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CHAPTER 4

THE MULTIPLY-UPSTREAM SEMI-LAGRANGIAN
METHOD OF SIMULATING ADVECTION

4.1 INTRODUCTION

Analytic and numerical solutions of the Eulerian equations of hydrodynamics
are limited in extent by the non-linear advection, or transport terms. Analytic
solutions are difficult to obtain because the advection terms render the
equations non-linear. Finite difference numerical solutions are readily derived
in principle but are inaccurate because finite difference approximations of the
advection terms can introduce errors in phase and amplitude (Crowley, 1968;
Mesinger and Arakawa, 1976). In order to remain stable, Eulerian time
schemes must satisfy the Courant-Friedrichs-Lewy (CFL) criterion that
restricts the size of the time step used for a given spatial resolution and
advecting wind.

A Lagrangian approach to solving the equations of fluid motion involves
following a fixed set of particles throughout the period of integration. However,
Welander (1955) indicated that, in general, a set of fluid particles which are
initially regularly distributed soon become significantly deformed and are
therefore rendered unsuitable for numerical integration. To avoid this difficulty,
while still concentrating on fluid particles, Wiin-Nielsen (1959) introduced a
semi-Lagrangian approach, whereby a set of particles which arrive at a
regular set of grid points are traced back over a single time interval to the
location of the initial departure points. The values of the dynamical quantities
at the departure points are obtained by interpolation from neighbouring grid
points with known values. The semi-Lagrangian approach differs from the
Lagrangian approach because in the former the set of particles in question
changes at each time step.

In multiply-upstream semi-Lagrangian schemes the grid points used for
interpolation to the departure point of a particle are selected in such a way
that they always surround the departure point. When the winds are strong the
set of grid points may be many grid intervals upstream from the arrival grid
point. The term “multiply-upstream” is used to describe a scheme using
interpolation points selected in this way (Bates and McDonald, 1982).

During the last fifteen years there has been an increased interest in semi-
Lagrangian techniques to manipulate horizontal or vertical advection in
numerical prediction models. The essential feature of such schemes is that
the total or material derivatives in the equations of motion are treated directly
by calculating the departure points of fluid parcels. The upstream value of the
required fields are then usually evaluated by spatial interpolation (McGregor,
1993). The main advantage of semi-Lagrangian techniques is that it allows for
the relaxation of the CFL criterion. The popularity of the semi-Lagrangian
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approach stems however not only from the large permissible time steps but
also from the high degree of advection accuracy. The schemes may be either
two-time level or three-time level.

This chapter deals with the semi-Lagrangian method of numerically modelling
the advective process. The goal is to clarify and elaborate upon some of the
theoretical issues of semi-Lagrangian advection and to compare the semi-
Lagranian scheme used in DARLAM to well-tested Eulerian schemes in order
to evaluate their relative merits with respect to stability and accuracy.

4.2 THE ADVECTION EQUATION

In order to examine the properties of numerical advection schemes, numerical
approximations to the two—dimensional advection equation in Cartesian co-
ordinates will be analysed. The horizontal (two-dimensional) non-linear
advection equation may be expressed as:

VL OV, OV (4.1)
ot ox oy
Here u=u(x,y,t) and v=v(x,y,t) are the advection velocity components in
the x and y directions respectively and t is time. The dependant variable

v = y(x,y,t) is some property (for example non-diffusive moisture) of the fluid

that is transported by the flow field, so that its total derivative along an
instantaneous streamline is zero. That is, equation (4.1) when written with
respect to an observer who moves with the fluid simplifies to

d

% = 03 \V = W(X(}>y0>t<))

so that an observer will measure no change in y as time passes. Equation
(4.1), also called the colour equation, is considered in practise to be the most
important part of the atmospheric governing equations (Mesinger and
Arakawa, 1976).

The linear two-dimensional advection equation is

N wM oM o 4 vconstant (4.2)
&  x oy

The non-linear advection equation in one space dimension is

o, (4.3)

—+u—=

ot ox

where v =vy(x,t) and u = u(x,t), while the linear advection equation in one
space dimension is
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oy, v

——+4u——=

constant 4.4
o o . (4.4)

Equation (4.4) describes the simplest advective processes and has proved to
be a useful framework for the evaluation and comparison of numerical
integration schemes.

Before investigating the properties of numerical solutions of the non-linear
advection equation (4.1) it is useful to first obtain an analytical solution of the
linear two-dimensional advection equation (4.2) in the form of a single
harmonic

w(x,y, 1) = Ref®(t)e'™> } (4.5)

Here ¥(t) is the wave amplitude, and k and 1 are wave numbers in the x and

y directions respectively. k = —Eﬁ and 1= -12{3 with Ly and L, the wavelengths in
X b

the x and y directions respectively. The imaginary number I is defined as

I*=-1.

Substituting equation (4.5) into the linear advection equation (4.2) gives

95'-+nm‘y+nv\y ~0 (4.8)

Thus, the problem of solving the partial differential equation (4.2) has been
reduced to that of solving an ordinary differential equation (4.6) with the
following solution:

¥(t)= P(0)e ' turr (4.7)

‘P(O) denotes the initial value of the amplitude. Hence, the desired harmonic
solution is

w(x,y,t) = Refp(0)e™ -}t (4.8)

Each wave component is advected at a constant velocity of ¢c=+vu’+v* in
the x-y plane, with no changes in amplitude. Important features in the
assessment of a numerical integration scheme are therefore the damping (if
any) and the phase speed of a single harmonic.

