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CHAPTER 4 

THE MULTIPLY-UPSTREAM SEMI-LAGRANGIAN 
METHOD OF SIMULATING ADVECTION 

4.1 INTRODUCTION 

Analytic and numerical solutions of the Eulerian equations of hydrodynamics 
are limited in extent by the non-linear advection, or transport terms. Analytic 
solutions are difficult to obtain because the advection terms render the 
equations non-linear. Finite difference numerical solutions are readily derived 
in principle but are inaccurate because finite difference approximations of the 
advection terms can introduce errors in phase and amplitude (Crowley, 1968; 
Mesinger and Arakawa, 1976). In order to remain stable, Eulerian time 
schemes must satisfy the Courant-Friedrichs-Lewy (CFL) criterion that 
restricts the size of the time step used for a given spatial resolution and 
advecting wind. 

A Lagrangian approach to solving the equations of fluid motion involves 
following a fixed set of particles throughout the period of integration. However, 
Welander (1955) indicated that, in general, a set of fluid particles which are 
initially regularly distributed soon become significantly deformed and are 
therefore rendered unsuitable for numerical integration. To avoid this difficulty, 
while still concentrating on fluid particles, Wiin-Nielsen (1959) introduced a 
semi-Lagrangian approach, whereby a set of particles which arrive at a 
regular set of grid pOints are traced back over a single time interval to the 
location of the initial departure points. The values of the dynamical quantities 
at the departure points are obtained by interpolation from neighbouring grid 
points with known values. The semi-Lagrangian approach differs from the 
Lagrangian approach because in the former the set of particles in question 
changes at each time step. 

In multiply-upstream semi-Lagrangian schemes the grid points used for 
interpolation to the departure point of a particle are selected in such a way 
that they always surround the departure point. When the winds are strong the 
set of grid points may be many grid intervals upstream from the arrival grid 
point. The term "multiply-upstream" is used to describe a scheme using 
interpolation pOints selected in this way (Bates and McDonald, 1982). 

During the last fifteen years there has been an increased interest in semi­
Lagrangian techniques to manipulate horizontal or vertical advection in 
numerical prediction models. The essential feature of such schemes is that 
the total or material derivatives in the equations of motion are treated directly 
by calculating the departure points of fluid parcels. The upstream value of the 
required fields are then usually evaluated by spatial interpolation (McGregor, 
1993). The main advantage of semi-Lagrangian techniques is that it allows for 
the relaxation of the CFL criterion. The popularity of the semi-Lagrangian 

 
 
 



42 

approach stems however not only from the large permissible time steps but 
also from the high degree of advection accuracy. The schemes may be either 
two-time level or three-time level. 

This chapter deals with the semi-Lagrangian method of numerically modelling 
the advective process. The goal is to clarify and elaborate upon some of the 
theoretical issues of semi-Lagrangian advection and to compare the semi­
Lagranian scheme used in DARLAM to well-tested Eulerian schemes in order 
to evaluate their relative merits with respect to stability and accuracy. 

4.2 THE ADVECTION EQUATION 

In order to examine the properties of numerical advection schemes, numerical 
approximations to the two-dimensional advection equation in Cartesian co­
ordinates will be analysed. The horizontal (two-dimensional) non-linear 
advection equation may be expressed as: 

8\v 8\v 8\v-+u-+v--=O 
at Ox Oy 

(4.1) 

Here u = u(x, y, t) and v = v(x,y, t) are the advection velocity components in 
the x and y directions respectively and t is time. The dependant variable 
\jJ = \jJ(x, y, t) is some property (for example non-diffusive moisture) of the fluid 
that is transported by the flow field, so that its total derivative along an 
instantaneous streamline is zero. That is, equation (4.1) when written with 
r~spect to an observer who moves with the fluid simplifies to 

so that an observer will measure no change in \jJ as time passes. Equation 
(4.1), also called the colour equation, is considered in practise to be the most 
important part of the atmospheric goveming equations (Mesinger and 
Arakawa, 1976). 

The linear two-dimensional advection equation is 

u, v constant (4.2) 

The non-linear advection equation in one space dimension is 

8\v 0\jJ-+u-=O (4.3)
at Ox 

where \jJ =\jJ(x, t) and u =u(x, t), while the linear advection equation in one 
space dimension is 
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uconstant (4.4) 

Equation (4.4) describes the simplest advective processes and has proved to 
be a useful framework for the evaluation and comparison of numerical 
integration schemes. 

Before investigating the properties of numerical solutions of the non-linear 
advection equation (4.1) it is useful to first obtain an analytical solution of the 
linear two-dimensional advection equation (4.2) in the form of a single 
harmonic 

(4.5) 


Here 'P(t) is the wave amplitude, and k and 1 are wave numbers in the x and 

y directions respectively. k = 21t and 1 = 21t with Lx and Ly the wavelengths in 
Lx Ly 

the x and y directions respectively. The imaginary number 1 is defined as 
12 ==-1. 

Substituting equation (4.5) into the linear advection equation (4.2) gives 

d'P 
- + lku'P + Ilv'P = 0 (4.6)
dt 

Thus, the problem of solving the partial differential equation (4.2) has been 
reduced to that of solving an ordinary differential equation (4.6) with the 
following solution: 

(4.7) 

'1'(0) denotes the initial value of the amplitude. Hence, the desired harmonic 
solution is 

\j1(x, y, t) =Re{'P(O)eIk(X-ut}tll(Y-vt)} (4.8) 

2Each wave component is advected at a constant velocity of c = .Ju 2 + v in 
the x-y plane, with no changes in amplitude. Important features in the 
assessment of a numerical integration scheme are therefore the damping (if 
any) and the phase speed of a single harmonic. 

