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Bacillus anthracis is the causal agent of anthrax which primarily affects ungulates, 

occasionally carnivores and less frequently humans. The endospores of this soil-borne 

bacterium are highly resistant to extreme conditions, and under ideal conditions, anthrax 

spores can survive for many years in the soil. The bacterium is generally found in soil at 

sites where infected animals have died. When these spores are exposed, they have the 

potential to be ingested by a mammalian species which could lead to an anthrax outbreak. 

Anthrax is almost never transmitted directly from host to host, but is rather ingested by 

herbivores while drinking, grazing or browsing in a contaminated environment, with the 

exception of scavengers and carnivores consuming infected prey. Anthrax is known to be 

endemic in the northern part of Kruger National Park (KNP) in South Africa (SA), with 

occasional epidemics spreading southward into the non-endemic areas.  
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The aim of this study is to identify and map areas that are ecologically suitable for the 

harbouring of B. anthracis spores within the KNP. Anthrax surveillance data and selected 

environmental variables were used as inputs to the maximum entropy (Maxent) species 

distribution modelling method.  

 

Five-hundred and ninety-seven anthrax occurrence records, dating from the year 1988 to 

2011, were extracted from the Skukuza State Veterinary Office‟s database. A total of 40 

environmental variables were used and their relative contribution to predicting suitability 

for anthrax occurrence was evaluated using Maxent software (version 3.3.3k). Variables 

showing the highest gain were then used for subsequent, refined model iterations until the 

final model parameters were established.  

 

The environmental variables that contributed the most to the occurrence of anthrax were 

soil type, normalized difference vegetation index (NDVI), land type and precipitation. A 

map was created using a geographic information system (GIS) that illustrates the sites 

where anthrax spores are most likely to occur throughout the Park. This included the 

known endemic Pafuri region as well as the low lying soils along the Shingwedzi-

Phugwane-Bubube rivers and the Letaba-Olifants river drainage area. 

 

The outputs of this study could guide future targeted surveillance efforts to focus on areas 

predicted to be highly suitable for anthrax, especially since the KNP uses passive 

surveillance to detect anthrax outbreaks. Knowing where to look can improve sampling 

efficiency and lead to increased understanding of the ecology of anthrax within the KNP.
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1. Introduction 

1.1. Research Background 

1.1.1. Context 

Anthrax has been present in the KNP, South Africa (SA) for centuries and is considered a 

natural part of the ecosystem. One area within the Park, the northern Pafuri region, has 

been described as an anthrax endemic area, with outbreaks originating and spreading 

from this location (De Vos, 1990). The disease cycle of anthrax involves host species, 

predators, scavengers, insects, water, soil and various environmental factors. A multitude 

of the above requirements must be met for an anthrax outbreak to occur. An even more 

stringent set of requirements is needed for the spores to be able to survive in the soil. The 

ecology of anthrax within the Park will be discussed in more detail to enable a better 

understanding of the environmental factors necessary to sustain the bacterium and how 

this pertains to the data selection for modelling.  

 

Species distribution modelling (SDM) is a process by which the potential distribution of a 

species is mapped as a function of its ecological niche. A species‟ fundamental niche is 

the set of all conditions that allow for the species‟ long term survival while the realized 

niche is that subset of the fundamental niche that the species actually occupies 

(Hutchinson, 1957). Environmental conditions at the occurrence locations constitute 

samples from the realized niche. Thus, a certain species is very likely to occur in a given 

area if all the environmental conditions favour its sustained survival.  

 

The data used in this study were collected throughout the KNP over an extended period 

and consist of confirmed positive anthrax cases. These data were considered presence-

only data, since only anthrax positive cases were documented. The available 

environment, referred to as the background, can be determined by a random sample, 

random stratified sample, all non-presence locations, or all locations within the study area 

(Franklin, 2009). 
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Theoretically, environments with a high anthrax incidence should have a high potential to 

harbour B. anthracis spores. The objective of this study was to identify all possible 

variables that play a role in the distribution and survival of anthrax spores and to use 

these variables to develop a suitability map for spore occurrence.  

 

1.1.2. Study Area 

The study area includes the KNP in the Mpumalanga and Limpopo provinces of SA. The 

KNP was formally established in 1926 and is an elongated conservation area in the north-

eastern corner of SA, encompassing almost two million hectares of subtropical savannah 

woodland (Braack and Teske, 1997). The Park stretches from 20º19‟S to 25º32‟S and 

31°01‟E to 32°02‟ E. This Park is SA‟s largest conservation area and includes the 

following number of species: 336 trees, 49 fish, 34 amphibians, 114 reptiles, 507 birds 

and 147 mammals with an approximate 3700 kg biomass of free-ranging animals per 

100 ha (Braack and Teske, 1997).  

 

The topography of the Park reflects differences in weathering and dissection intensity of 

the underlying rock, especially in areas that flank major rivers. The KNP lies on average 

300 m above sea level and is divided into two climate zones as defined by the South 

African weather service. The south and central areas of the Park fall within the lowveld 

bushveld zone and have an average rainfall of 500-700 mm per year. The northern part of 

KNP falls within the northern arid bushveld zone with an average rainfall of 300-500 mm 

per year. The temperature also varies between the two zones with the southern zone being 

cooler than the north. Soil profiles generally become shallower as rainfall decreases 

toward the north of the Park. Wet and dry cycles occur that significantly influence animal 

population dynamics (De Vos, 1990). During dry periods, plains game such as zebra and 

wildebeest increase in number and long grass feeders such as buffalo and roan antelope 

decrease in number (Venter et al., 2003).  

 

The soil diversity and topographical features such as hills, valleys and plains in KNP 

harbour distinct vegetation types that in turn determine the distribution and abundance of 

animals. Gertenbach (1983) classified the diverse landscape of KNP into 35 types (Figure 
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1). Venter (1990) reclassified Gertenbach‟s system into 11 land systems and 56 land 

types (Figure 2). Each land system consists of between one and 12 different land types 

(Venter, 1990). 

 

Anthrax mortalities occur most frequently in the northern part of KNP and spread 

southwards (Figure 3) with the Pafuri area (most northern region of KNP) deemed 

endemic to the disease (De Vos, 1990).  
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Figure 1: Landscapes of Kruger National Park as originally defined by Gertenbach (1983) that 

divided the Park into 35 land types. 
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Figure 2: Reclassification of the 35 land types of Gertenbach (1983) into 56 land types by Venter 

(1990). 
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Figure 3: Positive Bacillus anthracis cases diagnosed in the Kruger National Park from 1988 to 2011. 

Note that some dots can represent multiple cases. 
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1.1.3. Species Distribution Modelling (SDM) 

SDM is the subset of mathematical ecology techniques attempting to quantify the spatial 

and or temporal relationship of a species with the environment in which it occurs. The 

earliest attempts to quantify this relationship were during the late 1970‟s by Nix et al. 

(1977).  Today, various tools and methods exist for the predictive modelling of species‟ 

environmental requirements and geographic distributions. SDM has been used in 

conservation planning, ecology, evolution, epidemiology, invasive species management 

and other fields (Phillips et al., 2006). 

 

The type and quality of data available generally determines which modelling method is 

going to produce the best result. Data that were collected without any specific sampling 

strategy are often associated with errors and biases, reflecting the haphazardness of the 

collection method ( Hijmans et al., 2000; Reese et al., 2005; Elith et al., 2006).  

 

Furthermore, data can be divided into presence-only or presence-absence. Presence-only 

data are a set of records of observed or classified presences of the research species. 

Absence data are a set of records of where the research species was not found within the 

extent of the study area. Absence is difficult to determine, because the species involved 

might be present, but just not observed.  

 

The need for having a modelling approach that handles presence-only data stems from 

incomplete historical species records in museums leading to the development of the 

following modelling techniques during the last number of years (Table 1): 

 

Table 1: Current modelling techniques used in SDM, including type of data required and the 

technique reference. 

Technique Description Type of data Reference 

BIOCLIM Predicts suitable conditions in a 

„bioclimatic envelope‟, consisting of 

the range of observed presence 
values in each environmental 

dimension. This envelope specifies 

the model in terms of percentiles 
or upper and lower tolerances. 

Presence-only Busby, 1986; Nix, 1986 

DOMAIN Gives a predicted suitability index 

by computing the minimum distance 

in environmental space to any 

Presence-only Carpenter et al., 1993 
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presence record. Resulting 

predictions range between 0 and 
100. 

LIVES Limiting factor method that 

postulates that the occurrence of a 

species is determined only by the 
environmental factor that most 

limits its distribution. The limiting 

factor of the species is defined as 
the environmental factor that has the 

minimum similarity among the 

environmental factors considered in 
the model. 

Presence-only Carpenter et al., 1993 

Generalised Linear models 

(GLMs) 

Regression based. Uses occurrence 

and background data as dependent 

variables and environmental data as 

independent variables. 

Presence, background Graham et al., 2008 

Generalised Additive models 

(GAMs) 

Regression based. Similar to GLM, 

but uses non-parametric, data-
defined smoothers to fit non-linear 

functions. Considered more capable 

(than GLMs) to model complex 
ecological response shapes. 

Presence, background Yee and Mitchell, 1991; 

Guisan et al., 2002; Wintle et 
al., 2005; Graham et al., 2008 

 

Multivariate adaptive 

regression splines (MARS) 

Regression based. Uses piecewise 

linear fits rather than smooth 
functions and a fitting procedure 

that makes them much faster to 

implement than GAMs. 