The one-dimensional linear advection equation (4.4) aiso has a solutions in
the form of a single harmonic component,

w(x,t)=RefP(t)e™ }
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provided that
¥ =0 (4.9)
dt
The solution of equation (4.9) is
P(t)="P(0) ™ (4.10)

or, for discrete values t=nAt (n is the number of time steps and At the time
interval),

¥ = W(nAt) = P(0)e (4.11)

where W(0) is the initial value of the amplitude. In equation (4.11) o = —kuAt
represents the change in argument (or phase change) of the (4.11) in a single
time step At. This will obviously also be the phase change in time of the true
solution of the linear one-dimensional advection equation.

4.3 EULERIAN SCHEMES TO SOLVE THE ADVECTION
EQUATION

In this section some well-tested Eulerian schemes to solve the advection
equation are formulated and their accuracy and stability properties are
discussed.

4.3.1 LEAPFROG SCHEME
4.3.1.1 Construction of the leapfrog scheme

One of the most widely used numerical schemes to solve the advection
equation is the leapfrog scheme. The scheme is obtained by replacing both
the time and space derivatives in the advection equation by centred (second
order accurate) finite difference approximations. The scheme is a three-level
scheme, meaning that it relates the values of the dependant variable at three
time levels.

Approximating the space derivatives in the two-dimensional linear advection
equation (4.2) with standard second order accurate difference quotients
(Mesinger and Arakawa, 1976) results in

a\ui,j =_u Wm,;‘ - wi»l,j v Wi,j+1 - wi,j~1
ot 2Ax 2Ay

(4.12)

The co-ordinates of grid point (i,j) are given by x =iAx and y=jAy with
Ax and Aythe spatial increments in the x and y directions respectively.
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Approximate values for (iAx,jAy) are denoted by y,,;- Centred differences
are used for the time derivative, resuiting in the following equation:

" Wm,j,k - \Vi-l,j,k v Wi,jﬂ,k - Wi,j~1,k } (4-1 3)

Wik = WVijea Atl: Ax Ay

The points in time where the numerical solution is computed for equation (4.2)
are given by t=kAt, with k>2. The solution for time step t=1At is
approximated by using backward time differencing:

Vistio ~ Wiaio Wio ~ Vi
1 =W — A u——2 R e 10 4.14
\Vl:.),l WI,J,O { ZAX sz ( )

4.3.1.2 Amplitude accuracy

It is instructive to investigate the amplitude and phase properties of numerical
solutions from the linear advection equation (4.2). Von Neumann’s, or the
Fourier series method (Mesinger and Arakawa, 1976), is employed for this
purpose. A solution of the linear advection equation can be expressed in the
form of a Fourier series, where each harmonic component is also a solution
(Mesinger and Arakawa, 1976). The stability of a single harmonic may be
tested and stability of all admissible harmonics then constitutes a necessary
condition for stability of the scheme (Mesinger and Arakawa, 1976).

It is worthwhile to note that when using a grid point method to numerically
solve partial differential equations with wave-type solutions, it is impossible to
resolve waves with wavelengths shorter than min {zAx,ZAy} (Mesinger and

Arakawa, 1976).

Returning to the von Neumann method, a solution of the finite difference
equation (4.13) can be derived by substituting a solution of the following form
of a single harmonic into equation (4.12):

y?, = Refye!tnim (4.15)

This is analogue to solution (4.8) of the linear advection equation at discrete
points iAx, jAy and nAt. Here W¥” represents the amplitude of the numerical

solution at time level n. After some rearrangement, it follows that the single
harmonic (4.15) is a solution of equation {4.12) provided that

Y — 8 ginkAx - Y-sinlAy | ¥ (4.16)
dt Ax Ay

Approximating the time derivative in (4.12) with centred differences yields
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b Al S —-u—A}-sinkAx——vé}-sinlAy e (4.17)
Ax Ay

Equation (4.17) enables analyses explaining the behaviour of the amplitude
¥”" with an increase in time step (n). The amplification factor [?\,{ is defined as

pr = A (4.18)
Taking the absolute value on both sides yields

){jnﬂ x_Pn

=

For the stability of each harmonic solution (4.15), it is required that

‘Ijn

=

‘I‘O’ <B
where B is a finite number. Taking the logarithm on both sides yields:

nin[A| <B’ where B’Ehl{*g—-}

¥

Thus, B’ is a new constant. Since t=nAt, the necessary condition for
stability becomes

mm<%£t (4.19)

Suppose that boundedness of the solution is required for a finite time t.

Condition (4.19) can then be written as
In|A| < O(At)
Defining [’,\{ =148 and in view of the power series expansion

o0

(“l)n n+l
In{1 =) L fi -
n(1+3) n2:0n+16 or -1<d8<1

(Elis and Gulick, 1994) it follows that the stability condition obtained is
equivalent to

8 < O(At)

or
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d‘lll=1+ p
dp p’ -1

which is unbounded if p —>1

From equation (4.21) follows that the stability criterion ip! < 1has to be written
as

u—A—tsin kAx +vé—t-sin 1Ay <1
Ax Ay

This must be true for all resolvable wavelengths, which are all admissible
values of the wave numbers k and 1. If only the cases where Ax =Ayis

considered, the condition simplifies to

cfxt-\/(sin kAx)” +(sinlAx)* <1

where c=+u’+v?. Mesinger and Arakawa (1976) showed that the case
where sin kAx = sinlAx = 1 does occur within the admissible range of wave
numbers. Thus, if the two-dimensional linear advection equation (4.2) is
approximated using the leapfrog finite difference scheme, the amplitude of a
solution in the form of a single harmonic component will remain bounded if

At
—aj2 <1 4,23
chaf (4.23)

This constitutes a necessary condition for the stability of the scheme and is
commonly known as the CFL criterion.

