ANTIMICROBIAL ACTIVITY OF HELICHRYSUM SPECIES

AND THE ISOLATION OF A NEW PHLOROGLUCINOL FROM

HELICHRYSUM CAESPITITIUM

BY

ABBEY DANNY MATOME MATHEKGA

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHIAE

PLANT PHYSIOLOGY

IN THE FACULTY OF BIOLOGICAL AND AGRICULTURAL SCIENCES

UNIVERSITY OF PRETORIA

PRETORIA.

PROMOTER : PROF. J.J.M. MEYER

JANUARY 2001.

University of Pretoria etd - Mathekga, A D M TABLE OF CONTENTS

PAGE

CONTENTS	(ii)
LIST OF TABLES	(viii)
LIST OF FIGURES	(ix)
ABBREVIATIONS	(x)

CHAPTER 1

LITERATURE REVIEW AND OBJECTIVES

1.1	A modern antibiotic era	2
1.2	Written records of antibiotic compounds	3
1.3	Ethnopharmacology	3
1.4	Screening plants with antimicrobial activity for new pharmaceuticals	4
1.5	Preformed antimicrobial compounds and plant defence against microbial attack	4
1.6	Phytoalexins (postinfectional agents)	5
1.7	Efficacy of traditionally used plants	6
1.8	Criteria for choice of Helichrysum species	6
1.9	Helichrysum caespititium	7
1.10	Chemotaxonomic relationship	7
1.11	Sequestration of antimicrobial compounds in Helichrysum species	9
1.12	Alternative (traditional) primary health care services	10
1.13	Significance of antimicrobial activity in Helichrysum species	10
1.14	Hypotheses tested during this investigation	11
1.15	Structure of the thesis	12
1.16	REFERENCES	14

CHAPTER 2

ANTIBACTERIAL ACTIVITY OF HELICHRYSUM SPECIES (ASTERACEAE)

2.1	INTRODUCTION	21
2.2	MATERIALS and METHODS	24
2.2.1	Extract preparation	24
2.2.2	Bacterial strains	25
2.2.3	Antibacterial bioassay	25
2.3	RESULTS	25
2.4	DISCUSSION	29
2.5	CONCLUSION	31
2.6	REFERENCES	31

CHAPTER 3

ANTIFUNGAL ACTIVITY OF HELICHRYSUM SPECIES (ASTERACEAE)

3.1	INTRODUCTION	35
3.1.1	Fungi and man	35
2.1.2	Epidemiology	36
3.1.3	Fungi and plants	37
3.1.4	Exploitation of Helichrysum species for new antifungal agents	38
3.2	MATERIALS and METHODS	39
3.2.1	Plant material	39
3.2.2	Preparation of extracts	39
3.2.3	Fungal strains	39
3.2.4	Antifungal bioassay	39
3.3	RESULTS	40
3.4	DISCUSSION	40

3.5	CONCLUSION	University of Pretoria etd - Mathekga, A D M	44
3.6	REFERENCES	2	45

CHAPTER 4

AN ACYLATED PHLOROGLUCINOL WITH ANTIMICROBIAL PROPERTIES FROM *HELICHRYSUM CAESPITITIUM*

ABSTRACT

4.1	INTRODUCTION	48
4.2	RESULTS and DISCUSSION	49
4.2.1	Structure elucidation of 2	49
4.2.2	Significance of structure	49
4.2.3	Antibacterial activity	49
4.2.4	Antifungal activity	50
4.3	EXPERIMENTAL	50
4.3.1	Plant material	50
4.3.2	Preparation of extract	50
4.3.3	Antibacterial activity	50
4.3.4	Antifungal activity	50
4.3.5	Isolation and identification of 2	51
4.3.5.	1 Compound 2	51
4.4	REFERENCES	51
4.5	NMR chromatograms (not included in publication)5	52-56

CHAPTER 5

CYTOTOXICITY OF CAESPITATE, A PHLOROGLUCINOL ISOLATED FROM HELICHRYSUM CAESPITITIUM

5.1	INTRODUCTION	59
5.2	MATERIALS and METHODS	60
5.2.1	Plant material	60

University of Pretoria etd - Mathekga, A D M

5.2.2	Preparation of extract	60
5.2.3	Preparation of caespitate	60
5.2.4	Cytotoxicity	60
5.2.4.1	Stock solution	60
5.2.4.2	Cell culture	61
5.2.4.3	In vivo cytotoxicity bioassay	61
5.3	RESULTS	62
5.4	DISCUSSION	62
5.5	CONCLUSION	63
5.6	REFERENCES	63