The one-dimensional linear advection equation (4.4) also has a solutions in 
the form of a single harmonic component, 

\j1(x, t) = Re{'P(t)eIkx } 
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provided that 

d'P +Iku =O. (4.9)
dt 

The solution of equation (4.9) is 

'P(t} ='P(O)e-lkut 	 (4.10) 

or, for discrete values t =nAt (n is the number of time steps and At the time 
interval), 

'Pn ='P(nAt} ='1'(0)e-lkunAt 	 (4.11 ) 

where 'P(O} is the initial value of the amplitude. In equation (4.11) ro =-kuAt 
represents the change in argument (or phase change) of the (4.11) in a single 
time step At. This will obviously also be the phase change in time of the true 
solution of the linear one-dimensional advection equation. 

4.3 	 EULERIAN SCHEMES TO SOLVE THE ADVECTION 
EQUATION 

In this section some well-tested Eulerian schemes to solve the advection 
equation are formulated and their accuracy and stability properties are 
discussed. 

4.3.1 	 LEAPFROG SCHEME 

4.3.1.1 Construction of the leapfrog scheme 

One of the most widely used numerical schemes to solve the advection 
equation is the leapfrog scheme. The scheme is obtained by replacing both 
the time and space derivatives in the advection equation by centred (second 
order accurate) finite difference approximations. The scheme is a three-level 
scheme, meaning that it relates the values of the dependant variable at three 
time levels. 

Approximating the space derivatives in the two-dimensional linear advection 
equation (4.2) with standard second order accurate difference quotients 
(Mesinger and Arakawa, 1976) results in 

(4.12) 

The co-ordinates of grid point (i,j) are given by x =iAx and y =jAy with 
Ax and Ay the spatial increments in the x and y directions respectively. 
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Approximate values for \II«Ax,jAy) are denoted by \IIj,j' Centred differences 

are used for the time derivative, resulting in the following equation: 

_ _ At[ \IIj+l,i,k - \IIi-l,j,k + \IIi,i+l,k - \IIi,j-l,k]
\IIi,j,k+1 - \IIj,j,k-1 Ll U Ax Y----"''-'--A-y-''':':'-'-- (4.13) 

The pOints in time where the numerical solution is computed for equation (4.2) 
are given by t =kAt, with k ~ 2. The solution for time step t =1At is 
approximated by using backward time differencing: 

_ _ At[ \II i+ l,j"O - \IIi-l,j,O + \II i,i+l,O - \II i,j-I,O ]\II .. 1 - \II ' 0 Ll U Y-''-----'--- (4.14)
I,J, I,J, 2Ax 2Ay' 

4.3.1.2 Amplitude accuracy 

It is instructive to investigate the amplitude and phase properties of numerical 
solutions from the linear advection equation (4.2). Von Neumann's, or the 
Fourier series method (Mesinger and Arakawa, 1976), is employed for this 
purpose. A solution of the linear advection equation can be expressed in the 
form of a Fourier series, where each harmonic component is also a solution 
(Mesinger and Arakawa, 1976). The stability of a single harmonic may be 
tested and stability of all admissible harmonics then constitutes a necessary 
condition for stability of the scheme (Mesinger and Arakawa, 1976). 

It is worthwhile to note that when using a grid point method to numerically 
solve partial differential equations with wave-type solutions, it is impossible to 
resolve waves with wavelengths shorter than min {2Ax,2Ay} (Mesinger and 
Arakawa, 1976). 

Returning to the von Neumann method, a solution of the finite difference 
equation (4.13) can be derived by substituting a solution of the following form 
of a single harmonic into equation (4.12): 

(4.15) 

This is analogue to solution (4.8) of the linear advection equation at discrete 
points iAx, jAy and nAt. Here 'Pn represents the amplitude of the numerical 
solution at time level n. After some rearrangement, it follows that the single 
harmonic (4.15) is a solution of equation (4.12) provided that 

d'P =I(-~Sin kAx -~sin IAyJ'P (4.16)
dt Ax Ay 

Approximating the time derivative in (4.12) with centred differences yields 
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UJn+1 _ UJn-\ 2I( ~t. 1.A.. ~t. IA J,"vn
T - T + -u-sm l\.ll.Ii -v-sm uy T (4.17)

Ax ~y 

Equation (4.17) enables analyses explaining the behaviour of the amplitude 
'Pn with an increase in time step (n). The amplification factor IAI is defined as 

(4.18) 

Taking the absolute value on both sides yields 

For the stability of each harmonic solution (4.15), it is required that 

where B is a finite number. Taking the logarithm on both sides yields: 

Thus, B' is a new constant. Since t =n~t, the necessary condition for 
stability becomes 

B'IniAl <-~t (4.19) 
t 

Suppose that bounded ness of the solution is required for a finite time t. 

Condition (4.19) can then be written as 

IniAl S O(~t) 

Defining IAI =: 1+0 and in view of the power series expansion 

In(l +0)= f (_l)n on+l for -1 <0 < 1 
n=O n + 1 

(Ellis and Gulick, 1994) it follows that the stability condition obtained is 
equivalent to 

oS O(~t) 

or 
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which is unbounded if p ~ 1 

From equation (4.21) follows that the stability criterion Ipi ~ 1has to be written 

as 

At . I.A__ At. lAu-smr...ux+v-sm uy ~l 
Ax Ay 

This must be true for all resolvable wavelengths, which are all admissible 
values of the wave numbers k and 1. If only the cases where Ax =Ay is 
considered, the condition simplifies to 

where c=.Ju 2 +v 2
• Mesinger and Arakawa (1976) showed that the case 

where sin kAx =sin lAx =1 does occur within the admissible range of wave 
numbers. Thus, if the two-dimensional linear advection equation (4.2) is 
approximated using the leapfrog finite difference scheme, the amplitude of a 
solution in the form of a single harmonic component will remain bounded if 

At r;:
c-'\I2 ~l (4.23)

Ax 

This constitutes a necessary condition for the stability of the scheme and is 
commonly known as the CFL criterion. 

