12] with the
commutative subalgebra S of multiplication operators of B(H) where H =
L2(Ω,B(Ω), µ). By the polar decomposition xi = ui|xi| where |xi| = x∗x =
x(t)x(t).

Returning to C0(Ω), for each xi, consider its modulus |xi|
1
2 ∈ C0(Ω). De-

fine the finite join w =
∧

1≤i≤n |xi|
1
2 . Then w ∈ I since x is 0 at each point

in K. Further for every point in Ω at least one of (|xi|
1
2 − w) is zero. That is,
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∏
1≤i≤n(|xi|

1
2 −w) = 0. Setting the element ai in the ideal I as ui|xi|

1
2w (note

that w ∈ I) completes the proof: each ai will perturb each of the xi, xi − ai, to
force

∏
1≤i≤n(xi − ai) = 0 :

∏
1≤i≤n

(xi − ai) =
∏

1≤i≤n

(ui|xi| − ai) =
∏

1≤i≤n

(ui|xi| − ui|xi|
1
2w) (2.8)

=
∏

1≤i≤n

ui|xi|
1
2

(
(|xi|

1
2 − w)

)
(2.9)

=
( ∏

1≤i≤n

ui|xi|
1
2

)( ∏
1≤i≤n

(|xi|
1
2 − w)

)
. (2.10)

= 0. (2.11)

The above equations (2.8) - (2.11) all occur in the commutative subalgebra
S ⊂ B(H), where in particular, equation (2.10) follows from the commutativity
of this subalgebra.

Q.E.D

The above proof offers no clue to a generalization to the non-abelian case. The
case of a Von Neumann C*-algebra sheds more light in this regard. The case of
a SAW*-algebra, another special type of C*-algebra, is the key to the required
generalization. Before we digress into a study of Von Neumann C*-algebras and
SAW*-algebras, we state without proof the following lifting problem:

Theorem 2 (Lifting Finite Positive Orthogonal Sets) (Proposition 2.6, [3])
Let O = {x1 + I, . . . , xn + I} ⊂ (A/I)+ be a finite set of n positive elements of
the quotient C*-algebra A/I which are pairwise orthogonal : (xi +I)(xj +I) = 0
for all i 6= j. We call the set O a finite positive orthogonal set of the C*-algebra
A/I. The above condition is equivalent to O′ = {x1, . . . , xn} ⊂ A+ being a finite
set of n positive elements of the C*-algebra A such that xixj ∈ I for all i 6= j.

Then there exists a finite set, {a1, . . . , an} ⊂ I, of elements of the ideal I with
which we perturb the elements of O′ such that the set {x1−a1, . . . , xn−an} is a
finite positive orthogonal set of the C*-algebra A : {x1− a1, . . . , xn− an} ⊂ A+

and (xi − ai)(xj − aj) = 0.
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2.4 Lifting n-zero divisors : Von Neumann C*-
algebra

2.4.1 Definition of Von Neumann C*-algebra

Every C*-algebra is an operator-norm closed *-subalgebra of some B(H) [Chap-
ter 1.2.2, Gelfand Naimark Theorem II]. A Von Neumann algebra is a special
kind of *-subalgebra of B(H):

Definition 1 (Von Neumann Algebra) A Von Neumann Algebra A is a *-
subalgebra of a B(H) which contains the identity operator 1H and is closed with
respect to a locally convex topology which is weaker than the usual operator norm
topology. The topology in question is the strong-operator-topology, abbreviated
as SOT-topology, and defined in the next definition.

Definition 2 (Strong-Operator-Topology, Weak-Operator-Topology) We
can define two weaker-than-norm topologies on B(H). These topologies are lo-
cally convex topologies on B(H) which have {px : B(H) → R+ | x ∈ H and px(A) =
‖ Ax ‖} and {px,y : B(H) → R+ | x, y ∈ H and px,y(A) = |(Ax|y)|} where
(·|·) is the inner product on H as their defining families of semi-norms, respec-
tively. We call these locally convex topologies the strong and the weak operator
topology on B(H) respectively, abbreviated as SOT-topology and WOT -topology,
respectively.

The WOT-topology is coarser than the SOT-topology. However, with regards to
closed convex sets of B(H) they are indistinguishable:

Theorem 1 (Theorem 5.1.2 [10]) The SOT and WOT closures of a convex sub-
set K of B(H) coincide

Therefore we have an alternative definition of a Von Neumann algebra since all
subspaces are trivially convex:

Definition 3 (Von Neumann Algebra) A Von Neumann algebra A is a *-
subalgebra of B(H) which contains the identity operator 1H and is WOT - closed.

We are now in the position to define a Von Neumann C*-algebra as a C*-algebra
which is also a Von Neumann algebra:

Definition 4 (Von Neumann C*-algebra) Let A be a C*-algebra and Φ be
a one-to-one non-degenerate *-representation where H is the Hilbert space as-
sociated with the *-representation Φ. Since Φ is a one-to-one *-homomorphism
between two C*-algebras, Φ is an isometric *-isomorphism and we can identify
A with an operator-norm closed *-subalgebra of all bounded operators, B(H),
on the Hilbert space H.

The C*-algebra A is a Von Neumann C*-algebra if A contains the identity
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operator 1H and is closed in the SOT - topology or equivalently, in the WOT -
topology. Therefore, the usual operator norm closure, the SOT - topology closure
and the WOT - topology closure coincide.

Example 1 (Commutative Von Neumann C*-algebra) (Chapter 5.1, Ex-
ample 5.1.6 [10]) Let A be the C*-algebra L∞(Ω,B(Ω), µ) [Example 12, Chapter
1.2.1]. We take as our non-degenerate *-representation, the map Φ : L∞(Ω,B(Ω), µ) →
B(H)|g 7→Mg where H = L2(Ω,B(Ω), µ).

A contains the identity operator 1H: the constant 1 -map, e(x) = 1 for all
x ∈ Ω, is the identity for L∞(Ω,B(Ω), µ) ⊂ L2(Ω,B(Ω), µ); Me is hence the
identity operator on H = L2(Ω,B(Ω), µ) and one can show that A is WOT -
closed.

In fact, we can characterize a Von Neumann C*-algebra as a C*-algebra which
has a pre-dual Banach space:

Theorem 2 ([14])A C*-algebra A is a Von Neumann C*-algebra if and only if
it is the dual of some Banach space which we denote as A∗ and call the pre-dual
of A : A = ((A∗)∗).

Example 1 (Pre-Dual Banach Space) Consider the Banach sequence spaces
c0, c, l

1 which denote the sequence spaces of null sequences, convergent se-
quences and absolutely summable sequences, respectively.

Then (c0)∗ = l1 : all linear functionals on the sequence space c0 are of the
form ϕ(an) : c0 → C|(xn) 7→

∑∞
n=1 x(n)a(n) where (an) ∈ l1. The map

Φ : l1 → (c0)∗ : (an) 7→ ϕ(an) is an onto isometric isomorphism.

Further, (c)∗ = l1 : this follows from the fact that all linear functionals on
the sequence space of convergent sequences c are of the form ρ : c→ C|(xn) 7→
k limn(xn) + ψan

where ψan
: c → C|(xn) 7→

∑∞
n=1 a(n)x(n) and (an) is a

sequence in l1.

As the above example illustrates, in general Banach space theory, a dual Banach
space need not be the dual of a unique Banach space. This is not the case for
C*-algebras : it turns out that Von Neumann C*-algebras have a unique pre-
dual.
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2.4.2 Property of Von Neumann C*-algebra : Closure Un-
der Range Projection Of Operator

One of the pleasant features of a Von Neumann C*-algebra A is the abundance
of (orthogonal) projections in A. Recall that p ∈ B(H) is an orthogonal pro-
jection if and only if p2 = p = p∗. Each closed subspace of the Hilbert space
H, corresponds uniquely to an (orthogonal) projection. The closed subspace
associated with the projection p is the range of p. To be more precise:

Theorem 3 (Closure Under Range Projection Of Operator) Let A be a
Von Neumann algebra in B(H). For every operator a ∈ A, the unique oper-
ator associated with the closed subspace Ran(a) where Ran(a) is the range of
the operator a, is a member of the A. We call this unique projection the range
projection R(a).

In fact any Von Neumann C*-algebra A is the closed linear span of its projections
[Chapter 4, Theorem 4.1.11 [13]]. In contrast, there are C*-algebras which have
the trivial projections, the identity and zero operator, as their only projections:

Example 2 (Projectionless C*-algebra) Consider the C*-algebra C([0, 1])
as an operator-norm closed *-subalgebra of the space, B(H), of all bounded oper-
ators on the Hilbert space H = L2(λ[0,1]) [Chapter 1.2.4, Example 43]. Each f ∈
C([0, 1]) is identified with the multiplication operator Mf : g ∈ (L2,M, µ) 7→ fg.

Mf is a projection if and only if f2 = f and f is real-valued. Now f2 = f
implies f2(t) = f(t) ⇒ f(t) = 0 or 1 ∀t ∈ [0, 1]. Since [0, 1] is connected,
the range of f is connected, or equivalently is an interval, and therefore cannot
assume finitely many values. Hence f is either the constant 1 or 0 function
which corresponds to the trivial 1H and 0 - operator on B(L2,M, µ).

In order to prove the Closure Under Range Projection Of Operator theorem
[Theorem 3], we need an analogue of Dini’s Theorem for compact metric spaces
fortunately found in B(H). We quote Dini’s Theorem for compact metric spaces,
which in effect establishes the equivalence of pointwise and uniform convergence
under certain conditions, as follows:

Dini’s Theorem for Compact Metric Spaces. Let X be a compact metric
space, and (fn) an increasing sequence in C(X), the space of all continuous
real valued functions on X, that converges simply (pointwise) to a continuous
function f ∈ C(X). Then (fn) converges uniformly to f .

Now, instead of an increasing sequence of real-valued functions fn in C(X)
bounded by f ∈ C(X), we have a monotone increasing net of self-adjoint opera-
tors Ha in B(H) bounded by k1H ∈ B(H). Recall that the set of all self-adjoint
operators has the usual operator ordering ≤ :

Definition 5 (Usual Operator Ordering on B(H)) Let B(H) denote the
space of all bounded operators on some Hilbert space H. Recall that an op-
erator x ∈ B(H) is positive if and only if (x(η), η) ≥ 0 for each η ∈ H. The
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set B(H)+ of all the positive operators on the Hilbert space H forms a proper
closed convex cone with vertex 0. Since the set of all self-adjoint operators on
the Hilbert space H forms a real vector space, the fixed cone K = B(H)+ de-
fines a partial order ≤ (the antisymmetry of the partial order ≤ is by virtue of
the cone being proper) on the set of all self-adjoint operators as follows:

If a, b ∈ A, then a ≤ b if and only if b− a ∈ A+.

We call this partial order the usual operator ordering on B(H).

We define a monotone increasing net of self-adjoint operators Ha in B(H) as
follows:

Definition 6 (Monotone Increasing Net Of Self-adjoint Operators) Let
(Ha|a ∈ D) be a net of self-adjoint operators in B(H) with respect to the usual
operator ordering ≤ associated with the positive cone B(H)+. The index set D
which we now denote as (D,≤D), is a directed set : ≤D is a partial order on set
D which need not satisfy the antisymmetry axiom and D is closed with respect
to joins: if m,n ∈ D then there exists a p ∈ D such that p ≥ m and p ≥ n.

The net (Ha|a ∈ D) is monotone increasing if and only if the operator or-
dering associated with the positive cone B(H)+ coincides with the directed set
≤D- ordering of the net: Ha ≤ Hb ⇔ a ≤D b.

To complete the analogy, instead of point-wise convergence in C(X), we have
convergence in the SOT-topology in B(H). This analogy is reasonable since
Ha

SOT→ H if and only if px(Ha) → px(H) if and only if Ha(x) → H(x) ∀x ∈
H in the norm topology of H. The limit H in analogy with the real valued
pointwise limit f ∈ C(X) is also self-adjoint. In short we have:

Lemma 1 (Dini Theorem Analogue in B(H)) ( Chapter 5, Lemma 5.1.4
[10]) If (Ha)a∈D is a monotone increasing net of self adjoint operators on the
Hilbert space H and Ha ≤ k 1H for all a, then the net Ha is strong operator
convergent to a self-adjoint operator H , and H is the least upper bound of the
set {Ha|a ∈ D}.

The crux of the proof of the Closure Under Range Projection Of Operator
theorem [Theorem 3] lies in observing that the positive operator a ∈ A where A
is a Von Neumann C*-Algebra and the positive n-th root a

1
n can be treated as

the identity and the n-root functions on some C(K), respectively, since A has
an identity [Chapter 1.1, Theorem 2].

Lemma 2 (Chapter 5, Lemma 5.1.5 [10]) If a ∈ B(H) is a positive operator
on the Hilbert space H and 0 ≤ a ≤ 1H, then a

1
n is a monotone increasing

sequence of positive operators whose strong-operator limit is the projection on
the closure of the range of a.
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Proof. Consider the self-adjoint element a ∈ B(H), a C*-algebra with an iden-
tity, as an element of the commutative C*-subalgebra C∗(a). The sequence a

1
n

is a monotone increasing sequence of positive operators in B(H) since it corre-
sponds to the monotone increasing sequence of functions (a

1
n ) in C(σB(H)(a))

under the order preserving isometric *-isomorphism Φ : C(σB(H)(a)) → C∗(a)
[Chapter 1.3.1, Theorem 1]. Therefore, the sequence (a

1
n ) has a SOT -topology

limit E , which is a bounded self-adjoint operator [Lemma 1]. Once we establish
E2 = E then we have shown that E is an (orthogonal) projection. We must
however check a few things.

The sequence (a
1
n ) corresponds to the monotone increasing sequence of functions

(a
1
n ) in C(σB(H)(a)) . Firstly, each of the elements a

1
n is well defined since the

n-th root functions are well defined: a ≥ 0 ⇒ σB(H)(a) ⊂ R+. Secondly, the
restriction that a ≤ 1H forces the domain, σB(H)(a), of the n-th root functions
x

1
n to be a subset of [0, 1] : the spectral radius r(a) = sup{|λ| | λ ∈ σB(H)(a)}

is bounded by ‖ a ‖ which in turn is bounded by ‖ 1H ‖= 1 [Chapter 1.1, Equa-
tion (1.11)]. Therefore, the sequence (a

1
n ) is a monotone increasing sequence of

functions in C(σB(H)(a)}).

E is an orthogonal projection : E2 = E. Observe that the product sequence
(a

1
n )(a

1
n ) = (a

2
n ) has E2 as its SOT-topology limit: this follows from the joint

continuity of the point-wise product of the C*-algebra C∗(a) which is trans-
ferred faithfully by the *-isomorphism Φ. Since (a

1
n ), which is the sequence

(a
2
2n ), is a subsequence of the sequence (a

2
n ), E = E2 : all subsequences of a

convergent sequence share the same limit.

We are now left with showing that E = R(a) : the unique closed subspace
associated with the projection E is the closed subspace of Ran(a). We prove
this by showing that the projection E has the same kernal as the positive op-
erator a, since ker(a)⊥ = Ran(a) by virtue of the fact that the operator a is
self-adjoint [Chapter 7.2, Proposition 2.2.1, [25]].

(1) ker(a) ⊂ ker(E).

Since the n-th root functions x
1
n vanish at 0, each x

1
n ∈ C(σA(x)) is a uniform

limit of polynomials pi ∈ C(σA(x)), which do not have constant terms [Stone-
Weierstrass theorem]. Therefore, Φ(pi) → Φ(f), the convergence occurring in
C∗(a) [Theorem 1, Chapter 1.3]. Since Φ is a *-homomorphism, Φ(pi) = pi(a).
Consequently, each a

1
n is a limit of a sequence consisting of polynomial expres-

sions purely involving a, the convergence taking place in the operator norm
topology of B(H). The convergence will also take place in the coarser SOT -
topology:

pi(a)(η) → a
1
n (η) for each η in H
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If a(η) = 0, then pi(a)(η) = 0 for all i. Therefore, a
1
n (η) = 0 for each n. Simi-

larly, E(η) = 0 since it is the SOT-topology limit of a
1
n .

(2) ker(E) ⊂ ker(a).

Firstly, E ≥ a
1
n . Equivalently, E − a

1
n ∈ B(H)+. Therefore,

(E − a
1
n (η)|η) ≥ 0 if and only if (E(η)|η) ≥ (a

1
n (η)|η)

for all η ∈ H, where (·|·) is the inner product in H. Since a
1
n is a positive

operator, (a
1
n (η)|η) ≥ 0.

The restriction E|ker(E) of E to the Hilbert space ker(E) is the zero opera-
tor. Since E(η) = 0 forces (a

1
n (η)|η) = 0 for all η in the Hilbert space ker(E),

the restriction of a
1
n to the Hilbert space ker(E) is the 0-operator [Polarization

identity, Chapter 2, Proposition 2.4.3 [10]].

Q.E.D

We are now ready to prove the Closure Under Range Projection Of Operator
theorem [Theorem 3] as an immediate corollary of lemma 2:

Firstly, we can assume that a is positive without loss of generality. This is
because the positive operator aa∗ is such that Ran(aa∗) = Ran(a). We can
further assume without loss of generality that a ≤ 1H : since a is a positive
operator, 0 ≤ a ≤‖ a ‖ 1H [Theorem 1, Chapter 1.3.1]; since for all positive real
constants λ, Ran(λa) = Ran(a), we can choose λ = 1

‖a‖ and replace a with λa.

Finally, for each positive operator a in the Von Neumann Algebra A, each of
the n-th root of a, a

1
n , belongs to the Von Neumann algebra A. Each a

1
n resides

in C*(a), the operator norm closure of the set of all polynomial expressions in
a. The set of all polynomial expressions in a also resides in the Von Neumann
algebra A. Since the SOT - topology is coarser than operator norm topology,
it follows that a

1
n ∈ C*(a) ⊂ A. Hence the SOT-topology limit E is in the

SOT-topology closed Von Neumann algebra A.

Q.E.D

69

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



2.4.3 Lifting n-zero divisors : Von Neumann C*-algebra

Let A be a Von Neumann C*-algebra [Chapter 2.4.1, Definition 4]. The abun-
dance of projections [Chapter 2.4.2, Theorem 3] in A enables us to construct
a pair of projections in A which have a property that is critically used in the
lifting of n-zero products in the Von Neumann algebra A. The property in
question is a generalization of Theorem 2.3 of C. Olsen’s paper, A Structure
Theorem For Polynomially Compact Operators, Amer. J. Math. 93 (1971), p
686 - 698, which focusses on the lifting of properties in the C*-algebra B(H), of
all bounded operators on a separable Hilbert space H, where the closed 2-sided
ideal in question is the space of all the compact operators K(H). We now state
and prove this property in the context of a Von Neumann C*-algebra A and an
arbitrary closed 2-sided ideal I:

Lemma 3 (Von Neumann Lifting Lemma) (Proposition 4.1 [3]) Let A be
a Von Neumann C*-algebra. Let x, y ∈ A such that their product xy ∈ I. Then
there exists a projection e ∈ A onto some closed subspace V ⊂ H along V ⊥

together with its dual 1− e, denoted e′, a projection on V ⊥ ⊂ H along V , such
that the modified multiplicands xe′ and ey are also in the closed ideal I.

Proof. By the Lifting Zero Divisors theorem [Chapter 2.2, Theorem 1], there
exists elements a, b ∈ I such that (x − a)(y − b) = 0. The range projec-
tion R(y − b) : the projection uniquely associated with the closed subspace
Ran(y − b) will do the job. We denote it as e′. Let its dual, the orthogonal pro-

jection on the orthogonal subspace Ran(y − b)
⊥

, be denoted as e : 1H− e = e′.

Clearly e(y − b) is the zero operator. Hence ey = eb ∈ I since b ∈ I. Sim-
ilarly (x − a)e′ is the zero operator since e′ is a projection onto Ran(y − b)
which is annihilated by the operator (x − a) : (x − a)(y − b) = 0. Therefore,
xe′ = ae′ ∈ I since a ∈ I.

Q.E.D

Now armed with the above lemma, we proceed to lift the property of n-zero
divisors in a Von Neumann C*-algebra:

Theorem 4 (Theorem 4.2 [3]) If x1, . . . , xn are elements of the Von Neu-
mann C*-algebra A with

∏
1≤i≤n xi ∈ I, then there exist a1, . . . , an in I with∏

1≤i≤n(xi − ai) = 0.

Proof. [Proof by Induction] The Lifting Zero Divisors Theorem [Theorem
1, Chapter 4] completes the induction step for n = 2. Suppose that the theo-
rem holds for the case n = n. We now show that it also holds for the case of n+1.

Since
∏

1≤i≤n+1 xi =
( ∏

1≤i≤n xi

)
· xn+1 ∈ I, we ’split’ the original product

which resides in I into the terms
( ∏

1≤i≤n xi

)
e′ and exn+1 which both reside

in I, by means of projections e, e′ in A [Lemma 1]. Now invoke the induction
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hypothesis on
( ∏

1≤i≤n xi

)
e′ =

( ∏
1≤i≤n−1 xi

)
(xne

′) to assume the existence
of the elements {a1, . . . , an−1, b} in the ideal I which produce the perturbations
such that: ( ∏

1≤i≤n−1

(xi − ai)
)
(xne

′ − b) = 0. (2.12)

Define an = be′ and an+1 = exn+1. Both an and an+1 reside in I since b ∈ I
and exn+1 ∈ I [lemma 1]. Then∏

1≤i≤n+1(xi − ai) = 0

since

∏
1≤i≤n+1

(xi − ai) =
( ∏

1≤i≤n−1

(xi − ai)
)
(xn − an)(xn+1 − an+1)

=
( ∏

1≤i≤n−1

(xi − ai)
)
(xn − be′)(xn+1 − exn+1)

=
( ∏

1≤i≤n−1

(xi − ai)
)
(xn − be′)e′(xn+1)

=
( ∏

1≤i≤n−1

(xi − ai)
)
(xne

′ − be′)(xn+1) (2.13)

=
( ∏

1≤i≤n−1

(xi − ai)
)
(xn(e′)2 − be′)(xn+1) (2.14)

=
( ∏

1≤i≤n−1

(xi − ai)
)
(xne

′ − b)e′(xn+1) (2.15)

= 0.

where equations (2.9) and (2.10) follow from the idempotency of the projection
e′ : (e′)2 = e′ and the last equality from the induction hypothesis (2.8).

Q.E.D

Many C*-algebras do not have a supply of projections which have the property
described in Lemma 1. We next study a new class of C*-algebras, called SAW*-
algebras, which have a C*-algebraic property that closely resembles the Von
Neumann Lifting Lemma (Chapter 2.4.3, Lemma 3). The C*-algebraic property
in question is the possession of orthogonal local units which we shall motivate
and define in the next section.
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2.5 SAW*-algebra : Corona C*-algebra

2.5.1 The Paradigm of Non Commutative Topology

In the study of rings of continuous functions, one of the goals is the study of
the interplay between algebraic (ring-theoretic) properties of the ring, C(X), of
all continuous functions on a topological space, X, and the actual topology of
the topological space X.

Evidently the topology on X determines the ring C(X) by determining which
function on X into R is continuous. In fact it is without loss of generality that
we can assume that X is a completely regular topological space. A completely
regular topological space is a Hausdorff space such that whenever F ⊂ X is a
closed subset and x is a point outside of it, there exists a function in C(X) such
that f(x) = 1 and f [F ] = 0:

Theorem 1 (Chapter 3.9, Theorem 3.9 [31]) For every topological space X,
there exists a completely regular space Y and a continuous mapping τ of X onto
Y , such that the mapping g 7→ g ◦ τ is a ring isomorphism of C(Y ) onto C(X).

Now the converse problem of investigating topological spaces X and Y for which
their associated ring of continuous functions C(X) and C(Y ), respectively, if
ring isomorphic implies the topological isomorphism of X and Y is a central
goal of the study of rings of continuous functions.

Theorem 2 (Chapter 4.9, Theorem 4.9 [31]) Two compact spaces are homeo-
morphic if and only if their rings C(X) and C(Y) are isomorphic.

Now every commutative C*-algebra is a C0(X). We wish to study certain
C*-algebraic properties of C0(X) that are logically equivalent to topological
properties on the locally compact Hausdorff spaceX. Our first example logically
equates the C*-algebraic property of C0(X) being σ-unital and the topological
property of X being σ-compact. The topological space X is σ-compact if it is
the countable union of compact subsets.

Example 1 ([4]) The C*-algebra C0(X) is σ - unital if and only if X is σ-
compact.

Proof. Here we shall only prove the assertion that if X is σ-compact then
C0(X) is σ-unital.

Write X as a countable union of compact subsets K1,K2, . . . ,Kn, . . . : X =⋃∞
i=1Ki. Since the finite union of compact subsets is compact, we construct an

ascending sequence of compact subsets:

K1 ⊂ K1 ∪K2 ⊂ . . . ⊂
⋃n

i=1Ki . . .
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where we shall let Sn denote the compact subset
⋃n

i=1Ki. Then arguing as in
Appendix A.3, Theorem 3, Step 1, there exists a continuous function ∆Sn

∈
C0(Ω) acting as a continuous approximant of the characteristic function on the
compact set Sn [Urysohn’s Lemma For Locally Compact Spaces : Chapter 7,
Theorem 7.14, [21]]:

∆Sn(x) =
{

1 : x ∈ Sn

0 : x /∈ O ⊃ Sn

where O is a proper open set containing the compact set Sn. Now consider the
join function fn =

∨n
i=1 ∆Sn

which belongs to C0(X). Then the sequence of
functions fn form an ascending sequence of functions in C0(X) whose norm are
less than or equal to 1. We claim that this sequence (fn) is an approximate
identity for C0(X) :

‖ ffn − f ‖→ 0 as n→∞ for each f ∈ C0(X).

Since f ∈ C0(X), for each ε > 0, there exists a compact subset K ⊂ X such
that |f(x)| ≤ ε for all x outside of K. Since ‖ fn ‖≤ 1, |fnf | ≤ ε for all x
outside of K. Now X =

⋃∞
i=1Ki so there exists an n high enough such that

K ⊂ Sn. Since |fnf(x) − f(x)| = 0 for all x ∈ K and |fnf(x) − f(x)| ≤ 2ε for
all x outside of K, we are done.

Q.E.D

Hence we focus on C*-algebraic properties can be identified with topological
properties of X of C0(X). In the above example, the C*-algebraic property in
question is the property of being σ-unital.

In the paradigm of non-commutative topology, each non-commutative C*-algebra
as taken as a non-commutative C0(X) : the functions of a C0(X) which do not
commute. Non-Commutative Topology is the study of certain C*-algebraic
properties on a general C*-algebra. The C*-algebraic properties are those C*-
algebra properties on C0(X) defined by topological properties on the topologi-
cal space X which will make sense for a general C*-algebra. The C*-algebraic
property of being σ-unital is one such example. Hence the identification of the
topology X with respect to certain C*-algebraic properties in the C*-algebra
C0(X) gives rise to the term ”Non-Commutative Topology”. As a further ex-
ample, consider the C*-algebraic property of being a Von Neumann C*-algebra.
Recall that Von Neumann C*-algebras have an identity, so we consider C0(X)’s
which have an identity: that is C(X) where X is a compact Hausdorff space:

Example 2 (Stonean - Von Neumann C*-algebra) The C*-algebra C(X)
of all continuous functions on a compact Hausdorf space X is a Von Neumann
C*-algebra if and only if X is extremally disconnected. We shall call all compact
Hausdorff spaces which are extremally disconnected, Stonean spaces.
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We now introduce the topological concept of an extremally disconnected topo-
logical space X. Recall that a topological space X is connected if and only if X
cannot be written as a disjoint union of open subsets U and V . Although not
all topological spaces are connected, such as the set of all rationals Q with the
subspace topology induced by the usual topology on the reals R, all topological
spaces are a disjoint union of closed connected subsets (a subset is connected if
it is connected with respect to the subspace topology) : for each x ∈ X, consider
the collection Cx of all connected subsets containing x; this collection is non-void
since {x} ∈ Cx;

⋃
Cx is the largest connected set containing x and is therefore

closed; it is called a component and the set {
⋃
Cx|x ∈ X} is a partition set of

the topological space into disjoint closed connected sets.

Now there are various degrees of disconnectedness. If the only non-empty con-
nected subsets are the trivial singletons, then the space is called totally discon-
nected. Consequently singletons are the only components. There is an even
higher degree of disconnectedness : extremally disconnected.

Definition 1 (Extremally Disconnected Topological Space) A topologi-
cal space X is extremally disconnected if it is Hausdorff and the closure of each
open set is open.

Example 3 (Totally Disconnected but Not Extremally Disconnected)
Consider the set of all rationals Q as a subspace of the set of all reals R en-
dowed with the usual topology. Then Q is totally disconnected since for any pair
of distinct points x, y, there exists a pair of clopen subsets separating the two
points. Let r denote an irrational number between x and y : x < r < y. Then
the subset Q ∩ < r,∞ > is a clopen subset of Q containing y but not x.

The open subset Q ∩ < 0, 1 > has closure Q ∩ [0, 1] which is not open in
the subspace topology.

The property of being extremally disconnected is stronger than the property of
being totally disconnected for a locally compact space X. Firstly, in a locally
compact space X, for each point x ∈ O where O is an open set, there exists an
open set V such that x ∈ V ⊂ V ⊂ O [Chapter 7, Proposition 7.22 [21]]. Since
the closure of every open set is open [X is extremally disconnected], each point
x has a basic neighbourhood system of clopen sets : X is called 0-dimensional.
Secondly, since X is Hausdorff, for any pair of distinct points x, y, there exists
an open set W which contains x but not y. Hence, there exists a clopen set
Y ⊂ X which contains x but not y. Therefore, any subset which has more than
two points are disconnected.