4.31.3 Phase accuracy
In this section the phase properties of the leapfrog scheme is investigated by
considering approximations to the solution of the less complex one-

dimensional linear advection equation (4.4). The von Neumann method
involves defining the ampilification factor A as

an-ﬂ = }\—\Pn
(equation (4.18)). A can be written as

A =[Ae® (4.24)

Equation (4.18) and (4.24) yields that the amplitude of the numerical solution
at any time step is given by (Mesinger and Arakawa, 1976)

Pr= (A" o™



et
W UNMIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA 50
Qu” YUNIBESITHI YA PRETORIA

Comparing this with equation (4.11) reveals that 6 represents the change in

argument (phase change) the numerical solution at each time step (Mesinger
and Arakawa, 1976).

It is of interest to consider the phase change of the numerical solution per time
step (0) relative to that of the true solution (e = —kuAt ) namely

R=2
0]

if the phase change of the numerical solution (6) per time step is equal to that
of the true solution (o), the relative phase change (R) is unity. However, an
expression for the phase change (0) of the numerical solution first needs to be
derived. Using the notation (following Mesinger and Arakawa (1976))

A=h, +IA
it follows from equation (4.24) that

A

tanf = == 4.25
AW (4.29)
or
R = tan™ (ﬁﬂ) . (4.26)
0 A

It has been shown in section 4.3.1.2 that the leapfrog scheme is stable if p <1

for the linear two-dimensional advection equation (4.2). The same condition
applies when solving the linear one-dimensional equation (4.4) with the

leapfrog scheme, but now p = —u—g—sinkAx . Substituting the two solutions for

(A) from equation (4.22) into equation (4.26), indicates that the relative phase
change of the leapfrog scheme is

1 p
R, =—tan’!
o [\/1_132}

1o o[ -p
R, =—tan"| ———=
S {Jl—ng

with the condition that ]p} <1 with p =—u%sinkz§x for the one-dimensional

linear advection equation (compare this to equation (4.21)).
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4.3.2 LAX-WENDROFF SCHEMES

4.3.21 Construction of the Lax-Wendroff and modified
Lax-Wendroff schemes

Lax and Wendroff (1960) described an alternative finite difference method,
which has since attracted considerable attention. For the linear two-
dimensional advection equation (4.2) the Lax-Wendroff scheme is
implemented as follows:

j+l1

jth

i-14

j-1

=10t

-2 4

Figure 4.2 Grid configuration for the Lax-Wendrof scheme. The horizontal
increment is Ax and the vertical increment is Ay .

Suppose the value of the dependant variable v needs to be updated at all
grid points (iAx, jAy) (circle in figure 4.2). First, provisional values for y at time

step n+—;— are calculated for all the “half points” at positions (x,y) with

X = .t(i +%}Ax and y= i( j+ %)Ay (where the dotted lines cross in figure 4.2).

This is achieved by applying the following finite difference equation to each of

the “half points”:
1
V=) L) +au6,v°) ) 4.27)

Equation (4.27) employs centred space (equations (4.30a) and (4.30b) with
m=1) and forward time differencing. a, and «, are given by (4.31). It is
necessary to take arithmetic averages in space when calculating the centred
space differences (equations (4.30a) and (4.30b)) and when calculating y* at

a particular half point (equation (4.29)). Note that the “half points” used at time
step n+'% are spatially staggered.

Using these provisional values a second step is taken, centred in both space
and time, to update the values of the dependant variable (at time step n+1) at

all grid points x =iAx and y = jAy (circle in figure 4.2):
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ik !
W =yt _{a,(axw) 2 +0£2(5y\p")n+2} (4 .28)
Note that

W:l-l j-~1 * wi—}v}#l * W:Ll j—1 * W;l j+—1-
v 27 2 27 2 27 2 2 2’ 4.29
(=) y (4.29)

WZ:,E j+_‘, * W;E j_l W:l__"_l j+l W:ﬁ‘l j_l
5 3 - 272 272 27 2 2" 2 4.30a
( ¥ )“ 2m 2m ( )

TV e Vi etV
S ¥ 27 2 272 27 2 272 4.30b
( my ¥ )“ 2m 2m ( )
o« =u2t and o, =vAL (4.31)

Ax Ay

Equations (4.27) to (4.31) constitute the Lax-Wendroff scheme. Note again
that m=1 when using equations (4.30a) and (4.30b). Similar to the leapfrog
scheme, the Lax-Wendroff scheme is second-order-accurate in space and
time (Gadd, 1978a). The Lax-Wendroff scheme is, however, a two-level
scheme (involving only time steps n and n+1) whereas the leapfrog scheme is
a three-level scheme (time step n-1 is also involved). Two-level schemes are
more attractive, since no computational initial condition is required as for
three-level schemes. Certain types of non-linear computational instability can
be avoided for this reason (Morton, 1971). In practical situations two-level
schemes lead to smaller requirements for computer storage and allow exact
model restarts to be made from a single field (Gadd, 1978a).

The damping and phase errors of the Lax-Wendroff scheme have been
studied by Morton (1971), who indicated that the phase performance is rather
poor compared to the leapfrog scheme on a time-staggered grid. Without time
staggering the phase lag errors of the two schemes are similar (Gadd, 1978a).