CHAPTER 6

SYNERGISTIC ANTIMICROBIAL EFFECT OF CAESPITATE AND CAESPITIN,			
TWO PHLOROGLUCINOLS ISOLATED FROM HELICHRYSUM CAESPITITIUM			
6.1	INTRODUCTION	66	
6.2	MATERIALS and METHODS	66	
6.2.1	Plant material	66	
6.2.2	Preparation of extract	67	
6.3	Preparation of caespitate	67	
6.3.1	Isolation and identification of caespitate	67	
6.3.2	Preparation of caespitate and caespitin solutions	67	
6.3.3	Antibacterial activity of caespitate and caespitin	67	
6.4	RESULTS	68	
6.4.1	Antibacterial activity	68	
6.5	DISCUSSION	69	
6.6	CONCLUSION	71	
7.0	REFERENCES	72	

v

CHAPTER 7

TRICHOME MORPHOLOGY AND ULTRASTRUCTURE OF HELICHRYSUM

CAESPITITIUM

7.1	INTRODUCTION	75
7.2	MATERIALS and METHODS	76
7.2.1	Plant material	76
7.2.2	Transmission Electron Microscopy	77
7.2.3	Scanning Electron Microscopy	77
7.3	RESULTS	77
7.4	DISCUSSION	85
7.5	CONCLUSION	88
7.6	REFERENCES	90

CHAPTER 8

GENERAL DISCUSSIONS & CONCLUSIONS

8.1	SCREENING OF PLANTS FOR BIOACTIVE AGENTS	95
8.2	SCOPE OF RESEARCH	98
8.3	ACCEPTANCE OF HYPOTHESES	99
8.4	REFERENCES	100

CHAPTER 9

SUMMARY	103
REFERENCES	105

CHAPTER 10

ACKNOWLEDGEMENTS	107
------------------	-----

APPENDIX 1

CRYSTAL DATA AND DETAILS OF THE STRUCTURE DETERMINATION

1	CRYSTAL DATA	110
2	COLLECTION DATA	110
3	REFERENCE REFLECTIONS	111
4	REFINEMENT	111
5	STRUCTURE SOLUTION	111
6	REFERENCES	112

6 **REFERENCES**

APPENDIX 2

PROVISIONAL PATENT SPECIFICATIONS

1	BACKGROUND OF THE INVENTION	115
2	IDENTIFICATION OF PLANT SPECIES	117
2.1	Extraction	118
2.2	Thin Layer Chromatography	118
2.3	Column Chromatography	118
2.4	High Performance Liquid Chromatography	118
3	ANTIBACTERIAL ACTIVITY	119
4	ANTIFUNGAL ACTIVITY	120
5	ANTITUBERCULOSIS ACTIVITY	122
6	REFERENCES	123

APPENDIX 3

REPRINT: ANTIBACTERIAL ACTIVITY OF SOUTH AFRICAN HELICHRYSUM SPECIES 126

LIST OF TABLES

Table 2.1	Medicinal use of some Helichrysum species	23
Table 2.2	Antibacterial activity (MIC) of the crude extracts of the aerial parts of	
	Helichrysum species	26
Table 3.1	Antifungal activity (MIC) of the crude extracts of the aerial parts of	
	Helichrysum species	41
Table 4.1	Antibacterial activity of the crude extracts of the aerial parts of	
	H. caespititium and caespitate, isolated from the extract	49
Table 4.2	Antifungal activity of the crude extracts of the aerial parts of H. caespititiu	т
	and caespitate, isolated from the extract	49
Table 5.1	Cytotoxicity effects of different concentrations of caespitate on vervet	
	monkey kidney cells	62
Table 6.1	Synergistic effect on the antibacterial activity of caespitate and caespitin	
	isolated from H. caespititium	69

APPENDIX 2

Antimicrobrial activity (MIC) of the crude extracts of the aerial parts	of
H. caespititium and caespitate, isolated from the extract	120
Antifungal activity of the crude extracts of the aerial parts of H. cae.	spititium
and caespitate, isolated from the extract	121
Inhibition of Mycobacterium tuberculosis strains by caespitate	122
	<i>H. caespititium</i> and caespitate, isolated from the extractAntifungal activity of the crude extracts of the aerial parts of <i>H. cae</i>and caespitate, isolated from the extract

LIST OF FIGURES

Figure 1.1	Helichrysum caespititium	7
Figure 4.1	¹³ C NMR of caespitate in CDCl ₃	52
Figure 4.2	COSY of caespitate in CDCl ₃	53
Figure 4.3	DEPT of caespitate in CDCl ₃	54
Figure 4.4	HETCOR of caespitate in CDCl ₃	55
Figure 4.5	¹ H NMR of caespitate in CDCl ₃	56
Figure 4.6	GCMS: TMS mass determination of caespitate	57
Figure 7.1	Electron micrographs of leaf epidermal cells of H. caespititium	79
Figure 7.2	SEM dried mounted leaf sections of H. caespititium	80
Figure 7.3	TEM of various stages in the development of glandular hairs of	
	caespititium	81
Figure 7.4	Ultrastructure of secretory trichome cell of H. caespititium	83

Appendix 1

X-ray structure and molecular stereochemistry of the acylated derivative, caespitate (C₁₇ H₂₂ O₆) showing the numbering scheme employed 111

ABBREVIATIONS

CD	Circular dichroism
COSY	Correlation spectroscopy
DEPT	Distortionless enhancement of polarisation transfer
GCMS	Gas chromatography- mass spectrometry
HETCOR	Heteronucluear chemical shift correlation
HRMS	High resolution mass spectrometry
MS	Mass spectrometry
RT	Room temperature
TLC	Thin layer chromatography
TMS	Trimethylsilyl