Example 4 (Extremally disconnected Compact Hausdorff Space) Con-
sider the set N of all the natural numbers with the discrete topology. N is there-
fore a locally compact Hausdorff space which is extremally disconnected. Since
N is completely regular, its Stone-Cĕch compactification βN is also extremally
disconnected.[Chapter 6, Theorem 12 [30]]
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Returning back to Example 2, we can view Example 2 as a passage from a
C*-algebra into a Von Neumann algebra. The proof of Example 2, rests on the
following property induced by the extremally disconnected compact Hausdorff
space X on its associated ring of continuous function C(X):

Theorem 3 (Stonean - Dedekind Complete) Let X be Stonean. Let its
associated ring of continuous functions, C(X), be taken as a lattice. A lattice
is a partially ordered set such that every pair of elements has a greatest lower
bound (glb) element in the set and dually, a least upper bound (lub) element in
the set. The partial order in C(X) is the usual partial order associated with the
positive cone of all the positive valued functions in C(X). The lub and glb of
any two functions in C(X) is the standard join and meet functions which belong
to C(X).

Now consider the following lattice theoretic property: a lattice is Dedekind com-
plete if and only if every non-empty subset of the lattice which has an upper
bound in the lattice has a least upper bound also in the lattice.

It turns out that C(X) is Dedekind complete if and only if X is Stonean.

75

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



2.5.2 Non Commutative Topology : Sub-Stonean Spaces
and Corona Sets

Here we investigate the C*-algebraic properties of the C*-algebra C0(X) which
are logically equivalent to the topological property of X being sub-Stonean. By
default, X is a locally compact Hausdorff space.

Definition 2 (Sub-Stonean Topological Space) A locally compact σ-compact
Hausdorff space X is sub-Stonean if and only if any two disjoint, open, σ-
compact subsets of X have disjoint compact closures.

Note that deleting the term σ-compact takes us back to the definition of an
extremally disconnected space.

The following proposition provides a motivation for studying locally compact
σ-compact Hausdorff spaces:

Theorem 4 If X is a locally compact σ-compact Hausdorff space, then every
open σ-compact subset is exactly the complement of a zero set, Zf , for some
function f ∈ C0(X). A zero set Zf = {x ∈ X|f(x) = 0}.

Proof.

(i) Every open σ-compact subset Y is the complement of a zero set, Zf , for
some function f ∈ C0(X).

Let Y be an open σ-compact subset of the topological space X. Write Y as
a countable union of compact subsets K1,K2, . . . ,Kn, . . . : Y =

⋃∞
i=1Ki.

Note that for each compact Kn, Kn ⊂ Y where Y is open. Therefore for each
Kn, there exists a continuous function ∆Kn ∈ C0(X) acting as a continuous
approximant of the characteristic function on the compact set Kn [Urysohn’s
Lemma For Locally Compact Spaces : Chapter 7, Theorem 7.14, [21]]:

∆Kn
(x) =

{
1 : x ∈ Kn

0 : x /∈ Y

We piece together these positive valued approximants of characteristic functions
by considering the function ∆ =

∑
2−n∆Kn

. ∆ is the required function.

(i) ∆ ∈ C0(X) : Since ‖ ∆Kn
‖≤ 1, ‖ 2−n∆Kn

‖≤ 2−n. Therefore, the se-
ries

∑
2−n∆Kn is absolutely convergent and since C0(X) is a Banach space,

the limit ∆ exists in C0(X).

(ii) Z∆ is X\Y : Since Y =
⋃∞

i=1Ki, the zero set of ∆, Z∆, is X\Y .
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(ii) Conversely, every complement of a zero set, Zf , for some function f ∈
C0(X) is an open σ-compact subset.

We first define some topological terms. A subset of a topological space is a
Gδ set if and only if it is the countable intersection of open subsets. The dual
concept is an Fσ set which is the countable union of closed sets.

(a) Each zero set, Zf , is a closed Gδ set.

Let B(0, 1
n ) denote the open ball of radius 1

n centered at the origin of the
complex plane. Then, we write Zf as the countable intersection:

Zf =
⋂∞

n=1 f
−1[B(0, 1

n )].

of open subsets f−1[B(0, 1)], f−1[B(0, 1
2 )], . . . , f−1[B(0, 1

n )], . . .. Since f is con-
tinuous, each zero set, Zf , is a closed Gδ set.

Consequently, its complement is an open Fσ set by de Morgan’s law.

(b) An Fσ set is σ-compact.

Let U be a Fσ set. We write U as a countable union of closed subsets C1, C2, . . . ,
Cn, . . . :

U =
⋃∞

n=1 Cn.

Since the topological space X is σ-compact, we write X as a countable union
of compact subsets K1,K2, . . . ,Kn, . . . :

X =
⋃∞

m=1Km.

Therefore U = U∩X is a countable union of compact subsets since compactness
is closed hereditary:

U =
∞⋃

n=1

Cn

⋂ ∞⋃
m=1

Km

=
∞⋃

n=1

∞⋃
m=1

Cn ∩Km

Q.E.D

We now have a C*-algebraic property for the C*-algebra C0(X) which is log-
ically equivalent to the topological property of the locally compact σ-compact
Hausdorff space X being sub-Stonean. This C*-algebraic property is analogous
to the Von Neumann Lifting Lemma property (Chapter 2.4.3, Lemma 3):
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Theorem 5 (Sub-Stonean - Orthogonal Local Units) (Proposition 1.1 [5])
The C*-algebra C0(X) possesses orthogonal local units if and only if X is sub-
Stonean. The C*-algebra C0(X) possesses orthogonal local units if and only if
whenever f and g in C0(X) are orthogonal (that is, fg = 0) there are orthogonal
functions f1, g1 in C0(X) such that f1f = f and g1g = g.

Proof. We first prove the assertion that if the locally compact σ-compact
Hausdorf space X is sub-Stonean then C0(X) possesses orthogonal local units .

(i) The complement of the zero sets of the orthogonal functions f and g are
disjoint.

The functions f and g are orthogonal if and only if the union of their zero
sets is the entire space X : Zf ∪ Zg = X. Equivalently, X\Zf ∩X\Zg = ∅ by
De Morgan’s Law.

(ii) The closures of the complements of the zero sets of the orthogonal func-
tions f and g are disjoint and compact.

By theorem 4, the complements of the zero sets of the orthogonal functions
f and g, X\Zf and X\Zg, respectively, are disjoint open σ-compact subsets.
Their closures X\Zf and X\Zg are disjoint and compact since the topological
space X is sub-Stonean.

(iii) There exists local units for the orthogonal functions.

By (ii), we construct the local units as follows:-

Consider the following pairs of compact-open subsets: X\Zf ⊂ O1 and X\Zg ⊂
O2 where O1 = X\X\Zg and O2 = X\X\Zf . Therefore for the compact sets
X\Zf and X\Zg, there exists continuous functions ∆

X\Zf
,∆

X\Zg
∈ C0(X) act-

ing as a continuous approximant of the characteristic function on the compact
sets X\Zf and X\Zg, respectively [Urysohn’s Lemma For Locally Compact
Spaces : Chapter 7, Theorem 7.14, [21]]:

∆
X\Zf

(x) =
{

1 : x ∈ X\Zf

0 : x ∈ X\Zg

∆
X\Zg

(x) =
{

1 : x ∈ X\Zg

0 : x ∈ X\Zf

Their restrictions, ∆
X\Zf

|S ,∆X\Zg
|S , to the closed subset S = X\Zf ∪X\Zg,

are orthogonal elements in C0(S), the space of all continuous complex val-
ued functions on S which vanish at infinity. Note that ∆

X\Zf
|S · f = f and
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∆
X\Zg

|S · g = g. They will therefore have orthogonal extensions f1 and g1 in
C0(X) [Lemma 1.3 [5]].

In the case of X being compact, the normality of X ensures the existence of
disjoint opens U and V such that X\Zf ⊂ U and X\Zg ⊂ V enabling us
to construct orthogonal local units without resorting to the Extension Lemma
[Lemma 1.3 [5]].

We now prove the converse : if the C*-algebra C0(X) possesses orthogonal lo-
cal units then the locally compact σ-compact Hausdorff space X is sub-Stonean.

Two disjoint, open, σ-compact subsets of X corresponds to the complements,
X\Zf , X\Zg, of the zero sets of two orthogonal functions f, g ∈ C0(X), respec-
tively [Chapter 2.5.2, theorem 4]. We therefore have to show that their closures,
X\Zf , X\Zg are disjoint and compact.

(i) There exists disjoint open σ-compact subsets of X which separate X\Zf , X\Zg

By the hypothesis, there exists two orthogonal functions f1, g1 in C0(X) such
that f1f = f and g1g = g. But, if f1f = f , then the complement, X\Zf1 , of
the zero set of f1 supersets the complement, X\Zf , of the zero set of f . An
identical conclusion holds for g. Formally:

X\Zf ⊂ X\Zf1

X\Zg ⊂ X\Zg1

Since f1 and g1 are orthogonal functions in C0(X), the subsets X\Zf1 and
X\Zf1 are disjoint open σ-compact subsets of X.

(ii) There exists closed proper subsets Cf , Cg of X\Zf1 and X\Zg1 , respectively,
such that X\Zf ⊂ Cf ⊂ X\Zf1 and X\Zg ⊂ Cg ⊂ X\Zg1 .

Firstly, f1 = 1 on X\Zf . Therefore, the continuous function K1 − f1 where
K1 is the constant 1-function on X, is zero on X\Zf . Let Cf denote the zero
set, ZK1−f1 , of K1−f1 : Cf = {x ∈ X|f1(x) = 1} . Then Cf ⊃ X\Zf . Further,
Cf is closed since K1−f1 is continuous. Finally, Cf ⊂ X\Zf1 since K1−f1 = 0
exactly when f1 = 1.

Secondly, we show that Cf is not a dense subset of X\Zf1 . Suppose on the
contrary that Cf = {x ∈ X|f1(x) = 1} is dense in X\Zf1 . Then by the conti-
nuity of f1, f1(x) = 1 for all x ∈ X\Zf1 . Therefore, f1 is the non-continuous
characteristic function χX\Zf1

on X\Zf1 :

χX\Zf1
(x) =

{
1 : x ∈ X\Zf1

0 : x ∈ Zf1
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which contradicts the fact that f1 ∈ C0(X).

Identically, defining Cg to be the zero set, ZK1−g1 completes the proof of (ii).

(iii) The closures, X\Zf , X\Zg are disjoint and compact.

We only prove the compactness for X\Zf since the proof for the compactness
of X\Zg is identical. The disjointedness follows immediately from (ii) and (i)

Firstly, since X\Zf1 is σ-compact, write X\Zf1 as a countable union of compact
subsets K1,K2, . . . ,Kn, . . . : X\Zf1 =

⋃∞
i=1Ki.

Secondly, since Cf is a non-dense subset of X\Zf1 , there exists a n ∈ N high
enough such that Cf ⊂

⋃n
i=1Ki:

Suppose not. Then for all n ∈ N, Cf ⊃
⋃n

i=1Ki. Consider an arbitrary
x ∈ X\Zf1 =

⋃∞
i=1Ki. Then, there exists a j ∈ N such that x ∈ Kj ⊂

⋃j
i=1Ki.

Consequently, x ∈ Cf which contradicts the fact that Cf is a proper subset of
X\Zf1 .

Finally, from (ii), X\Zf ⊂
⋃n

i=1Ki =
⋃n

i=1Ki =
⋃n

i=1Ki. Since compact-
ness is preserved under finite unions,

⋃n
i=1Ki is compact and X\Zf is compact

since compactness is closed-hereditary.

Q.E.D

Having established the logical equivalence between the C*-algebraic property
of the C*-algebra C0(X) possessing orthogonal local units and the topologi-
cal property of the locally compact σ-compact Hausdorff space X being sub-
Stonean, we now construct examples of sub-Stonean spaces. It turns out that
sub-Stonean spaces are large in general:

Theorem 6 (Theorem 1.10 [5]) The closure of every open, σ-compact subset Y
of a sub-Stonean space X is homeomorphic to the Stone-Cĕch compactification
βY of Y .

The following construction provides a rich source of examples of sub-Stonean
spaces. We first introduce the concept of the corona:

Definition 3 (Corona) Let X be a locally compact Hausdorff space with Stone-
Cĕch compactification βX. The remainder βX\X is called the corona of the
locally compact Hausdorff space X.

Example 5 (Corona of N) Let N be the set of natural numbers with the dis-
crete topology. N is a locally compact Hausdorff space and is therefore an open
subspace of any compactification, in particular, the Stone-Cĕch compactification
βN. The remainder or the corona βN\N is a closed and hence compact sub-
space of βN.
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The Stone-Cĕch compactification βN is extremally disconnected [Example 4,
chapter 2.6.1] but the corona βN\N is not [Chapter 6.2, Example 4 [30]]. For-
tunately, by virtue of N being σ-compact, it turns out, from the next theorem,
that it is sub-Stonean.

Theorem 7 (Sub-Stonean Corona) (Theorem 3.2 [5]) If X is a locally com-
pact space, σ-compact Hausdorff space then its corona, βX\X, is a sub-Stonean
space. Equivalently, C0(βX\X) possesses orthogonal local units.

We now state without proof a theorem on the C*-algebra C0(X) which will give
a commutative origin of the concept of the corona C*-algebra, which we shall
discuss in the next section.

Theorem 8 (Chapter 7.4, Theorem 7.4.4 [17]) Consider the C*-algebra C0(X).
If Y is a closed subset of the locally compact Hausdorff space X, then the unique
2-sided closed ideal, I, of C0(X) associated with the closed subset Y : I = {f ∈
C0(X)|f |Y = 0} is denoted by C0(X\Y ) [Chapter 1.2.4, Example 35]. Then we
have the following isometric onto isomorphism :

C0(X)/C0(X\Y ) ∼= C0(Y )

We state and prove the following result which we shall need in providing a
commutative origin of the concept of the corona C*-algebra:

Proposition 1 In the notation of Theorem 8, let the locally compact σ-compact
Hausdorff space X be the compact space βN, the Stone-Cĕch compactification
of the set of naturals N with the discrete topology. Let the closed set Y be the
corona βN\N [Example 5].

The 2-sided closed ideal I of all the functions in C0(βN) = C(βN) = {f :
βN → C|f is continuous} which vanish on the corona Y = βN\N, denoted
C0(βN\Y ), is exactly C0(N), the space of all null sequences [Appendix A.3,
Example 4].

Proof. The intuition behind this, is the fact that the onto ring isomorphism
Φ : Cb(N) → C(βN) : f 7→ fβ enables us to identify each f in Cb(N), the
space of all bounded sequences, with the restriction of an fβ ∈ C(βN), to the
subspace N. The set C(βN) is the space of all continuous complex-valued func-
tions on the Stone-Cĕch compactification of the set of naturals βN. Since fβ is
0 on the corona βN\N, its restriction to the subspace N, a bounded sequence,
must vanish at infinity by the the continuity of fβ .

We shall prove this rigourously:

(i) If fβ ∈ C(βN) vanishes on the corona βN\N, then, for all ε > 0, the
restriction of fβ to N, fβ |N, cannot be larger than ε for all n ∈ N.
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Suppose on the contrary that there exists an ε0 > 0 such that fβ |N(n) ≥ ε0
for all n ∈ N. Since N is dense in βN, for every point p in the corona
βN\N, there exists a net, (nα), in N such that nα → p. By the continuity
of fβ , fβ(nα) → fβ(p) = 0. This is a contradiction since the numerical net
fβ(nα) = fβ |N(nα) stays away from B(0, ε0).

(ii) For every ε > 0, the restriction fβ |N is greater than ε for all but a fi-
nite number of elements in N : fβ |N ∈ C0(N).

Assume on the contrary that there exists an ε0 > 0 such that the restriction
fβ |N is greater than ε0 for an infinite subset W ⊂ N. The subset W is therefore
a cofinal subset of N : for each n ∈ N, there exists a w ∈ W |w ≥ n. We arrive
at a contradiction as follows:

(a) There exists a free ultra filter, Ap, on N containing W . A filter is free
if its core,

⋂
F∈Ap F , is the empty set.

Consider the filter F on N which has as its subbasis, S, the set of all cofi-
nite subsets of N along with W . Since W is cofinal, S has the finite intersection
property (F.I.P) and hence is a filter subbasis: it generates the filter base B of
all sets which are intersection sets of finitely many members of S; the filter F
is the set of all subsets of N which superset any member of B.

Therefore, the filter F is contained in an ultra-filter Ap of N [Chapter 5, the-
orem 5.28 [29]]. The ultra-filter Ap is free :

⋂
F∈Ap{F} ⊂

⋂
F is cofinite{F} = ∅.

(b)The free ultra filter, Ap, converges to a point p in the corona βN\N. The
image filter fβ [F ] converges to 0.

Since N, a completely regular space, has the discrete topology on it, there is no
distinction between filters consisting of zero-sets, z-filters, and the set-theoretic
notion of a filter. By the construction of the Stone-Cĕch compactification of N,
the free z-ultra filter Ap converges in the compact space βN to a point, p, in
the corona βN\N [Chapter 6, Theorem 6.5 [31]].

Therefore, the image filter fβ [F ] converges to fβ(p) = 0 [Chapter 7, theo-
rem 7.1(8) [29]], where the image filter fβ [F ] is the filter on C which has as its
subbasis the set of all sets of the form fβ [F ] where F ∈ Ap.

(c) The ultra-filter Ap on N is void of any subsets of N\W .

This follows from the fact that W belongs to Ap along with the fact that ∅ /∈ Ap.
In fact, every F ∈ Ap meets W , and therefore for all F ∈ Ap, fβ [F ] cannot be
a subset of B(0, ε0

2 ). This contradicts statement (b).
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Therefore, the restriction fβ |N is a sequence that converges to 0.

Q.E.D

Example 6 (Commutative Origin Of the Corona C*-algebra) In the no-
tation of Theorem 8, let the locally compact σ-compact Hausdorff space X be
the compact space βN, the Stone-Cĕch compactification of the set of naturals N
with the discrete topology. Let the closed set Y be the corona βN\N [Example 5].

By theorem 8 and Proposition 1,

C0(βN)/C0(N) ∼= C0(βN\N) = C(βN\N) (2.16)

which is equivalent to :

M(C0(N))/C0(N) ∼= C0(βN\N) = C(βN\N) (2.17)

where M(C0(N)) is the Double Centralizer Algebra of the C*-algebra C0(N)
[Example 4, Appendix A.2]. Since C0(βN\N) has orthogonal local units be-
cause βN\N is sub-Stonean, equation (2.17) amounts to the statement that the
quotient C*-algebra M(C0(N))/C0(N) possesses orthogonal local units. [Chap-
ter 2.5.2, Theorem 7].

The quotient C*-algebra M(C0(N))/C0(N) formed by factoring out the C*-
algebra C0(N) from the Double Centralizer Algebra of C0(N), M(C0(N)), is
called the corona C*-algebra of the C*-algebra C0(N). Recall that the C*-algebra
C0(N) is embedded as a closed 2-sided ideal of M(C0(N)).
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2.5.3 Application of Non-Commutative Topology : SAW*-
algebra, Corona C*-algebra

In this section we generalize the C*-algebraic properties of C0(X) for a sub-
Stonean X, to define a new class of C*-algebras, SAW*-algebras. The following
definition of a SAW*-algebra is a generalization of Theorem 5 (Chapter 2.5.2):

Definition 4 (SAW*-algebra: Orthogonal Local Units) A C*-algebra A
is a SAW*-algebra if for any two positive orthogonal elements [Chapter 1.3.1,
Definition 1] x and y in A+, there is a positive element e in A+ such that ex =
x and ey = 0. Taking adjoints, we have xe = x and ye = 0.

Applying the condition to the orthogonal pair of positive elements e, y, we have
a positive element d in A+ such that dy = yd = y and de = ed = 0.

We call the elements e and d an orthogonal pair of local units for x and y.
We say e is a local unit for x with respect to y and d is a local unit for y with
respect to x.

Example 7 (SAW* - algebra) Let the C*-algebra A be the C*-algebra C0(X)
where X is sub-Stonean. Then by the construction used in the proof of Theorem
5 (iii) (Chapter 2.5.2), C0(X) is a SAW*-algebra.

As another generalization of Example 6 (Chapter 2.5.2) and Example 1 (Chapter
2.5.1), we have the concept of the corona of a general C*-algebra:

Definition 5 (The Corona) Let A be a non-unital, σ - unital C*-algebra.
Then the corona of A is defined to be the quotient C*-algebra M(A)/A formed
by factoring out the C*-algebra A from the Double Centralizer Algebra of A,
M(A). Recall that the C*-algebra A is embedded as a closed 2-sided ideal of
M(A) [Theorem 11, Chapter 1.2.3]. We shall denote the corona of A as C(A).

2.5.3.1 Local Corona Properties are Global Multiplier Prop-
erties

Often, some of the n-ary properties P (m1, . . . ,mn) which hold for the elements
m1, . . . ,mn in M(A) that are invariant under perturbations by elements from
the C*-algebra A taken as a 2-sided ideal of M(A), are best characterized as an-
other n-ary property Q(c1, . . . , cn) in the corona, C(A), of A, where (c1, . . . , cn)
is a fixed n-tuple of elements in C(A). Hence P is a global property in M(A)
yet Q is a local property of C(A). We however relax the condition on Q by al-
lowing Q to be a more simpler property than P . Therefore, the n-ary property
Q which holds for certain elements of the corona C(A) translates into a global
property of M(A) of which the original C*-algebra A is a closed 2-sided ideal
: the elements in the C*-algebra M(A) for which property P is true, belong to
one of the elements of the corona for which Q is true: local properties in the
corona C(A) are ideal-perturbed-invariant global properties for M(A).
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Example 8 (Property of Vanishing on the Corona) Let the C*-algebra A
be C0(N) where the locally compact Hausdorff space N is the set of naturals with
the discrete topology. Then M(C0(N)) is C(βN).

Let P (m) be the property on M(C0(N)) = C(βN) where P (m) is true if and
only if the function m ∈ C(βN) vanishes on the corona of N, βN\N. That is
m belongs to the 2-sided closed ideal I = C0(βN\Y ) = C0(N) [Proposition 1,
Chapter 2.5.2]. Trivially P is invariant under perturbations from the ideal I.

Defining the property Q(c) to be the property on the corona, C(A), of A as
Q(c) is true if and only if c = 0, is a characterization of the property P . Q
is a local property : the coset c ∈ C(A) such that Q(c) is true is the fixed zero
element, which contains all the elements of the C*-algebra A = C0(N).

We now introduce the concept of the index of a bounded operator on a Hilbert
space H to give us a second example of a global phenomena from the corona:

Definition 6 (Index of a Bounded operator) Let T be a bounded operator
on a Hilbert space H. Then we define the index, ind(T ), of the bounded operator
T to be the number

dim(ker(T ))− dim(coker(T ))

where dim(ker(T )) is the dimension of the kernal of the operator T and
dim(coker(T )) is the dimension of the complementary subspace of Ran(T ),
H/Ran(T ), where Ran(T ) is the range space of the operator T . We shall call
it the defect of T .

Example 9 Let T be the left shift operator of Example 3, Chapter 1.3.2, on the
Hilbert space H = l2 of all square summable sequences. Then ind(T ) = 1 since
dim(ker(T )) = 1 and dim(coker(T )) = 0.

We can view the concept of numbers as the first level of mathematical abstrac-
tion. The concept of a function embodies the notion of mapping numbers into a
number : functions are therefore the second level of mathematical abstraction.
Operators on function spaces map functions into functions and are therefore the
third level of abstraction. Now, the concept of the index is a meaningful way of
linking the third level of abstraction back down to the first level of abstraction.
To see this, we introduce the concept of a Noether operator:

Definition 7 (Noether Operator) A bounded operator T on a Hilbert space
H is Noether if and only if :

(i) T is normally solvable : Ran(T ) is closed .

(ii) The dimension of the kernal of T , dim(ker(T )), is finite.
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(iii) The dimension of the cokernal of T , dim(coker(T )), is finite.

The first condition (i) is required to express the relation

dim(ker(T ))− dim(coker(T ))

in a more symmetrical form:

dim(ker(T ))− dim(ker(T ∗)).

For any bounded operator T , Ran(T ) = ker(T ∗)⊥. Since T is normally solv-
able, Ran(T ) = ker(T ∗)⊥. Consequently, Ran(T )⊥ = ker(T ∗)⊥⊥ = ker(T ∗).
Therefore, H/Ran(T ) ∼= ker(T ∗).

Conditions (ii) and (iii) ensure that the index, ind(T ) is a finite integer. In
fact, conditions (ii) and (iii) imply condition (i): condition (i) is not necessary
[Chapter VII, Section 2.4, Proposition 2.4.1 [25]].

The following theorem shows that the concept of the index provides a meaningful
link between the Noether operators and the integer numbers:

Theorem 9 Let F denote the set of all the Noether operators of B(H). Then,
as a subspace topology of the normed space B(H), the set F can be written as a
disjoint union of its connected components.

The index map i : F → Z | T 7→ ind(T ) where Z is the set of all integers
with the discrete topology, is locally constant (and hence continuous): for every
T ∈ F there exists a ball B about T of the subspace topology such that i[B] is
some constant integer [Part I.5, Section C, Theorem 2 [26]]. Therefore, the in-
dex is constant on the connected components of F . In fact, distinct components
have distinct indexes.

We are now ready to give our second example of a global phenomena from the
corona:

Example 10 (Property of a Finite Index) Let the C*-algebra A be the non-
unital C*-algebra K(H) where H is some separable infinite dimensional Hilbert
space H. Then M(A) is B(H) [Chapter 1.2.3, Example 33].

Let P (m) be the property on M(K(H)) = B(H) where P (m) is true if and
only if the index, ind(m), of the operator m ∈ B(H) is finite. Then P (m) is
true if and only if m ∈ B(H) is Noether : m ∈ B(H) is Noether if and only if
conditions (ii) and (iii) of Definition 7 holds. Now P is a property invariant
under perturbations by elements in the ideal A = K(H) [Chapter VII, Theorem
2.6.3 [25]].

Defining the property Q(c) to be the property on the corona, C(A), of A as
Q(c) is true if and only if c is invertible, characterizes the property P [Chapter
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VII, Remark 2.6.4 [25]]. The elements of the coset c ∈ C(A) such that Q(c) are
exactly the elements of M(A) = B(H) for which property P holds. Note that
the property P (m) does not hold for any element in the C*-algebra A = K(H)
taken as a 2-sided ideal of M(A).

Let us now define an n-ary property, P (m1, . . . ,mn) on M(A) as follows:

P (m1, . . . ,mn) is true if and only if m1 +A, . . . ,mn +A are elements of C(A)
which are n-zero divisors with the additional condition that there exists elements
a1, . . . , an in the C*-algebra A which we identify as a 2-sided ideal of M(A) such
that m1 − a1, . . . ,mn − an are n-zero divisors themselves.

Note that this n-ary property P is equivalent to saying that the property of
n-zero divisors can be lifted from the corona C(A) onto M(A). Defining the
characterization of P in C(A) as the n-ary propertyQ(c1, . . . , cn) on C(A) where
Q(c1, . . . , cn) is true if and only if c1, . . . , cn are elements in C(A) which are n-
zero divisors with the additional condition it contains elements m1, . . . ,mn in
the C*-algebra M(A) which are n-zero divisors themselves. Like P , this n-ary
property Q on C(A) is not a property on C(A) since it involves elements in
M(A). Further the property Q is not invariant under perturbations from all el-
ements of the C*-algebra A taken as a 2-sided ideal of M(A). Nonetheless, there
are enough clues to suggest that such a lifting cannot be ruled out completely.
Indeed, in the next section we shall lift the property of n-zero divisors from the
corona C(A) onto M(A). To this end, we need the following two statements.

2.5.3.2 Two Fundamental Results For Lifting the Property
of n-zero divisors from the corona C(A) onto M(A).

The first fundamental result is a generalization of Chapter 2.5.2, Example 6
where the corona of the non-unital σ-unital C*-algebra C0(N) turned out to be
a SAW*-algebra.

Theorem 10 (Theorem 13 [4]) For each non - unital, σ - unital C*-algebra A,
its corona C(A) is a SAW*-algebra.

The second fundamental result involves the local units of a SAW*-algebra.

Proposition 2 (Existence Of Local Units in the Unit Sphere) Let A be
a SAW*-algebra. Then for any pair of positive orthogonal elements a and b in
A+, there is a positive element e, a local unit of a in A+, such that ae = ea = a
and eb = be = 0.

If the local unit e for a does not have a norm of exactly one, we can replace
it with another local unit e′ for a which does have a norm equal to 1.

In the case where A has an identity, 1, the element 1 − e is positive: e ≤ 1.
Further, the norm of 1− e is exactly one.
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Proof

(i) The norm of any local unit exceeds 1.

This follows from the following string of inequalities ‖ a ‖=‖ ae ‖≤‖ a ‖‖ e ‖.
Dividing out by ‖ a ‖, we conclude that ‖ e ‖≥ 1.

(ii) For any local unit e for a, there exists a local unit e′ for a whose norm
is less than or equal to 1.

Consider the commutative C*-algebra generated by the elements a and e: C∗(a, e)
: a and e commute. Therefore C∗(a, e) is a C0(X) [Gelfand Naimark Theorem
I, Theorem 2, Chapter 1.1]. Taking a and e as functions in C0(X), since ae = a,
the function e is 1 on the complement X\Za of Za, the zero-set of a. Since e
vanishes at infinity, there exists a compact set K ⊂ X such that e(x) ≤ 1 for
all x ∈ X\K, where X\Za ⊂ K.
Then arguing as in Appendix A.3, Theorem 3, Step 1, there exists a continuous
function ∆K ∈ C0(Ω) acting as a continuous approximant of the characteristic
function on the compact set K [Chapter 7, Theorem 7.14, [21]]:

∆K(x) =
{

1 : x ∈ K
0 : x /∈ O ⊃ K

where O is a proper open set containing the compact set K.

Then the meet function e′ = ∆K

∧
e is a positive valued function with norm less

than or equal to one such that e′a = ae′ = a and e′b = be′ = 0 since eb = be = 0.