Gadd (1978a) illustrated that a simple and inexpensive modification to the
Lax-Wendroff scheme may result in a scheme with substantially reduced
phase speed errors. In this modified Lax-Wendroff scheme the first step
(equation (4.27)) remains the same. In the second step four rather than two
grid points are used in the finite difference approximation to the spatial
derivatives. Thus, equation (4.28) is replaced by
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Yol =y -—(1+a){oc1(8x\;1y )m% +a2(8y\pr" )M%}
+a{ (83x\y )n 2+oc ( 8;,w )p }

(4.32)
where a > 0 on intuitive grounds (Gadd, 1978a)

Equation (4.32) remains a second order accurate approximation in space and
time (Gadd, 1978a). Equations (4.29), (4.30a) and (4.30b) and (4.31) are still
applied.

The linear one-dimensional advection equation (4.4) provides a useful
framework for a theoretical analysis of the stability and phase properties of the

Lax-Wendroff schemes. In the one-dimensional case the schemes are
constructed in exactly the same way as for the two-dimensional equation:

First, provisional values for the dependant variable v at time step n +712~ are

calculated at all “half points” x = (i i%\JAX . This is achieved by using

1
- 1 o
v = (v” )”1 —ga(ﬁx‘l’)i; (4.33)
2 2

2

Secondly, the values of the dependant variable (at time level n) is updated at
all points x =iAx

1
Y =yl -—a{(l +a)o,v), —a(ﬁaxw)m_} (4.34)
Note that
WitV
() =—27— (4.35)
and
Yim “Vim
b n._ 2 2 4.36
(6m ) — (4.36)
At

As previously mentioned ¢ =u—
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Note that a >0. Also keep in mind that a =0 reduces to the original Lax-
Wendroff scheme. Equations (4.33) and (4.34) may be combined (Gadd,
1978a) to give

+ n 2 I 2 n
\V? = W 'a{(1+§a)(6zx‘ll)i “;&(64x\11)i}
1 4 4
+5a2{(1+§aj( iw): ——ga(ﬁgx\ur}

4.3.2.2 Amplitude accuracy

(4.37)

The phase and amplitude properties of equation (4.37) may be investigated by
considering a single Fourier harmonic, with the discrete equivalent in the form

of y* =Re{\1’“el(’“‘ﬁ“‘)}. Keeping in mind relationship (4.18), substitution of the
Fourier harmonic into equation (4.37) yields Gadd (1978a):

] ‘ 2 2 ] \ K/ 2
Mo k)=1-2a’ [sin ———] [l + ia(sin EA&J :] - ZIa(sin w——](cos-——){l + 4 a[sin k&) }
2 3 2 2 2 3 2

(4.38)

Thus, the amplitude of the Fourier harmonic is damped by a factor m at each

time step. For computational stability it is required that |A|<1 for all wave

numbers k. Taking absolute values on both sides of equation (4.38) and
squaring gives

4 2 2
= 1—4az(sin£Ax~—J (l+ia(sin—@j j{(l—-az {lnhia[sin —}-{gj }—ia}
2 3 2 3 2 3

(4.39)
which yields the computational stability criterion
2
(l—ctz{IJria[sinw—J }—iazo (4.40)
3 2 3

When a = 0 (Lax-Wendroff scheme) condition (4.40) reduces to o <1 which is

the well-known CFL criterion. For a =% condition (4.40) reduces to the less

generous asél-. This is unacceptable in numerical models where the time

step is dictated by the wind speed (Gadd, 1978a) because the calculations
are too expensive due to the small time step required to meet the stability
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occurs when o’ = 1——1—, which gives a singularity in R. Since this wave is not

V2

properly resolved (Gadd, 1978a) the strong damping visible in figures 4.5 and
4.6 at kAx = &t is an advantage.

4.4 MCGREGOR’S SEMI-LAGRANGIAN ADVECTION
SCHEME

4.4.1 MULTIPLY-UPSTREAM SEMI-LAGRANGIAN ADVECTION

In the semi-Lagrangian approach of numerically simulating advection, a set of
particles which arrive at a regular set of grid points are traced back over a
single time interval to their departure points. The values of the dynamical
quantities at the departure points are obtained by interpolation from
neighbouring grid points with known values. The essential feature of semi-
Lagrangian numerical models is that the total, or material derivatives, in the
equations of motion are treated directly by calculating the departure points of
fluid parcels. The upstream value of the required fields are usually evaluated
by spatial interpolation (McGregor, 1993).

In multiply-upstream semi-Lagrangian schemes the grid points used for
interpolation to the departure point of a particle are chosen in such a way that
they always surround the departure point. When the winds are strong, this set
of grid points may be many grid intervals upstream from the arrival grid point
of the particle. The term “multiply-upstream” is used to describe a scheme
using interpolation points chosen in this way (Bates and McDonald, 1982).

4.4.2 MCGREGOR’S METHOD OF DETERMINING DEPARTURE POINTS

During an integration of the primitive equations using the multiply-upstream
semi-Lagrangian approach, the departure point (x.y.) of a particle in a

velocity field v = (u,v) over a time interval At may be estimated in a variety of
ways. A simple straight-line trajectory back in time using only the velocity at
the arrival point possesses inadequate accuracy (Robert, 1982). Most
schemes therefore involve a sequence of iterations. A first guess of the
departure position is determined by using a straight-line trajectory and an
estimation of the departure velocity is then found by horizontal interpolation at
the central point of the trajectory. This process is repeated several times using
an updated advection velocity (McDonald, 1987; McDonald and Bates, 1987,
1989). McGregor (1993) points out that a significant overhead of such
schemes can arise from the horizontal interpolation (traditionally bicubic) that
is carried out during the iterations. Several authors however, reported
acceptable accuracy using just linear interpolation (Temperton and Staniforth,
1987, Bates et al., 1990).