4.3.1.3 Phase accuracy 

In this section the phase properties of the leapfrog scheme is investigated by 
considering approximations to the solution of the less complex one­
dimensional linear advection equation (4.4). The von Neumann method 
involves defining the amplification factor A as 

'Pn
+ 

1 == A'Pn 

(equation (4.18». A can be written as 

(4.24) 


Equation (4.18) and (4.24) yields that the amplitude of the numerical solution 
at any time step is given by (Mesinger and Arakawa, 1976) 
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Comparing this with equation (4.11) reveals that 8 represents the change in 
argument (phase change) the numerical solution at each time step (Mesinger 
and Arakawa, 1976). 

It is of interest to consider the phase change of the numerical solution per time 
step (8) relative to that of the true solution (00 = -kuAt) namely 

R=~ 
00 

If the phase change of the numerical solution (8) per time step is equal to that 
of the true solution (00), the relative phase change (R) is unity. However, an 
expression for the phase change (8) of the numerical solution first needs to be 
derived. Using the notation (following Mesinger and Arakawa (1976)) 

it follows from equation (4.24) that 

A 
tan 8 = -!.!!!.. 

Are 
(4.25) 

or 

R ­ 1--tan-l[AimJ-. 
00 Are 

(4.26) 

It has been shown in section 4.3.1.2 that the leapfrog scheme is stable if psI 
for the linear two-dimensional advection equation (4.2). The same condition 
applies when solving the linear one-dimensional equation (4.4) with the 

leapfrog scheme, but now p = -u At sin kAx. Substituting the two solutions for 
Ax 

(A) from equation (4.22) into equation (4.26), indicates that the relative phase 
change of the leapfrog scheme is 

with the condition that Ipl < 1 with p -u: sin kAx for the one-dimensional 

linear advection equation (compare this to equation (4.21». 
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4.3.2 	 lAX-WENDROFFSCHEMES 

4.3.2.1 	 Construction of the Lax-Wendroff and modified 
Lax-Wendroff schemes 

Lax and Wendroff (1960) described an alternative finite difference method, 
which has since attracted considerable attention. For the linear two­
dimensional advection equation (4.2) the Lax-Wendroff scheme is 
implemented as follows: 

! 
f··..··..i,.........·I......·..r·........ ................... .......................... 

~Il !

i 
t··......i'....•·..·i..·..·..t..·...... ................... ................._..... 

i 
! 

j+I 
j+Y2 

• 

J.J -Y2 

j-I 

j-I I i+I 
i 

Ph i+1h 

Figure 4.2 	 Grid configuration for the Lax-Wendrof scheme. The horizontal 
increment is Ax and the vertical increment is ll.y . 

Suppose the value of the dependant variable \jf needs to be updated at all 

grid points (iAx,jll.y) (circle in figure 4.2). First, provisional values for \jf at time 

step n+ ~ are calculated for all the "half points" at positions (x, y) with 
2 

x =±(i + ~ )ll.X and y =±(j + ~)ll.Y (where the dotted lines cross in figure 4.2). 

This is achieved by applying the following finite difference equation to each of 
the "half points": 

\jfn+~ = (\jf"Y J ~ ~I (ox \jfY J+ 0;2 (Oy \jfx J} 	 (4.27) 

Equation (4.27) employs centred space (equations (4.30a) and (4.30b) with 
m I) and forward time differencing. 0;1 and 0;2 are given by (4.31). It is 
necessary to take arithmetic averages in space when calculating the centred 
space differences (equations (4.30a) and (4.30b» and when calculating \jfn at 
a particular half point (equation (4.29». Note that the "half points" used at time 
step n+% are spatially staggered. 

Using these provisional values a second step is taken, centred in both space 
and time, to update the values of the dependant variable (at time step n+ 1) at 
all grid points x =iAx and y jll.y (circle in figure 4.2): 
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(4.28) 

Note that 

(4.29) 

(4.30a)
2m 2m 

(4.30b)
2m 

L\t 
v- (4.31)

L\y 

Equations (4.27) to (4.31) constitute the Lax-Wendroff scheme. Note again 
that m=1 when using equations (4.308) and (4.30b). Similar to the leapfrog 
scheme, the Lax-Wendroff scheme is second-order-accurate in space and 
time (Gadd, 1978a). The Lax-Wendroff scheme is, however, a two-level 
scheme (involving only time steps nand n+1) whereas the leapfrog scheme is 
a three-level scheme (time step n-l is also involved). Two-level schemes are 
more attractive, since no computational initial condition is required as for 
three-level schemes. Certain types of non-linear computational instability can 
be avoided for this reason (Morton, 1971). In practical situations two-level 
schemes lead to smaller requirements for computer storage and allow exact 
model restarts to be made from a single field (Gadd, 1978a). 

The damping and phase errors of the Lax-Wendroff scheme have been 
studied by Morton (1971), who indicated that the phase performance is rather 
poor compared to the leapfrog scheme on a time-staggered grid. Without time 
staggering the phase lag errors of the two schemes are similar (Gadd, 1978a). 