In the case where A has an identity 1, consider the commutative C*-algebra
C∗(e′, 1) generated by e′ and 1. Then C∗(e′, 1)is a C(K). The identity element
1 is the constant 1 function, K1, of C(K) and e′ is a positive valued continuous
function whose norm is equal to 1. Hence K1 − e′ is a positive valued function
: e′ ≤ 1.

Finally, since 1− e′ is a local identity to b, it has a norm of exactly one.

Q.E.D
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2.6 Lifting n-zero divisors : Corona C*-algebra

Analogous to the lifting of n-zero divisors in Von Neumann C*-algebras, we
exploit the SAW*-algebra algebraic property of possessing orthogonal local units
to lift n-zero divisors in the corona of a non-unital σ-unital C*-algebra.

Theorem 1 (Lifting n-zero Divisors: Corona C*-algebra) (Lemma 6.1 [6])
Let A be a non-unital σ - unital C*-algebra. Then the corona C(A) = M(A)/A
is a SAW*-algebra [Theorem 10, Chapter 2.5.3.2] where A is a 2-sided ideal I of
M(A). If x1, . . . , xn are elements of M(A)−A with

∏
1≤i≤n xi ∈ I = A, then

there exist elements h1, . . . , hn in the ideal I = A with
∏

1≤i≤n(xi − hi) = 0.

Proof. [Proof by Induction] The induction step for n = 2 is true [Chapter 2.2,
Theorem 1]. Suppose that the theorem holds for the case n = n. We now show
that it also holds for the case of n+ 1.

Just as in case of lifting n-zero divisors in Von Neumann C*-algebras [Chapter
2.4.3, Theorem 4], we ’split’ the original product

∏
1≤i≤n+1 xi which resides in

the ideal A into two terms closely related to
( ∏

1≤i≤n xi

)
and xn+1 which also

reside in the ideal A in order to invoke the induction hypothesis. More precisely,
there are positive elements a and b inM(A) such that

( ∏
1≤i≤n−1 xi

)
(xn(1−a))

and (1 − b)xn+1 reside in the ideal A where π(a)π(b) = 0. We do this by ex-
ploiting the fact that C(A) is a SAW*-algebra [Chapter 2.5.3.2, Theorem 10].

Step 1. Let y denote
( ∏

1≤i≤n xi

)
. The elements π(y∗y) and π(xn+1x

∗
n+1)

are a pair of positive orthogonal elements of C(A). Therefore, there is an or-
thogonal pair of local units which we write as π(d) and π(e), where the elements
d and e are positive elements of M(A)

By hypothesis,
∏

1≤i≤n+1 xi ∈ A. Equivalently,

π(yxn+1) = 0.

Now,

π(y∗)π(yxn+1)π(x∗n+1) = 0.

Hence

π(y∗y)π(xn+1x
∗
n+1) = 0.

Since C(A) is a SAW*-algebra, there is an orthogonal pair of local units for the
pair of positive orthogonal elements, π(y∗y) and π(xn+1x

∗
n+1), respectively. We

write this orthogonal pair of local units as π(d) and π(e), where the elements d
and e are positive elements of M(A) [Chapter 1.3.4, Proposition 1].
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Step 2. There is a positive element a in M(A) such that y(1 − a) ∈ A or( ∏
1≤i≤n−1 xi

)
(xn(1− a)) ∈ A.

Identify C(A) = M(A)/A with a norm-closed *-subalgebra of B(H) [Chapter
1.2.2, Gelfand Naimark Theorem II]. Then by the Polar Decomposition theorem
[Chapter 1.3.2, Theorem 2] in B(H) applied to the element π(y) ∈ B(H), we
have

π(y) = u|π(y)| = u
√
π(y∗y)

Hence,

π(y) = u
√
π(y∗y)π(d)

= u
√
π(y∗y)

√
π(d) (2.18)

= π(y)
√
π(d)

where equation (2.18) follows from Corollary 3, Chapter 1.3.1.

Therefore,

π(y)[1C(A) −
√
π(d)] = π(y)[π(1M(A))−

√
π(d)]

= π(y)[π(1M(A))− π(
√
d)] (2.19)

= 0

where 1C(A), 1M(A) are the identities of C(A) and M(A) respectively and equa-
tion (2.19) follows from Chapter 1.3.4, Proposition 2. Since d is a positive
element of M(A), the element a =

√
d is a well defined element of M(A). We

therefore have,

y(1M(A) − a) ∈ I = A

or equivalently,

x1 · · ·xn−1

(
xn(1M(A) − a)

)
∈ I = A.

Step 3. There is a positive element b in M(A) such that (1− b)xn+1 ∈ A.

We repeat the construction of Step 2 for the element π(x∗n+1):

π(x∗n+1) = v
√
π(xn+1x∗n+1) = v

√
π(xn+1x∗n+1)π(e)

= v
√
π(xn+1x∗n+1)

√
π(e) = π(x∗n+1)

√
π(e)

= π(x∗n+1)π(
√
e)

90

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



so that

π(x∗n+1)− π(x∗n+1)π(
√
e) = π(x∗n+1)

(
π(1M(A))− π(

√
e)

)
= 0.

Since e is a positive element of M(A), the element b =
√
e is a well defined

element of M(A). We therefore have:

x∗n+1(1M(A) − b) ∈ I = A

On taking adjoints, we have(
1M(A) − b

)
xn+1 ∈ I = A.

Step 4. We show that π(a)π(b) = 0.

Recalling that a =
√
d and b =

√
e, note that

π(a)π(b) = π(
√
d)π(

√
e) =

√
π(d)

√
π(e)

=
√
π(d)π(e) = 0.

since π(d)π(e) = 0.

Step 5. We can assume without loss of generality that the positive elements a
and b are orthogonal : ab = 0

From step 4, π(a) and π(b) are positive zero divisors of C(A) where a, b ∈
M(A)+. Therefore, we can perturb the positive elements a and b by elements f
and g of the ideal A so that a−f and b−g are still positive with π(a) = π(a−f)
and π(b) = π(b−g) [Chapter 2.2, Corollary 1]. We can take a−f as a and b−g
as b to force ab = 0.

Step 6. Invoke the induction hypothesis on
( ∏

1≤i≤n−1 xi

)
(xn(1− a)).

By the induction hypothesis on
( ∏

1≤i≤n−1 xi

)
(xn(1 − a)), there exists ele-

ments {h1, . . . , hn} in the ideal A such that:( ∏
1≤i≤n−1

(xi − hi)
)
(xn(1− a)− hn) = 0. (2.20)

Defining hn+1 = (1 − b)xn+1 we have the element hn+1 in the ideal A [Step 3]
and these are the required ideal perturbations:
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∏
1≤i≤n+1

(xi − ai) =
( ∏

1≤i≤n−1

(xi − hi)
)
(xn − hn)(xn+1 − hn+1)

=
( ∏

1≤i≤n−1

(xi − hi)
)
(xn − hn)(bxn+1)

=
( ∏

1≤i≤n−1

(xi − hi)
)
(xn(1− a) + xna− hn)(bxn+1)

=
( ∏

1≤i≤n−1

(xi − hi)
)
(xn(1− a)− hn + xna)(bxn+1)

=
( ∏

1≤i≤n−1

(xi − hi)
)(

(xn(1− a)− hn)(bxn+1) + (xna)(bxn+1)
)

=
([ ∏

1≤i≤n−1

(xi − hi)
]
(xn(1− a)− hn)

)
(bxn+1) + . . .

. . .+
( ∏

1≤i≤n−1

(xi − hi)
)
(xna)(bxn+1)

=
([ ∏

1≤i≤n−1

(xi − hi)
]
(xn(1− a)− hn)

)
(bxn+1) + 0 (2.21)

= 0 + 0 = 0.

where equation (2.21) follows from ab = 0 and the last equation from the in-
duction hypothesis (2.20).
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2.7 Lifting n-zero divisors : The General Case

In the case of lifting n-zero divisors in the corona of a non-unital σ-unital C*-
algebra, the ideal was a closed essential 2-sided ideal. Our first step in carrying
over this lifting in the corona to the general case of any C*-algebra is to construct
closed essential 2-sided ideals from the given closed 2-sided ideal.

2.7.1 Essential Ideals From Ideals : Annihilators

The crux of the construction rests on the ring-theoretic concept of a 2-sided
annihilator of a set in the C*-algebra A:

Definition 1 (Annihilator of a Set) For every subset B of a C*-algebra A,
we define the 2-sided annihilator B⊥ of B as the set {x ∈ A|xB = Bx = 0}.

Therefore, the 2-sided annihilator B⊥ is the intersection of the 1-sided left and
right annihilators, annR(B) = {x ∈ A|Bx = 0} and annL(B) = {x ∈ A|xB =
0}.

As a ring-theoretic tool, (right) annihilators characterize maximal right ideals
of the ring : maximal right ideals are right annihilators of certain singleton sets.
From the perspective of the Jacobson radical which is the intersection of all the
maximal right ideals of the C*-algebra A taken as a ring, annihilators are redun-
dant: the Jacobson radical is always the trivial 0-ideal [Chapter I.9, Corollary
I.9.13 [12]]. However, in the study of SAW*-algebras, 2-sided annihilators clari-
fies the relations between SAW*-algebras and other closely related C*-algebras:
Rickart algebras and AW*-algebras [Proposition 1, [4]]. Here, 2-sided annihi-
lators enable us to construct from a given closed ideal of the C*-algebra A, a
closed essential ideal of A.

Proposition 1 (Constructing Closed Essential Ideals from Closed Ideals)
Let I be a closed 2-sided ideal. Then the 2-sided annihilator, I⊥, of I, is a closed
2-sided ideal which is disjoint from the ideal I : I⊥

⋂
I = 0.

The sum of the two disjoint ideals, I + I⊥ , is a closed 2-sided essential ideal.

Proof. (i) The 2-sided annihilator I⊥ is a closed 2-sided ideal of A

Firstly, the 2-sided annihilator I⊥ is a 2-sided ideal: I is a left and right ideal;
hence annR(I) and annL(I) are right and left ideals of A [Chapter 13, Lemma
13.1(b) [28]]; consequently, I⊥ = annR(I) ∩ annL(I) is a 2-sided ideal.

We are now left with showing that the 2-sided annihilator I⊥ is closed. Let
(xn) be a sequence in I⊥ that converges to some x in the norm topology of A.
Then, for each i ∈ I,

xni→ xi
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by the joint continuity of the product in A. Since xni = 0 for each i ∈ I, xi = 0
for each i ∈ I; that is, the limit point x belongs to I⊥ .

(ii) The 2-sided annihilator, I⊥, is disjoint from the ideal I : I⊥
⋂
I = 0

Consider the element i ∈ I
⋂
I⊥. The adjoint i∗ also belongs to I

⋂
I⊥ since all

closed 2-sided ideals are *-closed [Chapter 1.2.4 ,Proposition 4]. Consequently,
ii∗ = 0 since i ∈ I⊥ and i∗ ∈ I. But (‖ i ‖)2 = (‖ i∗ ‖)2 =‖ ii∗ ‖= 0. Therefore
i = 0.

(iii) The sum I + I⊥ is a closed 2-sided ideal of A.

Trivially, I+I⊥ is an ideal of A. It remains to show that it is closed. This we do
by showing that it is complete. The crux of the proof is the following inequality,
which is an approximate version of the Pythagorean Theorem in Hilbert Spaces.
We shall call it the pseudo-Pythagorean inequality:

Pseudo-Pythagorean Inequality By (ii), each element in I + I⊥ can be
uniquely written as the sum a+ b⊥ where a ∈ I and b⊥ ∈ I⊥. Then

1
2
(‖ a ‖ + ‖ b⊥ ‖) ≤‖ a+ b⊥ ‖≤‖ a ‖ + ‖ b⊥ ‖ (2.22)

Proof. The latter inequality of (2.22) is merely the triangle inequality. We
prove the first inequality of (2.22). First note that

‖ a+ b⊥ ‖= sup
x∈S

‖ x(a+ b⊥) ‖ (2.23)

where S is the unit sphere in A, a ∈ I and a⊥ ∈ I⊥ [Chapter 1.2.3.1 ,Lemma
3].

Now consider â∗ = a∗

‖a∗‖ = a∗

‖a‖ ∈ S, the unit vector of the adjoint of a ∈ I.

Since I is *-closed, a∗ ∈ I and hence â∗ is also in I. Invoking equation (2.23)
and the fact that b⊥ annihilates â∗, we have:

‖ a+ b⊥ ‖≥ ‖ a∗a ‖
‖ a ‖

=‖ a ‖ (2.24)

Similarly,
‖ a+ b⊥ ‖≥‖ b ‖ . (2.25)

Adding equations (2.24) and (2.25) completes the proof of the pseudo-Pythagorean
Inequality.

We are now left with showing that I + I⊥ is complete. Let (xn) be a Cauchy
sequence in I + I⊥. Each xn can be written uniquely as the sum an + b⊥n where
an ∈ I and b⊥n ∈ I⊥.
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(a) The induced ”component” sequences (an) and (b⊥n ) are also Cauchy se-
quences in I and I⊥, respectively.

Since limm,n→∞ ‖ xn − xm ‖= 0, it follows from the pseudo-Pythagorean In-
equality that:

0 = lim
m,n→∞

‖ (an − am) + (b⊥n − b⊥m) ‖

≥ 1
2
( lim
m,n→∞

‖ (an − am) ‖ + ‖ (b⊥n − b⊥m) ‖)

≥ 0.

Therefore by a squeeze play,

limm,n→∞ ‖ (an − am) ‖ + ‖ (b⊥n + b⊥m) ‖= 0.

Since we have the sum of two positive valued sequences being a null sequence,

limm,n→∞ ‖ (an − am) ‖= 0 and limm,n→∞ ‖ [b⊥n − b⊥m] ‖= 0.

(b) The ”component” Cauchy sequences (an) and (bn) converge to points a ∈ I
and b ∈ I⊥, respectively. This follows from the fact that completeness is closed
hereditary : I and I⊥ are closed in the complete space A.

Therefore the Cauchy sequence (xn) converges to the point a + b ∈ I + I⊥

by the joint continuity of the sum.

(iv) The sum ideal I + I⊥ is essentially faithful with respect to the A, taken
as an over-ring of I + I⊥.

Suppose the element a ∈ A annihilates I + I⊥ : a(I + I⊥) = 0. Then a ∈ I⊥:

Firstly, ai+ aj⊥ = 0 for all i, j⊥ ∈ I, I⊥, respectively. Therefore, ai = −aj⊥ ∈
I⊥ for all i, j⊥ ∈ I, I⊥, respectively. But ai ∈ I for each i ∈ I. Hence ai = 0
for each i ∈ I since I

⋂
I⊥ = 0 [(ii)]. Equivalently, a ∈ I⊥

Symmetrically, since aj⊥ = −ai ∈ I for all j⊥ ∈ I⊥, it follows that a ∈ (I⊥)⊥.
Therefore a = 0 since I⊥

⋂
(I⊥)⊥ = 0.

Q.E.D
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2.7.2 Lifting n-zero divisors

We now prove the lifting of n-zero divisors affirmatively in the general C*-
algebra. The proof essentially is a reduction of the problem of lifting n-zero
divisors in the general C*-algebra into the problem of lifting n-zero divisors in
the corona C*-algebra of a non-unital σ-unital C*-algebra, which was proved
affirmatively [Chapter 2.6, Theorem 1].

Theorem 1 (Lifting n-zero Divisors: General C*-algebra) Let A be a C*-
algebra, I a closed 2 -sided ideal in A. If x1, . . . , xn are elements of A with∏

1≤i≤n xi ∈ I, then there exist a1, . . . , an in I with
∏

1≤i≤n(xi − ai) = 0.

Proof. In anticipation of the Lifting of n-zero Divisors: Corona C*-algebra
Theorem [Chapter 2.6, Theorem 1], we need to assume that the C*-algebra A
is both non-unital and σ - unital.

A is non-unital. As it turns out, we can assume without loss of generality
that the C*-algebra A is non-unital. As far as lifting is concerned, it is equiv-
alent to replace A with the non-unital stable algebra A

⊙
K(H). In the case

that A has an identity, we shall see that replacing A with the non-unital stable
algebra A

⊙
K(H) will keep the validity of the proof intact. We have a patho-

logical case if A does have an identity [Chapter 1.2.3.5, Theorem 8].

Therefore in the case A has an identity, we shall take the actual element x ∈ A
as diag[x, 0] ∈ A

⊙
K(H). Furthermore, since A is a closed 2-sided ideal of

A
⊙
K(H) [Chapter 1.1 ,Theorem 4], the ideal I ⊂ A will be a closed 2-sided

ideal of A
⊙
K(H) and we shall view I as such.

A [resp. A
⊙
K(H) if A has an identity] is σ-unital. We can assume

without loss of generality that the C*-algebra A [resp. A
⊙
K(H) if A has an

identity] is σ-unital: it suffices to show that A [resp. A
⊙
K(H) if A has an

identity] is separable, since all separable C*-algebras are σ-unital [Chapter 3.13,
Proposition 13.1 [8]].

Consider x1, . . . , xn ∈ A [resp. diag[x1, 0], . . . , diag[xn, 0] ∈ A
⊙
K(H) if A

has an identity] as elements of the C*-subalgebra, B, generated by {x1, . . . , xn}
[resp. {diag[x1, 0], . . . , diag[xn, 0]} if A has an identity]. Then B is the
closure in A [resp. A

⊙
K(H) if A has an identity] of the countable set,

Q×Q[x1, . . . , xn, x
∗
1, . . . , x

∗
n] [resp. Q×Q[diag[x1, 0], . . . , diag[xn, 0],

diag[x∗1, 0], . . . , diag[x∗n, 0]], of all polynomials in {x1, . . . , xn, x
∗
1, . . . , x

∗
n} [resp.

{diag[x1, 0], . . . , diag[xn, 0], diag[x∗1, 0], . . . , diag[x∗n, 0]} if A has an identity],
whose coefficients are complex numbers with rational real and imaginary parts.

The C*-algebra B is therefore a separable normed space and is therefore σ-
unital.
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So in the case A [resp. A
⊙
K(H) if A has an identity] is not σ-unital, we take

A [resp. A
⊙
K(H) if A has an identity] as B and the closed 2-sided ideal I

as B
⋂
I : B

⋂
I absorbs products taken from the C*-algebra B ( i ∈ B

⋂
I

implies bi, ib ∈ B
⋂
I for every b ∈ B) by virtue of the fact that each element of

B
⋂
I is a member of both the C*-subalgebra B and the ideal I.

We can further assume without loss of generality that the ideal I is not disjoint
from the C*-subalgebra B : B

⋂
I 6= {0}. In the case that the ideal I is disjoint

from the C*-subalgebra B, the condition
∏

1≤i≤n xi ∈ I of the hypothesis of the
theorem, amounts to the pathological condition

∏
1≤i≤n xi ∈ B ∩ I = {0} since

the C*-subalgebra B, is closed with respect to multiplication.

We can now lift n-zero divisors in the general C*-algebra:

Step 1. We construct a closed essential ideal I + I⊥ of A [resp. A
⊙
K(H)

in the case A has an identity : we construct the 2-sided annihilator I⊥ (Defi-
nition 1, Chapter 2.8.1) in A

⊙
K(H)] from I [Proposition 1, Chapter 2.8.1].

This then allows us to embed A isometrically *-isomorphically in the Double
Centralizer Algebra M(I + I⊥) [Theorem 11, Chapter 1.2.3].

Step 2. Treating the elements x1, . . . , xn in A as elements of M(I + I⊥),
we can invoke Theorem 1 [Chapter 2.7] since the C*-algebra I + I⊥ is σ- unital
and non-unital : I + I⊥ is σ-unital since it is a C*-subalgebra of a σ-unital
C*-algebra A [resp. A

⊙
K(H) if A has an identity]; I + I⊥ is non-unital since

it is an essential ideal of a non-unital C*-algebra A [resp. A
⊙
K(H) if A has

an identity]:

Proposition 2 If I is an essential two sided ideal of a non-unital C*-algebra
A, then I does not have an identity element itself.

Proof. Assume on the contrary that there exists an element e ∈ I such that
ex = xe = x for all x ∈ I. Then there exists a y ∈ A such that ey 6= y or ye 6= y
since A does not have an identity. The restrictions of the right shift maps Ry

and Rey if ey 6= y (or the left shift maps Ly and Lye in the case ye 6= y) are
identical on I contradicting the essential faithfulness of I with respect to A.

Q.E.D

Therefore there exists elements h1, . . . , hn in I+I⊥ such that Π1≤i≤n(xi−hi) = 0
[Theorem 1, Chapter 2.7].

Step 3. Let us decompose hi uniquely into the sum ai + bi, where ai ∈ I,
bi ∈ I⊥ : I

⋂
I⊥ = 0. Then the zero product Π1≤i≤n(xi− hi) can be written as

Π1≤i≤n([xi − ai]− bi) =
(
Π1≤i≤n(xi − ai)

)
+B = 0

where B is a sum of products, each product containing at least one of the factors
bi, i = 1, . . . , n.
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Step 4. Let us note that

Π1≤i≤n(xi − hi) =
(
Π1≤i≤n(xi − ai)

)
+B = 0

is a decomposition of the zero product Π1≤i≤n(xi − hi) in I + I⊥ since
Π1≤i≤n(xi − ai) ∈ I and B ∈ I⊥.

Firstly, B ∈ I⊥ since each of the bi ∈ I⊥. Secondly, Π1≤i≤n(xi − ai) ∈ I :
if π denotes the *-homomorphism π : A→ A/I | a 7→ a+ I, then

π(Π1≤i≤n(xi − ai)) = Π1≤i≤nπ(xi − ai) = Π1≤i≤nπ(xi) = π(Π1≤i≤n(xi)) = 0

since by assumption Π1≤i≤nxi ∈ I.

Step 5. By the uniqueness of the decomposition 0 = 0 + 0 in I + I⊥, we
conclude that both B and more importantly Π1≤i≤n(xi − ai) are 0.

Therefore, the dumping of all the elements which are not from the original
C*-algebra A into the term B of Step 3, effectively allows us replace A with
A

⊙
K(H) as far as lifting n-zero divisors is concerned. In short, we can as-

sume without loss of generality that A does not have an identity.

This theme will recur again in the lifting of nilpotent elements in next chapter,
Chapter 3.

Q.E.D
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Chapter 3

Lifting: Nilpotent Elements

3.1 Lifting nilpotent elements : Statement of
Problem

In this section, the property we want to lift is the ring theoretic (algebraic)
property of a nilpotent element.

Definition 1 (Property of Nilpotent Element) Let x be an element in the
C*-algebra A taken as a ring. Let the property P (x) be the ring-theoretic prop-
erty that the element x is a nilpotent element. An element x in the ring A is a
nilpotent element if there exists an n ∈ N+ such that xn = 0. The smallest n
such that xn = 0 is called the degree of nilpotency.

Example 1 Let A be the C*-algebra M3(C), the set of all 3× 3 matrices with
entries taken from the complex number field C. Then the matrices 0 1 0

0 0 1
0 0 0

,
 0 0 1

0 0 0
0 0 0


are nilpotent matrices with degree of nilpotency 3 and 2 respectively.

Taking M3(C) as the set of all bounded operators on the three dimensional
Hilbert space H = C3, the degree of nilpotency is bounded from above by dim(H) =
3. [Chapter 8, Corollary 8.8 [33]]. Further, for any nilpotent operator n ∈
M3(C), there exists a basis of C3 such that the matrix of n, with respect to the
new basis, is a matrix where all the entries on and below the diagonal are 0’s
[Chapter 8, Lemma 8.25 [33]].

In the C*-algebra Mn(C), the nilpotent elements play a critical role in the
decomposition of an arbitrary element of Mn(C) : any matrix in Mn(C) is a
direct sum of finitely many matrices of the form scalar multiple of the identity
matrix, e, plus a nilpotent matrix:
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Theorem 1 (Chapter 8, Theorem 8.22 [33]) Consider the C*-algebra Mn(C)
as the set of all operators on the n-dimensional Hilbert space H = Cn over the
complex field. Let x be an arbitrary element of Mn(C). Then there exists a
decomposition of Cn into m x-invariant subspaces: Cn = U1 ⊕ . . . ⊕ Um, such
that the restriction (x−λje)|Uj

is nilpotent for some λj ∈ C where j = 1, . . . ,m.

In total contrast to the C*-algebra of example 1, the commutative C*-algebra
C0(X) has only the 0-function as the only nilpotent element.

Let A denote a C*-algebra, I a closed 2-sided ideal in A, A/I the quotient
C*-algebra and π : A → A/I the quotient map [Chapter 1.2.4, Proposition 4].
Taking the C*-algebra A/I as a ring and a non-zero element x+I in the quotient
C*-algebra A/I, the property P of the element x+I being nilpotent, P (x+I) is
true, lifts when there exists an element a in the ideal I such that the perturbed
element x − a in the finer C*-algebra A is also nilpotent : P (x − a) is true.
In fact, the degree of nilpotency is preserved : if n is the degree of nilpotency
of the element x + I in A/I, then m, the degree of nilpotency of the element
(x − a) in A, equals n : the equation π[(x − a)m] = (x + I)m = 0 implies that
n < m; if on the contrary, m < n, then by the same equation (x+I)m = 0; this
contradicts the minimality of n, the degree of nilpotency for the element x+ I.

We state the lifting problem of nilpotent elements which we shall prove af-
firmatively later on, as follows:

Theorem 2 (Lifting Nilpotent Elements) Let A be a C*-algebra, I a closed
2 -sided ideal in A. If x is an element of A such that xn ∈ I where n is the
degree of nilpotency of the element x + I in A/I, then there exists an a in I
where (x − a) is a nilpotent element in the finer C*-algebra A with degree of
nilpotency n.

In the previous chapter we lifted n-zero divisors in a general C*-algebra A [Chap-
ter 2.7.2, Theorem 1]. Setting all the xi = x in Chapter 2.7.2, Theorem 1, we
conclude that there are elements a1, . . . , an in I such that

∏
1≤i≤n(x− ai) = 0.

However, this is not good enough for lifting nilpotent elements. We need a single
perturbation: ai = a ∈ I for i = 1, . . . , n, which does the job. We need to do
more work.

We first consider some pathological cases. Consider the trivial nilpotent ele-
ment, the zero-element of A/I which has degree of nilpotency 1. x + I is the
0-element if and only if x ∈ I. Then, trivially picking x ∈ I as the ideal element,
the perturbed element x− x = 0 ∈ A is nilpotent with degree of nilpotency 1.
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3.2 Lifting nilpotent elements: Degree of nilpo-
tency 2

Here we shall lift nilpotent elements with degree of nilpotency 2. Note that the
problem of lifting a positive element of degree of nilpotency 2, reduces to the
trivial problem of lifting the trivial nilpotent element, the zero-element of A/I
which has degree of nilpotency 1. Suppose x+ I is a positive nilpotent element
with degree of nilpotency 2. Then x is positive, and so is x2. But the degree
of nilpotency is 2: x2 ∈ I. Therefore, by the functional calculus on self-adjoint
elements applied to the C*-algebra I, so also is its square root x : x ∈ I.

Suppose x+ I ∈ A/I is a nilpotent element with degree of nilpotency 2. Then
the element x + I is a special type of zero divisor : set the element y + I to
be x + I in the statement of the Lifting Zero Divisors Theorem [Chapter 2.2,
Theorem 1], as an additional condition on the zero divisor x+ I. As the Lifting
Zero Divisors Theorem stands, the required perturbations to lift this specialized
zero divisor does not necessarily force a = b since a = u|x| 12 a1 and b = a1|x∗|

1
2u.

The proof of the lifting of nilpotent elements with degree of nilpotency 2, follows
a similar route as the proof used in lifting self-adjoint zero divisors [ Chapter
2.2, Corollary 1].

Theorem 3 (Lifting Nilpotent Elements with degree of Nilpotency 2)
(Proposition 2.8 [3]) Let A be a general C*-algebra and I be a closed 2-sided
ideal of A. If x ∈ A with x2 ∈ I, then there exists a ∈ I with (x− a)2 = 0.

Proof. Consider A as a uniformly closed self-adjoint subalgebra of operators
on its universal Hilbert space H. Let x = u|x| and x∗ = u∗|x∗| denote the polar
decompositions in B(H) of the elements x and x∗, respectively [Chapter 1.3.2,
Theorem 4]. Then, as in Step 1 of the proof of lifting zero divisors [Chapter
2.2, Theorem 1], consider the decomposition of the difference |x| − |x∗|, which
is a self-adjoint element in A, into its unique orthogonal positive parts [Chapter
1.3.1, Corollary 1]:

|x| − |x∗| = (|x| − |x∗|)+ − (|x| − |x∗|)−

where (|x| − |x∗|)+, (|x| − |x∗|)− ≥ 0 and (|x| − |x∗|)+ · (|x| − |x∗|)− = (|x| −
|x∗|)− · (|x| − |x∗|)+ = 0 : the positive parts (|x| − |x∗|)+ and (|x| − |x∗|)−
commute and we shall denote them as d1 and d2, respectively.

Similarly to the proof used in lifting self-adjoint zero divisors [Chapter 2.2,
Corollary 1], we define the required ideal perturbation a as the element x− x1

where x1 are defined as:

x1 = (d2)
1
3u|x| 13 (d1)

1
3

Note that the positive elements d1 and d2 generate a commutative C*-algebra,
C*( d1, d2 ), of A where the elements (d1)

1
3 and (d2)

1
3 are orthogonal well de-

fined elements in C*( d1, d2 ). Therefore, x2
1 = 0. We are therefore left with
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showing that:

a ∈ I: We show that π(a) = π(x − x1) = π(x) − π(x1) = 0 by showing that
π(x) = π(x1).