McGregor (1993) derived a more economical method to determine the
position of departure points that avoids horizontal interpolatior in the trajectory
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analysis. The method considers a set of vectors moving with the fluid where
each vector will be associated at time t with a different grid point. Note that the
grid points have fixed locations while the vectors move with the fluid. To

advance the model integration from time t to time t + At, a vector r(t+ At) is
constructed at the position of each arrival grid point. It is required to identify a
starting position for the vector at the preceding time step namely ;(t). Each
vector 1(t) therefore represents a departure point in the form (x,,y.). The

process may be expressed in terms of a truncated Taylor series (McGregor,
1993), namely

r(t)~ r(t+ At)+i%%§(t+m) (4.43)

where

) aa)
dt"  dt dt™!

N (4.44)

and the total derivative operator has the usual definition of a time derivative
that follows the motion of a parcel,

-2,V (4.45)

An array of the vectors r(t+At) is needed so that the v-V operator in
equation (4.45) may be conveniently evaluated. v :% is the velocity of the

fluid at position r(t) and V is the spatial gradient operator. In equation (4.45)
the time derivative on the left-hand side is naturally viewed from a Lagrangian
viewpoint. The right hand side allows for its instantaneous evaluation at the
same point in time and space via Eulerian derivatives (McGregor, 1993).
McGregor (1993) points out that in the above equations, each component of
= (x.’y.) may be obtained independently from the others.

If the Eulerian velocity changes with time it becomes difficult, or at least very
cumbersome, to evaluate the partial time derivatives for the higher order
terms at t+At. In the scheme proposed by McGregor (1993) the total time
derivative in (4.45), for use in (4.43) and (4.44), is replaced by the following
approximation:

d _
—=v-V. 4.46
=Y (4.46)

Here v represents the Eulerian velocity at the point in space which

corresponds to t(t+At), but is evaluated at the intermediate time t+ézE
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(McGregor, 1993). The velocity v may conveniently be determined from the
known velocities at previous time steps (McGregor, 1993). Temperton and
Staniforth (1987), suggested the following third-order accuracy formulation in
time:

¢ = —[159(t) - 10%(t - At)+ 39(t - 24)]+ O(At?)

00 | ==

From an Eulerian point of view, approximation (4.46) suggests that for
advection purposes, the velocities remain constant at their centred-in-time
values over the time interval [t,t + At] (McGregor, 1993).

The above scheme, using equations (4.43), (4.44) and (4.46) and retaining
terms up to the N™ total time derivative, is called a Dy scheme (McGregor,
1993). Equation (4.46) indicates that the lowest-order Dy scheme only
produces a straight-line trajectory, using a velocity v evaluated at the arrival
position. The D, scheme uses estimates for both the velocity and acceleration
along the trajectory. The Ds and higher-order versions of the scheme
effectively solve the trajectory by incorporating higher-order curvature terms
derived kinematically for the arrival point from the velocity field v at time

t+%—- (McGregor, 1993). The number of terms that should be retained in the

Tailor series (4.43) depends on the smoothness of the velocity field
(McGregor, 1993). McGregor (1993) mentions that only slight benefit has
been found in going beyond the D3 scheme. Above, the scheme description
focuses on two time-level applications. This might be modified if three time-
level applications are required (McGregor, 1993).

4.4.3 INTERPOLATION

Approximating the non-linear or linear two-dimensional advection equation
according to the semi-Lagrangian philosophy yields

yil.Ax, 1Ay, (n+1)At} = wix.,y., nAt}. (4.47)

Here (x.,y.) denote the position of the departure point for the arrival grid point
(L.Ax,J.Ay). Introducing the notation w2 | =w(L.Ax,J.Ay,nAt), the function

y(x.,y.,t) is approximated by a Lagrange interpolating polynomial (Camahan
et al., 1969) using values of y at the grid positions nearest to x,and vy, :

\V(X.., Ve, t) = ZZ va \Vn;w (4‘48)
TR

where
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McDonald (1984) investigated the relative merits of bilinear, biquadratic,
bicubic and biquartic interpolation schemes to approximate wi(x,,y.,t) for
constant in time velocity fields. The semi-Lagrangian scheme used by
McDonald closely relates to the D1 scheme (the schemes are identical for
constant in time velocity fields). McDonald (1984) found that bicubic
interpolation gives the best phase representation of the true solution and
bicuartic interpolation the most faithful amplitude representation. In DARLAM,
bicubic interpolation is employed.

The subscripts p and v range over the points being used in the bicubic
interpolation as:

pii-2,i-1Lii+l1 v:ij-2,j-Ljj+1 (4.50)
The points (i, j) are chosen for the bicubic interpolation such that

(i-1DAx <x, <iAx (-DAy <y. < jAy (4.51)

4.4.4 AMPLITUDE ACCURACY

An investigation of the stability properties of multiply-upstream semi-
Lagrangian schemes, when applied to the linear advection equation, reveals
interesting properties. For the linear two-dimensional advection equation (4.2)
or linear one-dimensional advection equation (4.4), the velocity field is

e 1§

constant, so that 3; vanishes when n>2. Thus, as indicated by equation

(4.43) all the Dy schemes reduce to the D1 scheme.