Presence, background Leathwick et al., 2005; Elith et 

al., 2006; Graham et al., 2008  

Genetic Algorithm for Rule 

Set Prediction (GARP) 

Uses a set of rules that together 

gives a binary prediction – rules are 

prioritized according to their 

significance based on a sample of 

background and presence data. 

Presence, background Stockwell and Noble, 1992; 

Stockwell and Peters, 1999 

Maximum Entropy 

(Maxent) 

Maximum entropy approach to 

determine the distribution that is 
closest to uniform using a set of 

presence-only data, background data 

and environmental variables. 

Presence, background Phillips et al., 2006 

Boosted regression trees 

(BRT) 

Combines two algorithms: the 

boosting algorithm iteratively calls 

the regression-tree algorithm to 
construct a combination or 

„ensemble‟ of trees. The regression 

trees are fitted sequentially, and use 
a gradient descent algorithm to 

model iteratively the residuals that 

reflect the lack of fit from the 

previous set of trees. 

Presence, background Schapire, 2003; Elith et al., 

2006 

Environmental Niche Factor 

Analysis (ENFA) 

Analyses presence data and 

environmental data for the entire 

study area and transforms it into 
different factors. Environmental 

suitability is then modelled in the 
transformed space 

Presence, background Hirzel et al., 2002 

 

The above table is by no means a complete list of all the techniques implemented today. 

The reader is referred to Elith et al. (2006) and Austin (2007) who provides a very 

comprehensive comparison of current modelling techniques. 

 

Figure 4 illustrates the processes involved in SDM. Maxent displayed promising results 

compared to other methods when dealing with presence-only data and small sample sizes 
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(Phillips et al., 2004; Elith et al., 2006; Herkt, 2007; Baldwin, 2009). It can also handle 

categorical data and sample bias, while over-fitting can be avoided (Phillips et al., 2004).   

 

 

Figure 4: Framework that illustrates the processes involved in SDM. Sources of uncertainty and 

decision steps in choosing data and methods to match modelling objectives are shown (Franklin, 

2009). 

 

Spatial autocorrelation (SAC) is a statistical property of most ecological variables and 

represents the relationship between values of the given variable at different geographical 

separations (Legendre, 1993; Naimi et al., 2011). Spatial data is said to exhibit SAC 

when values measured nearby in space are more similar than values measured farther 

away from each other. SAC can occur with the collection of specimens from several 

nearby localities in a certain area (Phillips et al., 2006). The robustness of a SDM to 

species positional uncertainty is affected positively by SAC in environmental variables 
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(Naimi et al., 2011). SAC statistics measure and analyse the degree of dependency 

among observations in a geographic space. On average, the closer together two locations 

are, the more similar their measures of species abundances or occurrences. 

 

If the SAC pattern remains present in the residuals (resulting probability distribution) of a 

statistical model based on such data, one of the key assumptions of standard statistical 

analyses, that residuals are independent and identically distributed, is violated. The 

violation of the assumption of independent and identically distributed residuals may bias 

parameter estimates (Dormann et al., 2007). The environmental layers in Maxent are 

converted into „features‟ and they are used to constrain the resulting model residuals. 

Therefore, Maxent inherently deals with, and is not sensitive to SAC (Cheng, 2007).  

 

The benefit of including SAC in a model is that the values of neighbours are 

incorporated, which ultimately improves the predictive power of the model (Costanza and 

Ruth, 2001). In addition, spatial models that include SAC may improve variable selection 

(Eller and Seifu, 2002; Keitt et al., 2002).  

 

Deciding on how many parameters a model should have depends on the ecology of the 

organism involved and the research objectives (Figure 5). Models with too few 

parameters have biased predictions, whereas models with too many variables have poor 

precision (Franklin, 2009). 
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Figure 5: Principle of parsimony. The best models have a number of parameters that are close to the 

intersecting lines (Burnham, 2001). 

 

To provide informative predictions, it is necessary for a model to successfully predict a 

high proportion of test localities (i.e. have a low omission rate) whilst not predicting as 

suitable such a large proportion of the study area as to make the model statistically 

indistinguishable from a random prediction (Anderson et al., 2002). The model needs to 

be validated to determine if the results are in fact better than random. In SDM, 

quantifying prediction accuracy is used as a measure of model performance or validity 

(Franklin, 2009). The first step is to verify that the model performed better than random 

(Phillips et al., 2006). Two methods have been used to accomplish this, namely receiver 

operating characteristic (ROC) plots and defined thresholds.  

 

For this study, verification that the model performs significantly better than random was 

done by performing: 

 binomial test based on omission and predicted area; 

 AUC (ROC) analyses; 
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 null model statistics. 

 

Threshold-dependent measures 

A threshold is a value that is determined by the model creator and signifies the 

probability value above which species presence is assumed. These thresholds are 

established by maximizing sensitivity while minimizing specificity. To aid model 

validation and interpretation, it is usually desirable to distinguish „suitable‟ from 

„unsuitable‟ areas by setting a decision threshold. Above this decision threshold, model 

output is considered to be a prediction of presence (Pearson et al., 2004). A number of 

different methods have been employed for selecting thresholds (Table 2) (Pearson, 2007). 

The choice of an appropriate threshold is dependent on the type of data that are available 

and the question that is being addressed. This study dealt with presence-only data and the 

suitability of the environment for the long-term survival of B. anthracis spores. The 

simplest approach for threshold selection is to use an arbitrary value, even though this 

method is subjective (Liu et al., 2005).  

 

Table 2: Some published methods for occurrence threshold selection (Pearson, 2007). For the 

different threshold values applied to the final model output, see Appendix B. 

Method Definition Species data type Reference(s) 

Fixed value 
An arbitrary fixed value 

(e.g. probability = 0.8) 
presence-only 

Manel et al., 

1999; 

Robertson et 

al., 2001 

Lowest predicted 

value 

The lowest predicted 

value corresponding with 

an observed occurrence 

record 

presence-only 

Pearson et al., 

2006; Phillips 

et al., 2006 

Fixed sensitivity 

The threshold at which an 

arbitrary fixed sensitivity 

is reached (e.g. 0.90, 

meaning that 90% of 

observed localities will be 

included in the prediction) 

presence-only 
Pearson et al., 

2004 

Sensitivity-

specificity equality 

The threshold at which 

sensitivity and specificity 

are equal 

presence and 

absence 

Pearson et al., 

2004 

Sensitivity-

specificity sum 

The sum of sensitivity and 

specificity is maximized 

presence and 

absence 

Manel et al., 

2001 
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maximization 

Maximize Kappa 

The threshold at which 

Cohen's Kappa statistic is 

maximized 

presence and 

absence 

Huntley et al. 

1995; Elith et 

al., 2006 

Average 

probability/suitability 

The mean value across 

model output 
presence-only Cramer, 2003  

Equal prevalence 

Species' prevalence (the 

proportion of presences 

relative to the number of 

sites) is maintained the 

same in the prediction as 

in the calibration data. 

presence and 

absence 
Cramer, 2003  

 

After applying a threshold, model performance can be evaluated using the extrinsic 

omission rate and proportional predicted area. The extrinsic omission rate is the fraction 

of test locations that was predicted as unsuitable for the species and the proportional 

predicted area is the fraction of all locations predicted as suitable for the species. A one-

tailed binomial test is used to determine whether a model predicts the test locations 

significantly better than random (p < 0.05) (Phillips et al., 2006).  

 

Threshold-independent measures 

 

Area under the curve (AUC) 

The most widely used evaluation method in SDM is the AUC of the receiver operating 

characteristic (ROC) curve (Lobo et al., 2007; Hijmans et al., 2011). It measures the 

probability that the model will assign a higher probability of occurrence to the observed 

presences (Merckx et al., 2011). Maxent develops a ROC plot for AUC evaluation 

automatically. A good model is defined by a curve that maximizes sensitivity for low 

values of the false-positive fraction (Baldwin, 2009). AUC provides a ranked approach 

for prediction accuracy compared to a random distribution. This method assigns a single 

number to the performance of a model (Hanley and McNeil, 1982; Phillips et al., 2006; 

Baldwin, 2009).  

 

The ROC plot is a plot of sensitivity and one minus specificity, with sensitivity 

representing how well the data correctly predicts presence, whereas specificity provides a 
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measure of correctly predicted absences (Fielding and Bell, 1997; Baldwin, 2009) (Figure 

6). The AUC is calculated by summing the area under the ROC graph. The more the 

value of the ROC graph tends toward a specificity and sensitivity of 1, the better the 

model is. If the ROC graph follows or is close to the diagonal line, the model predictions 

are no better than random.  

 
Figure 6: Example of a ROC graph indicating the sensitivity and specificity. 

 

 

Successful models have AUC scores approaching 1.0 and models predicting no better 

than random will have an AUC approaching 0.5 (Blackburn et al., 2007; Guo and Lui, 

2010). Araújo and Guisan (2006) defined a rough guide for classifying model accuracy: 

0.6–0.7 poor, 0.7–0.8, average, 0.8–0.9 good, 0.9–1 excellent. The AUC of a classifier is 

thus the probability that it will rank a randomly chosen positive instance higher than a 

randomly chosen negative one, making it equivalent to the Wilcoxon test of ranks 

(Fawcett, 2006). AUC (ROC) analysis is independent of both threshold setting and 

prevalence, making it a very effective method for model evaluation when working with 

presence-only data (Allouche et al., 2006). However, to use ROC curves with presence-

only data, one must interpret all grid cells with no occurrence localities as “negative 

examples”, even if they support good environmental conditions for the species. The 
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maximum AUC is therefore less than one, and is smaller for wider-ranging species 

(Phillips et al., 2004).  