Firstly, by the Quotient Mapping Of the Functional Calculus For Self Adjoint
Elements [Chapter 1.3.4 ,Proposition 2] and its corollary [Chapter 1.3.4, Corol-
lary 5]:

π(x1) = [
(
π(|x|)− π(|x∗|)

)
−

]
1
3π(u|x| 13 )[

(
π(|x|)− π(|x∗|)

)
+
]
1
3 (3.1)

Secondly, |x||x∗| ∈ I since [cf. Chapter 2.2, Theorem 1, equation (2.2)]:

|x||x∗| = lim
n→∞

an = lim
n→∞

(
1
n

+ |x|)−1(x∗x)(xx∗)(
1
n

+ |x∗|)−1 (3.2)

Therefore the positive elements π(|x|) and π(|x∗|) are orthogonal. Hence, π(|x|)−
π(|x∗|) is the unique orthogonal decomposition of π(|x|) − π(|x∗|) :

(
π(|x|) −

π(|x∗|)
)

+
= π(|x|) and

(
π(|x|) − π(|x∗|)

)
−

= π(|x∗|). Equation (3.1) then

becomes:

π(x1) = [π(|x∗|)] 1
3π(u|x| 13 )[π(|x|)] 1

3 (3.3)

= [π(|x∗| 13 )]π(u|x| 13 )[π(|x| 13 )] (3.4)

= π
(
|x∗| 13 (u|x| 13 )|x| 13

)
(3.5)

We are done once we show that |x∗| 13u = u|x| 13 . This follows from the onto
*-isomorphism Φ : C∗(|x|) → C∗(|x∗|)||x| 7→ u|x|u∗ which is a well defined
definition since C∗(|x|) has the set of all polynomial expressions in |x| as a
dense subset.

Q.E.D
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3.3 Lifting nilpotent elements: Preliminary Re-
sults For the General Case

So far we have lifted nilpotent elements whose degree of nilpotency is 1 or 2. To
lift nilpotent elements of any degree of nilpotency, we shall need the following
additional propositions:

The proof of the first proposition is due to Professor Stroh.

Proposition 1 Let a, b and c be positive elements of the C*-algebra A. Then
a(b+ c) = 0 if and only if ab = 0 = bc.

We only prove that a(b+ c) = 0 implies ab = 0 = ac since the other direction is
trivial.

Step 1. (b+ c) is a 2-sided annihilator of
√
a.

Firstly, b + c is a 2-sided annihilator of a since a(b + c) = 0 = 0∗ = (b + c)a.
Therefore, b+c will be a 2 sided annihilator of all powers of a, an, where n ∈ N.

Secondly, consider the commutative C*-algebra, C∗(a, b + c) generated by the
commuting positive elements a and b + c. The commutative C*-algebra C∗(a)
generated by a, is included in C∗(a, b+ c). Now, by the Stone Weierstrass theo-
rem on C(σA(a)), since the square root function vanishes at 0, it is the uniform
limit of a sequence of polynomials which do not have constant terms. Hence,√
a is the limit of a sequence of terms which are polynomials without constant

terms in a which therefore reside in A ⊂ Ae. [Local Representation Theory I,
Theorem 1, Chapter 1.3]

Finally, by the joint continuity of the product in A, (b + c)
√
a is the limit

of a zero sequence in A since (b + c) annihilates all the polynomial without
constant terms in a.

Step 2. (
√
a)b(

√
a) = 0 = (

√
a)c(

√
a) .

From step 1, (b + c)
√
a = 0 ⇒ b

√
a + c

√
a = 0. Then left multiplying by√

a, we have

(
√
a)b(

√
a) + (

√
a)c(

√
a) = 0.

This is the sum of two positive elements since the summands are of the form
x∗x for some element x in A :

(
√
a)b(

√
a) =

√
a
√
b
√
b
√
a = (

√
b
√
a)∗
√
b
√
a

and similarly for
√
ac
√
a. Therefore, each of the summands are zero [Chapter

VI, Corollary 7.10 [9]].
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Step 3.
√
a
√
b = 0 =

√
a
√
c .

We only prove the first equality :
√
a
√
b = 0. The other inequality is proved in

an identical fashion.

We shall consider A as a uniformly closed self-adjoint subalgebra of operators
on its universal Hilbert space H [Gelfand Naimark Theorem II, Chapter 1.2.2].
From step 2, we have

(
√
b
√
a)∗
√
b
√
a = 0

which is of the form T ∗T = 0 where T ∈ B(H) is the representation of the ele-
ment

√
b
√
a. Therefore, T = 0 = T ∗ [Polar Decomposition Theorem, Theorem

2, Chapter 1.3.2].

Step 4. ab = 0 = ac.

We only prove the first equality : ab = 0. The other inequality is proved in
an identical fashion.

This follows from left and right multiplying the equation
√
a
√
b = 0 of Step

3 by
√
a and

√
b, respectively.

Q.E.D

We now extend the above proposition by allowing a just to be self adjoint:

Corollary 1 (Extension Of Proposition 1) Let a be a self-adjoint element.
Let b and c be positive elements of the C*-algebra A. Then a(b+ c) = 0 if and
only if ab = 0 = bc.

Proof. Note that if a(b+ c) = 0 then a2(b+ c) = 0. The element a2 is positive
since it is the square of a self-adjoint element : the associated quadratic form
associated with the operator a2 is always positive.

Then invoking Proposition 1, we conclude that

a2b = a2c = 0

Hence

ba2b = baab = (ab)∗ab = 0

from which we infer that ab = 0 [see Step 3 of the proof of Proposition 1].

Q.E.D
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The second proposition which we shall need states that if a normed space is
short of being complete, a Banach space, by a finite dimensional subspace, it is
of no relevance : the space will be a Banach space:

Proposition 2 (Chapter VI Remark 3.11 [9]) If a normed linear space X has
a complete linear subspace Y of finite dimension codimension in X, then X is
complete and X is naturally isomorphic (as a locally convex space) with Y

⊕
Cn.
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3.4 Lifting nilpotent elements: The Corona

3.4.1 The General Overview

Let us recall the general approach in lifting the property of n-zero divisors in
a general C*-algebra. Firstly, by the Von Neumann Lifting Lemma (Chapter
2.4.3, Lemma 3), we lifted the property of n-zero divisors in a Von Neumann
C*algebra. Secondly, we lifted the property of n-zero divisors in the corona of a
non-unital σ-unital C*-algebra A. The corona is a SAW*-algebra which has the
property of possessing orthogonal local units : a very good approximation of the
Von Neumann Lifting Lemma. We then lifted the property of n-zero divisors in
the general C*-algebra A by embedding effectively reducing A into a non-unital
σ-unital C*-algebra A.

Just as in the case of lifting the property of n-zero divisors, in the case of
lifting the property of a nilpotent element, it is again by virtue of the Von Neu-
mann Lifting Lemma that we can lift the property of a nilpotent element in a
Von Neumann C*-algebra. In fact, one mimicks the proof of Theorem 2.4, The
Structure Theorem For Polynomially Compact Operators, of C. Olsen’s paper,
A Structure Theorem For Polynomially Compact Operators, Amer. J. Math. 93
(1971), p 686 - 698. Buoyed by the success of the approach taken in lifting the
property of n-zero divisors, we shall therefore assume the same general approach
in lifting the property of a nilpotent element.

In this section we shall lift the property of nilpotent elements in the corona,
C(A) = M(A)/A, of a non-unital σ - unital C*-algebra A as follows: firstly,
we establish a triangular form [Chapter 3.4.2, Theorem 4] for the nilpotent el-
ement x of the corona C(A) relative to a finite commutative set of elements,
{e0, . . . , en}, where n is the degree of nilpotency of x; this commutative set,
{e0, . . . , en}, resides in the unit sphere of the corona C(A), except the element
e0 which is 0, and generates orthogonal elements in a SAW*-algebra way : ek

is a ”local unit” of ek−1 for k = 1, . . . , n; secondly, we lift the finite family
{e0, . . . , en} ⊂ C(A) as the finite family {d0, . . . , dn} ⊂ M(A) such that the
norm is preserved : the dj ’s reside on the unit sphere of M(A), and only one
of the properties defining the set {e0, . . . , en} ⊂ C(A) [Chapter 3.4.2, Theo-
rem 4] is lifted [Chapter 3.4.3]; thirdly, with the aid of the functional calculus,
we construct an element in the finer C*-algebra M(A) using the finite family
{d0, . . . , dn} ⊂ M(A) which will lift the property of being nilpotent [Chapter
3.4.4, Theorem 6].
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3.4.2 Triangular Form: The Corona

We now define and establish the existence of a triangular form for the nilpotent
element x of the corona C(A) relative to a finite commutative set of elements,
{e0, . . . , en}, where n is the degree of nilpotency of x.

Theorem 4 (Triangular Form For Nilpotent Element) ( Lemma 6.3 [6])
Let C(A) = M(A)/A be the corona of a non-unital σ -unital C*-algebra A. Let
x be a nilpotent element of the corona C(A) with n as the degree of nilpotency:
xn = 0 for some n ∈ N+.

Then there are positive elements e0, . . . , en of the corona C(A) dominated by
the identity element 1C(A) : 0 ≤ ek ≤ 1C(A), such that:

(a) (1C(A) − ek)xn−k = 0 0 ≤ k ≤ n

(b) (1C(A) − ek−1)xek = 0 1 ≤ k ≤ n

(c) (ekek−1) = ek−1 1 ≤ k ≤ n

where we define e0 = 0 and e1 = 1C(A). We call the above a triangular form for
the nilpotent element x of the corona C(A) relative to a finite commutative set
of elements, {e0, . . . , en}

It comes to no surprise that the above theorem which holds for the corona,
which is a SAW*-algebra, is a generalization of a triangular form for a nilpotent
element in a Von Neumann C*-algebra. In the case of a Von Neumann C*-
algebra, a triangular form for a nilpotent element occurs naturally:

Example 2 [Triangular Form For Nilpotent Element in Von Neumann
C*-algebra] Let A be a Von Neumann C*-algebra. Let x denote a nilpotent
element in A. Then we have

1 = x0, x, x2, . . . , xk, . . . , xn = 0.

Consequently, identifying x with a bounded operator on some Hilbert space H
[Definition 4, Chapter 2.4.1] we have

H ⊇ Ran(x) ⊇ Ran(x2) . . . ⊇ Ran(xk) . . . ⊇ Ran(xn) = {0} (3.6)

We then define the positive element ek as the range projection of xn−k : ek =
Ran(xn−k) . Therefore each ek is a positive operator residing on the unit sphere
of A and is bounded by 1H.

It is easy to verify the conditions (a) - (c). We start with condition (c) which
follows from the following inequality which is by virtue of equation (3.6),

1H = en ≥ en−1 ≥ en−2, . . . ,≥ ek ≥ ek−1, . . . ,≥ e0 = 0.
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For condition (a), we simply note that 1H−ek is the projection onto Ran(xn−k)
⊥

=
Ran(xn−k)⊥ by the joint continuity of the inner product.

For condition (b), since ek−1 is the projection onto Ran(xn−(k−1)), 1H − ek−1

is the projection onto Ran(xn−(k−1))
⊥
. Now Ran(ek) = Ran(xn−k) so that

Ran(xek) ⊂ Ran(xn−k+1) = Ran(ek−1) since x is a bounded operator.

2.4.2.1 Corollaries of the Triangular Form for Nilpotent El-
ements

Before we prove the above theorem, we first show that the commutativity of
the set e0, . . . , en follows from condition (c) and the fact that the set e0, . . . , en

resides in the unit sphere of the corona is a corollary of Theorem 4:

Corollary 2 The set {e0, . . . , en} of Chapter 3.4.2, Theorem 4 is a commuta-
tive set : the elements of the set commute.

Proof. It suffices to show that ejek = ek for all j ≥ k which is an extension
of condition (c) since ejek = ekej = ek for all j > k on taking adjoints : ek is
positive. We prove this by induction on m where j = k +m.

The induction step of m = 1 results from taking adjoints of condition (c) :
ek, ej is positive.

Now assume that the statement is true for m = m : ek = ek+mek. Consider the
case of m+ 1. Therefore,

ek+(m+1)ek = e(k+m)+1ek

= e(k+m)+1ek+mek

= ek+mek

= ek.

Q.E.D

Corollary 3 The subset {e1, . . . , en} of Chapter 3.4.2, Theorem 4, is a subset
of the unit sphere of the corona. Further, ek is not invertible for k = 0, . . . , n−1.

Proof. Firstly, xn−k 6= 0 for k = 1, . . . , n since n is the degree of nilpotency.
Therefore, the elements 1−ek for k = 1, . . . , n are not invertible [condition (a)].

Now ‖ ek ‖≤‖ 1 ‖= 1 since 0 ≤ ek ≤ 1C(A) [Equation (1.11), Chapter 1.1].
If ‖ ek ‖ is strictly less than 1, this would force 1− ek to be invertible [Chapter
V, Proposition 6.2, [9]]. Therefore ‖ ek ‖= 1 for k = 1, . . . , n : the elements
reside on the unit sphere of the C*-algebra A.
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Finally, by definition e0 = 0, hence it is not invertible. In the construction of
the element ek for k = 1, . . . , n − 1, the ek’s were local units of some positive
element x with respect to another strictly positive element y 6= 0 : eky = 0.
This contradicts the fact that ek = 1C(A).

Q.E.D

2.4.2.2 Proof of The Triangular Form For Nilpotent Ele-
ments

We shall prove Theorem 4, via a proof by induction on m, where m < n is the
index such that e0, . . . , em has already been constructed to satisfy conditions
(a) - (c).

Consider the induction step of m = 1. By definition, e0 = 0. We use the
fact that C(A) is a SAW*-algebra [Chapter 2.5.3.2, Theorem 10] to construct
the element e1 which satisfies the conditions (a) - (c) for k = 1 : condition (c)
is trivial since e0 = 0; if x and xn−1 were positive elements, conditions (a) and
(b) amount to saying that e1 is a local unit for xn−1 with respect to x, since
xn = xxn−1 = 0 [Chapter 2.5.3, Definition 4]. We now prove that conditions
(a) and (b) holds for non positive x and xn−1:

Step 1. There exists a positive element e′1 in the corona C(A) which is a
local unit for |(xn−1)∗|2 with respect to |x|2.

(i) Firstly, the elements |x|2 and |(xn−1)∗|2 are a pair of positive orthogonal
elements in the corona C(A).

This follows from the fact that, |x|2|(xn−1)∗|2 = x∗xxn−1(xn−1)∗ = 0 since
xn = 0.

(ii) Secondly, we use the fact that the corona C(A) is a SAW*-algebra to
assume the existence of a positive element e′1 in the corona C(A) such that
e′1|x|2 = |x|2e′1 = 0 and e′1|(xn−1)∗|2 = |(xn−1)∗|2e′1 = |(xn−1)∗|2 : e′1 is a
local unit for the element |(xn−1)∗|2 with respect to |x|2. Further the element
e′1 resides in the unit sphere of the corona C(A) [Chapter 2.5.3.2, Proposition 2].

Step 2. Define e1 =
√
e′1. Then xe1 = 0 and (xn−1)∗e1 = (xn−1)∗. Fur-

ther e1 resides in the unit sphere of the corona C(A).

Consider the corona C(A) as a uniformly closed self-adjoint subalgebra of op-
erators on its universal Hilbert space H. Let x = u|x|, xn−1 = v|xn−1| and
(xn−1)∗ = v∗|(xn−1)∗| denote the polar decompositions in B(H) of the ele-
ments x, xn−1 and (xn−1)∗, respectively, where |x| =

√
x∗x and |(xn−1)∗| =

xn−1(xn−1)∗ [Chapter 1.3.2, Theorem 2].
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Then, by Chapter 1.3.1, Corollary 3:

(xn−1)∗ = v∗|(xn−1)∗| = v∗
√
|(xn−1)∗|2

= v∗
√
|(xn−1)∗|2e′1 = v∗

√
|(xn−1)∗|2

√
e′1

= v∗|(xn−1)∗|e1 = (xn−1)∗e1. (3.7)

and

xe1 = u|x|e1 = u
√
|x|2e1

= u
√
|x|2

√
e′1 = u

√
|x2|e′1

= u0 = 0.

Taking the adjoint of equation (3.7) completes the proof that conditions (a) and
(b) are satisfied.

Applying the functional calculus to the positive element e′1 [Chapter 1.3.1, The-
orem 1], taking e′1 as a function in C(σ(e′1)), there exists an τ ∈ σ(e′1) such that
e′1(τ) = 1. Consequently,

√
e′1(τ) = 1 and hence ‖ e1 ‖= 1. This completes the

induction step.

Consider the case of m+1. By the induction hypothesis, there exists e0, . . . , em

which satisfy the conditions (a) - (c). We need to construct the element em+1

that also satisfies conditions (a) - (c).

Step 3. There exists a positive element e′1 in the corona C(A) which is a
local unit for the element |(1C(A) − em)x|2 with respect to |(xn−(m+1))∗|2 + e2m.
Further the element e′1 resides in the unit sphere of the corona C(A).

(i) Firstly, the elements |(1C(A) − em)x| and |(xn−(m+1))∗|2 + e2m are a pair
of positive orthogonal elements in the corona C(A).

Invoking condition (a) for the case k = m, we have

(1C(A) − em)xn−m = (1C(A) − em)xxn−(m+1) = 0.

Consequently,

((1C(A) − em)x)∗(1C(A) − em)xxn−(m+1)(xn−(m+1))∗ = 0.

or

|(1C(A) − em)x|2|(xn−(m+1))∗|2 = 0. (3.8)
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Now, invoking condition (b) for the case k = m, we have(
(1C(A) − em)x

)∗
(1C(A) − em)xem = 0

or

|(1C(A) − em)x|2em = 0.

and therefore

|(1C(A) − em)x|2e2m = 0. (3.9)

Combining equations (3.8) and (3.9) , we have

|(1C(A) − em)x|2(|(xn−(m+1))∗|2 + e2m) = 0. (3.10)

(ii) Secondly, we use the fact that the corona C(A) is a SAW*-algebra to assume
the existence of a positive element e′m+1 in the corona C(A) such that

e′m+1|(1C(A) − em)x|2 = |(1C(A) − em)x|2e′m+1 = |(1C(A) − em)x|2 (3.11)

and

e′m+1(|(xn−(m+1))∗|2 + e2m) = (|(xn−(m+1))∗|2 + e2m)e′m+1 = 0. (3.12)

That is, e′m+1 is a local unit for the element |(1C(A) − em)x|2 with respect to
|(xn−(m+1))∗|2 + e2m. Further the element e′m+1 resides in the unit sphere of the
corona C(A) [Chapter 2.5.3.2, Proposition 2].

Step 4. By equation (3.12), it follows from Chapter 3.3, Proposition 1 that,

(|(xn−(m+1))∗|2)e′m+1 = e′m+1(|(xn−(m+1))∗|2) = 0 (3.13)

and

e′m+1(e
2
m) = (e2m)e′m+1 = 0 (3.14)

In the next step we shall see that equation (3.13) and (3.14) takes care of con-
dition (a) and (c), while equation (3.11) takes care of condition (b).

Step 5. Define em+1 = 1C(A) −
√
e′m+1. Then

√
e′m+1(x

n−(m+1)) = 0 and
(1C(A) − em)x

√
e′m+1 = (1C(A) − em)x ensures conditions (a) and (b) are sat-

isfied. Further,
√
e′m+1em = 0 ensures condition (c) is satisfied. Further em+1

resides in the unit sphere of the corona C(A).

Consider the corona C(A) as a uniformly closed self-adjoint subalgebra of oper-
ators on its universal Hilbert space H. Let (1C(A) − em)x = U |(1C(A) − em)x|
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and (xn−(m+1))∗ = V |(xn−(m+1))∗| denote the polar decompositions in B(H)
of the elements (1C(A) − em)x and (xn−(m+1))∗, respectively.

Then, by equation (3.11) and Chapter 1.3.1, Corollary 3:

(1C(A) − em)x = U |(1C(A) − em)x| = U
√
|(1C(A) − em)x|2

= U
√
|(1C(A) − em)x|2e′m+1

= U
√
|(1C(A) − em)x|2

√
e′m+1

= U |(1C(A) − em)x|
√
e′m+1

= (1C(A) − em)x
√
e′m+1

and similarly from equation (3.13):

(xn−(m+1))∗
√
e′m+1 = V |(xn−(m+1))∗|

√
e′m+1

= V
√
|(xn−(m+1))∗|2

√
e′m+1

= V
√
|(xn−(m+1))∗|2e′m+1

= V 0
= 0 (3.15)

and from equation (3.14):

√
(e2m)e′m+1 = em

√
e′m+1 =

√
0 = 0.

Taking the adjoint of equation (3.15) we see that em+1(xn−(m+1)) = 0.

Applying the functional calculus to the positive element
√
e′m+1 just as in the

case of the induction step, we conclude that ‖
√
e′m+1 ‖= 1. Then ‖ em+1 ‖= 1

from Chapter 2.5.3.2, Proposition 2.

Q.E.D
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3.4.3 Lifting the Triangular Form : The Double Central-
izer Algebra.

We are now ready to lift the finite commutative set {e0, . . . , en} ⊂ C(A) of
Chapter 3.4.2, Theorem 4 as the set {d0, . . . , dn} ⊂ M(A) such that the norm
is preserved : the dj ’s reside on the unit sphere of M(A), and only one of the
properties defining the set {e0, . . . , en} ⊂ C(A), property (c) [Chapter 3.4.2,
Theorem 4], is lifted. We shall prove this is in a more general context in the
category of a general C*-algebra:

Theorem 5 (Lifting Triangular Form) (Lemma 6.5 [6]) Let A be a general
C*-algebra and B a C*-algebra with an identity, 1B. If π : A→ B is a surjective
morphism between C*-algebras A and B, and (en)∞n=1 is an infinite sequence of
positive elements in B such that 0 ≤ en ≤ 1B and enen+1 = en for all n, then
there exists a sequence (dn)∞n=1 in A such that

0 ≤ dn ≤ 1, dndn+1 = dn, π(dn) = en

for all n = 1, 2, . . . ,

We can assume without loss of generality that A has an identity, 1A, and that
π(1A) = 1B. In the case A does not have an identity, replace A with Ae and
take B as Be, respectively [Unitization Theorem, Theorem 1, Chapter 1.1].
Then the surjective *-homomorphism map π : Ae → Be|(a, λ) 7→ (π(a), λ) ex-
tends the map π and maps the identity of A into the identity of Be which we
take as B. Further, ‖ π ‖≤ 1 [Chapter VI.3, Proposition 3.7 [9]]. We take π as π.

We can assume without loss of generality that π is the canonical quotient map
A → A/I|a 7→ a + I where I = ker(π) is the closed 2-sided ideal in A. This
follows from the fact that the onto *-isomorphism map A/I → B|a+I 7→ π(a) is
an isometry [Chapter VI.3, Corollary 3.9 [9]]. We therefore identify B with A/I.

Proof. It suffices to prove the above for the case of n = 1, 2.

(i) Rephrase the condition

enen+1 = en for all n = 1, 2, 3, . . .

as a positive zero divisor condition

en(1B − en+1) = 0 for all n = 1, 2, 3, . . .

We lift the property of a positive zero divisor in B: there exists a positive zero
divisor d1 ∈ A such that

π(d1) = e1 and d1d2 = 0

for a non-zero positive element d2 ∈ A such that π(d2) = 1 − e2 [Chapter 2.2,
Corollary 1].
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(ii) The norm is preserved: ‖ d1 ‖=‖ d2 ‖= 1, once we assume the hypotheses
of Theorem 4, Chapter 3.4.2:

(a) ‖ d1 ‖, ‖ d2 ‖≤ 1: It suffices to show that the positive elements d1 ≤ 1A and
d2 ≤ 1A [Equation (1.11), Chapter 1.1]. Since π(d1) = e1 ≤ 1 and π(1A) = 1B ,

π(d1) ≤ π(1A) iff π(1A − d1) ≥ 0

Since the positive cone of A is mapped onto the positive cone of A/I, we con-
clude, 1A − d1 ≥ 0. The proof for d2 is similar.

(b) If ‖ d1 ‖< 1, then 1A − d1 is invertible [Chapter V.6, Proposition 6.2
[9]]. Consequently, 1B − e1 = π(1A− d1) is also invertible which contradicts the
Corollary 3, Chapter 3.4.2. Similarly, if ‖ d2 ‖< 1 then 1− d2 is invertible and
hence e2 will be invertible, again contradicting Corollary 3, Chapter 3.4.2.

(iii) The construction of d2 ∈ A proceeds over two steps. The construction
for the other dk for k = 3, . . . is done in an identical fashion.

Before we start the construction, we need the concept of a hereditary C*-
subalgebra.

Definition 2 (Hereditary C*-subalgebra) A hereditary C*-subalgebra B of
a C*-algebra A is a C*-subalgebra with the condition that if 0 ≤ x ≤ y, y ∈ B+,
then x ∈ B+ whenever x ∈ A+.

Trivially A and {0} are hereditary C*-subalgebras. A hereditary C*-subalgebra
generated by a set S ⊂ A is the smallest hereditary C*-subalgebra containing
the set S. In particular, the hereditary C*-subalgebra generated by the single-
ton set S = {a}, where a is a positive element, is of the form (aAa)−, the closure
of the subalgebra aAa = {axa|x ∈ A} [Chapter 3.2, Corollary 3.2.4 [13]]. We
shall call this the hereditary C*-subalgebra generated by the positive element
a.

With our d1 defined, we construct our d2, over two steps, from the positive
element d2 such that π(d2) = e2, d1 annihilates 1−d2 and there exists a d3 such
that d3d2 = d2. All of the above will occur in the context of the C*-algebra
A2 = A2 + C1A which we can consider as the unitization C*-algebra [Chapter
VI.3, Proposition 3.10 [9]] of the hereditary C*-subalgebra, A2 of A, generated
by the positive element d2 . The reason is that all the zero divisors en and 1−en

for n = 1, 2, 3, . . . are trapped in π(A2) [Step 1], with the fact that π(A2) being
a proper hereditary C*-subalgebra of B forcing dndn+1 = dn [Step 2(a)]. The
mechanism of Step 2(a) allows us to proceed inductively [see (iv)]:
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Step 1. 1B − ej ∈ π(A2) for j ≥ 2.

Firstly, the element 1B − e2 ∈ π(A2) since 1B − e2 = π(d2) and A2 is the hered-

itary C*-subalgebra containing d2. Now π(A2) =
(
(1B− e2)π(A)(1B− e2)

)−
=(

(1B − e2)B(1B − e2)
)−

so that 1B − e3 ∈ π(A2) :

(1B − e3) = (1B − e2)(1B − e3)(1B − e2)

since e2 annihilates 1B − e3.

Note that π(A2) is a hereditary C*-subalgebra containing 1B − e3. There-
fore π(A2) will contain the hereditary C*-subalgebra generated by 1B − e3 ,(
(1B − e3)B(1B − e3)

)−
. Then, by an identical argument, 1B − e4 ∈ π(A2).

Inductively, 1B − ej ∈ π(A2) for j ≥ 2.

Step 2. Construct a d2 ∈ A2 such that π(d2) = e2 and 1A − d2 ∈ A2 where d1

annihilates A2.

(a) The positive zero divisor e2 with respect to 1B − e3 belongs to π(A2).

Consider the unitization C*-subalgebra A2. Then 1A ∈ A2 so that 1B ∈ π(A2).
Then the positive zero divisors e2 belongs to π(A2) on rewriting e2 as e2 =
1B − (1B − e2).

Trivially, from step 1, 1B − e3 ∈ π(A2) ⊂ π(A2).

We lift the property of a positive zero divisor in B: there exists a positive
zero divisor d2 ∈ A2 such that

π(d2) = e2 and d2d3 = 0

for a non-zero positive element d3 ∈ A2 such that π(d3) = 1B− e3 [Chapter 2.2,
Corollary 1]. As before [see part (i)], ‖ d2 ‖=‖ d3 ‖= 1.

(b) Once we show that 1A−d2 ∈ A2, then d1 annihilates 1A−d2 : A2 = (d2Ad2)−

and d1d2 = 0.

Firstly, since d2 ∈ A2, d2 = λ1A + a for some a ∈ A2. Consequently, we
need to show that λ = 1. It suffices to show that π(A2) is a proper hereditary
C*-subalgebra of B or equivalently that π(A2) is devoid of the identity 1B :
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(α) π(A2) is a proper hereditary C*-subalgebra of B if and only if π(A2) is de-
void of the identity 1B.

If L is a closed left ideal of C*-algebra B, then the map L 7→ L
⋂
L∗ is a bijection

from the set of closed left ideals onto the set of hereditary C*-subalgebras of B
[Chapter 3.2, Theorem 3.2.1(1) [13]]. Hence a proper hereditary C*-subalgebra
corresponds to a proper closed left ideal which is devoid of 1.

(β) If π(A2) is devoid of the identity 1B, then λ = 1.

Note that

π(1A − d2) ∈ π(A2)

since π(1A − d2) = 1B − e2 ∈ π(A2). Therefore,

π(1A − d2) = 1B − λ1B − π(a) ∈ π(A2)

Now if 1B 6∈ π(A2) then λ = 1 since π(a) ∈ π(A2) and 1B 6∈ π(A2).

(γ) π(A2) is a proper hereditary C*-subalgebra of B

Firstly, π(A2) = (π(d2)Bπ(d2))− which is the smallest hereditary C*-subalgebra
of B containing the positive element π(d2) = 1B − e2, since A2 = d2Ad2.

Secondly, the left ideal B(1B − e2) is a proper left ideal : since 1B − e2 is
not invertible [Corollary 3, Chapter 3.4.2], it is not left invertible since it is self-
adjoint : left and right inverses coincide. Therefore, there exists a maximal left
ideal I where I ⊃ B(1B − e2) [Chapter V.5, Proposition 5.11 [9]] and is norm
closed [Chapter V.6, Proposition 6.6 [9]] : all left ideals are trivially modular in
a unitary C*-algebra.

Thirdly, 1B − e2 ∈ I since (1B − e2) = 1B(1B − e2) ∈ B(1B − e2). Therefore
the proper hereditary C*-subalgebra I

⋂
I∗ ⊃ A2 which corresponds uniquely

to some hereditary C*-subalgebra that contains 1B−e2 and is devoid of 1B and
contains π(A2).