Gadd (1978a) illustrated that a simple and inexpensive modification to the 
Lax-Wendroff scheme may result in a scheme with substantially reduced 
phase speed errors. In this modified Lax-Wendroff scheme the first step 
(equation (4.27) remains the same. In the second step four rather than two 
grid pOints are used in the finite difference approximation to the spatial 
derivatives. Thus, equation (4.28) is replaced by 
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IJI"" = IJI' (1 +a~a, (0, IJIY ri +a, (0 Y IJI' ti} 
(4.32) 

+ a{a, (0" IJIY rl +a, (o,ylJl' ti} 

where a ~ 0 on intuitive grounds (Gadd, 1978a) 

Equation (4.32) remains a second order accurate approximation in space and 
time (Gadd, 1978a). Equations (4.29), (4.30a) and (4.30b) and (4.31) are still 
applied. 

The linear one-dimensional advection equation (4.4) provides a useful 
framework for a theoretical analysis of the stability and phase properties of the 
Lax-Wendroff schemes. In the one-dimensional case the schemes are 
constructed in exactly the same way as for the two-dimensional equation: 

First, provisional values for the dependant variable \jI at time step n + ~ are 
2 

calculated at all "half points" x =(i ± ~)Ax. This is achieved by using 

(4.33) 

Secondly, the values of the dependant variable (at time level n) is updated at 
all pOints x =iAx 

(4.34) 

Note that 

(4.35) 

and 

(4.36) 

At
As previously mentioned a. =u-

Ax 
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Note that a ~ o. Also keep in mind that a = 0 reduces to the original Lax­
Wendroff scheme. Equations (4.33) and (4.34) may be combined (Gadd, 
1978a) to give 

1/1:" 1/1: cr{(1 + ~ ,)(6"1/1): ~ .(6,,1/1): } 
(4.37) 

+ ~cr'{(I + :.)6;l/Il -~a(6; I/Il } 

4.3.2.2 Amplitude accuracy 

The phase and amplitude properties of equation (4.37) may be investigated by 
considering a single Fourier harmonic, with the discrete equivalent in the form 
of \11~ =Ret¥neI(kiAx)}. Keeping in mind relationship (4.18), substitution of the 
Fourier harmonic into equation (4.37) yields Gadd (1978a): 

(4.38) 

Thus, the amplitude of the Fourier harmonic is damped by a factor /AI at each 

time step. For computational stability it is required that IA/::; 1 for all wave 

numbers k. Taking absolute values on both sides of equation (4.38) and 
squaring gives 

(4.39) 

which yields the computational stability criterion 

(4.40) 

When a =0 (Lax-Wendroff scheme) condition (4.40) reduces to ex::; 1 which is 

the well-known CFL criterion. For a 1.. condition (4.40) reduces to the less 
2 

generous ex::; 1... This is unacceptable in numerical models where the time 
3 

step is dictated by the wind speed (Gadd, 1978a) because the calculations 
are too expensive due to the small time step required to meet the stability 
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occurs when a 2 1 - ~, which gives a singularity in R. Since this wave is not 

properly resolved (Gadd, 1978a) the strong damping visible in 'figures 4.5 and 
4.6 at ~ =1t is an advantage. 

4.4 	 MCGREGOR'S SEMI-LAGRANGIAN ADVECTION 
SCHEME 

4.4.1 MUL TIPLY·UPSTREAM SEMI-LAGRANGIAN ADVECTION 

In the semi-Lagrangian approach of numerically simulating advection, a set of 
particles which arrive at a regular set of grid pOints are traced back over a 
single time interval to their departure points. The values of the dynamical 
quantities at the departure pOints are obtained by interpolation from 
neighbouring grid points with known values. The essential feature of semi­
Lagrangian numerical models is that the total, or material derivatives, in the 
equations of motion are treated directly by calculating the departure points of 
fluid parcels. The upstream value of the required fields are usually evaluated 
by spatial interpolation (McGregor, 1993). 

In multiply-upstream semi-Lagrangian schemes the grid points used for 
interpolation to the departure point of a particle are chosen in such a way that 
they always surround the departure point. When the winds are strong, this set 
of grid points may be many grid intervals upstream from the arrival grid point 
of the particle. The term "multiply-upstream" is used to describe a scheme 
using interpolation points chosen in this way (Bates and McDonald, 1982). 

4.4.2 MCGREGOR'S METHOD OF DETERMINING DEPARTURE POINTS 

During an integration of the primitive equations using the multiply-upstream 
semi-Lagrangian approach, the departure point (x.,y.) of a particle in a 

velocity field v= (u, v) over a time interval At may be estimated in a variety of 
ways. A simple straight-line trajectory back in time using only the velocity at 
the arrival point possesses inadequate accuracy (Robert, 1982). Most 
schemes therefore involve a sequence of iterations. A first guess of the 
departure position is determined by using a straight-line trajectory and an 
estimation of the departure velocity is then found by horizontal interpolation at 
the central point of the trajectory. This process is repeated several times using 
an updated advection velocity (McDonald, 1987; McDonald and Bates, 1987, 
1989). McGregor (1993) points out that a significant overhead of such 
schemes can arise from the horizontal interpolation (traditionally bicubic) that 
is carried out during the iterations. Several authors however, reported 
acceptable accuracy using just linear interpolation (Temperton and Staniforth, 
1987; Bates et aI., 1990). 