If o, &, B, and B are defined as

At At
o =y— - Y —
Ax Ay
(4.52)
a=a+i-I, B=B+j-J.
the selection of i and j in equation (4.51) guarantees that
0<é<l and 0<B<1 (4.53)

McDonald (1984) showed that these conditions are sufficient to ensure
unconditional stability of his multiply-upstream semi-Lagrangian scheme when
applied to the linear advection equation.
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In order to examine the stability of the Dy scheme with bicubic interpolation for

constant advection velocity, a solution in the form of a single harmonic
(equation (4.15)) is assumed and substituted into equation (4.47). Equations

(4.48) and (4.49) are used to evaluate y(x,,y,,t)

First note that equation (4.49) can be written as

(~ )H(y. ) .
p.m* V#S (YS Yv

where
wrzg%’%‘% and w, _Hg yg (4.54)

Using equations (4.50), (4.51) and (4.52) equation (4.54) can be written as

wm:llléiu and w, =f] (4.55)

where the subscripts 1 and v range over the points: pn:-2-1,01 v:-2-101.
Substituting the harmonic into equation (4.47) yields

11 | |
W;H; - Z wawm%yet[{w Jex(j+v)iny]

p=-2v=-2

This may be expressed as

11
n+l n I(ikAx+jlay)  TpkAx  Ividy
Vi 2 : 2 :Wimij‘l’o;\' ¢ ¢ e .

Pe—2V=-2

Rearranging the terms gives

1 1
nHl TukAx viAy n_ I{ikAx+jlay )
Vi = {Zwiﬂ;e Zwi-t-ve }Wox €

=2 V=2

Substitution of equation (4.55) into the last equation gives

a+r Ll B+s eAx-j
\Uln-r; - ZH kaAx H _+verIAy Woknei(mﬂmy)

p=-2r=—2 T~ H v=28=28 "V
£ 3%y


http:TI-�(4.55
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Thus, A splits into the product of a “x-amplification factor” and “y-amplification
factor” (McDonald, 1984) in the following way:

%= A K)AR.1),

where

AG,k)= iﬁ&”’“fem and A(ﬁ,l): iﬁﬁj}_ewm_
p=-2r=z T — H ye-gg=-g2 3V
rep sV

This makes the analysis particularly simple. A scheme is stable if both
lf\(&,k)’ <1 and l/\(ﬁ,ll <1 since it guarantees that |A <1|. A little bit of algebra
shows that (McDonald, 1984):

2~ A2

- A2
A(&,k):[l—c&z _ca 13 « }+1&sin(kAx){1+ a = } (4.56)
where ¢ =1-cos(kAx). This yields

AG. kf L &(2—&)(1-&2);2[3 + 2081 - &) (4.57)

As can be shown, !f\(&,kjsl as long as 0<&<1. Similarly, !f\(ﬁ,llsl for

0<B<1 as can be seen by replacing & and k with f and | in equation
(4.57). Hence the scheme is unconditionally stable since conditions applicable

to a and fi are guaranteed by the choice of interpolation grid points given in
(4.51).

Following McDonald (1984) the quantities & and ﬁ can also be expressed in
the bicubic interpolation schemes as

Here, [x] is the integer part of x, B is defined in exactly the same way as &
with B replacing a in all the above equations. Substituting these values of &

in equation (4.57) gives a function |A(o, k) = }f\(&, k)‘ with the property that

|A(c+n,k) = |Ale, k) (4.58)

where n represents any integer.
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complications may develop near the boundary of the integration area during
semi-Lagrangian calculations. In the first place the upstream point (x.,y.)

may be of such a nature that the values of ( i), which satisfy equation (4.51),

fall outside the defined domain. Secondly, even if these points fall inside the
domain, some of the points needed to perform the interpolation may fall
outside. Following McDonald (1984), a solution to the former complication is
to introduce a number of additional passive boundary lines when the field is
initially defined. Similar to the passive boundary zone, the height of the cone
is kept as zero at the additional boundary points and is never updated during
the integration. The number of passive lateral boundary rows is chosen as the

smallest integer greater than the maximum possible value of |x | or }Kyl,
where

N n n
(A dtx & (-AY) At) d
K, M“Zz;mn! _(“l-;n- and K -——Z

Here, N =1,2,3 for the D4, D2 and D3 schemes respectively.

The second complication is resolved by performing a bilinear interpolation
whenever the bicubic interpolation scheme requires points which fall outside
the area of integration plus additional boundary lines.

As long as |x,| and [x,| are < 1, only one passive boundary line is required. If

values of [x,| and [k,| are expected to be less or equal than m (where m is a

positive integer), m passive boundary lines must be included. If space is at its
premium, the inclusion of additional boundary rows represents a drawback of
the semi-Lagrangian schemes, since the size of the arrays has to be
increased to accommodate these additional values of the fields.

Figure 4.11a shows the scalar distribution of the cone after one revolution
using the Leapfrog scheme with 48 steps per revolution. The associated time

step yields that the maximum value of Eff (listed in Table 4.1) is almost four

times the maximum value atlowed for the CFL criterion (equation {4.23)) to be
satisfied. Thus, it is not surprising that the solution became unstable (note the
dramatic increase in cone height depicted in figure 4.11a).

Figure 4.11b (288 steps per revolution) vividly illustrates other typical
problems associated with finite difference approximations of the non-linear
advection equation. Although the integration remained stable (the CFL
criterion is satisfied in this case, see Table 4.1), large errors in phase and
amplitude are present (Table 4.2). Spurious trailing waves can also be
observed in the numerical solution (figure 4.11b).
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The position and symmetry of the scalar distribution after one revolution using
48 steps (figure 4.13a) or 288 steps (figure 4.13b) are excellent for the D4, D2
and D3 schemes. The figures are for the D; scheme. Some smoothing of the
profile is however evident for smaller time steps (Table 4.2). The height errors
for the higher-order semi-Lagrangian schemes (Table 4.2) are least when
larger time steps are used. This may be attributed to the smaller number of
interpolations performed at each revolution (McGregor, 1993). Note that the
semi-Lagrangian schemes remain stable (Table 4.2) when 48 steps per
revolution is used, despite the fact that the CFL criterion is violated by a factor
of almost three (Table 4.1).