(iv) Finally, we construct d3 in an identical fashion [Step 2] from the C*-
subalgebra, A3 = A3 + C1A where A3 ⊂ A2 is the hereditary C*-algebra gen-
erated by the positive element d3 [Step 2, (i)] : by step 1, we can rewrite e3 as
e4, d3 as d4 and d3 as d4 in Step 2(a); also by step 1, we can take Step 2(b) for
granted since π(A3) ⊂ π(A2) where π(A2) is a proper hereditary C*-subalgebra;
then, 1A − d3 ∈ A3 and d2d3 = d2.

We therefore proceed inductively to construct all the other d′ks all within the
environment of A2.

Q.E.D
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3.4.4 Lifting Nilpotent Elements : The Corona.

In Chapter 3.4.2, given a fixed nilpotent element x of the corona C(A) with
degree of nilpotency n, we showed the existence of a special commutative set
of n + 1 positive elements, {e0, . . . , en} of the unit sphere which we called a
triangular form. This triangular form of the corona was then ”lifted” in Chapter
3.4.3, from the corona C(A) onto the multiplier algebra M(A) as the set of
n+1 positive elements {d0, . . . , dn} of the unit sphere of M(A) which preserved
property (c) of Theorem 4, Chapter 3.4.2. In this section, we show that with the
help of the Functional Calculus for Normal Elements [Chapter 1.3.1, Theorem
1], these are the only ingredients needed to construct a nilpotent element y of
the multiplier algebra that will lift the property of a nilpotent element of the
corona C(A) onto the multiplier algebra M(A) : we shall only work in the
environment of the C*-subalgebra generated by {e0, . . . , en} and {d0, . . . , dn}.
Formally:-

Theorem 6 Let A be a non-unital, σ - unital C*-algebra. Let π : M(A) →
C(A) be the quotient map onto the corona C*-algebra of A. If x ∈ C(A) is a
nilpotent element with n as the degree of nilpotency: xn = 0, then there exists a
y ∈M(A) such that π(y) = x and yn = 0.

Proof.

Step 1 Pick from C[0, 1], two functions f and g such that fg = f . We en-
force the additional conditions:-

(i) f(0) = g(0) = 0.

(ii) f(1) = g(1) = 1.

Note. In anticipation of the Functional Calculus for Normal Elements, the
terms f(ek), g(ek), f(dk) and g(dk) for k = 0, . . . , n need to be well defined. Now
the norm of the positive elements ek, dk is exactly 1. Therefore, their spectrums
are a subset of the positive real line interval [0, 1] : the spectral radius and the
norm of ek coincide [Chapter VI, Proposition 3.6 [9]]. We let the functions f, g
in the terms f(ek), g(ek), f(dk) and g(dk) for k = 0, . . . , n denote the restriction
of f, g ∈ C[0, 1] to the spectrums of ek, dk for k = 0, . . . , n. Then the terms
f(ek), g(ek), f(dk) and g(dk) for k = 0, . . . , n are well defined elements in the
C*-subalgebra generated by the sets e0, . . . , en and d0, . . . , dn. The additional
condition (i) is required in case the C*-subalgebra generated by {e0, . . . , en} and
{d0, . . . , dn} does not contain the identity.

Step 2. Let pn, qm be polynomial functions on C[0, 1] of degree n and m respec-
tively which do not have constant terms : pn = Σn

i=1aix
i and qm = Σm

j=1bjx
j .

Then qm(ek−1)xpn(ek) = xpn((Σm
j=1bj)ek).
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Firstly, ek−1 is a left identity of xpn(ek):

ek−1xpn(ek) = xpn(ek).

To see this, first note that ek−1 is a left identity of xek
j for all j ≥ 1 : right

multiply the equation ek−1xek = xek [Chapter 3.4.2, Theorem 4(b)] by ej−1
k−1.

Then,

ek−1xpn(ek) = ek−1x
(
Σn

i=1aie
i
k

)
= Σn

i=1

(
aiek−1xe

i
k

)
= Σn

i=1

(
aixe

i
k

)
= xpn(ek).

Consequently, es
k−1 is a left identity of xpn(ek) for all s ≥ 1 where s ∈ N.

Therefore,

qm(ek−1)xpn(ek) =
(
Σm

j=1bje
j
k−1

)
xpn(ek)

= Σm
j=1

(
bje

j
k−1xpn(ek)

)
= Σm

j=1bjxpn(ek)

= Σn
i=1ai(Σm

j=1bj)xe
i
k

= xpn((Σm
j=1bj)ek).

Step 3. f(ek−1) is a left identity of xg(ek) : f(ek−1)xg(ek) = xg(ek).

By the Weierstrass theorem for C[0, 1], the space of all continuous functions
on the compact interval [0, 1] [Chapter 4, Theorem 4.6.1 [20]], f and g are,
respectively, the uniform limits of the sequences of Bernstein polynomials

(Bnf)(x) = Σn
k=0x

k(1− x)n−kf(k/n)

and

(Bng)(x) = Σn
k=0x

k(1− x)n−kg(k/n).

Consequently, since f(1) = 1, (Bnf)(1) = f(1) = 1: that is, f is the uniform
limit of a sequence of polynomials which evaluates to 1 at 1 : the sum of the
coefficients is 1; similarly, f(0) = 0 implies that the Bernstein polynomials do
not have any constant terms.

Hence, by the joint continuity of the product in C[0, 1],

f(ek−1)xg(ek) = lim
n→∞

Bnf(ek−1)x lim
n→∞

(Bng)(ek)

= lim
n→∞

(Bnf)(ek−1)x(Bng)(ek)

= lim
n→∞

x(Bng)(ek).
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The last equality follows from step 2 since the sum of the coefficients of each
Bnf is exactly 1. Therefore, f(ek−1)xg(ek) = xg(ek).

Step 4. f(ek−1) is a left identity of xg(ek−1) : f(ek−1)xg(ek−1) = xg(ek).

Using a proof similar to that of step 3, f(ek−1) is a left identity of xej
k for

all j ≥ 1.

By the Weierstrass theorem for C[0, 1] [Chapter 4, Theorem 4.6.1 [20]], we can
write g as the limit of a sequence of Bernstein polynomials, (Bng)∞n=1, where
Bng is an n-th order polynomial without constant terms which we denote as
Σn

i=1cix
i. Since ek−1 = ekek−1,

f(ek−1)x
(
Σn

i=1cix
i
)
(ek−1) = f(ek−1)x

(
Σn

i=1cix
i
)
(ekek−1)

= f(ek−1)xΣn
i=1cie

i
ke

i
k−1

the last equality following from the fact that ek and ek−1 commutes.

But,

f(ek−1)xΣn
i=1cie

i
ke

i
k−1 = Σn

i=1cif(ek−1)xei
ke

i
k−1 = Σn

i=1cixe
i
ke

i
k−1

since f(ek−1) is a left identity of xej
k for all j ≥ 1.

Since

Σn
i=1xcie

i
ke

i
k−1 = x(Bng)(ekek−1) = x(Bng)(ek−1)

we have shown that f(ek−1) is a left identity of xBng(ek−1). Hence on taking
limits, we have the desired conclusion.

Step 5.
(
g(dk)− g(dk−1)

)
f(dj−1) = 0 if j ≤ k.

For the case of j < k, we note that ds
k and ds

k−1 for all s ≥ 1 are left iden-
tities of dj−1. [see Corollary 2, Chapter 3.4.2]. Consequently, dk, dk−1 are left
identities of any polynomial expression in dj−1:

dkpn(dj−1) = pn(dj−1) = dk−1pn(dj−1)

and as in step 2:

qm(dk)pn(dj−1) =
(
Σm

j=1bjd
j
kpn(dj−1)

)
=

(
Σm

j=1bjpn(dj−1)
)

= pn((Σm
j=1bj)dj−1). (3.16)
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and likewise,

qm(dk−1)pn(dj−1) = pn((Σm
j=1bj)dj−1). (3.17)

By the Weierstrass theorem for C[0, 1] [Chapter 4, Theorem 4.6.1 [20]], we can
write g, f as the limit of sequences of Bernstein polynomials, (qm)∞m=1, (pn)∞n=1,
respectively, whose coefficients sum up to 1. Then by the joint continuity of the
product applied to equations (3.16) and (3.17),

g(dk)f(dj−1) = g(dk−1)f(dj−1).

For the case of j = k,

g(dk−1)f(dj−1) = g(dk−1)f(dk−1) = f(dk−1) (3.18)

since fg = f . Now [see case of j < k]

g(dk−1)f(dj−1) = g(dk)f(dk−1) = f(dk−1). (3.19)

Step 6. We can now construct a sequence y1, . . . , yk of elements in M(A) such
that yk annihilates yj whenever j ≤ k:

y1 = f(d0)z(g(d1)− g(d0))
y2 = f(d1)z(g(d2)− g(d1))
...

yk = f(dk−1)z(g(dk)− g(dk−1))
...

yn = f(dn−1)z(g(dn)− g(dn−1))

First note that y1 = 0 since d0 = 0 so that f(d0) = 0 since f is the limit of a
sequence of polynomials which do not have constant terms; secondly, ykyj = 0
when j ≤ k by Step 5.

Then:

π(y1) = f(e0)x(g(e1)− g(e0)) = x(g(e1)− g(e0))
π(y2) = f(e1)x(g(e2)− g(e1)) = x(g(e2)− g(e1))

...
π(yk) = f(ek−1)x(g(ek)− g(ek−1)) = x(g(ek)− g(ek−1))

...
π(yn) = f(en−1)x(g(en)− g(en−1)) = x(g(en)− g(en−1))
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since π
(
f(dk−1)

)
= f(π(dk−1)) = f(ek−1) and π

(
g(dk−1)

)
= g(π(dk−1)) =

g(ek−1) [Proposition 2, Chapter 1.3.4] and f(ek−1) is a left identity of both
x(g(ek) [Step 3] and x(g(ek−1)) [step 4].

Step 7. The required y is precisely y = Σn
i=1yi.

By a telescopic summation, π(y) = x(g(en)−g(e0)) = x(g(1C(A))−g(0C(A))) =
x since g is the uniform limit of a sequence of polynomials whose coefficient sum
up to 1 and do not have constant terms. Further yn is a sum of products where
each product has n factors from the set {y1, . . . , yn} and hence must be 0 since
yk annihilates yj whenever j ≤ k.

Q.E.D

Example 3 The following functions of C[0, 1], the space of all continuous func-
tions on the compact interval [0, 1], fulfill the conditions of step 1:

f =
{

0 : 0 ≤ x ≤ 1
2

2x− 1 : 1
2 ≤ x ≤ 1

and

g =
{

2x : 0 ≤ x ≤ 1
2

1 : 1
2 ≤ x ≤ 1
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3.5 Lifting nilpotent elements : The General
Case

We now prove the lifting of nilpotent elements in the general C*-algebra. Pro-
ceeding as in Chapter 2.7.2, Theorem 1, we shall reduce the problem of lifting a
nilpotent element in the general C*-algebra into the problem of lifting a nilpo-
tent element in the corona C*-algebra of a non-unital σ-unital C*-algebra, which
was proved affirmatively in the previous section [Theorem 6, Chapter 3.4.4].

Theorem 7 Let A be a C*-algebra, I a closed 2 -sided ideal in A. If x is an
element of A such that xn ∈ I where n is the degree of nilpotency of the element
x+ I in A/I, then there exists an a in I where (x+ a)n = 0.

Proof. Just as in Chapter 2.7.2, Theorem 1, we may assume without loss of
generality that A is non-unital and σ - unital. In the case A is not σ - unital, we
take A as B, the C*-subalgebra generated by x [resp. diag[x, 0] ∈ A

⊙
K(H)

if A has an identity] and consider x [resp. diag[x, 0] ∈ A
⊙
K(H) if A has an

identity] as an element of B. B has a countable fundamental set and is therefore
a separable normed space and hence σ-unital. Further, we take the closed two-
sided ideal I as the non-trivial closed two-sided ideal B ∩ I of B. Proceeding as
before:

Step 1. We construct a closed essential ideal I+I⊥ of A from I [Chapter 2.7.1,
Proposition 1]. This then allows us to embed A isometrically *-isomorphically
in the Double Centralizer Algebra M(I + I⊥) [Theorem 11, Chapter 1.2.3].

Step 2. Treating the nilpotent element x in A as an element of M(I+I⊥), we
can invoke Chapter 3.4.4, Theorem 6, since the C*-algebra I + I⊥ is σ- unital
and non-unital [see Chapter 2.7.2, Theorem 1, Step 2].

Therefore there exists an element h in I + I⊥ such that (x− h)n = 0.

Step 3. Let us decompose h uniquely into the sum a+ b, where a ∈ I, b ∈ I⊥
: I

⋂
I⊥ = 0. Therefore the zero product (x− h)n can be written as

(x− h)n = ((x− a)− b)n = (x− a)n +B = 0

where B is a sum of products, each product containing the factor b.

Step 4. Let us note that

(x− h)n = ((x− a)− b)n = (x− a)n +B = 0

is a decomposition of the zero product (x − h)n in I + I⊥: (x − a)n ∈ I and
B ∈ I⊥.
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Firstly, B ∈ I⊥ since b ∈ I⊥. Secondly, (x − a)n ∈ I : let π denote the *-
homomorphism π : A → A/I | a 7→ a + I. (x − a)n ∈ I since π((x − a)n) =(
π(x− a)

)n

=
(
π(x)

)n

= π(xn) = 0 since by assumption xn ∈ I.

Step 5. By the uniqueness of the decomposition 0 = 0 + 0 in I + I⊥, we
conclude that both B and more importantly (x− a)n are 0.

Q.E.D
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Chapter 4

Lifting Polynomially Ideal
Elements : A Criteria

4.1 Lifting Polynomially Ideal Elements : A Counter
Example

In this section, we show that the ring theoretic (algebraic) property of a poly-
nomially ideal element cannot be lifted in the general case.

Definition 1 (Property of Polynomially Ideal Element) Let x be an el-
ement of the C*-algebra A taken as a ring. Let I be a closed 2-sided ideal in A.
Let the property P (x, I) be the ring-theoretic property that the element x is a
polynomially ideal element. An element x in the ring A is a polynomially ideal
element if there exists a polynomial function p(z) over the complex number field
C, C[X], such that p(x) ∈ I.

Example 1 Every nilpotent element x is polynomially ideal with respect to any
closed 2-sided ideal. Let n be the degree of nilpotency. Then the polynomial
function p(z) = zn in C[X] annihilates the nilpotent element : p(x) = 0 ∈ I.

Definition 2 (Lifting Polynomially Ideal Element) Let A be a C*-algebra,
I a closed 2-sided ideal of A. Let x be a polynomially ideal element of the C*-
algebra A taken as a ring. Then there exists a polynomial function p(z) over
the complex number field C, C[X], such that p(x) ∈ I. The property P (x, I) of
the polynomially ideal element x is lifted precisely when there exists an element
a in the ideal I such that p(x− a) = 0.

Example 2 (Lifting Nilpotent Elements : A special case of Lifting
Polynomially Ideal Element) Every nilpotent element is polynomially ideal.
The lifting of nilpotent elements [Theorem 7, Chapter 3.5] is a special case of
lifting polynomially ideal elements where the polynomial is of the form of a power
function p(z) = zn where n is the degree of nilpotency.
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Example 3 (Lifting Polynomially Ideal Element : Polynomially Com-
pact Operators) Consider the C*-algebra A = B(H). We fix as our closed
2-sided ideal I = K(H). If x ∈ A such that p(x) ∈ I where p is a complex
polynomial function, then p(x−a) = 0 for some a in I [Theorem 2.4, C. Olsen,
”A Structure theorem for polynomially compact operators ” , Amer. J. Math ,
93 (1971), pp 686 - 698].

The proof of the above example rested on the existence of the projection e ∈
A = B(H) such that ae ∈ I and (1− e)b ∈ I whenever ab ∈ I [Theorem 2.3, C.
Olsen, ”A Structure theorem for polynomially compact operators ” , Amer. J.
Math , 93 (1971), pp 686 - 698]. This property holds when A is a Von Neumann
algebra : the Von Neumann Lifting Lemma [Chapter 2.4.3, Lemma 3].

Therefore, the proof of Theorem 2.4, Olsen, ”A Structure theorem for poly-
nomially compact operators ” , Amer. J. Math , 93 (1971), pp 686 - 698],
generalizes to any closed ideal I of a Von Neumann algebra [Theorem 4.3 [3]].

Example 4 (Lifting Polynomially Ideal Element : Von Neumann C*-
algebra) Let A be a Von Neumann C*-algebra and I any 2-sided closed ideal of
A. Then, we can always lift the property P (x, I) of a polynomially ideal element
x of A with respect to any closed 2-sided ideal of the C*-algebra A.

We now give a counterexample [Example 2.9 [3]] to the lifting of polynomially
ideal elements in a general C*-algebra. Topological obstructions are the key to
providing the following counterexample.

Step 1. Consider the C*-algebra A = C[0, 1]. In direct contrast to Exam-
ple 4, the connectedness of the real line interval [0, 1] forces the C*-algebra A
to be projectionless [Chapter 2.4.2, Example 2].

The finite subset S = {0, 1} ⊂ [0, 1] is closed and hence all the functions which
vanish on S is a closed ideal of C[0, 1] [Example 1, Chapter 1.2.4]. We take as
our closed 2-sided ideal I = {f ∈ C[0, 1] | f(0) = f(1) = 0}.

Step 2. Consider the complex polynomial function p(z) = z2 − z. Define the
polynomially ideal element x of the C*-algebra A = C[0, 1] to be the identity
map x(t) = t for all t ∈ [0, 1] : p(x) is the function g(t) = t2 − t which vanishes
on S; p(x) ∈ I. We now show that p(x−f) 6= 0 for all ideal perturbations f ∈ I.

Step 3. The difference function (x−f) is a continuous complex valued function
on [0, 1]. Therefore, the graph of x − f is a connected path Γ in the complex
plane C which starts at (0, 0) and ends at (1, 1): the continuous image of a
connected space is connected. In the complex plane C, connectedness is equiv-
alent to polygonal connectedness: Γ ⊂ C is polygonally connected if and only
if for each distinct pair of points in Γ, there exists a polygonal arc, finite string
of line segments joined end-to-end [Chapter II, Theorem 3.7 [22]].

125

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



Step 4. If the real part Re(z) of the complex number z is equal to 1
2 , then

p(z) is a real number whose absolute value exceeds 1
4 : if z = a + bi then

p(z) = (a2 − a − b2) + b(2a − 1)i; if a = 1
2 then p(z) = − 1

4 − b2 where
| − 1

4 − b2| = 1
4 + b2 ≥ 1

4 .

Step 5. Finally, since the path Γ must intersect the line Re(z) = 1
2 , there

exists a t ∈ [0, 1] such that Re
(
(x− f)(t)

)
= 1

2 so that ‖ p(x− f) ‖ ≥ 1
4 . That

is p(x− f) 6= 0.
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4.2 Lifting Polynomially Ideal Elements : Pre-
liminary Results

In the previous section, we showed that in a general C*-algebra, the lifting of
the property of a polynomially ideal element is not always possible. However
all is not lost: in this section, we establish a criteria under which the lifting of a
polynomially ideal element is possible. More precisely, the lifting of a polynomi-
ally ideal element from the quotient C*-algebra A/I onto the finer C*-algebra
A occurs exactly when any finite orthogonal family of projections can be lifted
from A/I onto A as a finite orthogonal family of projections in A. We shall call
this criteria the Finite Orthogonal Projection Criteria.

Here we state the preliminary lemmas and propositions used in establishing
the Finite Orthogonal Projection Criteria.

4.2.1 Linear Algebra Preliminaries

Definition 3 (The Minimal Polynomial) Let A be a p × p matrix. Then
there exists a unique monic polynomial p of smallest degree such that p(A) = 0.
This polynomial is called the minimal polynomial of A.

Definition 4 An n× n Jordan Block with diagonal entry equal to λ is a n× n
matrix whose entries on the diagonal are precisely all λ and whose entries im-
mediately above the diagonal are 1:



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


Definition 5 (Direct Sum) Let A,B be k × k and m × m matrices respec-
tively. The direct sum of A and B, denoted by A

⊕
B is the (k+m)× (k+m)

matrix :

(
A 0
0 B

)
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Direct sum matrices behave like diagonal matrices:

Proposition 1 Let A1, A2 be k × k matrices. Let B1, B2 be m ×m matrices.
Let Ci be the direct sum matrix Ai

⊕
Bi for i = 1, 2. Then the matrix product

C1 ∗ C2 is the direct sum of the matrices A1 ∗ A2

⊕
B1 ∗ B2. Consequently, if

q is a polynomial over the complex number field: q ∈ C[X] and D is the direct
sum matrix A

⊕
B, then q(D) is the direct sum matrix q(A)

⊕
q(B).

Theorem 1 (Chapter 8, Theorem 8.33 [33]) Let A be a p× p matrix. Let q be
a polynomial over the complex number field: q ∈ C[X]. Then q(A) = 0 if and
only if the minimal polynomial of A is a divisor q.

Proposition 2 For every monic polynomial, q, over the complex number field,
there exists a matrix which has q as its minimal polynomial.

Proof. First decompose q as a product of primes in C[X] : q(z) = (z −
λ1)k1(z−λ2)k2 · · · (z−λn)kn , with λi 6= λj if i 6= j. Let Ai be the ki×ki Jordan
Block with diagonal entry equal to λi for i = 1, . . . , n. Then the matrix A which
is the direct sum of the matrices Ai for i = 1, . . . , n : A = A1

⊕
A2

⊕
· · ·

⊕
An

has q as its minimal polynomial. This follows from theorem 1: let p ∈ C[X]
such that p(A) = 0; that is p(A1)

⊕
p(A2)

⊕
. . .p(An) = 0 which happens if

and only if p(Ai) = 0 for i = 1, . . . , n; each Jordan Block Ai has (z − λi)ki as
its minimal polynomial; by theorem 1, (z − λi)ki divides p for all i; hence q
divides p.

Proposition 3 Let A be the direct sum matrix A1

⊕
A2

⊕
· · ·

⊕
An of Propo-

sition 2. Then for each i, there exists a polynomial pi identical to the min-
imal polynomial q(z) = (z − λ1)k1(z − λ2)k2 · · · (z − λn)kn except that the
(z − λi)ki factor being replaced by a polynomial, r(z), of degree ki − 1 : r(z) =
a0 + a1(z − λi) + a2(z − λi)2 + . . . + aki−1(z − λi)ki−1 such that pi(A) is the
direct sum matrix 0

⊕
. . . 0

⊕
Iki

⊕
0 . . .

⊕
0 where 0 is the 0-matrix and Iki

is
the identity ki × ki matrix.

Proof. We prove the theorem for the case of i = 1. The other cases are proved
identically.

Step 1. Write A1, the k1 × k1 Jordan Block, as the sum λ1Ik1 +N where Ik1

is the identity k1 × k1 matrix (we shall treat λ1Ik1 as the number λ1) and the
nilpotent matrix, N , of order k1:



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0



128

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  LLeeee,,  WW--SS    ((22000044))  



Step 2. Since λ1Ik1 and N commute, by the Binomial theorem for commuta-
tive rings, we have (λ1Ik1+N)n =

∑n
r=0

(
n
r

)
λrNn−r. SinceN is nilpotent degree

k1−1 we need only consider powers of N up to k1−1 . In fact, N,N2, . . . , Nk1−1

are the matrices:

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


,



0 0 1 · · · 0 0
0 0 0 1 · · · 0
0 0 0 0 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 0 0
0 0 0 · · · 0 0


, . . . ,



0 0 0 · · · 0 1
0 0 0 · · · 0 0
0 0 0 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0


.

respectively.

Step 3. We now show that there exists a polynomial p1, as defined in the
proposition, up to degree k1 − 1 such that p1(A1) = Ik1 .

Since
(
(λ1 − λ2) +N

)k2
(
(λ1 − λ3) +N

)k3 · · ·
(
(λ1 − λn) +N

)kn is:

[ ∏n
i=2(λ1 − λi)ki

]
+ (S1

1)N + (S2
1 + S2

2)N2 + . . .+ (Sk1−1
1 + . . .+ Sk1−1

k1−1)Nk1−1

where:

S1
1 =

∑n
i=2

[
ki(λ1 − λi)ki−1

∏
j 6=i(λ1 − λj)]

S2
1 =

∑n
i=2[

(
ki

2

)
(λ1 − λi)ki−2

∏
j 6=i(λ1 − λj)]

S2
2 =

∑n
i=2, i 6=j ki(λ1 − λi)ki−1kj(λ1 − λj)kj−1

∏
k 6=i, k 6=j(λ1 − λk)

...
S1

k1−1 =
∑n

i=2[
(

ki

k1−1

)
(λ1 − λi)ki−(k1−1)

∏
j 6=i(λ1 − λj)]

Sk1−1
2 =

∑n
i=2,i 6=j [

(
ki

k1−2

)
(λ1−λi)ki−(k1−2)

(
kj

1

)
(λ1−λj)kj−1

∏
k 6=i,k 6=j(λ1−λk)]

...

Sk1−1
k1−1 =

∑n
i=2

[
(λ1 − λi)ki

∑
2≤kij

≤n[
∏j=k1−1

ij ,ij 6=i,ij 6=ij′ ifj 6=j′

(kij

1

)
(λ1 − λij

)kij
−1]

]

it follows that:
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p1(λ1 +N) = [a0 + a1N + a2N
2 + . . .+ ak1−1N

k1−1]
(
(λ1 − λ2)−N

)k2

· · ·
(
(λ1 − λn) +N

)kn

=
(
a0

n∏
i=2

(λ1 − λi)ki
)

+
[
a1

n∏
i=2

(λ1 − λi)ki + a0(S1
1)

]
N

+
[
a2

n∏
i=2

(λ1 − λi)ki + a1S
1
1 + a0(S2

1 + S2
2)

]
N2 + . . .

+
[
ak1−1

n∏
i=2

(λ1 − λi)ki + ak1−2(S1
1) + ak1−2(S2

1 + S2
2) + a0(Sk1−1

1 + . . .+ Sk1−1
k1−1)

]
Nk1−1

Therefore, p1(λ1 +N) = Ik1−1 if and only if:

a0

∏n
i=2(λ1 − λi)ki = 1

a1

∏n
i=2(λ1 − λi)ki + a0(S1

1) = 0
a2

∏n
i=2(λ1 − λi)ki + a1S

1
1 + a0(S2

1 + S2
2) = 0

...
ak1−1

∏n
i=2(λ1−λi)ki +ak1−2(S1

1)+ak1−2(S2
1 +S2

2)+a0(Sk1−1
1 +. . .+Sk1−1

k1−1) = 0

Since
∏n

i=2(λ1 − λi)ki 6= 0 the above system of equations always has solutions
for a0, . . . , ak1−1. Therefore the polynomial p1 is well defined.

Step 4. The polynomial p1 as defined in the step 3 annihilates A2, . . . , An

This follows from the fact that each Ai has (z − λi)ki as its minimal poly-
nomial for i = 2, . . . , n [Theorem 1].

Step 5. The proof is now complete since p1(A) = p1(A1)
⊕
. . .

⊕
p1(An)

[Proposition 1].

Q.E.D
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4.2.2 C*-algebra Preliminaries I: Construction of Positive
Invertible Elements

In this section, we give a canonical way of constructing a positive invertible
element in a C*-algebra with an identity from a partition of unity. We say that
a set of finitely many elements is a partition of unity if their sum is the identity.

Proposition 4 (Partition of Unity: Positive Invertible Element) Let A
be a C*-algebra with an identity, 1, and the finite set {e1, e2, . . . , en} be a parti-
tion of unity : e1+e2+. . .+en = 1. Then the element s = e∗1e1+e∗2e2+. . .+e∗nen

is an invertible element.

Proof. Firstly, we take A as a norm closed *-subalgebra of bounded operators
on its universal Hilbert space H. We shall now prove the above proposition
by contradiction. Suppose on the contrary that the bounded operator s is not
invertible.

Step 1. Since the operator s is normal (in fact, positive), the infimum of
the norm of the image of the unit sphere of the Hilbert space H under the op-
erator s is zero : inf{‖ s(η) ‖ |η ∈ H, ‖ η ‖= 1} = 0. [Chapter 2.4, Lemma 2.4.8
[10]]. Therefore, there exists a sequence of vectors (ηm)∞m=1, on the unit sphere
of the Hilbert space, such that ‖ s(ηm) ‖ is a null sequence:

‖ s(ηm) ‖→ 0 as m→∞. (4.1)

Step 2. Then, (
s(ηm), ηm

)
→ 0 as m→∞ (4.2)

where
(
·, ·

)
denotes the inner product of the Hilbert space H. This follows

from the inequality 0 ≤ |
(
s(ηm), ηm

)
| ≤‖ s(ηm) ‖‖ ηm ‖=‖ s(ηm) ‖ [Cauchy

Schwartz inequality]. By the squeeze play theorem and equation (2.1), |
(
s(ηm), ηm

)
| =

|
(
s(ηm), ηm

)
− 0| → 0 as m→∞; that is,

(
s(ηm), ηm

)
→ 0.

Step 3. But s =
∑n

i=1 e
∗
i ei. Therefore,

( n∑
i=1

e∗i ei(ηm), ηm

)
=

n∑
i=1

(
e∗i ei(ηm), ηm

)
=

n∑
i=1

‖ ei(ηm) ‖2→ 0. (4.3)

The sequence (
∑n

i=1 ‖ ei(ηm) ‖2)∞m=1 is a sequence where each term is the sum
of n positive terms : ‖ e1(ηm) ‖2, . . . , ‖ en(ηm) ‖2. Equivalently, it is the sum of
n positive valued sequences (‖ e1(ηm) ‖2)∞m=1, . . . , (‖ en(ηm) ‖2)∞m=1. Since it is
a null sequence, each of these positive valued sequences are null: ‖ ei(ηm) ‖2→ 0
for i = 1, . . . , n. Therefore, ‖ ei(ηm) ‖→ 0 for i = 1, . . . , n.
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Therefore, arguing as in step 2,(
ei(ηm), ηm

)
→ 0 as m→∞ for each i = 1, . . . , n

This contradicts the fact that for each ηm,∑n
i=1

(
ei(ηm), ηm

)
= 1

since 1 =‖ ηm ‖2=
(
ηm, ηm

)
=

( ∑n
i=1 ei(ηm), ηm

)
=

∑n
i=1

(
ei(ηm), ηm

)
as

{e1, . . . , en} is a partition of unity.