 

Null Model 

With this testing method, various random pseudo-presence sets are generated throughout 

the extent of the model area. The same number of presence records as the original model 

is generated for each set. Each of these datasets is used as the presence data for 

independent Maxent models and the resulting AUCs are compared to the AUC of the 

model to be tested. One-sided 95% confidence intervals (CI‟s) are used to test for 

significance. If the AUC of the model falls within the top five percent of all AUCs, it is 

considered statistically significant and the model is predicting better than random            

(Raes and Ter Steege, 2007; Merckx et al., 2011).  

 

1.1.4. Maximum Entropy (Maxent) modelling 

Maxent modelling is a general purpose machine learning modelling method with a simple 

and precise mathematical formulation, designed to make decisions from incomplete data 

(Baldwin, 2009; Phillips et al., 2006). Machine learning involves a number of advanced 

statistical methods that handle regression and classification tasks with multiple dependent 

and independent variables (Hill and Lewicki, 2007). The idea of Maxent is to estimate a 

target probability distribution of sampling points compared to background locations by 

finding the probability distribution that is closest to uniform, subject to a set of 

constraints, that represent the incomplete information about the target distribution  

(Grendár and Grendár, 2001; Phillips et al., 2004; Phillips et al., 2006; Baldwin, 2009). 

The algorithm will converge to the maximum entropy probability distribution.  

 

Phillips et al. (2006) listed the following as some of the advantages Maxent have over 

other modelling methods: 

• it only requires presence data and environmental information; 

• it can utilize both categorical and continuous data; 

• it has very efficient algorithms that are guaranteed to converge to the optimal 

probability distribution; 
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• it contains a precise mathematical formulation, amenable to analysis; 

• over-fitting can be avoided; 

• output is continuous and; 

• it can also utilize absence data by implementing a conditional model. 

 

Maxent is prone to over-fitting, meaning that the resulting distribution will congregate 

around provided presence points. Over fitting can be minimized by regularization – a 

relaxation parameter that allows the average value of each variable to approximate its 

empirical average but not equal it (Baldwin, 2009). A higher regularization value leads to 

a wider predicted distribution. This parameter can and should be adjusted according to 

the sample size and strategy (Phillips et al., 2004; Elith et al., 2011).  

 

Relative variable predictive importance can be measured using the jackknife procedure. 

The jackknife procedure considers a set of n variables; the gain of each variable on its 

own is determined and compared to the gain of all the other variables combined, should 

the former be omitted from the model. This procedure is repeated n - 1 times, providing a 

list of relative variable importance. The gain of a variable can be defined as the sum of 

the likelihood of the data plus a penalty function (the regularization part). Calculating the 

gain exponent gives the average ratio of the likelihood assigned to an observed presence 

location to the likelihood assigned to a background location (Phillips et al., 2006). 

 

Maxent provides continuous outputs in raw, cumulative and logistic formats. The raw 

output is an exponential function that assigns a probability value to each site and the sum 

of these values must equal one, making interpretation more complex (Phillips et al., 

2006; Baldwin, 2009; Franklin, 2009). Cumulative outputs represent a range from 0-100 

in probabilities predicted by the model, again complicating direct interpretation. The 

logistic format indicates the probability of presence at each site and thus easier and 

potentially more accurate interpretation. Presences for which not all predictors have a 

value are assigned NoData values, thereby omitting the presence points (Phillips et al., 

2004). A graphical user interface allows the user to customize the model parameters. 
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Maxent writes the outputs of the model to a specified folder. This folder will contain the 

following files after the model was successfully executed: 

 

 a hypertext markup language (html) file describing model results. This html file 

contains an analysis of omission/commission, pictures of the modelled suitability, 

variable response curves, analysis of variable contributions, raw data outputs, control 

parameters and links to other files;  

 an Ascii file containing the probabilities in raster format; 

 an explain tool, provided that the use of product features were disabled since this tool 

can only be used for additive models. This is a graphical user interface, providing 

maps and statistics of all contributing variables;  

 a text file called maxentResults.csv - listing the number of training samples used for 

learning, values of training gain and test gain and AUC. Test gain and AUC are given 

only when a test sample file is provided or when a specified percentage of the 

samples are set aside for testing. If a jackknife is performed, the regularized training 

gain and (optionally) test gain and AUC for each part of the jackknife is included; 

 a text file called maxent.log - records the parameters and options chosen for the 

model run, and some details of the model run that are useful for troubleshooting;  

 x.lambdas - containing the computed values of the constants c1, c2, ...;  

 x.png - is a picture of the mapped prediction; 

 a text file called x_omission.csv - describing the predicted area and training and 

(optionally) test omission for various raw and cumulative thresholds and; 

 various plots for jackknifing and response curves, in the plots subdirectory. 

 

Apart from the above-mentioned program for maximum entropy modelling, various other 

software packages such as ModEco, R and ENMTools can implement the maximum 

entropy algorithm for suitability prediction. Due to the high parameter customization 

ability of Maxent‟s default GUI, none of the other methods were used. 
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1.1.5. Anthrax 

Anthrax is a rapidly fatal disease caused by the spore-forming bacterium B. anthracis. 

The disease can affect most species, but ruminants are particularly susceptible. Multiple 

host and environmental factors are thought to play a role in the transmission of anthrax. 

In domestic species, the primary disease control measures are prophylactic, and consist of 

breaking the disease cycle through means such as vaccination, treatment and quarantine.  

Treatment of anthrax is not always a curative measure, but is also used as a way to lessen 

the bacterial load of infected animals. 

 

Bacillus anthracis is endemic in many parts of Africa, but outbreaks are becoming less 

frequent in managed species.  Free-ranging wildlife experiences more outbreaks than 

domestic species, simply due to the fact that bacterial transmission and spore survival are 

harder to regulate.  Many of Africa‟s wildlife reserves experience cyclic anthrax 

outbreaks, one such area being the KNP in SA. 

 

Despite anthrax being a disease of antiquity, little is known about its spatial ecology or 

epidemiology (Blackburn et al., 2007). The general thought is that B. anthracis is an 

obligate in vivo pathogen and that little propagation occurs in soil (De Vos and Turnbull, 

1994). If the environmental conditions are suitable, the bacterium will rapidly form 

spores once outside the host. Soil pH and soil calcium levels are considered the most 

important properties for spore survival and, therefore, endemicity of B. anthracis is 

associated with elevated calcium and neutral-to-alkaline soils (Van Ness and Stein, 1956; 

Van Ness, 1959a; Van Ness, 1959b; Van Ness, 1971; Dragon and Rennie, 1995;  Smith 

et al., 2000). Although these are considered the most important factors for the long-term 

survival of B. anthracis in the soil, other variables such as environmental temperature, 

rainfall, vegetation, presence of scavengers and mechanical vectors also play a vital role 

in the spread of the disease. 

 

Septicaemic infection with anthrax causes impaired clotting function (De Vos and 

Turnbull, 1994). When an animal succumbs to anthrax, the host‟s impaired clotting 

ability results in blood draining from any orifice or draining into the soil when carcass is 
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opened by scavengers. Vegetative anthrax cells are thus exposed to environmental 

oxygen and begin to sporulate. Depending on the environmental conditions, these spores 

can survive for decades in the soil until infection of a suitable host takes place.  

1.1.6. Anthrax in the Kruger National Park 

Anthrax is considered an indigenous and integral part of the KNP ecosystem (De Vos and 

Turnbull, 1994; Hugh-Jones and Blackburn, 2009). The first confirmed case of anthrax in 

the KNP was in 1954, but it has been in the northern region of the Park for at least 200 

years, as was proven by isolation of spores from archaeological bones dating back to 

1700 ± 50 BC (De Vos and Bryden, 1996).  

 

Anthrax outbreaks in KNP appear to have a cyclical pattern of roughly 10 years and are 

most often associated with a dry climatological spell after a couple years of above 

average rainfall (De Vos, 1990). The Pafuri region in the far north of the Park is 

considered endemic for anthrax with periodic outbreaks, typically occurring during late 

winter and spreading southward. This endemic area is low-lying (Figure 7) and consists 

of many small pans, which during late winter usually dry up, thus creating an ideal 

situation for the start of an anthrax cycle. A large number of drainage channels occur into 

this area from the higher lying southern landscape. 
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Figure 7: Map of the Pafuri region in KNP. Note the various drainage channels into the Luvuvhu 

river and lower lying northern depression. 

 

Soil sample analyses from the Pafuri depression clearly indicated that it acts as a 

catchment and accumulation area for B. anthracis spores (De Vos, 1990). The soil depth 

that anthrax spores are found at, is as shallow as 3 cm during dry, high risk outbreak 

conditions and as deep as 15 cm during wetter, deposition periods. Deposition periods 

can be defined as the washing away of spores during heavy rains and deposition in low 

lying silt beds (De Vos, 1990). 
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KNP soil profiles becomes shallower and soil type diversity decreases towards the north 

(Venter et al., 2003). Animals will stir up and ingest spores during the dry season when 

congregations around water points occur. Once an epidemic starts, the maintenance and 

spread are determined by biotic factors. Death from anthrax is per-acute to acute and 

invariably occurs close to the infection site, although buffalo and eland can travel great 

distances (~30 km) before a new infection locus will be established (De Vos, 1990).  