McGregor (1993) derived a more economical method to determine the 
position of departure points that avoids horizontal interpolation in the trajectory 
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analysis. The method considers a set of vectors moving with the fluid where 
each vector will be associated at time t with a different grid point. Note that the 
grid pOints have fixed locations while the vectors move with the fluid. To 

advance the model integration from time t to time t + At, a vector r(t + At) is 
constructed at the position of each arrival grid point. It is required to identify a 
starting position for the vector at the preceding time step namely r(t}. Each 

vector r(t} therefore represents a departure point in the form (x.,y.). The 
process may be expressed in terms of a truncated Taylor series (McGregor, 
1993), namely 

r(t)~ r(t+ At) + ±(- A:)n dn~ (t + At) (4.43) 
n=l n. dt 

where 

d n r(t) _ d d n-l r(t) 
-1 

n= 2,3, ... N (4.44)
dtn - dt dtn

and the total derivative operator has the usual definition of a time derivative 
that follows the motion of a parcel, 

d a -­
-=-+v·V. (4.45)
dt at 

An array of the vectors r(t + At) is needed so that the v· V operator in 

equation (4.45) may be conveniently evaluated. ; = dr is the velocity of the 
dt 

fluid at position f{t), and V is the spatial gradient operator. In equation (4.45) 
the time derivative on the left-hand side is naturally viewed from a Lagrangian 
viewpoint. The right hand side allows for its instantaneous evaluation at the 
same point in time and space via Eulerian derivatives (McGregor, 1993). 
McGregor (1993) points out that in the above equations, each component of 
r =(x.,Y.) may be obtained independently from the others. 

If the Eulerian velocity changes with time it becomes difficult, or at least very 
cumbersome, to evaluate the partial time derivatives for the higher order 
terms at t+At. In the scheme proposed by McGregor (1993) the total time 
derivative in (4.45), for use in (4.43) and (4.44), is replaced by the following 
approximation: 

d ­
-~v·V. (4.46)
dt 

Here v represents the Eulerian velocity at the point in space which 
At

corresponds to r(t + At), but is evaluated at the intermediate time t+­
2 
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(McGregor, 1993). The velocity v may conveniently be determined from the 
known velocities at previous time steps (McGregor, 1993). Temperton and 
Staniforth (1987), suggested the following third-order accuracy formulation in 
time: 

v=.!.[15v(t)-lOv(t - At) + 3v(t - 2At)]+O(Ae)
8 

From an Eulerian point of view, approximation (4.46) suggests that for 
advection purposes, the velocities remain constant at their centred-in-time 
values over the time interval [t, t + At] (McGregor, 1993). 

The above scheme, using equations (4.43), (4.44) and (4.46) and retaining 
terms up to the Nth total time derivative, is called a ON scheme (McGregor, 
1993). Equation (4.46) indicates that the lowest-order 0 1 scheme only 
produces a straight-line trajectory, using a velocity v evaluated at the arrival 
position. The 02 scheme uses estimates for both the velocity and acceleration 
along the trajectory. The 03 and higher-order versions of the scheme 
effectively solve the trajectory by incorporating higher-order curvature terms 
derived kinematically for the arrival point from the velocity field v at time 

t + At (McGregor, 1993). The number of terms that should be retained in the 
2 

Tailor series (4.43) depends on the smoothness of the velocity field 
(McGregor, 1993). McGregor (1993) mentions that only slight benefit has 
been found in going beyond the 03 scheme. Above, the scheme description 
focuses on two time-level applications. This might be modified if three time­
level applications are required (McGregor, 1993). 

4.4.3 INTERPOLATION 

Approximating the non-linear or linear two-dimensional advection equation 
according to the semi-Lagrangian philosophy yields 

(4.47) 

Here (x •. y.) denote the position of the departure point for the arrival grid point 

(I.Ax, J.Ay) . Introducing the notation 'V~.,1. 'V(I.Ax, J..Ay, nAt), the function 

'V(x., y.. , t} is approximated by a Lagrange interpolating polynomial (Carnahan 
et aI., 1969) using values of 'V at the grid pOSitions nearest to x. and y. : 

'V(x.. ,y.,t} LLW~v'Vn~v (4.48) 
~ v 

where 
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(4.49) 

McDonald (1984) investigated the relative merits of bilinear, biquadratic, 
bicubic and biquartic interpolation schemes to approximate 'V(x.,y.. , t) for 
constant in time velocity fields. The semi-Lagrangian scheme used by 
McDonald closely relates to the D1 scheme (the schemes are identical for 
constant in time velocity fields). McDonald (1984) found that bicubic 
interpolation gives the best phase representation of the true solution and 
bicuartic interpolation the most faithful amplitude representation. In DARLAM, 
bicubic interpolation is employed. 

The subscripts J.l and v range over the pOints being used in the bicubic 
interpolation as: 

J.l : i - 2, i 1, i, i +1 u : j 2, j -1, j, j +1 (4.50) 

The points (i,j) are chosen for the bicubic interpolation such that 

(j-l)Ay<y.. :s:;jdy (4.51) 

4.4.4 AMPLITUDE ACCURACY 

An investigation of the stability properties of multiply-upstream semi­
Lagrangian schemes, when applied to the linear advection equation, reveals 
interesting properties. For the linear two-dimensional advection equation (4.2) 
or linear one-dimensional advection equation (4.4), the velocity field is 

n 

constant, so that df vanishes when n;;:: 2. Thus, as indicated by equation 
dtn 

(4.43) all the DN schemes reduce to the D1 scheme. 

If a. a, ~, and ~ are defined as 

dt 
a =u 

dx 
(4.52) 

a=a+i I. 

the selection of i and j in equation (4.51) guarantees that 

o :s:; a < 1 and 0 :s:; ~ < 1 (4.53) 
McDonald (1984) showed that these conditions are sufficient to ensure 
unconditional stability of his multiply-upstream semi-Lagrangian scheme when 
applied to the linear advection equation. 
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In order to examine the stability of the D1 scheme with bicubic interpolation for 
constant advection velocity, a solution in the form of a single harmonic 
(equation (4.15) is assumed and substituted into equation (4.47). Equations 
(4.48) and (4.49) are used to evaluate \jI(x.,y., t). 