Q.E.D
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4.2.3 C*-algebra Preliminaries II: Lifting Positive Invert-
ible Elements

Firstly, we show that the ring theoretic (algebraic) property of an invertible ele-
ment cannot be lifted in the general case. We now give an easy counterexample:

Example 5 (Lifting Invertible Elements : A Counter Example) Let A
be the C*-algebra B(H) where H is the infinite dimensional Hilbert space l2, the
sequence space of all square summable sequences and I the closed 2-sided ideal
of all the compact operators on l2.

Consider the left shift operator L : l2 → l2 : (x1, x2, . . . , xn, . . .) 7→ (x2, . . . , xn, . . .)
[Example 3, Chapter 1.3.2]. Since the range of L is H and hence trivially closed,
L is a Noether operator [Chapter 2.5.3.1, Example 9]. The element L+K(H) is
therefore an invertible element of the quotient C*-algebra B(H)/K(H) [Chapter
VII, Remark 2.6.4 [25]]

Since the index of the operator is invariant with respect to perturbation by a
compact operator [Chapter VII, Theorem 2.6.3 [25]], all the operators which be-
long to the coset L+K(H) are of index 1. Hence none of them are invertible:
all invertible operators have index 0 since both the operator and its adjoint are
invertible.

However all is not lost: such a lifting is possible for positive invertible elements.
We shall however need the following lemma:

Lemma 1 Lifting Commutative Property : Positive Invertible Ele-
ments. Let A be a C*-algebra with an identity 1, I a closed 2-sided ideal in
A. Let x+ I be a positive invertible element of A/I. Let us denote the inverse
element as y + I. We can assume without loss of generality that x is positive.
Therefore the elements x+I, y+I of the quotient C*-algebra belong to the com-
mutative C*-subalgebra C*(x + I, 1 + I) of the quotient C*-algebra generated
by the positive element x+ I and the identity 1 + I.

Then there exists an element b ∈ I such that y − b belongs to the commuta-
tive C*-subalgebra C*(x, 1) of the finer C*-algebra A, generated by the positive
element x and the identity 1 : x and y − b commute.

Proof. Firstly, we assume without loss of generality that x is positive : since
x+ I is a positive element of the quotient C*-algebra A/I, we can write x+ I
as (a+ I)(a∗ + I) = aa∗ + I for some a+ I ∈ A/I. If x is not positive, we take
x as aa∗ which is a positive element of A.

Secondly, we take the commutative C*-subalgebra, C∗(x + I, 1 + I), of A/I
generated by the positive element x + I and the identity 1 + I as the C*-
algebra, C(S), of all continuous functions on the compact Hausdorff space
S = σA/I(x+ I) ⊂ R+ [Chapter 1.3.1, Theorem 1].
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Thirdly, since the inverse element y + I is a member of C∗(x+ I, 1 + I), there
exists an f ∈ C(S) which corresponds uniquely with y + I : y + I = f(x + I).
Invoking Tietze’s Extension Theorem [Chapter 3, Theorem 3.2.13 [20]], we can
extend f ∈ C(S) to a continuous function fe ∈ C(K) where K is σA(x), the
spectrum in the finer C*-algebra A, of the positive element x ∈ A : S is a
closed subspace of the compact metric space K. Then by the Stone Weierstrass
theorem on C(K), we conclude that there exists a net of polynomials (pi) in
C(K) which converges uniformly to the continuous function fe ∈ C(K).

Fourthly, let pr
i , f denote the restrictions of pi, f

e ∈ C(K) to the closed subspace
S, respectively. Then the uniform convergence of pi in C(K) to fe ∈ C(K) im-
plies the uniform convergence of pr

i in C(S) to fr ∈ C(S). Consequently y+I is
the limit of the net of polynomial expressions in x+ I [Chapter 1.3.1, Theorem
1(c)]:

pr
i (x+ I) = pi(x) + I → y + I (4.4)

since pr
i is the same polynomial expression as pi. Now, the net pi(x) of ele-

ments in the commutative C*-subalgebra C∗(x, 1) will converge to the element
fe(x) ∈ C∗(x, 1) [Chapter 1.3.1, Theorem 1].

Finally, π(fe(x)) = f(π(x)) = y + I [Chapter 1.3.4, Proposition 2] : there
exists an element b ∈ I such that y − b = fe(x) and fe(x) commutes with
x since it is the limit of polynomial expressions in x which commute with x
[Equation (4.4)].

Q.E.D

Proposition 5 (Lifting Positive Invertible Elements.) Let A be a C*-algebra
with an identity 1, I a closed 2-sided ideal in A. Let x+I be a positive invertible
element of A/I. Then there exists a positive invertible element a in the finer
C*-algebra A such that a ∈ x+ I.

Proof.

Step 1. Lifting Positive Invertible Element : Commutative C*-algebra.
We first show that the above proposition holds if A is a commutative C*-algebra.
Since A is a commutative C*-algebra with an identity 1, we identify A with the
C*-algebra C(K). Therefore we associate with the closed ideal I, a closed set
S ⊂ K on which the functions of I vanish : I = {f ∈ C(K) | f |K = 0}
[Example 34, Chapter 1.2.4.1]. We let Z(f) denote the zero set of f which is
the closed set {t ∈ K|f(t) = 0}.

Since x + I is a positive element in A/I, there exists an a ∈ A such that
x + I = a∗a + I. Let fa∗a denote positive valued function in C(K) which cor-
responds to the C*-algebra element a∗a and Z(fa∗a), the zero set of fa∗a which
is the closed set {t ∈ K|fa∗a(t) = 0}.
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Sub-step 1 : Z(fa∗a) is disjoint from S.

The quotient C*-algebra element a∗a+ I is invertible if and only if there exists
a function f−1

a∗a of C(K) such that:

fa∗af
−1
a∗a −K1 ∈ I if and only if fa∗af

−1
a∗a|S = 1

where K1 is the constant 1 function and fa∗af
−1
a∗a|S , the restriction of the func-

tion fa∗af
−1
a∗a to the closed set S.

Consequently, the zero set of fa∗a, Z(fa∗a), is disjoint from the closed sub-
set S.

Sub-step 2 : The function K1 − ΛS of C(K) is a positive element of the
ideal I. The function ΛS is a function of C(K) which behaves as a continuous
approximant of the discontinuous characteristic function on S separating the
disjoint closed sets S and Zfa∗a

: ΛS(S) = {1} and ΛS(Zfa∗a
) = 0.

Since K is a compact Hausdorff space, it is normal [Chapter 7, Theorem 7.13
[21]]. Hence, by Urysohn’s Lemma for Normal Spaces [Chapter 7, Theorem 7.2,
[21]], there exists a continuous approximation of the characteristic function on
S: there exists a continuous function ΛS of C(K), such that ΛS(K) ⊂ [0, 1] and
ΛS(S) = {1} and ΛS(Zfa∗a

) = 0.

Therefore, the function K1 − ΛF is a positive valued continuous function on
K which belongs to the ideal I.

Sub-step 3 : The function fa∗a + (K1 − ΛS) of C(K) is a strictly positive
function in C(K). Hence it is invertible and is mapped under the quotient map
to fa∗a + I.

Step 2. Lifting Positive Invertible Element : General C*-algebra.
If the general C*-algebra A is not commutative, we take A as the commuta-
tive C*-subalgebra B = C∗(x, 1) generated by the positive element x and the
identity 1. We then take as our ideal I the closed 2-sided ideal B

⋂
I of the

commutative C*-algebra B.

Then we can assume without loss of generality that the closed 2-sided ideal
B

⋂
I is not trivial since B ∩ I is trivial if and only if the original ideal I is triv-

ial which makes the theorem a pathological case : by Lemma 1, we can assume
that the elements 1, x, y are all in the C*-algebra B = C∗(x, 1); in particular
1− xy, 1− yx ∈ B; so if B ∩ I is trivial, 1− xy = 0 = 1− yx.

Therefore by Step 1, the proof is complete.

Q.E.D
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We now give another proof of Proposition 5 which is due to Professor Stroh:

Let us recall that an element a of a C*-algebra is positive if it is self adjoint and
its spectrum σA(a) in A is a subset of the positive real line R+0. Consequently,
a is a positive invertible element provided that it is self-adjoint and its spectrum
does not contain 0. Since the spectrum is a closed, in fact compact, subset of
the positive real line, the infimum of the spectrum, inf{λ ∈ R+|λ ∈ σA(a)} of a
positive invertible element a ∈ A is always strictly positive.

The following proof relies on shifting the spectrum to stay clear of 0.

(i) There exists a strictly positive real number c ∈ R+ such that the element
x+ I − c1A/I of the quotient C*-algebra A/I is a positive element.

Set c to be the infimum of the spectrum of the positive invertible element
x + I. It suffices to show that the spectrum of x + I − c1A/I is a subset of
R+ = R+0\{0} since x+ I − c1A/I is evidently self-adjoint.

Now σA/I(x+I−c1A/I) = {λ−c|λ ∈ σA/I(x+I)} [Spectral Mapping Theorem,
Chapter 3, Proposition 3.2.10 [10]] since x+I− c1A/I = p(x+I) where p is the
single variable polynomial p(z) = z − c. The desired result now follows from
the definition of c.

(ii) Write x + I as the sum c1A/I + B for some positive element B ∈ A/I.
There is a positive element b ∈ A such that π(b) = B. The element a = c1A + b
is a positive invertible element of A such that π(a) = x+ I.

From (i), x + I − c1A/I ≥ 0 : hence x + I = c1A/I
+ B for some positive

element B ∈ A/I. Then there is a positive element b ∈ A such that π(b) = B
[Chapter 1.3.4, Proposition 1] and by another application of the Spectral Map-
ping Theorem, a = c1A + b is positive. Evidently, π(a) = x+ I.

Q.E.D
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4.2.4 Lifting Polynomially Ideal Elements : A Criteria

Recall that we stated in the beginning of this section without proof that the
lifting of polynomially ideal elements from the quotient C*-algebra A/I onto
the finer C*-algebra A occurs exactly when any finite orthogonal family of pro-
jections (self adjoint idempotents) can be lifted from A/I onto A as a finite
orthogonal family of projections in A. We called this criteria the Finite Orthog-
onal Projection Criteria. We shall prove this criteria in this subsection.

We now define the minimal polynomial of an algebraic element of a C*-algebra.

Definition 6 (Minimal Polynomial of Algebraic Element) Suppose x is
an algebraic element of the C*-algebra A. Then there exists a polynomial q over
the complex field such that q(x) = 0. Let p denote the monic polynomial of the
smallest degree of the non empty set of all polynomials which annihilate x: the
set contains at least q. We shall call this the minimal polynomial of x.

Proposition 6 Let x be an algebraic element. Let q be a polynomial over the
complex number field. Then q(x) = 0 if and only if the minimal polynomial of
x is a divisor of the polynomial q.

Proof. Identical as for Chapter 4.2.1, Theorem 1.

Q.E.D.

Theorem 2 (Finite Orthogonal Projection Criteria ) (Theorem 2 [7]) Let
A denote a C*-algebra, I a closed 2-sided ideal in A, A/I the quotient C*-algebra
and π : A → A/I the quotient map.Suppose B is an algebraic element of the
quotient C*-algebra A/I. Let p denote the minimal polynomial of B and let it
have n distinct complex roots.

Then there exists an orthogonal family F = {P1, . . . , Pn} of n nonzero pro-
jections in A/I whose sum is the identity 1A/I such that T.F.A.E.:

(i) There is an element b in the finer C*-algebra A with p(b) = 0 and π(b) = B.

(ii) There is an orthogonal family {p1, . . . , pn} of n nonzero projections in A
such that π(pi) = Pi for 1 ≤ i ≤ n.

Proof. Firstly, write the minimal polynomial p of B as a product of primes in
C[X] : p(z) = (z − λ1)k1(z − λ2)k2 · · · (z − λn)kn , with λi 6= λj if i 6= j. Then
let x denote the matrix which has p as its minimal polynomial as constructed
in the proof of Chapter 4.2.1, Proposition 2.
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Step 1. There exists a decomposition of the unit 1A/I into n ’or-
thogonal’ idempotents E1, . . . , En of the quotient C*-algebra A/I :
E1 + . . . + En = 1A/I and EiEj = δijEj. Further, Ei(B − λi)kiEi = 0
for 1 ≤ i, j ≤ n.

We prove this over two sub-steps by first showing that the above properties
holds in an algebra (over the field C) that is ring isomorphic to a subalgebra of
A/I: the above properties are defined purely in terms of the ring operations so
that they will carry over under a ring isomorphism.

Sub-step 1. Let S ⊂ A/I be the sub-ring of polynomials in the algebraic
element B ∈ A/I. Then S is ring isomorphic to the ring T of polynomials in
the matrix x, which shares the same minimum polynomial as B .

Proof. Firstly, consider the C*-algebra A/I with the identity 1A/I as an
unitary over-ring of the complex number field C, taken as a ring : identify C
with the set C1A/I . Then the evaluation at B function,

σB : C[X] → S ⊂ A/I|q(X) 7→ q(B)

is a well-defined onto ring homomorphism from C[X] → S [Lemma 16.1 [28]].
Hence, by the Fundamental Homomorphism Theorem,

S is ring isomorphic to C[X]/Ker(σB).

Since C[X] is a principal ideal domain [Theorem 16.4, [28]], the ideal Ker(σB) is
generated by a single element. By proposition 6, that element is p, the minimal
polynomial of B. Hence,

S is ring isomorphic to C[X]/ < p >

where < p > is the principal ideal generated by the polynomial p.

Secondly, the quotient ring C[X]/ < p > consists of elements of the form
r+ < p > where r is a polynomial of degree up to one less the degree of p. The
map

Φ : C[X]/ < p > → T | r+ < p >7→ r(x)

is an onto ring isomorphism : r1(x)−r2(x) = 0 if and only if r1−r2 is a multiple
of p; that is, r1+ < p >= r2+ < p >.

NOTE : We can assume without loss of generality that B is not in C = C1A/I :
B ∈ C is the the trivial case of the theorem since we can always lift the identity
element which has p(z) = z − 1 as its minimal polynomial.

Q.E.D.
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Sub-step 2. There exists a decomposition of the identity matrix 1 ∈ T into
n ’orthogonal’ idempotents E1, . . . , En in the algebra T of polynomials in the
matrix x : E1 + . . .+ En = 1 and EiEj = δijEj.

Proof. The matrix x is the direct sum matrix A1

⊕
A2

⊕
· · ·

⊕
An, where

Ai is the ki × ki Jordan Block with diagonal entry equal to λi for i = 1, . . . , n
since p(z) = (z − λ1)k1(z − λ2)k2 · · · (z − λn)kn , with λi 6= λj if i 6= j [Chapter
4.2.1, Proposition 2]. Consequently, for each i, there exists a polynomial pi such
that pi(x) is the direct sum matrix 0

⊕
. . . 0

⊕
Iki

⊕
0 . . .

⊕
0 where 0 is the

0-matrix and Iki
is the identity ki×ki matrix. We let Ei denote the idempotent

matrix pi(x) which we identify as pi(B) under the ring isomorphism σB which
identifies x with B [Chapter 4.2.1, Proposition 3].

Evidently E1+. . .+En = 1, EiEj = δijEj and Ei(x−λi)kiEi = 0 for 1 ≤ i, j ≤ n
[Chapter 4.2.1, Proposition 1]. This completes the proof.

Q.E.D

Although each Ei in the ring T is a self adjoint idempotent, the corresponding
element in the isomorphic ring S ⊂ A/I, identified under the ring isomorphism
σB and also ambiguously denoted Ei, need not be self adjoint : the map σB

is only a ring isomorphism. We nevertheless construct from the Ei’s in the
quotient C*-algebra A/I, self adjoint idempotents, that is, projections which
partition the identity and are mutually orthogonal.

Step 2. There exists a decomposition of the unit 1A/I into n orthogonal
projections P1, . . . , Pn in the quotient C*-algebra A/I : P1 + . . .+ Pn =
1A/I and PiPj = δijPj.

Proof. Define the positive invertible element element S in A/I from the
partition of unity {E1, . . . , En} as follows: S = E∗

1E1 + . . . + E∗
nEn [Chapter

4.2.2, Proposition 4]. Its inverse S−1 is also a positive invertible element: S−1

is self adjoint and that the spectrum σ(S−1) of S−1 consists of the inverse of
spectral values of the spectrum of S [Chapter 3, Proposition 3.2.10 [10]]. We
then have

√
S−1 = (

√
S)−1 [Chapter 1.3.1, Corollary 3].

Defining Pi =
√
SEi(

√
S)−1 for each i, completes the proof of Step 2:

(i) Each Pi is self-adjoint: First note that SEi = (E∗
1E1 + . . .+E∗

nEn)Ei is
the positive element E∗

i Ei. Hence, taking the adjoints,

SEi = E∗
i S.

Then, pre- and post- multiplying each term of the equation by (
√
S)−1, we have:

√
SEi(

√
S)−1 = (

√
S)−1E∗

i

√
S =

(√
SEi(

√
S)−1

)∗
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(ii) Each Pi is idempotent: P 2
i =

√
SEi(

√
S)−1

√
SEi(

√
S)−1 =

√
SEiEi(

√
S)−1 =

Pi.

(iii)If i 6= j then PiPj = 0 : Follows from the fact EiEj = 0.

Since E1 + . . . En = 1, first pre- , then followed by post multiplication by
√
S

and (
√
S)−1 respectively, shows that the Pi’s sum up to 1.

Q.E.D

Step 3. The lifting problem for the algebraic element B ∈ A/I is
equivalent to the lifting problem of the element

√
SB(

√
S)−1 ∈ A/I .

Firstly, p ∈ C[X] is a minimum polynomial of the algebraic element B ∈ A/I
if and only if p is a minimum polynomial of the element

√
SB(

√
S)−1 ∈ A/I :

this follows from the fact that p(
√
SB(

√
S)−1) =

√
Sp(B)(

√
S)−1 since p is a

polynomial expression and that
√
S is invertible.

Secondly, since S ∈ A/I is a positive invertible element we can lift it from
the quotient C*-algebra A/I onto the finer C*-algebra A: there exists a positive
invertible element s in A such that π(s) = S [Chapter 4.2.3, Proposition 5]. Its
inverse s−1 is also a positive invertible element. We then have

√
s−1 = (

√
s)−1

[Chapter 1.3.1, Corollary 3].

Thirdly, for the self adjoint element s ∈ A, we have π(
√
s) =

√
S , π(s−1) = S−1

and π((
√
s)−1) = (

√
S)−1 [Chapter 1.3.4, Proposition 2].

Therefore, the condition that there is an element b in the finer C*-algebra A
with p(b) = 0 and π(b) = B is equivalent to the condition that there is an
element c in the finer C*-algebra A such that c =

√
sb(
√
s)−1 where p(c) = 0

and π(c) =
√
SB(

√
S)−1.

Hence, the lifting problem of the algebraic element B ∈ A/I is equivalent to
the lifting problem of the algebraic element

√
SB(

√
S)−1 ∈ A/I, which we shall

now pursue.

Step 4. The lifting of the algebraic element
√
SB(

√
S)−1 ∈ A/I forces

the lifting of the orthogonal family of projections {P1, . . . , Pn} ⊂ A/I
as constructed in Step 2.

Let us assume that the algebraic element
√
SB(

√
S)−1 ∈ A/I with p as its

minimum polynomial, can be lifted. Then there is an element c in the finer
C*-algebra A with p(c) = 0 and π(c) =

√
SB(

√
S)−1. Note that p is also the

minimal polynomial for c : suppose not; then there exists a polynomial q of
strictly smaller degree than p such that q(c) = 0; since π(q(c)) = q(π(c)) for
q is a polynomial, it follows that q(

√
SB(

√
S)−1) = 0 , contradicting the fact

that p is the minimal polynomial of B.
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Let the element c of the finer C*-algebra play the role of the algebraic ele-
ment B of the quotient C*-algebra A/I in Step 1: both have exactly the same
minimum polynomial p. Consequently, we construct a partition of unity of the
identity 1 ∈ A, {e1, . . . , en}, where ei = pi(c) for i = 1, . . . , n with the polyno-
mials pi defined as in Step 1.

We then construct orthogonal projections pi out of each ei for i = 1, . . . , n
by defining pi as

√
wei(

√
w)−1 where w = e∗1e1 + . . .+ e∗nen [Step 2]. We then

obtain the desired orthogonal family {p1, . . . , pn} of n nonzero projections in A
such that π(pi) = Pi for 1 ≤ i ≤ n:

(i) Firstly, π(ei) = Pi for 1 ≤ i ≤ n:

π(ei) = π(pi(c)) = pi(π(c))

= pi(
√
SB(

√
S)−1) =

√
Spi(B)(

√
S)−1

=
√
SEi(

√
S)−1 = Pi

since pi is a polynomial for each i = 1, . . . , n.

(ii)Secondly, π(w) = 1 since π(e∗i ei) = Pi for each i = 1, . . . , n and {Pi, . . . , Pn}
is a partition of unity: since c =

√
sb(
√
s)−1,

ei = pi(c) =
√
spi(b)(

√
s)−1

e∗i = pi(c) =
√
s[pi(b)]∗(

√
s)−1

so that with pi(π(b)) = pi(B) = Ei and π
(
[pi(b)]∗

)
= [pi(π(b))]∗ = E∗

i

e∗i ei = pi(c) =
√
s[pi(b)]∗pi(b)(

√
s)−1π(pi(c))

π(e∗i ei) =
√
S(Ei)∗Ei(

√
S)−1

=
√
S(Ei)∗(

√
S)−1

√
SEi(

√
S)−1

= P ∗i Pi = P 2
i = Pi

(iii) Finally, π(pi) =
√
π(w)Pi(

√
π(w))−1 = Pi for 1 ≤ i ≤ n
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Step 5. Conversely, suppose the orthogonal projections {P1, . . . , Pn} ⊂
A/I as constructed in Step 2 can be lifted to an orthogonal family of
projections {p1, . . . , pn} in A. Then we can lift the algebraic element√
SB(

√
S)−1 ∈ A/I .

We prove this over the following five sub-steps:

Sub-step 1. We assume without loss of generality that the orthogonal family
of projections {p1, . . . , pn} in A sum to 1.

If the family of orthogonal projections {p1, . . . , pn} do not sum up to the iden-
tity, we can replace p1 by the orthogonal projection 1 − (p2 + . . . + pn) : since
the projections p2, . . . , pn are orthogonal, 1 − (p2 + . . . + pn) is an orthogonal
projection which is orthogonal to p2, . . . , pn [Corollary 2.5.4, 2.5.5. [10]].

Sub-step 2. We can assume without loss of generality that the element c ∈ A
such that π(c) =

√
SB(

√
S)−1 ∈ A/I commutes with each of the orthogonal pro-

jections pi for 1 ≤ i ≤ n and that π(p1cp1 + . . .+ pncpn) =
√
SB(

√
S)−1 ∈ A/I

Lemma 2 Let c′ denote any element in A such that π(c′) =
√
SB(

√
S)−1.

Then π(pic
′pj) = 0 if i 6= j .

Proof A straightforward computation shows that:

Pi

√
SB(

√
S)−1Pj =

√
SEi(

√
S)−1

√
SB(

√
S)−1

√
SEj(

√
S)−1

=
√
SEiBEj(

√
S)−1

Since the element B ∈ A/I can be identified with the direct sum matrix
x = A1

⊕
. . .

⊕
An, the idempotents Ei and Ej of A/I with the direct sum ma-

trices 0
⊕
. . . 0

⊕
Iki

⊕
0

⊕
. . .

⊕
0 and 0

⊕
. . . 0

⊕
Ikj

⊕
0

⊕
. . .

⊕
0 [Chap-

ter 4.2.1, Proposition 3], respectively up to ring isomorphism, it follows that
EiBEj = 0 if i 6= j [Chapter 4.2.1, Proposition 1].

Q.E.D

Let c′ be any element in A such that π(c′) =
√
SB(

√
S)−1. Since the pi’s sum

to 1, c′ = (p1 + . . .+ pn)c′(p1 + . . .+ pn).

Now, by Lemma 2,
√
SB(

√
S)−1 = π(c′) = π(p1c

′p1 + . . .+ pnc
′pn)

Therefore, if we set c as p1c
′p1 + . . . + pnc

′pn, then π(c) =
√
SB(

√
S)−1 and c

will commute with each of the pi’s : cpi = pic = picpi for all 1 ≤ i ≤ n. Further,
p1cp1 + . . .+ pncpn = p1c

′p1 + . . .+ pnc
′pn = c
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Sub-step 3. For each 1 ≤ i ≤ n, piApi is a C*-algebra with piIpi as a closed
2-sided ideal. Now recall that we defined the minimal polynomial p of B as
p(z) = (z − λ1)k1(z − λ2)k2 · · · (z − λn)kn , with λi 6= λj if i 6= j. There exists
an element ci ∈ piApi such that pi(ci − λi)kipi = 0 and π(ci) = π(picpi)for
1 ≤ i ≤ n. We can rewrite the equation pi(ci − λi)kipi = 0 as qi(ci) = 0 where
qi ∈ C[X] is the polynomial qi(z) = (z − λi)ki = 0 for i = 1, . . . , n.

(α) Let us first establish that piApi is a C*-algebra with piIpi as a closed 2-
sided ideal for each 1 ≤ i ≤ n.

(i) piApi is norm-closed. Let (pixnpi)∞n=1 be a sequence in piApi which con-
verges in the norm topology to L. We show L ∈ piApi :

By the joint continuity of multiplication and idempotency of the fixed element
pi,

pi(pixnpi)pi = (pixnpi) → piLpi

Since limits are unique, L = piLpi ∈ piApi.

(ii) piApi is *-subalgebra. Trivially,piApi is closed under addition; it is closed
under multiplication since p2

i = pi and is *-closed since p∗i = pi.

Therefore, piApi is a norm closed *-subalgebra of A and hence a C*-algebra.

(iii) piIpi is norm-closed. This follows from the argument used in (i) and
the fact that I is closed.

(iv) piIpi is a 2 -sided ideal of piApi. We first show piIpi is right multipli-
cation closed: let t be any element of the ideal I; then since I is an ideal:

(pitpi)(piapi) = pi(tpipia)pi = pit
′pi

where t′ = (tpipia) ∈ I. Closure under left multiplication is proved identically.
Since I is a subalgebra, piIpi is a subalgebra of piApi by a similar argument as
in (ii).

(β) There exists an element ci ∈ piApi such that pi(ci − λi)kipi = 0 and
π(ci) = π(picpi)

(i) Firstly, pi(c−λi)kipi =
(
pi(c−λi)pi

)ki

and Pi(c−λi)kiPi =
(
Pi(c−λi)Pi

)ki

.

The element c − λi commutes with each of the pi for 1 ≤ i ≤ n since c com-
mutes with each pi for 1 ≤ i ≤ n. For notational convenience, let B′ denote the
element

√
SB(

√
S)−1. Then, π(c− λi) = B′ − λi commutes with π(pi) = Pi.
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Therefore: (
pi(c− λi)pi

)ki

= pi(c− λi)kipi. (4.5)

and, (
Pi(B′ − λi)Pi

)ki

= Pi(B′ − λi)kiPi. (4.6)

(ii) Secondly, Pi(B′ − λi)Pi is nilpotent in A/I where ki is the degree of nilpo-
tency by the identification of B′ 1 with the direct sum matrix x of Step 1,
sub-step 2: (

Pi(B′ − λi)Pi

)ki

= Pi(B′ − λi)kiPi = 0 (4.7)

Applying Step 1 to B′, we conclude Ei(B′ − λi)kiEi = 0. Therefore:
√
SEi(

√
S)−1

√
S(B′ − λi)ki(

√
S)−1

√
SEi(

√
S)−1 = Pi(B′ − λi)kiPi = 0

(iii) Thirdly, we take the C*-algebra A as piApi and the closed 2-sided ideal I
as piIpi with respect to the lifting of the nilpotent element Pi(B′−λi)Pi ∈ A/I.
Consequently, pi1pi is the identity of the C*-algebra piApi where 1 denotes the
identity of A.

The element pi(c− λi)pi ∈ piApi and π(
(
pi(c− λi)pi

)ki

) = π(pi(c− λi)kipi) =

Pi(B′ − λi)kiPi which is the zero element of A/I [equation (4.7)]. Therefore,
pi(c − λi)kipi ∈ I so that pi(c − λi)kipi ∈ piIpi since pi is idempotent. Hence,

pi(c− λi)kipi + piIpi =
(
pi(c− λi)pi

)ki

+ piIpi = 0 [Equation (4.5)]

(iv) Finally, we can perturb the element pi(c − λi)pi by the ideal element
pitpi ∈ piIpi such that(

pi(c− λi)pi

)
− pitpi =

(
pi((c− t)− λi)pi

)
is a nilpotent element of the C*-algebra piApi, with degree of nilpotency ki

[Chapter 3.5, Theorem 7]. Denoting
(
pi((c− t)− λi)pi

)
as c′i we conclude that

(c′i)
ki = 0 and c′i ∈ piApi. Hence:

pi(c′i)
kipi = 0 (4.8)

π(c′i) = π
(
pi(c− λi)pi

)
(4.9)

1B′ also has p as its minimal polynomial
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Then the desired ci is defined as c′i + λi:

pi(ci − λi)kipi = 0 (4.10)
π(ci) = π(c′i + λi) = π(picpi) (4.11)

where (4.10) and (4.11) are direct consequences of (4.8) and (4.9), respectively.

Finally, since we have identified the identity as pi1pi and c ∈ piApi can be
rewritten as picpi, equations (4.5) and (4.10) allow us to identify equation (4.10)
as qi(ci) = 0 where qi ∈ C[X] is the polynomial qi(z) = (z − λi)ki = 0.