- — — -
S AR R A TR X I

tions height | height degrees Z v (0) Z \V;jz (0) Z lWij (01

Leapfrog 288 56.8 | 223 | -0384 | 232 | 1.013 1,002 2.602

2*288 56.3 -22.2 -0.384 -23.2 1.014 1.001 2.613

4*288 56.3 -22.1 0.062 -29.7 1.014 1.000 2.616

10*288 56.3 -22.1 0.062 -29.7 1.015 1.000 2.616

Lax-Wendroff 288 48.9 -20.6 0.062 -29.7 1.005 0.867 2.429

2*288 49 1 -21.7 0.062 -29.7 1.006 0.919 2613

4*288 493 -22.2 -0.384 -23.2 1.007 0.955 2.743

10*288 496 -22.8 0.062 -29.7 1.008 0.983 2.862

Modified 288 67.5 -16.6 -0.250 -14.0 1.000 0.914 1.749

Lax-Wendroff 2*288 73.7 -14.7 0.062 -7.1 1.002 0.957 1.640

4*288 76.0 -14.8 0.062 -7.1 1.004 0.976 1.648

10*288 76.7 -16.4 0.062 -7.1 1.008 0.989 1.704

D, 48 58.5 -2.0 -3 0 0.442 0.317 0.517

288 54.2 -2.5 -1.0 0 0.868 0.577 1.052

2*288 53.9 -2.5 0 0 0.932 0.619 1.126

4*288 54.5 -26 0 0 0.965 0.641 1.163

10*288 547 -2.6 0 0 0.987 0.655 1.186

D, 48 74.6 -1.5 0 0 0.995 0.847 1.099

288 56.4 -2.3 0 0 1.000 0678 1.191

2*288 555 -2.4 0 0 1.000 0.671 1.196

4*288 551 -2.5 0 0 1.001 0.668 1.199

10*288 55.0 2.5 0 0 1.001 0.666 1.200

Ds 48 76.9 -1.8 0 0 1.000 0.852 1.102

288 56.4 -2.3 0 0 1.000 0.678 1.191

2*288 555 -2.4 0 0 1.000 0.671 1.196

4*288 55.2 -2.5 0 0 1.001 0.668 1.199

10*288 55.0 -26 0 0 1.001 0.666 1.200

Table 4.2. Maximum height, minimum height, radial error in units of grid lengths,
angular error in degrees, and conservation properties after one revolution
of Crowley’s cone test are shown for various schemes. Initially the
maximum height is 100 and the minimum is zero.
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The D, and D3 schemes are superior to the Dy scheme since they have
smaller height errors, better phase representation and better conservation
properties (Table 4.2). The D3 scheme produces superior results to the D,
scheme with respect to reduced height errors and improved conservation
properties, especially for larger time steps (Table 4.2).

2V nd Zf“’t“

———— are excellent (Table 4.2)

S0 M Ty, 0)

2
in the D, and D3 schemes. However, the conservation property —ZZ————\?—’E)—)-
Wi

(Table 4.2) is relatively low (compared to the values obtained for the two Lax-
Wendroff schemes) for the semi-Lagrangian schemes. This may be attributed
to the bicubic interpolation procedure used at each time step, which spuriously
spreads the scalar field over an artificially large region. When the small values
at each grid point are squared during the calculation of the conservation

2
property %—% relatively low values are obtained. When smaller time

Wi

steps are used the effect becomes even more apparent (Table 4.2) because
more bicubic interpolations are performed. This represents a further drawback
of the semi-Lagrangian schemes, despite the fact that the scalar field is
conserved finely.

The conservation properties

Figures 4.13a, 4.13b and Table 4.2 suggest that the Dy, D2 and D3 schemes
are superior to the modified Lax-Wendroff scheme with respect to the
occurrence of phase errors. The unpleasant trailing waves present in the Lax-
Wendroff simulations are absent in the semi-Lagrangian results. Analysis of
the height error in Table 4.2 suggests that the modified Lax-Wendroff scheme
preserves the cone height. However, it wrongly creates large negative values
for the scalar field (minimum height in Table 4.2). The conservation property

Z“Vijl
Z'Wu(ox
the scalar concentration. In this respect the modified Lax-Wendroff scheme is
undoubtedly inferior to the D, and D3 schemes.

indicate that the modified Lax-Wendroff scheme falsely increases

4.5.2 STRONG DEFORMATIONAL FLOW: SMOLARKIEWICZ'S TEST

As long as the modified Lax Wendroff scheme is applied to a constant velocity
field or to smooth non-deformational flow (such as the flow field defined in
Crowley’s cone test), it provides reasonable results. For deformational flow
however, significant differences exist between the behaviour of the modified
Lax-Wendroff and the semi-Lagrangian schemes. It is difficult to prove stability
of a scheme under conditions of non-uniform flow, since stability features may
depend on the structure of the velocity field. Therefore a fixed chosen
example, which involves strong deformational flow will be used in this study to
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evaluate the properties of the various schemes under conditions of non-
uniform flow.

Smolarkiewicz (1982) defined an interesting deformational flow pattern to
evaluate the performance of his multidimensional generalisation of the
Crowley (1968) advection scheme. The challenge is to capture the advection
properties of a scalar distribution (initially a cone of height 1 unit and base
radius 15 units centred on a square domain with a boundary dimension of
L =100 units) in a fiow field defined by the stream function:

¢(x, y)=Asin (kx)cos(ky)

where A=8, k:—.% and the position of the central point on the square is

x =y =350. This is also the position of the centre of the initial cone distribution.