 

Kudu are especially important in the spread of the disease since their numbers are in 

direct positive correlation to the amount of rainfall in the Park. If the kudu numbers are 

high, then an anthrax outbreak can be considered more likely. They feed at a level where 

infected blow-fly droplets are deposited (1-3 m) on leaves and are gregarious, which 

means that once an animal in the herd becomes infected, most of the others will 

invariably become infected too (De Vos, 1990). 

 

Blow-flies will deposit infected droplets onto leaves and can disperse up to a distance of 

65 km (Braack and Retief, 1986). Predators also play a role in the dissemination of spores 

by the opening up and dispersal of carcasses. Spores are passed in their faeces to new 

sites. Vultures will bathe in nearby water sources after feeding on infected carcasses, 

contaminating it with spores and will also pass spores in their droppings (De Vos, 1990). 

 

Detecting an anthrax outbreak can be difficult, especially in a vast wilderness region like 

KNP. Currently this disease is monitored through passive surveillance. Control measures 

in KNP will only be implemented when biodiversity is negatively impacted (e.g. 

threatening the survival of low density or vulnerable species), and/or where man-made 

features (e.g. permanent watering holes) can propagate/sustain an outbreak (De Vos and 

Turnbull, 1994). However, management policies in the Park can influence the disease.  

The western boundary fence of the Park was constructed in 1960, thus preventing animals 

to migrate to their preferred dry season grazing areas to the west.  The provision of 

artificial water sources was then instituted and between 1930 and 1980, more than 300 

boreholes were drilled and 50 dams constructed to counteract the impacts of the fence. 

These artificial water sources had a negative impact on the biodiversity of species 
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(especially the rare antelope) - due to an increase in number of plains game that now 

permanently stayed close to wherever a water source was. It was subsequently decided to 

close down some of these boreholes, a step which proved to be successful, since the 

plains game moved out of these areas and allowed the rare antelope species population 

time to recover. To date, a total of 196 boreholes have been closed. According to Park 

ecologist, Dr. Freek Venter, more of the remaining 141 boreholes will be closed until 

there are only about 50 left (Travers, 2005). It is difficult to quantify the effect that the 

closing of boreholes had on the distribution of anthrax. It can be argued that an open 

borehole can act as a concentration point for spores and that some of the closed down 

boreholes were contaminated. Once a borehole has been closed, soil disturbance and 

animal activity in the area significantly decreases, subsequently decreasing the risk of 

exposure and new infections.  

 

In an extensive wildlife reserve, such as the KNP, it is very difficult, if not impossible, to 

ensure immediate and proper disposal of anthrax infected carcasses. Carcasses are opened 

by scavengers whereupon sporulation takes place. Contaminated areas with anthrax 

spores in the soil are thus constantly created by animals dying from the disease.  Spores 

are disseminated by insects (blowflies in KNP) that contaminate browse in the vicinity, 

vultures and mammalian scavengers which contaminate water sources. Water run-off 

contaminates the grazing that is ingested by herbivores (Hugh-Jones and De Vos, 2002). 

 

1.2. Problem Statement and Justification 

The identification of potential sites suitable as environmental reservoirs for anthrax 

spores is critical for the surveillance and management of the disease in wildlife, as wide 

scale immunization in wildlife remains untenable.  Passive surveillance is currently used 

to locate potentially infected carcasses and monitor the extent of an outbreak. Modelling 

of ecologically suitable areas for anthrax in the KNP can lead to a better understanding of 

anthrax ecology and epidemiology.  Site identification can be achieved via modelling that 

can support and improve surveillance and control strategies of anthrax in the KNP. 

Additionally, it also has practical applications for anthrax control in the smaller game 
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parks surrounding KNP (Hugh-Jones and De Vos, 2002). Commercial and subsistence 

farming communities adjacent to the Park can benefit from increased surveillance at 

targeted locations by allowing implementation of increased prophylactic measures for 

their livestock. 

 

A limited amount of modelling studies has been done on anthrax. An anthrax distribution 

modelling study was done by Blackburn et al. (2007), in which they utilized GARP as a 

modelling system. These authors modelled the ecological niche for B. anthracis in the 

contiguous United States of America (USA), using wildlife and livestock outbreaks as 

well as several environmental variables. The study found that the modelled niche was 

able to be defined as a narrow index of NDVI, precipitation and elevation. Because of the 

limited studies available, the environmental variables deemed most important in the 

Blackburn study may not be applicable in all environments or at all scales. Other 

modelling techniques and variables should also be investigated. 

 

1.3. Research questions, study objectives and hypotheses 

Null hypothesis: Ecologically suitable areas for the occurrence of B. anthracis cases that 

differ significantly from random cannot be modelled using Maxent (with a regularized 

training gain of more than 1.5 and predictor data with a resolution of 1km or finer).  

 

Alternative hypothesis: Ecologically suitable areas for the occurrence of B. anthracis 

cases, that differ significantly from random, can be modelled using Maxent (with a 

regularized training gain of more than 1.5 and predictor data with a resolution of 1km or 

finer). 

 

Objectives 

 

 Create an electronic database of confirmed anthrax positive (carcass/soil) 

locations in the KNP from historic records; 
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 Identify the environmental conditions most suitable for the occurrence of 

anthrax and subsequent spore dissemination; 

 Develop a SDM to evaluate areas suitable for anthrax occurrence and long 

term spore survival; 

 Evaluate the model output using different sets of environmental 

variables; 

 Identify the top environmental predictors for anthrax occurrence in 

KNP; 

 Evaluate the model output against known propagating epidemic 

occurrences; 

 Create quantitative distribution maps representing the relative 

likelihood of anthrax occurrence within the environment in the KNP; 

 

1.4. Assumption and limitations 

In this dissertation anthrax positive case locations without specific coordinates were 

given standard coordinates based on the locality described in the record. It is assumed 

that these coordinates will still accurately reflect real presence since Maxent is not 

sensitive to small changes in coordinate values (Graham et al., 2008; Baldwin, 2009). 

Place names in KNP have been very well described with reliable spatial information 

(Kloppers and Bornman, 2005) 

1.5. Software 

The following software packages were used in this project: 

 

 ESRI ArcGIS Desktop 9.3.1 (ESRI, 2012) 

 Maxent version 3.3.3k (Phillips et al., 2004) 

 ENMTools (Warren et al., 2008) 

 R statistical software (R Core Development Team, 2008) 

 Diva-GIS (Hijmans et al., 2012) 

 StataSE12 (Statacorp, 2001) 
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 ModEco (Guo and Lui, 2010) 

 Microsoft Excel 2010 (Microsoft Corporation, 2010) 

 Apache OpenOffice 3.4.1. (Apache Software Foundation, 2012) 

 Maxent Model Surveyor (Verbruggen, 2012) 
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2. Materials and Methods 

 

In this study two models were developed, namely a preliminary model to eliminate 

variables with lesser importance and the final model with the most important 

environmental variables.   

 

Anthrax positive case locations were collated from different datasets for the period 1950-

2011. This included 597 records from passive surveillance data from 1988-2011, data of 

1950-1959 outbreaks obtained from Pienaar (1960) and data of the 1959 outbreak 

consisting of 1151 anthrax cases obtained from Pienaar (1961). The private reserves 

adjacent to KNP were not explicitly included in this study, since no anthrax presence data 

was available. 

2.1. Species Observation Data 

2.1.1. Bacillus anthracis occurrence data 

The State Veterinary office in Skukuza, KNP, SA provided anthrax surveillance data. 

These data were in electronic format for the period 2010-2011, and hard copy for the 

period 1988- 2009. These data were collated in an electronic database. A total of 597 

confirmed anthrax cases from 1988-2011 were used in this study. Figure 3 indicates the 

positive anthrax cases in KNP from 1988-2011. Furthermore, two separate sets of data 

for the propagating epidemics were sourced from the literature as described by Pienaar 

(1960, 1961).  

2.1.2. Processing of Species Observation Data 

Each record contained: date sampled, processing date, species involved, gender of the 

species, presumed cause of death, location, ranger section, result of anthrax culture or 

blood smear and in some cases the Global Positioning System (GPS) coordinates of 

where the carcass was found. The sample points that did not contain GPS coordinates 

were given coordinates based on the recorded location within each ranger section 

(Kloppers and Bornman, 2005).  
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The GPS coordinates were not all in the same format and was either in degrees-minutes-

seconds, degrees-decimal minutes or decimal degrees. The point data were standardized 

and converted to Universal Transverse Mercator (UTM) coordinates for use in ArcMap 

using Microsoft Excel. Only the species involved and UTM coordinates were used as 

input for the model. From the Excel database, the data was exported as a .dbf file using 

Apache OpenOffice, and imported into ArcCatalog for indexing of the individual records 

(Figure 27, Appendix D). From here it was exported for use in ArcMap. In ArcMap, the 

individual XY-coordinates were added as a point data layer and a comma separated 

values (.csv) file was created for use in Maxent.  