Sub-step 4. The family {ci|1 ≤ i ≤ n} is a family of mutually ”orthogo-
nal” elements of the C*-algebra A: cicj = 0 if i 6= j. Consequently, for any
polynomial p ∈ C[X], p(c) = p(c1) + . . .p(cn).

Firstly, the ”mutual” orthogonality of the ci’s follows immediately from the mu-
tual orthogonality of the family of projections {p1, . . . , pn}. Secondly, p(c) =
p(c1)+ . . .p(cn) follows from the observation that (c1+ . . .+cn)n = cn1 + . . .+cnn
for all n ∈ N.

Sub-step 5. By the notation of Chapter 4.2.4, Theorem 2, the lifting of the
element

√
SB(

√
S)−1 ∈ A/I occurs when we define the element b of the C*-

algebra A as b = c1 + . . .+ cn.

(i) π(b) =
√
SB(

√
S)−1.

Writing the element c ∈ A as defined in Sub-step 2 as (p1+. . .+pn)c(p1+. . .+pn),
since π(ci) = π(picpi) for 1 ≤ i ≤ n, π(b) =

√
SB(

√
S)−1.

(ii) p(b) = 0.

Recall that the minimum polynomial p(z) = (z−λ1)k1(z−λ2)k2 · · · (z−λn)kn .
Then p(b) = p(c1) + . . .p(cn) = 0 + . . .+ 0 = 0 by sub-step 4 and sub-step 3.

This completes the proof of Step 5 and hence the equivalence.

Q.E.D
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Appendix A

Computing Double
Centralizers

A.1 The Hilbert Tensor Product H
⊗
hH = K(H)

We wish to compute the double centralizer algebra of the C*-algebra of all
compact operators on an infinite dimensional Hilbert space H. To aid this com-
putation, we firstly show that the C*-algebra of all compact operators, K(H),
on a Hilbert space H is exactly the Hilbert tensor product H

⊗
h H .

The elements of the Hilbert tensor product H
⊗

h H of the Hilbert spaces H
and H are complex valued functions whose domain is the cartesian product
H × H. More precisely, the elements are the square summable bilinear func-
tionals or forms on the cartesian product H ×H and they do form a Hilbert
space.

Definition 1 (Square Summable Bilinear Forms) (Chapter 2, Proposition
2.6.2 [10]) A square summable bounded bilinear functional or form, β(·|·), is a
bounded bilinear form on the cartesian product H×H such that∑

ei∈Y1

∑
e′

j
∈Y2

|β(ei|e′j)|2 < ∞

where Y1, Y2 are orthonormal basis for H.

Since we are working with bilinear forms on the cartesian product H ×H, we
introduce the concept of a conjugate Hilbert space to convert sesqilinear forms
into bilinear forms.

Definition 2 (Conjugate Hilbert Space) Let H be a Hilbert space. The
conjugate Hilbert space H is the same set H, with the same vector addition
except that the scalar multiplication · is defined as λ·x = λ · x where · is the
scalar multiplication in H and the inner product is the conjugate of the inner
product of H.
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Example 1 Let H be the two-dimensional Hilbert space C2 over the field C.
Then we define the inner product (x | y) of the two vectors x = (x1, x2) and
y = (y1, y2) as the complex number x1y1 + x2y2 and the scalar multiplication
λx as (λx1, λx2). Consequently, in H, the inner product of x and y will be
x1y1 + x2y2 and λx = (λx, λx2).

Proposition 1 If β(·|·) is a bounded sesqilinear form the cartesian product H×
H, then β(·|·) is a bounded bilinear form or functional on H×H which as a set
is identical to H×H.

The above proposition enables us to talk about bounded bilinear forms on H×H
in terms of bounded operators on the Hilbert space H.

Proposition 2 (Bounded bilinear forms on H×H are bounded opera-
tors on the Hilbert space H.) The correspondence, Ψ, defined by β(u|v) =
(Tu|v) where (·|·) is the inner product of the Hilbert space H is an isometric
isomorphism between the normed space B(H) of all the bounded linear operators
T : H → H and the normed space B(H × H) of all the bounded sesquilinear
forms β(u|v) on H×H [Chapter 6, Proposition 2.4.3 [25]].

The correspondence Ψ also defines an isometric isomorphism between the space
B(H) of all the bounded linear operators T : H → H and the space B(H ×H)
of all the bounded bilinear forms β(u|v) on H×H.

In this section we shall establish the isometric normed space isomorphism be-
tween the square summable bilinear forms, H

⊗
h H, on H×H and the bounded

compact operators,K(H), on the Hilbert space H. We shall first introduce new
terminology:

Definition 3 (Hilbert Schmidt Operator) A bounded operator T : H → H
is called a Hilbert-Schmidt operator from H into H if and only if the uniquely as-
sociated bounded bilinear form βT (u|v) = (Tu|v) is a square summable bounded
bilinear form.

Our goal is to show that Hilbert Schmidt Operators are precisely the compact
operators.

Definition 4 (Rank One Operator) A rank one operator is an operator whose
range is a one dimensional subspace.

These are the simplest non zero operators since T 6= 0 ⇒ ∃x|Tx = z 6= 0
and the vectors {λz} form a one-dimensional subspace of Ran(T ).
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There are elements of H
⊗

h H which we shall call simple tensors and denote as
x⊗ y where x, y ∈ H such that:

(i) The closed linear span of all the simple tensors is the Hilbert tensor product
H

⊗
h H of all the square summable bilinear forms.

(ii) It assigns the value (x|u)(y|v) to the element (u, v) ∈ H×H.

As we shall see, the simple tensors are precisely the rank one operators on
the Hilbert space H.

Proposition 3 (Proposition 2.6.9. [10]) The rank one operator

Tx,y : H → H|u 7→ (x|u)y

where (·|·) is the inner product of H is a Hilbert-Schmidt operator from H into
H.

Proof. Tx,y : H → H is a Hilbert-Schmidt operator from H into H if and
only if the uniquely associated bounded bilinear form βTx,y

: H × H|(u|v) 7→
(Tx,y(u)|v) = ((x, u)y|v) = (x|u)(y|v) is square summable [Definition 3] :

∑
ei∈Y1

∑
e′

j
∈Y2

|βTx,y
(ei|e′j)|2 =

∑
ei∈Y1

∑
e′

j
∈Y2

|(x|ei)|2|(y|e′j)|2

=
∑

ei∈Y1

|(x|ei)|2
∑

e′
j
∈Y2

|(y|e′j)|2

= ‖ x ‖‖ y ‖ <∞

Q.E.D

Definition 5 ( Simple Tensors x⊗ y) Let H be a Hilbert space. Given the
elements x, y ∈ H, we define the simple tensor x ⊗ y as the square summable
bilinear form βTx,y

, defined above. In light of Proposition 2, we identify the rank
one operator Tx,y with x ⊗ y. Evidently, condition (ii) is satisfied. Condition
(i) is also satisfied by Chapter 2, Theorem 2.6.4 [10].

Example 2 Let the Hilbert space H be as in Example 1. Then let e1 and e2 be
the ordered basis elements:

e1 =
(

1
0

)
, e2 =

(
0
1

)
Then we identify the ”products” or simple tensors ei ⊗ ej where 0 ≤ i, j ≤ 2
with the bounded operators Tei,ej . The operator Tei,ej is the elementary 2 × 2
matrix with 1 in the (j, i) - th entry and 0 everywhere else with respect to the
ordered basis (e1, e2).
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Note that the concepts of bilinear forms, bounded bilinear forms and square
summable bilinear forms on the set C2 ×C2 coincide. Since the action of the
bilinear form is uniquely defined by its action on the pairs (ei, ej) ∈ C2 × C2

for i, j ≤ 2, the 2× 2 matrices uniquely encode any bilinear form on C2 ×C2 .

The following proposition allows us to identify the simple tensors with rank one
operators in the category of normed vector spaces.

Proposition 4 A bounded operator T : H → H is rank one if and only if it is
of the form Tx,y for some x, y ∈ H.

Proof. Since T is a rank one operator, we can choose any non-zero vector y in
the range of T as the basis vector of the subspace Ran(T ) : Ran(T ) = {λy|λ ∈
C}. Then, for any x ∈ H, T (x) = λxy. The map Φ : x 7→ λx is a bounded
linear functional in H.

The Riesz representation theorem converts the linear functional Φ into a bi-
linear form:

There exists a z0 ∈ H|Φ(x) = (x|z0).

Hence T (x) = λxy = (x|z0)y = Tz0,y = z0 ⊗ y.

The map Φ : x ⊗ y 7→ Tx,y is a normed isometric isomorphism since ‖ Tx,y ‖=
sup‖z‖=1 Tx,y(z) =‖ x ‖‖ y ‖ : apply the Cauchy-Schwartz inequality for one
inequality and set z = x

‖x‖ for the reverse inequality.

Q.E.D

We are now on the verge of showing that the C*-algebra of all compact operators,
K(H) , are Hilbert Schmidt operators H

⊗
h H in the category of normed vector

spaces:

Theorem 1 The vector space of all compact operators, K(H), on a Hilbert
space H, is the closure of the linear span of all the rank-one projections Tx,y or
x⊗ y. Equivalently, {Tx,y|x, y ∈ H} is a fundamental subset of K(H).

Proof. Let F (H) denote the vector subspace of all finite rank operators.
Then F (H) is the linear span of the rank one operators [Chapter 2, Theorem
2.4.6 [13]]. Noting that K(H) is the closure of F (H) [Chapter 2, Theorem 2.4.5
[13]], the proof is completed by proposition 4 which characterizes all rank one
operators as the simple tensors.

Q.E.D
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Example 3 (Non-closed self adjoint 2-sided ideal) Although all closed ide-
als are necessarily self-adjoint [Proposition 4, Chapter 1.2.4], we show that the
converse is not true.

Consider F (H) as a 2-sided self-adjoint ideal of B(H): Ran(T ∗) = Ran(T ∗T )
[Chapter 2, Proposition 2.5.13(8) [10]]; the dimension, dim(Ran(T )), of the
range of the operator T , Ran(T ), is finite; hence so is dim(Ran(T ∗)) = dim(Ran(T ∗T )).

If the Hilbert space H is a finite dimensional Hilbert space, then K(H) =
F (H) = F (H). We therefore look for an infinite dimensional Hilbert space
where K(H) = F (H) 6= F (H).

Consider the infinite dimensional Hilbert space H = L2([−π, π],B([−π, π]), µ)
[Example 43, Chapter 1.2.4]. The C*-algebra, C[−π, π] with the inner product
norm (f, g) =

∫ π

−π
fgdt is a dense subspace of L2([−π, π],B([−π, π]), µ). Now

consider the compact operator T ∈ B(C[−π, π]) where

T : C[−π, π] → C[−π, π]|x(t) 7→
∫ t

0
x(s)ds

Now Ran(T ) ⊇ R[X] where R[X] is the set of all the polynomials over the real
numbers R. Consequently, R[X] being an infinite dimensional subspace of the
Hilbert space H = L2([−π, π],B([−π, π]), µ) , disqualifies T from being in F (H).

We finally note that T has a unique extension to T̂ as a bounded operator on
L2([−π, π],B([−π, π]), µ). This extension is also compact.
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A.2 Computing The Double Centralizer Alge-
bra of K(H)

Here we show that the double centralizer algebra of the C*-algebra K(H), the
space of all the compact operators on an infinite dimensional Hilbert space H
is B(H), is the space of all the bounded operators on the Hilbert space H.

To compute the double centralizer algebra of the C*-algebra K(H) , we use
the fact that the double centralizer C*-algebra B(H) of K(H) is the largest
C*-algebra with an identity which contains K(H) as a closed essential ideal
[Theorem 11, Chapter 1.2.3] : the C*-algebra K(H) is essentially faithful with
respect to the over-ring B(H).

Theorem 2 (Chapter 3, Example 3.1.2 [13]) The double centralizer C*-algebra
of the C*-algebra, K(H), of all the compact operators on an infinite dimensional
Hilbert space H is the C*-algebra, B(H), of all the bounded operators on the
Hilbert space H.

Proof.

Step 1. K(H) is a closed essential ideal of B(H) : K(H) is essentially faithful
with respect to the over-ring B(H).

Firstly, K(H) is a closed 2-sided ideal of B(H) [Chapter VI Corollary 2.6.3.
[25]]. We now show that it is an essential ideal or essentially faithful with re-
spect to the over-ring B(H) : SK(H) = 0 implies that S = 0 for all S ∈ B(H).

Consider the Hilbert-Schmidt operator, Tx,y(u) = (x|u)y,from H into H where
(·|·) is the inner product in H. For each pair of non-zero vectors x, y ∈ H, Tx,y

is a rank one operator : therefore it is compact and belongs to K(H).

Suppose the operator S left annihilates K(H) . Then, for each pair of non-
zero vectors x, y ∈ H,

S ◦ Tx,y = Tx,Sy = 0

or equivalently,

(x|u)Sy = 0

Setting x = u = y = ei ∈ Y1 where Y1 is an orthonormal basis for H, we
conclude that

S(ei) = 0 for all ei ∈ Y1.

Therefore S = 0.
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Step 2 : Ψ|B(H) is onto.

Recall that the double representation

Ψ|B(H) : B(H) →M(K(H))|S 7→ (LS |K(H), RS |K(H))

is an injective *-homomorphism on the over-ring B(H) into the semigroup of
double centralizers M(K(H)). To complete the proof we show that Ψ|B(H) is
onto. Equivalently:

For an arbitrary double centralizer pair (L,R) ∈ M(K(H)) where L,R are
bounded operators on K(H) viewed as a Banach space [Theorem 9, Chapter
1.2.3], once we find an operator S ∈ B(H) such that

Ψ|B(H)(S) = (LS |K(H), RS |K(H)) = (L,R)

we are done. Since two centralizers are equal provided that their first components
are equal, it suffices to show:

LS |K(H) ∈ B(K(H)) = L ∈ B(K(H)). (A.1)

Since the set of all rank one operators D = {Tx,y|x, y ∈ H} is a fundamental
subset of K(H) [Theorem 1, Appendix A.1],

LS ∈ B(K(H)) = L ∈ B(K(H)) if and only if LS , L agree on D.

Denoting the Hilbert Schmidt operator Tx,y as x ⊗ y, the crux of the choice
of the correct bounded operator S lies in the ”Parseval identity like” following
decomposition of x⊗ y :

x⊗ y = (e⊗ y)(x⊗ e) (A.2)

where e is any vector in H with norm 1. We prove the above mentioned equality
by the following direct computation:

For any z ∈ H, x ⊗ y(z) = (x, z)y . Now, (e ⊗ y)(x ⊗ e)(z) = e ⊗ y
(
(x|z)e

)
=

(x|z)(e|e)y = (x|z)y since ‖ e ‖= (e|e)2 = 1.

Since for any z ∈ H

LS(x⊗ y)(z) = (S ◦ (x⊗ y))(z) = (x⊗ Sy)(z)
= (x|z)Sy

and

L(x⊗ y)(z) = L(e⊗ y)(x⊗ e)(z) = L(e⊗ y)(x|z)e
= (x|z)L(e⊗ y)(e)
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we define S : H → H|y 7→ L(e ⊗ y)(e). S is then a bounded operator on H
whose norm is less than ‖ L ‖.

Q.E.D
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A.3 Computing The Double Centralizer Alge-
bra of C0(Ω)

Theorem 3 (Example 3.1.3 [13]) The double centralizer algebra of the C*-
algebra C0(Ω), the space of all continuous functions on a locally compact space
Ω which vanishes at infinity is Cb(Ω), the space of all bounded continuous func-
tions on the locally compact space Ω. The space of all complex valued bounded
continuous functions, Cb(Ω), is isometrically *-isomorphic to C(βΩ) , the space
of all complex valued continuous functions on the Stone-Cĕch compactification
of Ω.

To start off, we will need the following lemma:

Lemma 1 (Chapter VIII, Proposition 1.7 [9]) If A is an abelian C*-algebra,
then the double centralizer algebra M(A) is also an abelian C*-algebra, with an
identity.

Proof. Consider an arbitrary double centralizer (L,R) in M(A). Let a denote
any fixed element of the C*-algebra A. Then (L,R) = (L,L) :

L(a)b = L(ab) = L(ba) = (L(b))a = aL(b) = (aR)b = R(a)b

for all b ∈ A. Therefore, by the right faithfulness of A [Proposition 1, Chapter
1.2.3], L(a) = R(a).

Now (L, L) · (L′, L′) = (L ◦L′, L′ ◦L). Since all double centralizers are of the
form (T, T ), we conclude that L ◦ L′ = L′ ◦ L. Therefore, (L, L) · (L′, L′) =
(L′, L′) · (L, L)

Q.E.D

We now are ready to prove the theorem:

Proof.

Step 1. C0(Ω) is a closed essential ideal of Cb(Ω). C0(Ω) is essentially
faithful with respect to the over-ring Cb(Ω).

Firstly, C0(Ω) is a closed 2-sided ideal of B(H). We now show that it is an essen-
tial ideal or essentially faithful with respect to the over-ring Cb(Ω) : fC0(Ω) = 0
implies that f = 0 for all f ∈ Cb(Ω) .

Suppose f 6= 0. Then ∃x|f(x) 6= 0. Since Ω is locally compact, there exists
a compact neighbourhood K of x. Further there exists a proper open set O such
that K ⊂ O : since Ω is open and K ⊂ Ω, there exists an open set O such that
O is compact and K ⊂ O ⊂ O ⊂ Ω; since Ω is not compact, O 6= Ω [Chapter 7,
Proposition 7.22, [21]].
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Therefore there exists a continuous function ∆K ∈ C0(Ω) acting as a continuous
approximant of the characteristic function on the compact set K [Urysohn’s
Lemma For Locally Compact Spaces : Chapter 7, Theorem 7.14, [21]]:

∆K(x) =
{

1 : x ∈ K
0 : x /∈ O ⊃ K

Consequently, ∆Kf 6= 0.

Step 2 : Ψ|Cb(Ω) is onto.

Recall that the double representation

Ψ|Cb(Ω) : Cb(Ω) →M(C0(Ω))|f 7→ (Lf |C0(Ω), Rf |Cb(Ω))

is an injective *-homomorphism on the over-ring Cb(Ω) into the semigroup of
double centralizers M(C0(Ω)). To complete the proof we show that Ψ|Cb(Ω) is
onto. Equivalently:

For every left centralizer L on C0(Ω), there exists a multiplication map Lf

on C0(Ω) with f ∈ Cb(Ω) such that

L(h) = Lf (h) = fh for all h ∈ C0(Ω).

Let (eλ) be an approximate unit for C0(Ω). We shall use the approximate unit
(eλ) of functions eλ ∈ C0(Ω) to express L as a multiplication map Lf where
f ∈ Cb(Ω):

For an arbitrary h ∈ C0(Ω), limλ(eλh) = h. Therefore:

L(h) = L(lim
λ

(eλh))

= lim
λ
L(eλh) (A.3)

= (lim
λ

[L(eλ)])h (A.4)

where L(eλ) is a net in C0(Ω) and equation (A.3) follows from the continuity of
L and (A.4) follows from L being a left centralizer. Equation (A.4) makes sense
only if (limλ[L(eλ)]) exists in C0(Ω) : the convergence of this net in C0(Ω) is
with respect to the supremum norm of C0(Ω). Denoting this assumed limit by
f , since uniform convergence implies pointwise convergence,

f : Ω → C|x 7→ lim
λ

[L(uλ)(x)] (A.5)

where f(x) is the point-wise limit of the net [L(eλ)](x) in Ω. We shall take as
our required f , f defined point-wise on Ω as in (A.5).
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As it turns out, defining f point-wise as in (A.5) is sufficient:

[Lf (h)](x) = fh(x) = f(x)h(x) = lim
λ

[L(eλ)(x)]h(x)

= lim
λ

[L(eλh)](x)

= lim
λ
L[(eλ(x)h(x)] (A.6)

= L lim
λ

[(eλ(x)h(x)] (A.7)

= L[h(x)] (A.8)

where equation (A.6) follows from L being a left centralizer on C0(Ω), equation
(A.7) from the continuity of L and equation (A.8) follows from the fact that
h ∈ C0(Ω) and the uniform convergence limλ eλh = h, by definition of the ap-
proximate identity, implying point-wise convergence limλ eλ(x)h(x) = h(x).

So far, we have only assumed that the net [L(eλ)](x) in Ω is a convergent net in
Ω. This is equivalent to the fact that f as defined in equation (A.5) exists and
is bounded. However, we need to further show that f is continuous : f ∈ Cb(Ω).

Case I : L is a positive operator.

A positive operator L on the C*-algebra C0(Ω) which we take as an ordered
vector space, is an operator with the additional property that L(h) ≥ 0 when-
ever h ≥ 0. Now:

(i) The net [L(eλ)](x) in Ω is a convergent net in Ω. Equivalently,
f exists and is bounded.

We can take the approximate identity eλ ∈ C0(Ω) of the C*-algebra C0(Ω)
as an increasing net of positive elements bounded by 1. Since L is a positive
operator on the function space C0(Ω), L(eλ) ∈ C0(Ω) is also an increasing net of
positive elements in C0(Ω) bounded by ‖ L ‖, where ‖ · ‖ is the supremum norm
on C0(Ω). Therefore L(uλ)(x) is an increasing net in R+ which is bounded
above by ‖ L ‖. Therefore, limλ[L(uλ)(x)] is well defined, unique and is bounded
by ‖ L ‖.

(ii) f is continuous.

It suffices to show that if xλ is any net in Ω which converges to x0, then the im-
age net f(xλ) converges to f(x0). The crux of the proof is to find a continuous
version of f about some neighbourhood of x0.

Since Ω is locally compact, there exists a compact neighbourhood K of x0 such
that K ⊂ K ′ where K ′ is a compact subset of Ω [see Step 1].
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Now, since (xλ) → x0, there exists a λ0|λ ≥ λ0 ⇒ xλ ∈ K. Since L(eλ) is
an increasing net of continuous functions bounded by ‖ L ‖, the restriction of
L(eλ) to the compact set J is an increasing net of positive valued functions in
the space, C(J), of all continuous functions on the compact space J . Therefore,
the net L(eλ) in C(J) converges uniformly to a continuous function f ′ in C(J)
where f ′ is the restriction of f to the compact space J : f ′ = f |J [Dini’s The-
orem for compact spaces: Chapter 2.2, Theorem 2]. Therefore f |J belongs to
C(J)

Then by the continuity of the function f |J :

f(x0) = f |J(x0) = limλ f |J(xλ) = limλ f(xλ) for all λ ≥ λ0

since xλ ∈ J for all λ ≥ λ0.

Case II : L is an arbitrary operator

Firstly, an arbitrary operator L on the function space C0(Ω) is the sum L1 −
L2+i(L3−L4) where L1, . . . , L4 are positive operators on C0(Ω). Consequently,
we now bootstrap as follows:

L(h) = L1(h)− L2(h) + i(L3(h)− L4(h))
= Lf1(h)− Lf2(h) + i(Lf3(h)− Lf4(h))
= f1h− f2h+ i(f3h− f4h)
= Lf1+f2+i(f3−f4)(h)

by case I.

Since f1, . . . , f4 belong to the space, Cb(Ω), of all bounded continuous func-
tions on Ω, f1 + f2 + i(f3 − f4) is also a member of Cb(Ω).

Step 3. The space of all real [complex] valued bounded continuous
functions, Cb(Ω) , is isometrically *-isomorphic to C(βΩ) , the space
of all real [complex] valued continuous functions on the Stone-Cĕch
compactification of Ω.

Case I : Real Valued Bounded Continuous Functions.

Since Ω is a locally compact Hausdorff space, Ω is completely regular [Chapter
3.15, Proposition 3.15 [31]]. Therefore, it has a Stone - Cĕch compactification βΩ
such that every f in Cb(Ω) has an extension to a function fβ in C(βΩ)[Chapter
6.5, Theorem 6.5 [31]]. Therefore, the map Φ : f 7→ fβ is a ring isomorphism
of Cb(Ω) onto C(βΩ) [Chapter 6, Remarks 6.6(b) [31]].
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We further need to show that Φ is a *-isometry : ‖ fβ ‖=‖ f ‖, ‖ · ‖ denoting
both the supremum norms of the normed *-algebras Cb(Ω) and C(βΩ).

(i) Φ is an isometry.

Firstly Ω is dense in its Stone - Cĕch compactification βΩ. Therefore, for each
point p in βΩ, there exists a net xα in Ω which converges to p. Since fβ is con-
tinuous, fβ(xα) converges in (R, | · |) to fβ(p). But fβ extends f . Therefore,
f(xα) → fβ(p) in (R, | · |). By the continuity of | · |, |f(xα)| → |fβ(p)|. Hence
‖ fβ ‖≤‖ f ‖ since |f(xα)| ≤‖ f ‖ for all xα.

The reverse inequality is trivial : ‖ f ‖≤‖ fβ ‖ since fβ extends f .

(ii) Φ preserves the involution.

This follows from f
β

= fβ .

Case II : Complex Valued Bounded Continuous Functions.

Every complex valued function f can uniquely be written as Re(f) + iIm(f),
where Re(f) : Ω → R|x 7→ Re(f(x)) and Im(f) : Ω → R|x 7→ Im(f(x)).
In fact, the complex valued function f is continuous and bounded if and only
if Re(f) and Im(f) are both continuous and bounded. Hence, by a boot-
strapping argument using case I, the required extension fβ ∈ C(βΩ) for f will
[Re(f)]β + i[Im(f)]β . The map Φ : f 7→ fβ is the required *-isometric isomor-
phism from Cb(Ω) onto C(βΩ).

Q.E.D

Example 4 Consider the C*-algebra C0(Ω), where Ω is the set of all natural
numbers, N, endowed with the discrete topology. Since points are both closed
and open, N is trivially a locally compact Hausdorff space.

Since the topology is discrete, the only compact subsets are the finite subsets.
Therefore, C0(Ω) is the space of all null sequences which we shall denote as
c0. Therefore, its double centralizer algebra M(C0(Ω)) is Cb(Ω), the space of
all bounded sequences, l∞, since all functions are continuous with respect to the
discrete topology. Therefore M(c0) = l∞.
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Appendix B

Anti-Unitization

In this appendix we assume that the C*-algebra A has an identity.

B.1 The Holomorphic Functional Calculus : Ev-
ery C*-algebra is a Local Banach Algebra

In chapter 1.3.3 we introduced the functional calculus on a normal element, x,
of a C*-algebra, A, enabling us to define the element f(x) ∈ A where f is a
continuous function defined on the spectrum, σA(x), of x in A, where σA(x) is
a compact Hausdorff topological space. We now define the holomorphic func-
tional calculus on an arbitrary element, x, of the C*-algebra A enabling us to
define the element f(x) ∈ A, where f is an holomorphic or analytic function
of a complex variable defined on an open set containing the spectrum of the
arbitrary C*-algebra element x.

We shall rephrase the above in terms of a local Banach algebra which we define
as follows [compare Chapter II, Definition 3.1.1 [27]]:

Definition 1 (Local Banach Algebra) A local Banach algebra is a Banach
algebra with an identity which is closed under the holomorphic functional cal-
culus. That is, for any x ∈ A and any analytic function of a complex variable
f : U ⊂ C → C which is analytic on some open set U containing the spectrum
of x, f(x) ∈ A.

Theorem 1 (Every C*-algebra is a Local Banach Algebra) Let A be a
C*-algebra with an identity. Then A is trivially a Banach algebra and is closed
under the holomorphic functional calculus. The C*-algebra A is therefore a local
Banach algebra.

In order to prove Theorem 1 [Appendix B.1.3], we establish a few preliminary
results:
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B.1.1 Preliminary Result I : Cauchy Integral Formula for
C*-algebra valued analytic functions of a complex
variable

Let A be a C*-algebra. Let f denote a A-valued analytic function of a complex
variable : f is differentiable at each point z0, in the sense that the limit of the
difference quotient exists in the norm topology of A. We take the domain U ⊂ C
of f as an open subset of the complex plane. Then the Cauchy Integral Formula
for the classical complex valued analytic function of a complex variable carries
over faithfully to f once we define the line integral of f analogously:

Definition 2 (Line Integral of a C*-algebra valued continuous function)
Let f denote a A-valued analytic function of a complex variable. We take the
domain, U , of f as an open connected set without loss of generality since every
open set is a disjoint union of open connected sets. We further take as our
curve C in the domain to be continuously differentiable : the parametrization
z : [a, b] → U where [a, b] is a compact interval of the real line, is continuously
differentiable: z′ exists at each point of [a, b] (in the one-sided sense at the end-
points) and is continuous on [a, b].

The line integral
∫

C
fdz =

∫ b

a
f(z(t))z′(t)dt ∈ A is taken as the norm limit

of the Riemann Sums of the form

n∑
i=1

f(z(t∗i ))[z(ti)− z(ti−1)] =
n∑

i=1

f(z(t∗i ))z
′(t∗i )∆ti (B.1)

where a = t0 < t1 < . . . < tn = b, ∆ti = ti − ti−1 and t∗i ∈ [ti−1, ti] such that
z′(t∗i )∆ti = z(ti)− z(ti−1).

The limit is taken as the norm of the mesh of the partition, max{∆ti|i =
1, . . . , n}, approaches 0.

This limit will exist by the ”uniform continuity” of the C*-algebra valued con-
tinuous function (f ◦z)z′ : [a, b] → C|t 7→ f(z(t))z′(t) : the Riemann sums (B.1)
will form a Cauchy sequence in the Banach space A as the norm of the mesh
approaches 0.