First note that equation (4.49) can be written as 

where 

and (4.54) 

Using equations (4.50), (4.51) and (4.52) equation (4.54) can be written as 

1 ~+v 
Wi+r and Wj+s = TI-­ (4.55) 

v=-2 V - S 
v;Os 

where the subscripts J..l and v range over the points: J..l: -2,-1,0,1 v: -2,-1,0,1. 
Substituting the harmonic into equation (4.47) yields 

1 1 
1I/n +1 =~ ~W. W. \1/,te I[(i+fl)kAx+(i+V)IAY] 
'I' I.,J. L..J L..J I+fl J+V 'I' 0 

fl=-·2v=-2 

This may be expressed as 

Rearranging the terms gives 

Substitution of equation (4.55) into the last equation gives 
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Thus, A splits into the product of a "x-amplification factor" and "y-amplification 
factor" (McDonald, 1984) in the following way: 

1..= A(&., k)A~,l), 

where 

AA ( ) I III &. + r (;..) I I a+sA\o.,k = L --eljJkAx and A~,l = LIl-I-'-eIVl.t.y . 
~=-2r=-2 r J.l. v=-2s=-2 S V 

s;tv 

This makes the analysis particularly simple. A scheme is stable if both 

IA(&.,k~::; 1 and IA~,l~::; 1 since it guarantees that II..::; 11. A little bit of algebra 

shows that (McDonald, 1984): 

A(a, k) [I 00' - c'a~3-a 
2 

}] +I<isin(kAxII + C(I ~a' I] (4.56) 

where c 1 - cos(kAx). This yields 

(4.57) 

As can be shown, IA(&.,k~::; 1 as long as O::;&.::; 1. Similarly, IA~,l~::; 1 for 

o::; ~ < 1 as can be seen by replacing &. and k with ~ and 1 in equation 
(4.57). Hence the scheme is unconditionally stable since conditions applicable 
to &. and ~ are guaranteed by the choice of interpolation grid pOints given in 
(4.51). 

Following McDonald (1984) the quantities &. and ~ can also be expressed in 
the bicubic interpolation schemes as 

&. = a. - [a.] if a. z 0 

&. = a. - [a. -1] if a. < 0 

Here, [x] is the integer part of x, ~ is defined in exactly the same way as &. 
with ~ replacing a. in all the above equations. Substituting these values of &. 

in equation (4.57) gives a function IA(o.,k~ = IA(&.,k~ with the property that 

IA(o.+n,k~ =IA(o.,k~ (4.58) 

where n represents any integer. 
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complications may develop near the boundary of the integration area during 
semi-lagrangian calculations. In the first place the upstream point (x." y .,) 

may be of such a nature that the values of (i, j), which satisfy equation (4.51), 
fall outside the defined domain. Secondly, even if these pOints fall inside the 
domain, some of the points needed to perform the interpolation may fall 
outside. Following McDonald (1984), a solution to the former complication is 
to introduce a number of additional passive boundary lines when the field is 
initially defined. Similar to the passive boundary zone, the height of the cone 
is kept as zero at the additional boundary pOints and is never updated during 
the integration. The number of passive lateral boundary rows is chosen as the 
smallest integer greater than the maximum possible value of IKxl or IKyl, 
where 

N (_ At)n dnx 
K - ""~-"-- and 

x - .c.... I dtn
n=l n. 

Here, N =1,2,3 for the 01,02 and 03 schemes respectively. 

The second complication is resolved by performing a bilinear interpolation 
whenever the bicubic interpolation scheme requires points which fall outside 
the area of integration plus additional boundary lines. 

As long as IKx I and IKy I are < 1, only one passive boundary line is required. If 

values of IKxl and IKyl are expected to be less or equal than m (where m is a 

positive integer), m passive boundary lines must be included. If space is at its 
premium, the inclusion of additional boundary rows represents a drawback of 
the semi-lagrangian schemes, since the size of the arrays has to be 
increased to accommodate these additional values of the fields. 

Figure 4.11a shows the scalar distribution of the cone after one revolution 
using the leapfrog scheme with 48 steps per revolution. The associated time 

step yields that the maximum value of cAt (listed in Table 4.1) is almost four 
Ax 

times the maximum value allowed for the CFl criterion (equation (4.23») to be 
satisfied. Thus, it is not surprising that the solution became unstable (note the 
dramatic increase in cone height depicted in figure 4.11 a). 

Figure 4.11 b (288 steps per revolution) vividly illustrates other typical 
problems associated with finite difference approximations of the non-linear 
advection equation. Although the integration remained stable (the CFl 
criterion is satisfied in this case, see Table 4.1), large errors in phase and 
amplitude are present (Table 4.2). Spurious trailing waves can also be 
observed in the numerical solution (figure 4.11b). 
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The position and symmetry of the scalar distribution after one revolution using 
48 steps (figure 4.13a) or 288 steps (figure 4.13b) are excellent for the 01, 02 
and 0 3 schemes. The figures are for the 0 3 scheme. Some smoothing of the 
profile is however evident for smaller time steps (Table 4.2). The height errors 
for the higher-order semi-Lagrangian schemes (Table 4.2) are least when 
larger time steps are used. This may be attributed to the smaller number of 
interpolations performed at each revolution (McGregor, 1993). Note that the 
semi-Lagrangian schemes remain stable (Table 4.2) when 48 steps per 
revolution is used, despite the fact that the CFL criterion is violated by a factor 
of almost three (Table 4.1). 