 

Pienaar (1960) listed the data for the initial propagating epidemics in table format and 

map form. A map indicating the occurrence of positive anthrax cases during the outbreak 

is included in Figure 8. Both the table and the map from Pienaar (1960) were used for 

constructing an occurrence database. As only the location was given in the table, without 

coordinates, the exact location had to be tested against the map (Figure 8). Data were 

heads-up digitized (clicking on screen at the correct location on a digital map) using 

ArcGIS 9.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



Materials and Methods 

 

 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Positive anthrax cases during 1950-1959 outbreak in Kruger National Park as indicated by 

Pienaar (1960). 

 

Data for the second outbreak in 1959 were obtained from a map (Figure 9: Positive 

anthrax cases during 1959 anthrax outbreak in Kruger National Park as indicated by 

Pienaar (1961). Each point occurrence was heads-up digitized in ArcGIS to create a XY 

occurrence layer. The above mentioned datasets were constructed for qualitative testing 

of the model outcomes. 
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Figure 9: Positive anthrax cases during 1959 anthrax outbreak in Kruger National Park as indicated 

by Pienaar (1961). 
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2.2. Environmental Predictors 

A total of forty environmental variables were used for initial model construction.  

2.2.1. Selection Criteria 

Care was taken to select variables that were ecologically meaningful. There is a large 

amount of environmental data available from various sources. Environmental variables 

were selected based on the possible impact that the variable involved can have on spore 

survival. All available variables were included in the first Maxent runs for exploratory 

analysis. The list of environmental variables contained 16 bioclimatic variables, two 

NDVI values (based on aggregated data from 2000 to 2009), an Aster Digital Elevation 

Model (DEM), distance of positive locations from dams, pans, rivers, springs, troughs, 

bore holes and water holes, soil data and vegetation data (Table 3).  

 

Table 3: Overview of environmental data used in Maxent indicating the variables, type of data, 

source, spatial resolution and references. 

# Variable (*) Type of 

data 

Source Original 

spatial 

resolution 

E - Epidemiological 

importance references 

T – Technical 

references 

1 Integrated NDVI (indvi) Reflectance 

derived 

MODIS-

TERRA 

1 km E – (Jönsson and Eklundh, 2004; 

Petorelli et al., 2005; Blackburn et al., 

2007) 

T –  (Epistis, 2012) 

2 Maximum NDVI (maxndvi) Reflectance 

derived 

MODIS-

TERRA 

1 km E – (Jönsson and Eklundh, 2004; 

Petorelli et al., 2005; Blackburn et al., 

2007) 

T – (Epistis, 2012) 

3 Elevation (altitude) Elevation 

derived 

Aster-DEM 1 arc second (~ 30 

m) 

E – (; Blackburn et al., 2007; Hugh-

Jones and Blackburn, 2009; Joyner et 

al., 2010) 

T – (USGS, 2012)  

4 Slope (slope) Elevation 

derived 

DEM-derived 1 arc second (~ 30 

m) 
E – (De Vos, 1994) 

T – (USGS, 2012) 

5 Aspect (aspect) Elevation 

derived 

DEM-derived 1 arc second (~ 30 

m) 
E – (De Vos, 1994) 

T – (USGS, 2012) 

6 Distance to permanent 
water (permdist) 

Distance 

metrics 

ArcGIS Spatial 

Analyst 

1 km E – (De Vos, 1990; De Vos, 1994; 

Hugh-Jones and Blackburn, 2009) 
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extension T – (Hannart and Hughes, 2003) 

7 Distance to seasonal water 

(seasdist) 

Distance 

metrics 

ArcGIS Spatial 

Analyst 

extension 

1 km E – (De Vos, 1990; De Vos, 1994; 

Hugh-Jones and Blackburn, 2009) 

T – (Hannart and Hughes, 2003) 

8 Distance to ephemeral 

water (ephdist) 

Distance 

metrics 

ArcGIS Spatial 

Analyst 

extension 

1 km E – (De Vos, 1990; De Vos, 1994; 

Hugh-Jones and Blackburn, 2009) 

T – (Hannart and Hughes, 2003) 

9 Distance to boreholes 

(boreholedist) 

Distance 

metrics 

ArcGIS Spatial 

Analyst 

extension 

1 km E – (De Vos, 1990; De Vos, 1994; 

Hugh-Jones and Blackburn, 2009) 

10 SOTER Soil ID 

(sotersoilid) 

Soils SOTER 

database 

1 km E – (De Vos, 1990; De Vos, 1994; 

Hugh-Jones and Blackburn, 2009) 

T – Batjes, 2004; Dijkshoorn et al., 

2008 

11 Land Type (ltypeventer) Soils KNP Scientific 

Services 

Skukuza 

1 km E – (De Vos, 1990; Venter, 1990; De 

Vos, 1994; Hugh-Jones and 

Blackburn, 2009) 

12 Landscape (landscapegert) Soils KNP Scientific 

Services 

Skukuza 

1 km E – (Gertenbach, 1983; De Vos, 

1990; De Vos, 1994; Hugh-Jones and 

Blackburn, 2009) 

13 Basalt or Granite 

(basaltgranite) 

Soils KNP Scientific 

Services 

Skukuza 

1 km (Gertenbach, 1983) 

14 Land Cover (landcover) Soils  1 km E – (Hugh-Jones and Blackburn, 

2009) 

T – (Peace Parks Foundation, 2008) 

15 Geology (geologyventer) Soils KNP Scientific 

Services 

Skukuza 

1 km (Gertenbach, 1983; Venter, 1990)  

16 Calcium (caventer) Soils Interpolated 

from Venter 

database 

1 km E – (De Vos, 1990; Venter, 1990;  De 

Vos, 1994; Dragon and Rennie, 1995) 

T – (Batjes, 2004; Dijkshoorn et al., 

2008; Spectrum Analytic Inc, 2012) 

17 Lithology SOTER 

(lithosoter) 

Soils SOTER 

database 

1 km T – (Batjes, 2004; Dijkshoorn et al., 

2008) 

18 pH Venter (phventer) Soils Interpolated 

from Venter 

database 

1 km E – (Venter, 1990; Dragon and 

Rennie, 2005; Blackburn et al., 2007) 

T – (Batjes, 2004; Dijkshoorn et al., 

2008; Spectrum Analytic Inc, 2012) 

19 pH SOTER (soterph) Soils SOTER 

database 

1 km E – (Dragon and Rennie, 2005; 

Blackburn et al., 2007) 

T – (Batjes, 2004; Dijkshoorn et al., 

2008; Spectrum Analytic Inc, 2012) 

20 Cation Exchange Capacity 
(cec) 

Soils Interpolated 

from Venter 

database 

1 km E – (Venter, 1990) 

T – (Spectrum Analytic Inc, 2012) 
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21 Total Available Water 
Capacity (tawc) 

Soils SOTER 

database 

1 km E – (Blackburn et al., 2007) 

T – (Batjes, 2004; Dijkshoorn et al., 

2008) 

22 Soil Clay % (clay) Soils SOTER 

database 

1 km T – (Batjes, 2004; Dijkshoorn et al., 

2008) 

23 Soil Silt % (silt) Soils SOTER 

database 

1 km T – (Batjes, 2004; Dijkshoorn et al., 

2008) 

24 Soil Sand % (sand) Soils SOTER 

database 

1 km T – (Batjes, 2004; Dijkshoorn et al., 

2008) 

25 Annual mean temperature 

(annualmtemp) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007; Joyner et 

al., 2010) 

T – (Hijmans et al., 2005) 

26 Annual precipitation 
(annualprecipitation) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007; Joyner et 

al., 2010) 

T – (Hijmans et al., 2005) 
27 Isothermality 

(isothermality) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

28 Maximum temperature 

warmest month 

(maxtwarmmonth) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

29 Mean diurnal range 
(meandirange) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

30 Mean temperature warm 
quarter (meantwarmq) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

31 Mean temperature wet 

quarter (meantwetq) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

32 Mean temperature dry 

quarter (meantdryq) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

33 Minimum temperature of 

coldest month 

(mintcoldmonth) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

34 Precipitation of driest 

month (precdrymonth) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007; Joyner et 

al., 2010) 

T – (Hijmans et al., 2005) 
35 Precipitation of driest 

quarter (preqdryq) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

36 Precipitation seasonality 

(precseasonality) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

37 Precipitation of wettest 

month (precwetmonth) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007; Joyner et 

al., 2010) 

T – (Hijmans et al., 2005) 
38 Precipitation of wettest 

quarter (precwetq) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

39 Temperature annual range 

(tempannrange) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007; Joyner et 

al., 2010) 

T – (Hijmans et al., 2005) 
40 Temperature seasonality 

(tempseasonality) 

Climate Worldclim 30 arc seconds (~ 1 

km) 

E – (Blackburn et al., 2007) 

T – (Hijmans et al., 2005) 

* Variable name as used in model included in parenthesis 
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2.2.2. Spatiotemporal Framework 

The projected coordinate system, geographic extent and spatial resolution of all 

environmental layers were set to be the same before conversion from raster data to Ascii 

format. This was done to ensure positional accuracy and attribute integrity.  

 

The projected coordinate system chosen was WGS 1984 UTM Zone 36S, suitable for use 

between 30°-36°E and between 0°-80°S onshore and offshore. This projection is based 

on the World Geodetic System of 1984 (WGS-84) ellipsoid. The central meridian was set 

to 33° E; False Easting was 500000; False Northing was 10000000; Linear Unit meters; 

Angular Unit degrees; Latitude of Origin 0; Datum WGS 84.  