The equation for the initial scalar distribution is

w(x,y)= —(-ilgj\/(x ~50)" +(y—50) +1; (x-50) +(y—50) <15°

and the velocity field is given by

v (* %gﬂ] = [Ak sin (kx )sin (ky), Ak cos(kx)cos(ky)]

Following Smolarkiewicz (1982), At = 0.7 s is chosen, implying that c% =0.7.

Deformation of the velocity field is defined as (Smolarkiewicz, 1982):

Defs—a—u——-gf-

x oy

As a result of the inequality Max(Def)At=14>1, deformation can be
considered as strong (Smolarkiewicz, 1982).

Isolines of the stream function (blue and green lines) and height level lines of
the initial scalar distribution (red contours) are illustrated in figure 4.14. The
initial scalar distribution is displayed in three-dimensions in figure 4.15. The
velocity field is constructed in terms of a set of square boxes with symmetrical
vortices. Rotation in the blue vortices in figure 4.14 is clockwise while the
green vortices represent counter-clockwise rotation. Each vortex occupies a
square of side length 25 units.

The radius of the base of the cone is slightly greater than the radius of the
vortices (figure 4.14), so that at the initial time the cone distribution covers
areas in six vortices. It is expected that the solution, after a long enough
integration period, will be of such a nature that two symmetrical pieces of the
cone will move into the area of the two central vortices (Smolarkiewicz, 1982).
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In figure 4.16a it can be seen that the scalar distribution inside each of the two
‘main vortexes” starts to rotate about the vortex centres. Maximum quantities
move away from the domain centre towards the stagnation points in the
positive y direction. The distribution has a left/right symmetry. The behaviour
of the numerical solution in figure 4.16a (after 19 iterations) is thus in
complete harmony with the expected qualitative behaviour of the true
solutions that was discussed earlier.

The fragments of the cone that were initially inside the four peripheral vortices
move along their trajectories near the perimeter (figure 4.16b, 38 iterations).
Simultaneously, a strong gradient in the scalar distribution is developing near
the saddle points of the two “main vortices”. Figure 4.16c (57 iterations)
reveals the first qualitative difference between the numerical solution and the
true solution: Negative scalar quantities exist in the numerical solution (black
contours in figure 4.16c). Negative weights used in the bicubic interpolation
procedure possibly contribute to this defect in the numerical solution.

After 75 iterations (figure 4.16d) the negative scalar distribution in the
numerical simulation has increased slightly. The fact however, that the true
solution remains confined to the six vortexes that contained the initial cone
distribution and the fact that the scalar distribution cannot cross the bounding
streamlines, are well represented in the simulation with the D; scheme. The
scalar quantity starts to spiral in towards the centres of the two main vortexes.

In figure 4.16e the scalar distribution is divided into two symmetrical pieces,
with maximum concentrations located within the two “main vortexes”, as can
be expected. Although this pattern is still preserved in figure 4.16f there is a
sudden outbreak of negative scalar quantities over some of the peripheral
vortexes. The negative quantities also succeeded in crossing the bounding
streamlines and intruding into the centres of some of the peripheral vortexes,
which is inconsistent with the expected qualitative behaviour of the true
solution.

The numerical solution depicted in figures 4.16a to 4.16f closely corresponds
to the analytical solution presented by Staniforth et al. (1986). The solution
remains stable although some of the scalar distribution eventually escapes
into the peripheral vortices (figure 4.16f). The D, and D, schemes qualitatively
illustrate the same behaviour as the Dz scheme (not shown). The
conservation properties of the D3 scheme are slightly superior to that of the
D, scheme (Table 4.3). The conservation properties of the Dy scheme are
inferior to those of the D, and D3 schemes for all cases expect for the final
case of 3768 iterations in Table 4.3. The two latter schemes spuriously create
more of the scalar quantity when t — T, especially in the form of negative
quantities intruding some of the peripheral vortices (figure 4.6bf). The reason
for this interesting behaviour (and why it is absent in the Dy solution) is not
presently known.
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Scheme Number of >y, Sl > t‘*’ﬁi
iterations ~ i~ - a7 =
Z Wy (0) Z Y (0) Z ’Wij (01
Leapfrog 19 1.000 1.014 1.034
38 1.000 1.097 1.164
57 1.000 1.466 1.671
75 1.000 2.576 2.719
377 6.107 1936.076 109.665
3768 Unstable Unstable Unstable
Lax-Wendroff 19 1.000 1.007 1.022
38 1.000 1.042 1.081
57 1.000 1.123 1.255
75 1.000 1.320 1.530
377 0.959 2.478 3.156
3768 0.861 26.58 12.401
Modified 19 1.000 1.007 1.022
Lax-Wendrof 38 1.000 1.041 1.081
57 1.000 1.123 1.255
75 1.000 1.321 1.530
377 0.959 2.476 3.154
3768 0.862 26.946 12.519
D4 19 1.001 1.008 1.010
38 1.004 1.025 1.041
57 1.012 1.076 1.122
75 1.017 1.081 1.199
377 1.016 0.468 1.526
3768 1.028 0.446 1.873
D, 19 1.000 0.998 1.009
38 1.002 1.009 1.043
57 1.009 1.060 1.125
75 1.013 1.058 1.200
377 1.015 0.493 1.407
3768 1.154 0.961 2.792
Ds 19 1.000 0.999 1.009
38 1.002 1.010 1.043
57 1.009 1.061 1.125
75 1.013 1.058 1.200
377 1.015 0.493 1.407
3768 1.151 0.954 2.780
Table 4.3  Conservation properties of various schemes for Smolarkiewic’s test,

expressed as a function of the number of iterations (At=0.7 s).
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