. 
I 

Scheme Number 
of itera­

tions 

Maxi­
mum 
height 

Mini­
mum 
height 

Oistan­
ce error 

Angular 
error in 
degrees 

L'Vij L'Vij
2 

L l'Vii I 
LI'Vi/O~L'Vjj(O) L'V/(O) 

Leapfrog 288 56.8 -22.3 -0.384 -23.2 1.013 1.002 2.602 
2"288 56.3 -22.2 -0.384 -23.2 1.014 1.001 2.613 

i 

4*288 56.3 -22.1 0.062 -29.7 1.014 1.000 2.616 
10"288 56.3 -22.1 0.062 -29.7 1.015 1.000 2.616 

Lax-Wendroff 288 48.9 -20.6 0.062 -29.7 1.005 0.867 2.429 
2*288 49.1 -21.7 0.062 -29.7 1.006 0.919 2.613 

i 4"288 49.3 -22.2 -0.384 -23.2 1.007 0.955 2.743 
10"288 49.6 -22.8 0.062 -29.7 1.008 0.983 2.862 

Modified 288 67.5 -16.6 -0.250 -14.0 1.000 0.914 1.749 
Lax-Wendroff 2*288 73.7 -14.7 I 0.062 -7.1 1.002 0.957 1.640 

4*288 76.0 -14.8 0.062 -7.1 1.004 0.976 1.648 
10*288 76.7 -15.4 0.062 -7.1 1.008 0.989 1.704 

0 1 48 58.5 -2.0 -3 0 0.442 0.317 0.517 
288 54.2 -2.5 -1.0 0 0.868 0.577 1.052 

2*288 53.9 -2.5 0 0 0.932 0.619 1.126 
4*288 54.5 -2.6 0 0 0.965 0.641 1.163 
10*288 54.7 -2.6 0 0 0.987 0.655 1.186 

02 48 74.6 -1.5 0 0 0.995 0.847 1.099 
288 56.4 -2.3 0 0 1.000 0.678 1.191 

2*288 55.5 -2.4 0 0 1.000 0.671 1.196 
4*288 55.1 -2.5 0 0 1.001 0.668 1.199 
10*288 55.0 -2.5 0 0 1.001 0.666 1.200 i 

0 3 48 76.9 -1.5 0 0 1.000 0.852 1.102 
288 56.4 -2.3 0 0 1.000 0.678 1.191 

2*288 55.5 -2.4 0 0 1.000 0.671 1.196 
4*288 55.2 -2.5 0 0 1.001 0.668 1.199 

i 10*288 55.0 -2.6 0 0 1.001 0.666 1.200 

Table 4.2. Maximum height, minimum height, radial error in units of grid lengths, 
angular error in degrees, and conservation properties after one revolution 
of Crowley's cone test are shown for various schemes. Initially the 
maximum height is 100 and the minimum is zero. 
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The 02 and 03 schemes are superior to the 01 scheme since they have 
smaller height errors, better phase representation and better conservation 
properties (Table 4.2). The 03 scheme produces superior results to the 02 
scheme with respect to reduced height errors and improved conservation 
properties, especially for larger time steps (Table 4.2). 

The conservation properties lljl( )and 111j1(1~ are excellent (Table 4.2) 
'V') 0 L'Vij 0 

in the D2 and 0, schemes. However, the conservation property l;1 )
'V ij 0 

(Table 4.2) is relatively low (compared to the values obtained for the two Lax­
Wendroff schemes) for the semi-Lagrangian schemes. This may be attributed 
to the bicubic interpolation procedure used at each time step, which spuriously 
spreads the scalar field over an artifiCially large region. When the small values 
at each grid point are squared during the calculation of the conservation 

property LL ~~~ )' relatively low values are obtained. When smaller time 
\II .. 0 
'F I) 

steps are used the effect becomes even more apparent (Table 4.2) because 
more bicubic interpolations are performed. This represents a further drawback 
of the semi-Lagrangian schemes, despite the fact that the scalar field is 
conserved finely. 

Figures 4.13a, 4.13b and Table 4.2 suggest that the 01, 02 and 03 schemes 
are superior to the modified Lax-Wendroff scheme with respect to the 
occurrence of phase errors. The unpleasant trailing waves present in the Lax­
Wendroff simulations are absent in the semi-Lagrangian results. Analysis of 
the height error in Table 4.2 suggests that the modified Lax-Wendroff scheme 
preserves the cone height. However, it wrongly creates large negative values 
for the scalar field (minimum height in Table 4.2). The conservation property 

1 11j1(I~ indicate that the modified Lax-Wendroff scheme falsely increases L 'Vij 0 

the scalar concentration. In this respect the modified Lax-Wendroff scheme is 
undoubtedly inferior to the 02 and 03 schemes. 

4.5.2 STRONG DEFORMATIONAL FLOW: SMOLARKIEWICZ'S TEST 

As long as the modified Lax Wendroff scheme is applied to a constant velocity 
field or to smooth non-deformational flow (such as the flow field defined in 
Crowley's cone test), it provides reasonable results. For deformational flow 
however, significant differences exist between the behaviour of the modified 
Lax-Wendroff and the semi-Lagrangian schemes. It is difficult to prove stability 
of a scheme under conditions of non-uniform flow, since stability features may 
depend on the structure of the velocity field. Therefore a fixed chosen 
example, which involves strong deformational flow will be used in this study to 
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evaluate the properties of the various schemes under conditions of non­
uniform flow. 

Smolarkiewicz (1982) defined an interesting deformational flow pattern to 
evaluate the performance of his multidimensional generalisation of the 
Crowley (1968) advection scheme. The challenge is to capture the advection 
properties of a scalar distribution (initially a cone of height 1 unit and base 
radius 15 units centred on a square domain with a boundary dimension of 
L 100 units) in a flow field defined by the stream function: 

q,(x, y) = A sin(kx)cos(ky) 

41t
where A =8, k - and the position of the central point on the square is 

L 
x =y =50. This is also the position of the centre of the initial cone distribution. 