 

Spatial resolution was set to 1000m. The data set with the lowest resolution determined 

the resolution to be used by the model – in this case it was WorldClim (Hijmans  et al., 

2005). Resampling using nearest neighbour (for discrete data) and bilinear interpolation 

(for continuous data) was performed on all layers. The analysis extent was set to: Top 

7529415.63621m, Left 283091.00223m, Right 402091.00223m and Bottom 

7175415.63621m (WGS 1984 UTM Zone 36S). This resulted in 119 columns and 354 

rows in each clipped raster with a cell size of 1 km
2 

and a total pixel count of 18983. In 

the KNP outline model, the environmental layers were clipped to fit the study area. As 

this was a purely spatial model, temporal variables were not considered, since positive 

cases were used as a proxy for the environment‟s potential suitability to store B. 

anthracis spores and not the time of death. The rather coarse spatial resolution also 

minimized the significance of the difference in the exact point of infection and the point 

of death. 

2.2.3. Topography and Soil Variables 

The following two paragraphs were taken from the ArcGIS Desktop Help file to explain 

resampling:  

 

“Nearest neighbour assignment is the resampling technique of choice for discrete 

(categorical) data since it does not alter the value of the input cells. Once the location of 
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the cell's center on the output raster dataset is located on the input raster, nearest 

neighbour assignment will determine the location of the closest cell center on the input 

raster and assign the value of that cell to the cell on the output raster.” (ESRI, 2012). 

 

“Bilinear interpolation uses the value of the four nearest input cell centers to determine 

the value on the output raster. The new value for the output cell is a weighted average of 

these four values, adjusted to account for their distance from the center of the output cell. 

This interpolation method results in a smoother looking surface than can be obtained 

using nearest neighbour. Since the values for the output cells are calculated according to 

the relative position and the value of the input cells, bilinear interpolation is preferred 

for data where the location from a known point or phenomenon determines the value 

assigned to the cell (that is, continuous surfaces).” (ESRI, 2012). 

 

The environmental variable altitude was acquired as an Aster Digital Elevation Model 

(DEM) from the United States Geological Survey (USGS) at 

http://earthexplorer.usgs.gov/, with a resolution of 1 arc second (~30 m). The layer was 

reprojected, resampled using bilinear interpolation and clipped to extent.  

 

The Aspect variable was created from the clipped DEM layer using the ArcGIS Spatial 

Analyst extension version 9.3.1. Since aspect was represented as degrees, it needed to be 

converted to linear decimal. For this study cos(aspect) was used and the conversion was 

done in the raster calculator of ArcGIS. 

 

Soil data were obtained from two different sources – KNP Scientific Services and the 

SOTER (SOil and TERrain) digital database (Batjes, 2004; Dijkshoorn et al., 2008). The 

SOTER data was downloaded at http://www.isric.org/data/data-download with a 1 km 

resolution. SOTER variables used included lithology, soil type, total available water 

capacity (TAWC), pH, soil clay content, soil silt content and soil sand content. Table 4 

illustrates the number of different classes that each categorical variable was divided into.  
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Table 4: Number of classes per selected categorical variable 

Variable Number of classes 

lithosoter 8 

geologyventer 15 

sotersoilid 46 

ltypeventer 56 

landscapegert 35 

basaltgranite 2 

  

The polygon layers obtained from KNP Scientific Services included geology, land type, 

lithology and soil data. All the categorical layers were converted to rasters, reprojected 

and resampled using nearest neighbour technique.  

 

A dataset (Venter, 1990) with 370 soil sampling sites was provided by the KNP Scientific 

services. Two layers - caventer and phventer were created from this data. Inverse 

Distance Weighted (IDW) interpolation was used in ArcGIS to derive Ca and pH values 

for the rest of the KNP. Ideally, specific measured values around the Park should be used, 

but this was not possible from the data provided. Since interpolation creates new values 

for missing ones by using known values, a possible decrease in the precision of the model 

can result and the Ca and pH layers were interpreted with caution. Finally, all rasters 

were converted to Ascii format in ArcGIS for use in Maxent. 

2.2.4. Processing of the NDVI variable 

NDVI is derived from satellite data and is commonly used as a proxy for vegetation 

productivity (Pettorelli et al., 2005).  The NDVI provides information about the spatial 

and temporal distribution of vegetation communities, vegetation biomass, CO2 fluxes, 

vegetation quality for herbivores (because the rate of greening can be correlated with 

food quality) and the extent of land degradation in various ecosystems (Pettorelli et al., 

2005). Pre-processed data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS–TERRA) were used in this study, spanning 2000-2009 at 250 m resolution 

(Epistis, 2012). 
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Two derived NDVI values were used in this study (Figure 10):  

1. Integrated NDVI: INDVI is the sum of all the positive NDVI values over a 

given period and provides a measure of overall productivity and biomass. This 

is equivalent to the large integral of an NDVI curve (Jönsson and Eklundh, 

2004; Petorelli et al., 2005). A mosaic raster was created from the annual large 

integral rasters to produce the index of overall productivity.   

2. Maximum NDVI: MaxNDVI is the annual maximum NDVI value. This is 

another measure of overall productivity and biomass (Jönsson and Eklundh, 

2004; Petorelli et al., 2005. The yearly maximum values were determined in 

ArcGIS and a mosaic raster was created to produce the index of overall 

productivity.   

 

 

Figure 10: Presentation of the different indices (the slopes of increase (spring) and decrease 

(autumn), the maximum NDVI value, the integrated NDVI (INDVI, i.e. the sum of NDVI values over 

a year), the date when the maximum NDVI value occurs, the range of annual NDVI values, and the 

date of green-up (i.e. the beginning of the growing season)) that could be derived from NDVI time 

series over a year. Image adapted from Petorelli et al. (2005). 
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Figure 11: NDVI values (ranging from 0 to 1) for Kruger National Park in (a) November – period of 

increase,  (b) January – maximum NDVI and (c) May 2008 – period of decrease.  

 

Figure 11 displays the NDVI values corresponding to seasonal change. Figure 11a 

represents the transition into the growing season (spring). Figure 11b represents the peak 

of the growing season (summer) and Figure 11c represents the transition into the dormant 

season (autumn). 

 

Other derivations of the NDVI variable include (1) beginning of season, (2) end of 

season, (3) left 90% level, (4) right 90% level, (5) peak, (6) amplitude, (7) length of 

season, (8) rate of increase / decrease and (9) relative annual range (Jönsson and Eklundh, 

2004; Petorelli et al., 2005). Only the INDVI and MaxNDVI values are used as indicators 

of overall productivity and biomass (Petorelli et al., 2005). 
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The rasters were resampled (bilinear interpolation) to 1000 m and clipped to extent 

before conversion to Ascii format. 

2.2.5. Processing of Land Cover variables 

Land cover layers used in this study included land cover, land type, vegetation type, 

geology and landscapes. The land cover layer (Peace Parks Foundation, 2008) was 

resampled and clipped to extent. Since all other land cover layers were in polygon format, 

each one was converted to a raster for export to Ascii format. All of these variables were 

used as categorical data in Maxent. Vegetation type was used as defined by Gertenbach 

(1983) (Figure 1). 

2.2.6. Processing of Climate Variables 

Nineteen bioclimatic variables were downloaded from the WorldClim website under the 

number 37 tile - http://www.worldclim.org/tiles.php?Zone=37. Bioclimatic variables are 

derived from the monthly temperature and rainfall values in order to generate more 

biologically meaningful variables. These are often used in ecological niche modelling 

(e.g., BIOCLIM, GARP). The bioclimatic variables represent annual trends (e.g., mean 

annual temperature, annual precipitation) seasonality (e.g., annual range in temperature 

and precipitation) and extreme or limiting environmental factors (e.g., temperature of the 

coldest and warmest month, and precipitation of the wet and dry quarters; a quarter is a 

period of three months) (Hijmans et al., 2005).  

 

The rasters were all in 30 arc second resolution (~1 km) and were reprojected to the 

required projection. An extract by mask was performed on all rasters and each one 

resampled using bilinear interpolation using ArcGIS. Finally the layers were converted to 

Ascii format for use in Maxent. 

 

2.2.7. Processing of Hydrological Variables 

 

2.2.7.1.  Rivers 
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The following hydrological layers were created and used: A river polygon layer was 

downloaded from http://www.dwa.gov.za/iwqs/gis_data/river/rivs500k.html (Resource 

Quality Services (formerly IWQS) and Chief Directorate of National Geo-Spatial 

Information (formerly Surveys and Mapping)). The layer was clipped to the KNP 

boundary and combined with a layer from Hannart and Hughes (2003), which provided a 

hydrological index and class, which in turn allowed the river to be classified as 

permanent, seasonal or ephemeral. The rivers within the KNP were divided into three 

categories as indicated in Table 5. For each of the river categories an euclidean distance 

raster was created using the spatial analyst extension in ArcGIS.  

 

Table 5: Hydrological indices and river classes used in this study (Hannart and Hughes, 2003). A 

hydrological index less than 16.110 indicates a permanent river. A hydrological index between 16.110 

and 37.81 indicates a seasonal river and a hydrological index greater than 37.81 indicates an 

ephemeral river.  