The passage of the Cauchy Integral Formula for the classical complex valued an-
alytic function of a complex variable to the C*-algebra valued analytic functions
of a complex variable is a result of the Hahn-Banach theorem for the C*-algebra
A taken as a Banach space. Let ϕ be any bounded linear functional on the Ba-
nach space A. Then the composition ϕ ◦ f is a classical complex valued analytic
function of a complex variable. In particular, by the nature of the Riemann
sums defined in equation (B.1),

ϕ(
∫

C

fdz) =
∫

C

(ϕ ◦ f)dz (B.2)
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Applying the Cauchy Integral Formula to the classical complex valued analytic
function ϕ ◦ f of a complex variable with the added assumption that the curve
C is topologically trivial : it can be continuously deformed to a point in U , as
well as being simple and closed : z is 1-1 on [a, b) and z(a) = z(b), we have

(ϕ ◦ f)(z0)−
∫

C

(ϕ ◦ f)(z)
z − z0

dz = 0 (B.3)

and ∫
C

(ϕ ◦ f)dz = 0 (B.4)

for all ϕ ∈ A∗ where A∗ is the continuous dual of the C*-algebra A taken as
a Banach space and z0 is any point in the interior of the topologically trivial,
simple closed curve C.

Applying equation (B.2) and the homogeneity of the bounded linear functional
ϕ, we conclude

ϕ
(
f(z0)−

∫
C

f(z)
z − z0

dz
)

= 0 (B.5)

and

ϕ
( ∫

C

fdz
)

= 0 (B.6)

By the Hahn-Banach Theorem, A∗ separates points in A. Therefore,

f(z0) =
∫

C

f(z)
z − z0

dz (B.7)

for all z0 in the interior of C, and∫
C

fdz = 0 (B.8)

The above method used in the passage of the Cauchy Integral Formula for
the classical complex valued analytic function of a complex variable to the C*-
algebra-valued analytic functions of a complex variable, also yields the fact that
an analytic C*-algebra valued function of a complex variable, has a power series
representation [Chapter 3, Theorem 3.3.1 [10]]:

Theorem 2 (Power Series Representation) Let f be an analytic C*-algebra
valued function of a complex variable with domain U . Then f(z) can be repre-
sented as a power series

∑∞
n=0 xn(z−z0)n in the C*-algebra A, with coefficients

xn ∈ A, for each z contained in the largest open disk with prescribed center
z0 ∈ U . The radius of this largest disk centered at z0 ∈ U is (lim ‖ xn ‖1/n)−1.
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B.1.2 Preliminary Result II : Analyticity of an important
C*-algebra valued function

Consider the C*-algebra valued function

f : U ⊂ C → A|z 7→ 1
z1A−x0

of a complex variable, where x0 is a fixed C*-algebra element of A. The element
1A denotes the identity element of the C*-algebra A and the domain U ⊂ C is
an open and connected subset of the complex plane which does not include the
spectrum, σA(x0), of the fixed C*-algebra element x0.

Then using the same technique in passing the Cauchy Integral Theorem for
the classical complex valued analytic function of a complex variable to the C*-
algebra valued analytic function of a complex variable, we conclude [Chapter 3,
Theorem 3.2.3 [10]]

Proposition 1 The C*-algebra valued function

f : U ⊂ C → A|z 7→ 1
z1A−x0

of a complex variable, where x0 is a fixed C*-algebra element of A is an analytic
function. The domain U ⊂ C is an open and connected subset of the com-
plex plane which does not include the spectrum, σA(x0), of the fixed C*-algebra

element x0. Hence the term 1
z1A−x0

is well defined.

B.1.3 The Holomorphic Functional Calculus

In analogy with equation (B.7), we have the origin of the holomorphic functional
calculus in a C*-algebra A:

Proposition 2 Let x0 be a fixed element of the C*-algebra A. Let C be a sim-
ple closed continuously differentiable curve in the complex plane which has the
spectrum σA(x0) of the element x0 in its interior. For, simplicity sake, we take
C as the circumference of a circle centered at the origin whose radius is strictly
larger than the spectral radius of x0.

Then,

xn
0 =

1
2πi

∫
C

fdz =
1

2πi

∫
C

zn

z1A − x0
dz (B.9)

where n is a positive integer and

f : U ⊂ C → A|z 7→ zn

z1A − x0
. (B.10)
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Proof

(i) The C*-algebra valued function of a complex variable f defined in equa-
tion (B.10), is analytic on the resolvent, R(x0), of x0 : R(x0) = C\σA(x0) . We
take the domain, U , of f as the resolvent R(x0) : we can take the resolvent of
x0 as an open and connected set without loss of generality since every open set
is a disjoint union of open and connected sets [Proposition 1, Appendix B.1.2].

(ii) We take as our closed curve C ⊂ U a curve that contains the spectrum
of x0 in its interior : for, simplicity sake, we take C as the circumference of a
circle centered at the origin whose radius is strictly larger than the norm, ‖ x0 ‖,
of x0. This is to prevent C ⊂ U from being topologically trivial, leading to the
pathological case of equation (B.8).

(iii) The analytic function f has a power series representation on C [Theorem
2, Appendix B.1.1] for each z ∈ C since |z| ≥‖ x0 ‖:

f(z) =
∞∑

k=0

xk
0z

n−k−1 (B.11)

for all z ∈ C ⊂ C\σ(x0) : rewrite zn

z1A−x0
= zn(z1A − x0)−1 as znz−1(1A −

z−1x0)−1 and recall that

(1A − z−1x0)−1 =
∞∑

k=0

z−kxk
0 (B.12)

for ‖ z−1x0 ‖≤ 1.

(iii) Since the convergence of equation (B.12) occurs in the norm topology of the
C*-algebra A and uniformly on the compact interval, [a, b], of parametrization
of C, applying a term-by-term integration of equation (B.11):∫

C

fdz =
∫

C

∞∑
k=0

xk
0z

n−k−1dz = 2πixn
0 (B.13)

since
∫

C
zn−k−1dz = 0 unless k = n.

Q.E.D
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We are now ready to construct the holomorphic functional calculus on the C*-
algebra A with an identity: every C*-algebra is a local Banach algebra.

By the linearity of the
∫

C
dz operator, it follows from equation (B.9) that

f(x0) =
1

2πi

∫
C

f(z)
z1A − x0

dz (B.14)

where f is a polynomial function which is analytic everywhere on the complex
plane C.

Now let f be an holomorphic or analytic function of a complex variable defined
on an open disk, U , containing the spectrum of the fixed C*-algebra element
x0. Then we take our curve C ⊂ U as a circle centered at the origin containing
the spectrum σA(x0) of the element x0 in its interior. Now f(z) has a power
series representation

∑∞
n=0 anz

n centered at the origin. This series converges
uniformly on the closed curve C so that integrating term-by-term,

1
2πi

∫
C

f(z)
z1A − x0

dz =
1

2πi

∫
C

∑∞
n=0 anz

n

z1A − x0
dz

=
∞∑

n=0

an

( 1
2πi

∫
C

zn

z1A − x0
dz

)
=

∞∑
n=0

anx
n
0 (B.15)

= f(x0) (B.16)

where equation (B.15) follows from Proposition 2, equation (B.9). We take
equation (B.16) as a definition of the element f(x0) where f be an holomorphic
or analytic function of a complex variable defined on an open disk, U , containing
the spectrum of the fixed C*-algebra element x0.
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B.2 The Spatial Tensor Product A
⊗

Mn(C)

B.2.1 The Spatial Tensor Product : The General Case

Throughout this section, all C*-algebras are taken as represented C*-algebras :
C*-algebras of bounded operators acting on a known Hilbert space. In partic-
ular, the C*-algebras Mn(C) and A are the C*-algebras of bounded operators
on the n-dimensional Hilbert space Cn and the universal Hilbert space H, re-
spectively : Φ : A → B(H)|a 7→ Φa denotes the universal representation of the
C*-algebra A [Chapter 1.2.2, Gelfand Naimark Theorem II]. From now on the
C*-algebra element a will denote the bounded operator Φa. We construct the
spatial tensor product C*-algebra A

⊗
Mn(C) as a represented C*-algebra, as

follows:

Firstly, the Hilbert space in question is the Hilbert tensor product H
⊗

h Cn

of all the bounded square summable bilinear forms on the Cartesian product
H×Cn [Chapter 2, Proposition 2.6.2 [10]].

Secondly, we consider the set F of all the tensor products, a⊗M , of the bounded
operators a ∈ B(H) and M ∈Mn(C):

F = {a⊗M |a ∈ A,M ∈Mn(C)} (B.17)

The tensor product a⊗M is a bounded operator on the Hilbert space H
⊗

h Cn

[Chapter 2, Proposition 2.6.12 [10]]. In fact,

‖ a⊗M ‖=‖ a ‖‖M ‖ (B.18)

where ‖ M ‖= max‖v‖2≤1 ‖ M(v) ‖2 where ‖ · ‖2 is the usual Euclidean norm
on Cn. It suffices to define the action of a⊗M on the fundamental set of simple
tensors of H

⊗
h Cn:

a⊗M : H
⊗

h Cn → H
⊗

h Cn|h⊗ v 7→ a(h)⊗M(v)

Finally, the linear span of the set F is a *-subalgebra of the C*-algebra,
B(H

⊗
h Cn), of all the bounded operators on H

⊗
h Cn where we define multi-

plication as composition [Chapter 2, Proposition 2.6.12 (15) [10]]. We define the
closed linear span of F in B(H

⊗
h Cn) as the spatial tensor product C*-algebra

A
⊗
Mn(C) : F is a fundamental set of A

⊗
Mn(C). Formally,

Definition 3 (Spatial Tensor Product A
⊗
Mn(C)) The spatial tensor prod-

uct, A
⊗
Mn(C), of the C*-algebras A and Mn(C) is the C*-subalgebra of

B(H
⊗

h Cn), the C*-algebra of all the bounded operators on H
⊗

h Cn, which
has the set F as defined in equation (B.17) as its fundamental set.
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B.2.2 The Spatial Tensor Product : Explicit Description

Here we show that the spatial tensor product A
⊗
Mn(C) is precisely Mn(A),

the C*-algebra of all n×n matrices with entries from A. We do this by first es-
tablishing that the represented C*-algebra A

⊗
Mn(C) (Definition 3) is highly

algebraic in nature:

Every element of the spatial tensor product, A
⊗
Mn(C) ⊂ B(H

⊗
h Cn), is

of the form ∑
1≤j,k≤n ajk ⊗ Ejk

where Ejk is the elementary n× n matrix with 1 in the (j, k)-th entry:

Proposition 3 (Chapter 11.1, Example 11.1.5 [11]) The closed linear span of
the fundamental set F in B(H

⊗
h Cn) coincides with the linear span of the

fundamental set F in B(H
⊗

h Cn). Consequently, every element of the spatial
tensor product, A

⊗
Mn(C), is of the form

∑
1≤j,k≤n ajk ⊗ Ejk where Ejk is

the elementary n× n matrix with 1 in the (j, k)-th entry.

Proof. A typical element C of the linear span of the fundamental set F is
of the form

∑m
t=1 at ⊗ Bt where a1, . . . , am ∈ A and B1, . . . , Bm ∈ Mn(C).

But, since Mn(C) is spanned by Ejk where 1 ≤ j, k ≤ n, we can write C as∑
1≤j,k≤n a

′
jk ⊗ Ejk.

Given C1 =
∑

1≤j,k≤n a
1
jk ⊗ Ejk and C1 =

∑
1≤j,k≤n a

2
jk ⊗ Ejk, the inequal-

ity

‖ a1
jk − a2

jk ‖≤‖ C1 − C2 ‖ (B.19)

will establish the uniqueness of the representation of the element C as the sum∑
1≤j,k≤n a

′
jk⊗Ejk and the completeness of the linear span of the fundamental

set F .

Q.E.D

Now the Hilbert space in the represented C*-algebra A
⊗
Mn(C) is the Hilbert

tensor product H
⊗

h Cn. We show that this Hilbert space is isomorphic (as a
Hilbert space) to the Hilbert direct sum space

∑n
i=1⊕H:

Proposition 4 The Hilbert direct sum space
∑n

i=1⊕H is isomorphic to the
Hilbert tensor product H

⊗
h Cn.

Proof . The map W :
∑n

i=1⊕H → H
⊗

h Cn|(h1, . . . , hn) 7→ h1⊗e1+ . . .+hn⊗
en where (e1, . . . , en) is a basis of Cn, is an onto isometric vector space homo-
morphism : (the family of simple tensors (hi ⊗ ei|i = 1, . . . , n) is an orthogonal
family : (hi ⊗ ei, hj ⊗ ej) = (hi, hj)(ei, ej) =‖ hi ‖2 δij).

Q.E.D
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Thus far, we have established that A
⊗
Mn(C) ⊂ B(H

⊗
h Cn) where intu-

itively we can regard B(H
⊗

h Cn) as B(
∑n

i=1⊕H) by virtue of Proposition 4.
We now show that B(

∑n
i=1⊕H) is the C*-algebra of n×n matrices with entries

in B(H):

Proposition 5 (Matrix Representation of B(
∑n

i=1⊕H)) (Chapter 11.1, Ex-
ample 11.1.5 [11]) Consider the Hilbert space,

∑n
i=1⊕H , the finite Hilbert direct

sum space H
⊕
. . .

⊕
H (n times) where

‖ (h1, . . . , hn) ‖=
(
‖ h1 ‖2 + . . .+ ‖ hn ‖2

) 1
2
. (B.20)

Defining the bounded linear operators Ui and Vj for 1 ≤ i, j ≤ n as

Ui : H →
n∑

i=1

⊕H|h 7→ (hk)n
k=1, Vj :

n∑
i=1

⊕H → H|(hk)n
k=1 7→ hj (B.21)

where hk = h if and only if k = i and 0 otherwise, straightforward computa-
tion shows that every bounded linear operator T on

∑n
i=1⊕H has the matrix

representation:  T11 . . . T1n

...
...

Tn1 . . . Tnn


where Tij = UiTUj ∈ B(H) for 1 ≤ i, j ≤ n and we define

 T11 . . . T1n

...
...

Tn1 . . . Tnn


 h1

...
hn

 =

 T11(h1) + . . .+ T1n(hn)
...

Tn1(h1) + . . .+ Tnn(hn)



Let Mn(B(H)) denote the set of n× n matrices with entries from B(H). Then
defining the adjoint, the product and the norm analogously as in Mn(C), the
set Mn(B(H)) is a C*-algebra. The map Φ : B(

∑n
i=1⊕H) → Mn(B(H)) :

T 7→ [Tij ]1≤i,j≤n is an onto *-isomorphism (or equivalently, an onto isometric
*-isomorphism [Chapter VI, Corollary 3.9 [9]]):

sup
‖v‖=1

‖ Tv ‖ = sup∑n

j=1
‖hj‖2=1

∑
i

∑
j

‖ Tij(hj) ‖ (B.22)

‖ Tv ‖2 ≤
( ∑

i

∑
j

‖ Tij ‖2
)
‖ v ‖2 (B.23)

where v = (hj)1≤j≤n ∈
∑n

i=1⊕H.

Q.E.D
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We now rigourously show that the spatial tensor product A
⊗
Mn(C)

⊂ B(H
⊗

h Cn) is precisely Mn(A) = B(
∑n

i=1 H), the C*-algebra of all n × n
matrices with entries from A by showing that the vector space isomorphism be-
tween the Hilbert spaces

∑n
i=1 H and H

⊗
h Cn in Proposition 4 establishes an

equivalence of the *-representations [Chapter 1.2.1, remark following Example
5]. This will then allow us to identify each

∑
1≤j,k≤n ajk ⊗ Ejk ∈ A

⊗
Mn(C)

with the matrix [ajk]1≤j,k≤n ∈Mn(A).

This follows from the following equations:

W−1
∑

1≤j,k≤n

ajk ⊗ EjkW
(
(h1, . . . , hn)

)
= W−1

∑
1≤j,k≤n

ajk ⊗ Ejk

(
(h1 ⊗ e1 + . . .+ hn ⊗ en)

)
= W−1

∑
l=1

( ∑
1≤j,k≤n

ajk(hl)⊗ Ejk(el)
)

= W−1
( ∑

1≤j,k≤n

ajk(hk)⊗ Ejk(ek)
)

= W−1
( ∑

1≤j≤n

( ∑
1≤k≤n

ajk(hk)
)
⊗ ej

)
= [ajk](hk)n

k=1

where

[ajk](hk)n
k=1 =

 T11 . . . T1n

...
...

Tn1 . . . Tnn


 h1

...
hn

 =

 T11(h1) + . . .+ T1n(hn)
...

Tn1(h1) + . . .+ Tnn(hn)


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B.3 The Normed Inductive Direct Limit M∞(A)

We shall now construct from the family of unital C*-algebras A = {Mn(A)|n ∈
N}, a σ-unital normed algebra, M∞(A), which does not have an identity :
it turns out that we can view M∞(A) as the normed *-algebra of all infinite
matrices with entries in A where only finitely many of the entries are non-zero.
The method of construction is to first cast the family A as a normed inductive
system from which we can then construct the normed inductive limit M∞(A).
We shall now first define a prerequisite concept : direct family of sets.

Definition 4 (Direct Family Of Sets) (Chapter 3.21, Definition 1 [34]) Work-
ing initially in the category of sets, we first define a direct family of sets A as a
triplet of the following objects:

(i) A directed partially ordered set (I,≤) called the carrier of A : for any i, j ∈ I,
there exists a k ∈ I such that i ≤ k and j ≤ k where ≤ is a partial order on I.

(ii) Sets Ai for each i ∈ I.

(iii) Mappings ϕij for all i ≤ j, where ϕij maps Ai into Aj such that

ϕijϕjk = ϕik if i ≤ j ≤ k

and ϕii is the identity mapping for all i ∈ I.

Example 1 (Direct Family Of Sets) Let A be the family of unital C*-algebras
A = {Mn(A)|n ∈ N}. If we define the map ϕij : Mi(A) → Mj(A)|T 7→
diag(T, 0) where diag(T, 0) is the direct sum matrix T

⊕
0 [Chapter 4.2.1, Defi-

nition 5] where 0 is the zero (j−i)×(j−i) - matrix : T is embedded in the upper
left hand corner of Mj(A), and the carrier, I, of A to be the well ordered set N
with the usual ordering, then A = {Mn(A)|n ∈ N} becomes a direct family of
sets.

We are now in a position to define an inductive system. In a nutshell, it is a di-
rected family of sets lifted into the category of local Banach algebras [Appendix
B.1, Definition 1]:

Definition 5 (Normed Inductive System) A normed inductive system is a
directed family of sets A with the additional condition that

(i) Sets Ai for each i ∈ I are local Banach algebras.

(ii) The mappings ϕij for all i ≤ j, where ϕij maps Ai into Aj are bounded
normed algebra homomorphisms and for each i, limi supj ‖ ϕij ‖<∞.
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Proposition 6 The family of unital C*-algebras A = {Mn(A)|n ∈ N} taken
as a directed family of sets [Example 1] is a normed inductive system .

Proof. Condition (i) is satisfied by virtue of Theorem 1, Appendix B1. Condi-
tion (ii) is trivially satisfied since each ϕij : Mi(A) → Mj(A)|T 7→ diag[T, 0] is
an isometry so that ‖ ϕij ‖= 1 for all i, j.

Q.E.D

Reverting back into the category of sets, we now define the algebraic direct limit
of a direct family of sets A:

Definition 6 (Algebraic Direct Limit) Let A be a direct family of sets. We
first consider the union set

⋃
A =

⋃
i∈I{Ai} where we assume that the sets Ai

are pairwise disjoint; take the disjoint union otherwise. Define an equivalence
relation, R, on

⋃
A as follows:

xRy if and only if x ∈ Ai, y ∈ Aj for some i, j ∈ I and there exists a z ∈ Ak

where i, j ≤ k such that ϕik(x) = ϕjk(y) = z.

Then we define the algebraic direct limit A∞ as the set of all equivalence classes
x/R = {y|xRy}.

Example 2 (Algebraic Direct Limit) Let M∞ denote the algebraic direct
limit of the direct family of sets A = {Mn(A)|n ∈ N}. Since each

ϕij : Mi(A) →Mj(A)|T 7→ diag[T, 0]

is an injective embedding, M∞ can be taken as the union
⋃∞

n=1{Mn(A)}.

Therefore, we can regard M∞ as the set of all infinite matrices with entries
taken from A with only finitely many nonzero entries: for each T ∈ M∞(A)
there exists some n ∈ N such that T ∈Mn(A).

We can now define the normed inductive limit taking us back into the category
of normed spaces since we construct a norm on the algebraic direct limit:

Definition 7 (Normed inductive limit) (Chapter II.3.3 [27]) Given a normed
inductive system, (A, ϕij), there is a natural seminorm on the algebraic direct
limit A∞:

|||x||| = lim
i

sup
j
‖ ϕij(x) ‖ (B.24)

where x ∈ Ai. The normed inductive limit is the quotient of the algebraic
inductive limit by the elements of semi-norm 0.
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As it turns out, the normed inductive limit of the family of unital C*-algebras
A = {Mn(A)|n ∈ N} is highly algebraic in nature : the normed inductive limit
coincides with the algebraic direct limit of A.

Proposition 7 (The algebraic direct limit is the normed inductive limit)
The algebraic direct limit, M∞, of the family of unital C*-algebras A = {Mn(A)|n ∈
N} [Example 2] is exactly the normed inductive limit.

This follows from the fact that each ϕij is an injective *-homomorphism or
equivalently, an isometric embedding : ‖ ϕij(T ) ‖=‖ T ‖ for all the j. Conse-
quently, ||| · ||| is a norm: |||T ||| = 0 if and only if T = 0. For any T ∈ M∞,
there exists an n ∈ N such that T can be regarded as an element of Mn(A)
where the norm of T in M∞ is precisely the norm in Mn(A) which is a well
defined C*-algebra norm [Chapter 1.1, equation (1.4)].

The vector space operations in M∞(A) are defined as follows:

For any S, T ∈ M∞, S ∈ Mi(A), T ∈ Mj(A) for some i, j ∈ N. Assuming
without loss of generality that j ≥ i, we consider S as ϕij(x) ∈ Mj(A) and we
perform vector addition, S+T , and perform scalar multiplication in the context
of the vector space Mj(A). These are well defined operations, by virtue of the
equivalence relation, R, defined in Definition 6.

Proposition 8 (M∞ is a σ-unital normed *-algebra without an identity)
The normed vector space M∞(A) becomes a normed *-algebra with an isometric
involution by virtue of the fact that each Mn(A) is a normed *-algebra:

For any S, T ∈ M∞, S ∈ Mi(A), T ∈ Mj(A) for some i, j ∈ N. Assuming
without loss of generality that j ≥ i, we define the product, ST , and involution
all in the context of the *-algebra Mj(A).

Now M∞ does not have an identity : suppose I is an identity of M∞(A); then
I ∈Mn(A) for some n ∈ N and if In+1 denotes the identity matrix of Mn+1(A),
then IIn+1 = ϕn,n+1(I)In+1 = ϕn,n+1(I) 6= In+1

The net {In}∞n=1 is an approximate identity of the C*-algebra M∞(A) and since
it is indexed by the countable set N, the C*-algebra M∞(A) is σ-unital.

We shall therefore identify M∞(A) with the elements of B(
∑∞

i=1⊕H), where
H is the Universal Hilbert space associated with the *-representation of the
C*-algebra A, where x ∈ M∞(A) is the infinite matrix with x on the upper
left hand corner. We shall now show that M∞(A) is far from being a complete
*-subalgebra of the C*-algebra B(

∑∞
i=1⊕H):
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Proposition 9 (M∞(A) is not complete) Consider the Cauchy sequence (Tn)∞n=1 ∈
M∞(A) where Tn is the infinite diagonal matrix with the first n terms of the
sequence ( 1

m1A)∞m=1 on the top left hand corner, 0 elsewhere, where 1A is the
identity element of A. This Cauchy sequence has no limit in M∞(A).

Proof. Consider the following string of inequalities:

‖ Tn − Tm ‖ = sup
‖v‖=1

‖ (Tn − Tm)(v) ‖

≤
∑

i

∑
j

‖ (Tn − Tm)ij ‖2‖ v ‖2 (B.25)

=
∑

i

∑
j

‖ (Tn − Tm)ij ‖2

<
∑

k≥n+1

(
1
k2

)

where equation (B.25) follows from equation (B.23). Since the series
∑

n=1
1

n2

is convergent, the remainder series,
∑

k≥n+1(
1
k ), is a null sequence. Therefore

the sequence (Tn)∞n=1 is a Cauchy sequence.

Suppose on the contrary that there exists a T ∈ M∞(A) such that Tn → T .
Since T ∈M∞(A), there exists a k ∈ N such that T ∈Mk(A). Then,

‖ Tn+1 − T ‖= sup
‖v‖=1

‖ Tn+1 − T ‖ (v) ≥ 1
k + 1

(B.26)

for all n ≥ k since the infinite diagonal matrix Tn+1−T has the element 1
k+11A

on the (k+1)- th row and (k+1) -th column: the vector ek+1 ∈
∑∞

1=1⊕H which
has h ∈ H on the (k + 1)-th entry where ‖ h ‖= 1 and 0 elsewhere, belongs to
the unit sphere of

∑∞
1=1⊕H and ‖ (Tn+1 − T )(ek+1) ‖= 1

k+1 .

Q.E.D

By a similar application of inequality (B.23) it is trivial to see that the distinct
elements in the net of the approximate identity (In)∞n=1 are all distance 1 apart:

Proposition 10 The distinct elements in the net of the approximate identity
(In)∞n=1 are all distance 1 apart.
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B.4 The stable algebra A
⊙

K(H)

The spatial tensor product A
⊗
K(H) where K(H) is the non-unital C*-algebra

of all the compact operators on an infinite dimensional separable Hilbert space,
is a C*-algebra that can be identified with the C*-algebra completion of the
normed *-algebra M∞(A). The C*-algebra completion is the norm completion
of M∞(A) as a normed *-subalgebra of the C*-algebra B(

∑∞
i=1⊕H) [Appendix

B3, Proposition 9]. This norm completion always yields a C*-algebra [Chapter
VI.3, section 3.3 [9]] since the norm of M∞(A) satisfies the strong C*-norm
condition [Chapter 1.1, equation (1.4)]. We call and denote this C*-algebra
completion of M∞(A), the stable algebra, A

⊙
K(H). Formally,

Definition 8 (Stable Algebra) The stable algebra A
⊙
K(H) is the norm

completion of M∞(A) taken as a normed *-subalgebra of the C*-algebra
B(

∑∞
i=1⊕H).

In the general case, the C*-completion of a normed space proceeds over three
stages. We first complete M∞(A) in the category of normed spaces [Chapter
4.1 pp 170 [20]]. We then complete this space as a Banach *-algebra and finally
complete the Banach *-algebra as a C*-algebra [Chapter VI.10, [9]]. The third
stage is needed since the completion as a Banach *-algebra does not necessarily
lead to a symmetric algebra [Chapter 6.33, Example 33.6 [8]]: all C*-algebras
are symmetric [Chapter VI.7, Theorem 7.11 [9]].

The identification of the spatial tensor product A
⊗
K(H) with the stable al-

gebra, A
⊙
K(H) requires the Hilbert space H to be separable. Intuitively,

the separability of H enables us to construct a countable orthonormal basis
and hence regard it as a ’limit’ of the sequence (Cn)∞n=1; hence all finite rank
operators on H can be regarded as a sequential limit of elements taken from
{Mn(C)|n ∈ N} enabling us to identify F (H) with M∞(A); since, every com-
pact operator is a sequential limit of finite rank operators of F (H) [Chapter 2,
Theorem 2.4.5 [13]], in taking the spatial tensor product A

⊗
K(H), this limit

process ’transfers’ as elements in the norm completion of M∞(A).

We now show that A
⊙
K(H) does not have an identity, noting that the approx-

imate identity is a divergent sequence in A
⊙
K(H) [Appendix B3, Proposition

10]:

Proposition 11 (A
⊙
K(H) does not have an identity) The stable algebra

A
⊙
K(H) does not have an identity.

Proof. Every T ∈ A
⊙
K(H) has a matrix representation as the square

summable operator valued infinite matrix [Tij ]1≤i,j<∞:∑
i

∑
j

‖ Tij ‖2<∞ (B.27)
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where Tij is defined similarly as in Proposition 5, Appendix B.2.2.

Therefore since the identity matrix has for its matrix representation the non-
square summable infinite diagonal matrix with the identity operator 1H on each
diagonal entry, it cannot belong to A

⊙
K(H).

Q.E.D

We conclude by proving the anti-unitization theorem, Theorem 4, of Chapter
1.1:

Theorem 3 (Anti-Unitization) If A is a C*-algebra with an identity, there
exists a C*-algebra, the stable algebra A

⊙
K(H), such that A embeds by a

*-isometric isomorphism into A
⊙
K(H) as a closed 2-sided ideal.

Proof. The proof is evident by Proposition 11 on noting that the map:

Φ : A→ A
⊙
K(H)|a 7→ diag[a, 0]

where diag[a, 0] is the infinite operator valued matrix with a on the upper left
hand corner entry and 0 elsewhere, is an isometric *-isomorphism.

By the definition of multiplication in A
⊙
K(H) as matrix multiplication of

the representative matrices, A is a 2-sided ideal of A
⊙
K(H). Since A is com-

plete and Φ is an isometry, A is a closed 2-sided ideal of A
⊙
K(H).

Q.E.D
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SUMMARY

The aim of this thesis is to prove the lifting property of zero divisors, n-zero
divisors, nilpotent elements and a criteria for the lifting of polynomially ideal
elements in C*-algebras. Chapter 1 establishes the foundation on which the
machinery to prove the lifting properties stated above rests upon. Chapter
2 proves the lifting of zero divisors in C*-algebras. The generalization of this
problem to lifting n-zero divisors in C*-algebras requires the advent of the corona
C*-algebra, a result of the school of non-commutative topology. The actual
proof reduces the general case to the case of the corona of a non-unital σ-unital
C*-algebra. Chapter 3 proves the lifting of the property of a nilpotent element
also by a reduction to the case of the corona of a non-unital σ-unital C*-algebra.
The case of the corona of a non-unital σ-unital C*-algebra is proved via a lifting
of a triangular form in the corona. Finally in Chapter 4, a criterion is established
to determine exactly when the property of a polynomially ideal element can be
lifted. It is also shown that due to topological obstructions, this is not true in
any C*-algebra.
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