The equation for the initial scalar distribution is 

and the velocity field is given by 

v = (-:':)=[Aksin(lex )sin(kyt Ak cos(kx)cos(ky)] 

Following Smolarkiewicz (1982), At = 0.7 s is chosen, implying that c At := 0.7. 
Ax 

Deformation of the velocity field is defined as (Smolarkiewicz, 1982): 

au av
Def=---. 

Ox Oy 

As a result of the inequality Max(Def)At = 1.4 > 1, deformation can be 
considered as strong (Smolarkiewicz, 1982). 

Isolines of the stream function (blue and green lines) and height level lines of 
the initial scalar distribution (red contours) are illustrated in figure 4.14. The 
initial scalar distribution is displayed in three-dimensions in figure 4.15. The 
velocity field is constructed in terms of a set of square boxes with symmetrical 
vortices. Rotation in the blue vortices in figure 4.14 is clockwise while the 
green vortices represent counter-clockwise rotation. Each vortex occupies a 
square of side length 25 units. 

The radius of the base of the cone is slightly greater than the radius of the 
vortices (figure 4.14), so that at the initial time the cone distribution covers 
areas in six vortices. It is expected that the solution, after a long enough 
integration period, will be of such a nature that two symmetrical pieces of the 
cone will move into the area of the two central vortices (Smolarkiewicz, 1982). 
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In figure 4.16a it can be seen that the scalar distribution inside each of the two 
"main vortexes" starts to rotate about the vortex centres. Maximum quantities 
move away from the domain centre towards the stagnation points in the 
positive y direction. The distribution has a left/right symmetry. The behaviour 
of the numerical solution in figure 4.16a (after 19 iterations) is thus in 
complete harmony with the expected qualitative behaviour of the true 
solutions that was discussed earlier. 

The fragments of the cone that were initially inside the four peripheral vortices 
move along their trajectories near the perimeter (figure 4.16b, 38 iterations). 
Simultaneously, a strong gradient in the scalar distribution is developing near 
the saddle points of the two "main vortices". Figure 4.16c (57 iterations) 
reveals the first qualitative difference between the numerical solution and the 
true solution: Negative scalar quantities exist in the numerical solution (black 
contours in figure 4.16c). Negative weights used in the bicubic interpolation 
procedure possibly contribute to this defect in the numerical solution. 

After 75 iterations (figure 4.16d) the negative scalar distribution in the 
numerical simulation has increased slightly. The fact however, that the true 
solution remains confined to the six vortexes that contained the initial cone 
distribution and the fact that the scalar distribution cannot cross the bounding 
streamlines, are well represented in the simulation with the 03 scheme. The 
scalar quantity starts to spiral in towards the centres of the two main vortexes. 

In figure 4.16e the scalar distribution is divided into two symmetrical pieces, 
with maximum concentrations located within the two "main vortexes", as can 
be expected. Although this pattern is still preserved in figure 4.16f there is a 
sudden outbreak of negative scalar quantities over some of the peripheral 
vortexes. The negative quantities also succeeded in crossing the bounding 
streamlines and intruding into the centres of some of the peripheral vortexes, 
which is inconsistent with the expected qualitative behaviour of the true 
solution. 

The numerical solution depicted in figures 4.16a to 4.16f closely corresponds 
to the analytical solution presented by Staniforth et at. (1986). The solution 
remains stable although some of the scalar distribution eventually escapes 
into the peripheral vortices (figure 4.16f). The 01 and 02 schemes qualitatively 
illustrate the same behaviour as the 03 scheme (not shown). The 
conservation properties of the 03 scheme are slightly superior to that of the 
02 scheme (Table 4.3). The conservation properties of the 01 scheme are 
inferior to those of the O2 and 03 schemes for all cases expect for the final 
case of 3768 iterations in Table 4.3. The two latter schemes spuriously create 
more of the scalar quantity when t --i> T, especially in the form of negative 
quantities intruding some of the peripheral vortices (figure 4.6bf). The reason 
for this interesting behaviour (and why it is absent in the 01 solution) is not 
presently known. 
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Scheme Number of 
iterations 

L \j1ij
L\j1jJo) 

L \j1jj 2 

L \j1i/(O) 
LI\j1jjl 

LI\j1ij(O~ 
Leapfrog 19 1.000 1.014 1.034 

38 1.000 1.097 1.164 
57 1.000 1.466 1.671 
75 1.000 2.576 2.719 

377 6.107 1936.076 109.665 
3768 Unstable Unstable Unstable 

Lax-Wendroff 19 1.000 1.007 1.022 
38 1.000 1.042 1.081 
57 1.000 1.123 1.255 
75 1.000 1.320 1.530 
377 0.959 2.478 3.156 

3768 0.861 26.58 12.401 
Modified 19 1.000 1.007 1.022 

Lax-Wendrof 38 1.000 1.041 1.081 
57 1.000 1.123 1.255 
75 1.000 1.321 1.530 
377 0.959 2.476 3.154 
3768 0.862 26.946 12.519 

01 19 1.001 1.008 1.010 
38 1.004 1.025 1.041 
57 1.012 1.076 1.122 
75 1.017 1.081 1.199 

377 1.016 0.468 1.526 
3768 1.028 0.446 1.873 

02 19 1.000 0.998 1.009 
38 1.002 1.009 1.043 
57 1.009 1.060 1.125 
75 1.013 1.058 1.200 

377 1.015 0.493 1.407 
3768 1.154 0.961 2.792 

03 19 1.000 0.999 1.009 
38 1.002 1.010 1.043 
57 1.009 1.061 1.125 
75 1.013 1.058 1.200 
377 1.015 0.493 1.407 
3768 1.151 0.954 2.780 

Table 4.3 Conservation properties of various schemes for Smolarkiewic's test, 
expressed as a function of the number of iterations (.6.t=O.7 s). 
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