 

 

 

 

 

 

 

 

2.2.7.2. Boreholes 

A shapefile containing all the boreholes within the KNP, listed as points, was provided by 

SANParks Scientific Services. Former boreholes (those currently closed) were not 

considered in this study. The remaining operational boreholes were mapped in ArcGIS 

and an euclidean distance raster layer was created. See Appendix C for information 

regarding each borehole such as drilling data and close down date. 

 

2.2.7.3. Pans, troughs, dams, waterholes, springs 

The challenge with classifying and mapping water sources was to determine which 

structures were ephemeral, permanent or seasonal. The dams layer provided information 

Class 
Hydrological index (HI) 

thresholds 

Flow variability descriptors 

used in this study 

1             HI 4.394 

Permanent 
2     4.394 < HI 7.535 
3     7.535 < HI 13.74 
4   13.745 < HI 16.110 
5   16.110 < HI  37.81 Seasonal 
6   37.819 < HI  64.16 

Ephemeral 
7   64.169 < HI  92.70 
8   92.705 < HI  98.12 
9   98.124 < HI 
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on the working status of the dam. If the dam was operational, it was considered a 

permanent water source, otherwise it was considered ephemeral. Pans were all considered 

ephemeral except those linked to permanent river systems and some pans specifically 

listed as being permanent. Springs and waterholes were all considered ephemeral. 

Euclidean distance from feature rasters were created and incorporated into the above 

mentioned river rasters according to classification as ephemeral, permanent or seasonal. 

The number of seasonal and ephemeral rivers resulted in no change in the importance of 

the respective variables when combined with the above mentioned features. It should, 

however, be noted that very different dynamics and processes occur at these water 

sources. If there was a larger amount of rivers or the rivers had a negative impact on the 

importance of the variables, then the layers would have been separated into rivers and 

standalone features respectively.  All the above euclidean distance rasters were converted 

to Ascii format for use in Maxent using ArcGIS. 

2.3. Modelling technique 

2.3.1. Maxent settings 

Using standard settings, and thus auto feature selection, implicates that Maxent will 

automatically add modelling features with increasing number of samples in the training 

set: below 10 samples only linear functions are used; between 10 and 14 samples 

quadratic features are added; between 15 and 79 samples hinge features are added and 

above 79 samples product and threshold features are allowed (Merckx et al., 2011). Since 

the number of samples in the presence data set was bigger than 100, the auto-features 

option was selected (Phillips et al., 2004; Elith et al., 2011) which automatically adjusts 

the beta regularization parameter for each feature type in the model (Figure 28, Appendix 

D).  

 

The random seed option was selected to create a different training and test dataset for 

each model run. A different background dataset was also created for each model run. The 

option to remove duplicate presence records was deselected (default select). This was 

done because more presence locations in the same area signify more ecologically suitable 

conditions for B. anthracis. Random test percentage was set to 25% meaning that Maxent 

 
 
 



Materials and Methods 

 

 

41 

 

randomly sets aside 25% of the provided presence data and uses these data to test the 

model. The amount of replicate runs was set to 10, and replicate run type to subsample – 

this removed the sampling set used for testing and selected a new set (excluding all 

previous set points) on each run (Figure 29, Appendix D). The advanced options in 

Maxent that were selected included the maximum iteration set to 5000 to allow the 

models enough time to reach convergence (Young et al., 2011) (Figure 30, Appendix D). 

2.3.2. Modelling Procedure 

Two separate models were developed in this study namely (i) a preliminary model used 

to eliminate variables with lesser importance and (ii) a model with the most important 

environmental variables selected. Model (ii) was used to determine the final ecological 

suitability distribution of B. anthracis. The datasets used in this study consisted of (1) 597 

anthrax cases, (2) a set of environmental variables specific to the clipped extent of the 

KNP, (3) 1950-1959 anthrax outbreak as described by Pienaar (1960) and (4) the 1959 

outbreak documented by Pienaar (1961) with a total of 1151 positives. Datasets 1 and 2 

were used to build the model and datasets 3 and 4 were used to visually evaluate the 

outcomes of the model. 

 

Test and training data 

There are two ways in which Maxent evaluates model performance – “test of fit” and 

“test to predict”. This is accomplished by splitting the set of occurrence data into test and 

training datasets. The training dataset is used to build the model and the test dataset is 

used to measure how accurately the model can predict the points within this test set. A 

random test percentage option is included in Maxent to indicate the percentage of data to 

use for testing and training. The dataset was divided into training (75%) and test (25%) 

presence points. Without this measure, the model would use the training data in its test 

thus inflating model performance (Young et al., 2011). 
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2.3.3. Maxent and sample bias 

By default, when using Maxent, the assumption is made that species occurrence data are 

unbiased, independent samples from the distribution of the species.  The assumption of 

lack of bias is easily violated, for example if sample collection effort is biased towards 

more easily accessible areas such as areas close to roads or populated centers.  A simple 

strategy to remove sample selection bias is to replace the uniform background data by a 

random sample of background data drawn from the sampling distribution (Dudík et al., 

2005; Phillips et al., 2009). Since Maxent selects the distribution of maximum entropy 

relative to the provided background, the sample selection bias was effectively factored 

out. 

 

To create a target background layer, the area surrounding the presence points was 

extracted from the KNP extent (Figure 12). This was done by selecting all the ranger 

sections within KNP that contained presence points. Since there are numerous ranger 

sections within the Park, this method provided an easy way to select the most appropriate 

background layer. The selection was converted to a raster and the spatial analyst raster 

calculator used to convert all the cells to the value of „1‟ or „NoData‟ using a conditional 

function: con(“BGLayer” >= 0, 1, “BGLayer”) (Young et al., 2011). This was an 

important step since Maxent only accepts values that are bigger than zero for this type of 

file. Finally the raster was converted to Ascii format for use in Maxent. 
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Figure 12: Background bias layer creation in Maxent. The purple map on the right indicates the bias 

layer which Maxent used to create background points from. 

 

2.3.4. Null Model 

ENMTools was used to generate the null-model datasets (Figure 31, Appendix D). A 

total of 1000 pseudo-presence location sets with 597 records each were created. A 

frequency histogram of all the AUCs was created and used for model AUC comparison.  

 

2.3.5. Simple multiple regression 

Simple multiple regression was used to eliminate linearly correlated variables (Herkt, 

2007). Regression was done using StataSE 12.1 software (Statacorp, 2001). 

 

2.3.6. Feature selection 

 

The model was run 40 times, with removal of the least important variable after each run, 

until only one variable remained. A maximum of 5000 iterations per model run were used 
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to ensure convergence. The training gain, as well as the drop in training gain when the 

variable was omitted from the full model, was calculated for each variable. The variable 

with the lowest decrease in average training gain when omitted was the variable that was 

removed. The weakest of the remaining variables was again determined by repeating the 

above process. This procedure continued until only one variable remained.  

Ninety-five percent confidence intervals were constructed for the training gain values 

associated with each model. The model that exhibited overlap in confidence intervals 

with the model of highest training gain was selected as the best model (Yost et al., 2008).  

 

Maxent has a built-in jackknife function to evaluate predictor importance by eliminating 

one variable at a time while recomputing the gain, thus eliminating variables that lead to 

overfitting (Peterson and Cohoon, 1999). A correlation matrix was derived from the set 

of all variables and this matrix was used to eliminate highly correlated variables (Herkt, 

2007).  

 

The results of the variable selection process were evaluated using the Maxent model 

surveyor (MMS). MMS is a stand-alone program that evaluates different sets of 

predictors for Maxent modelling (Verbruggen, 2012). The program determines the best 

subset of feature combinations based on maximum AUC. There are three different 

selection algorithms – best subset selection, forward stepwise search and backward 

stepwise search. The evaluation criteria can be AUC, Akaike Information Criterion 

(AIC), Corrected AIC (AICc) or the Bayesian Information Criterion (BIC).  

 

The best subset selection procedure evaluates each possible combination of features and 

determines the AUC (or any evaluation criterion selected). The model with the subset of 

features that yields the highest AUC score is selected (Table 6). 

 

The forward stepwise search procedure starts with only one variable and adds a variable 

on each model run until all variables have been added. The model with the highest 

evaluation criterion is selected.  
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The backward stepwise search procedure starts with all the variables and removes a 

variable on each model run until all variables have been removed. Again, the model with 

the highest evaluation criterion is selected. 

 

Table 6: Best subset MMS procedure. Variables are added to the Maxent variable set until the AUC 

value for all possible combinations have been calculated. 

Variable indicator AUC Variables 

100000000000 0.614 altitude 

010000000000 0.606 caventer 

110000000000 0.681 altitude, caventer 

001000000000 0.627 ephdist 

Continued until all possible variable combinations have been evaluated 

001111111111 0.881 

ephdist, geologyventer, indvi, 

landscapegert, ltypeventer, 

permdist, precdryq, seasdist, 

sotersoilid, tempseasonality 

101111111111 0.882 

altitude, ephdist, geologyventer, 

indvi, landscapegert, ltypeventer, 

permdist, precdryq, seasdist, 

sotersoilid, tempseasonality 

011111111111 0.886 

caventer, ephdist, geologyventer, 

indvi, landscapegert, ltypeventer, 

permdist, precdryq, seasdist, 

sotersoilid, tempseasonality 

111111111111 0.887 

altitude, caventer, ephdist, 

geologyventer, indvi, 

landscapegert, ltypeventer, 

permdist, precdryq, seasdist, 

sotersoilid, tempseasonality 

   

2.3.7. Probability classes 

Four arbitrarily defined probability classes were used to classify the ecological suitability 

of the modelled prediction: 

1) high suitability: 80-100%; 

2) moderate suitability: 60-80%; 

3) low suitability: 30-60% ; 

4) not suitable: 0-30%. 
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A threshold of 80% was used to identify the area as suitable for the occurrence of anthrax 

in the environment. This threshold was chosen based upon the assumption that areas with 

a very high probability (>80%) of anthrax occurrence have the potential to be 

ecologically suitable for harbouring spores, thus anthrax is endemic. Areas with a lower 

probability of anthrax occurrence are most likely propagating epidemic occurrences. 

 

Potential anthrax endemic areas were defined as any area with a probability of anthrax 

occurrence over 80%. Potential anthrax epidemic areas were defined as any area with a 

probability of anthrax occurrence less than 80%. 

 

2.3.8. Gap Analyses 

A gap analyses was performed in Diva-GIS on the presence data and Maxent output to 

create a map where sampling should be prioritized in future surveys. This method uses 

the 10 percentile training presence map from the Maxent output (Appendix B). Areas 

where it is likely to encounter anthrax positive cases, but where there are currently few or 

no records of observations, can be identified by comparing maps of observed and 

potential diversity (Scheldeman and Van Zonneveld, 2010). 
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3. Results 

Six hundred and sixty one anthrax positive cases were recorded, but sixty four points had 

to be excluded due to ineligible writing on the original records.  The exclusion of these 

points should however have minimal effect on the Maxent outputs. 

 

The modelling process reached convergence prior to the maximum iteration setting of 

5000. The ROC curve had an average AUC of 0.9372 for training data and an average 

AUC of 0.909 for test data and was significantly different from a line of no information 

(p < 0.01).  

 

A set of preliminary Maxent runs were performed for feature selection. The process of 

selecting the best model out of a subset of potential models is known as model selection. 

The process of eliminating or adding variables to a model is called variable or feature 

selection. 

 

The variables 'meantcoldq', 'preccoldq' and 'preqwarmq' were excluded based on their 

perfect linear relationship with 'meantdryq', 'precdryq' and 'precwetq' respectively (Table 

7). The latter three variables were selected over the former, based on the fact that anthrax 

typically occurs after a period of drought that is followed by heavy rain (De Vos, 1990). 

Due to the thorough variable removal process, only variables with a perfect linear 

relationship were excluded in this study. However, variables with a Pearson correlation 

coefficient above 0.7 should be considered for exclusion due to the problem of multi-

collinearity (Dormann et al., 2012). 
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Table 7: Simple multiple regression on continuous variables 

 

TEMPSEAS~100     0.1602   0.1375   0.1602   0.8999   1.0000

TEMPANNR~100     0.1288   0.0827   0.1288   1.0000

PRECWETQN100     1.0000   0.9527   1.0000

PRECWETM~100     0.9527   1.0000

PRECWARM~100     1.0000

                                                           

               PRECWA~0 PRECWE.. P~TQN100 TEMPAN~0 TEMPSE~0

TEMPSEAS~100     0.5936   0.3566   0.3566   0.6912   0.6925   0.0023   0.3705   0.2620   0.3705   0.1494

TEMPANNR~100     0.8798   0.7160   0.7160   0.9262   0.9278   0.4000   0.0229  -0.0722   0.0229   0.5486

PRECWETQN100     0.0543   0.1416   0.1416   0.2012   0.1960   0.2240   0.5346   0.5870   0.5346   0.0640

PRECWETM~100    -0.0062   0.1050   0.1050   0.1630   0.1528   0.2095   0.4922   0.5606   0.4922   0.0452

PRECWARM~100     0.0543   0.1416   0.1416   0.2012   0.1960   0.2240   0.5346   0.5870   0.5346   0.0640

PRECSEAS~100     0.8635   0.9676   0.9676   0.8082   0.8059   0.9573  -0.6733  -0.6471  -0.6733   1.0000

PRECDRYQN100    -0.3775  -0.5174  -0.5174  -0.2316  -0.2316  -0.6327   1.0000   0.9577   1.0000

PRECDRYM~100    -0.4250  -0.5242  -0.5242  -0.2816  -0.2815  -0.5830   0.9577   1.0000

PRECCOLD~100    -0.3775  -0.5174  -0.5174  -0.2316  -0.2316  -0.6327   1.0000

MINTCOLD~100     0.7458   0.9177   0.9177   0.7139   0.7106   1.0000

MEANTWET~100     0.9752   0.9195   0.9195   0.9995   1.0000

MEANTWAR~100     0.9736   0.9206   0.9206   1.0000

MEANTDRY~100     0.9462   1.0000   1.0000

MEANTCOL~100     0.9462   1.0000

MEANDRAN~100     1.0000

                                                                                                        

               MEANDR~0 MEANTC~0 MEANTD~0 M~MQN100 M~TQN100 MINT~100 PRECCO~0 PRECDR.. P~YQN100 PRECSE~0

 

Values represent r
2
. All calculations were done in StataSE12. Values of -1 or +1 represent perfect 

correlation. 

 

Table 8: Simple multiple regression on categorical variables 

 sotersoilid    -0.1908   0.5983  -0.4972  -0.8554   1.0000

 ltypeventer     0.1383  -0.5169   0.5043   1.0000

landscapeg~t    -0.2737  -0.6006   1.0000

geologyven~r     0.3686   1.0000

basaltgran~e     1.0000

                                                           

               basalt~e geolog~r landsc~t ltypev~r soters~d

 

Values represent r
2
. All calculations were done in StataSE12. Values of -1 or +1 represent perfect 

correlation. 

 

Some of the information contained in the categorical variables was nested in other 

categorical variables. Due to the big difference in the number of classes for each 

categorical variable, each variable was considered unique enough to include in the model.  

 

Figure 13 displays the procedure of removing the variable with the lowest decrease in 

average training gain when omitted (Yost et al., 2008). Table 9 illustrates the variable 

removal order.  
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Table 9: Variable selection procedure. The variable removed from the model based on the jackknife 

method is listed in the right column. Model gain and AUC values are displayed in columns 2 and 3 to 

illustrate the change (decrease) in value as more variables are removed. 

 

Variable 

number 

Gain AUC Variable Removed 

40 1.864 0.936 basaltgranite 

39 1.857 0.935 mintcoldmonth 

38 1.857 0.935 boreholedist  

37 1.856 0.935 precseasonality 

36 1.856 0.935 soterph 

35 1.856 0.935 annualmtemp 

34 1.852 0.935 meandirange 

33 1.852 0.935 meantdryq 

32 1.856 0.935 isothermality 

31 1.853 0.935 clay 

30 1.85 0.935 meantwetq 

29 1.848 0.935 meantwarmq 

28 1.848 0.935 tempannrange 

27 1.847 0.935 annualprecipitation 

26 1.845 0.934 landcover 

25 1.843 0.933 precdrymonth 

24 1.839 0.933 maxtwarmmonth 

23 1.839 0.932 precwetq 

22 1.836 0.931 aspect 

21 1.829 0.93 silt 

20 1.82 0.93 tawc 

19 1.812 0.929 phventer 

18 1.806 0.928 precwetmonth 

17 1.799 0.926 slope 

16 1.79 0.925 cec 

15 1.78 0.921 lithosoter 

14 1.763 0.919 maxndvi 

13 1.745 0.918 sand 
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12 1.726 0.915 preqdryq 

11 1.698 0.91 caventer 

10 1.678 0.907 altitude 

9 1.647 0.906 ephdist 

8 1.612 0.9 geologyventer 

7 1.574 0.898 landscapegert 

6 1.538 0.889 permdist 

5 1.487 0.888 seasdist 

4 1.425 0.877 ltypeventer 

3 1.284 0.861 tempseasonality 

2 1.213 0.849 indvi 

1 1.295 0.832 sotersoilid 

 

The gain in the second column is the regularized training gain. The variable removal 

order is represented in the right column. Figure 19 was constructed from Table 9 for 

illustrative purposes. 

 
Figure 13: Variable selection procedure indicating the loss of gain and associated decrease in AUC 

value when variables are removed. 

 

 
 
 



Results 

 

 

51 

 

The training gain in the model with 12 variables was not significantly worse from the 

training gain of the models with 13 or more variables, but was significantly better from 

the models with fewer variables. The top 12 variables were used to build the final 

suitability model.  

 

Results of the jackknife procedure for variable selection were evaluated by using the 

Maxent response curves (Appendix A) and the MMS algorithm (Verbruggen, 2012). 

 

One disadvantage of using this (MMS) method is computation time. It took a total of 

65536 model runs to select the best subset of 16 variables, making evaluation with 40 

variables unrealistic. The best subset selection of 12 variables took 4095 model runs. 

 

The best result of the MMS method was the 10 variable set of caventer, ephdist, 

geologyventer, indvi, landscapegert, ltypeventer, permdist, seasdist, sotersoilid and 

tempseasonality (Figure 32, Appendix D). The best subset AUC was 0.888 which is 

significantly lower than the Maxent model tested. This is because MMS uses a 50/50 

partition of test and training data, making less data available for training. There is only a 

difference of two variables between the best subset MMS procedure output and the 

confidence interval jackknife method output. In this study the AUC was used as the 

MMS evaluation criterion for feature selection. 

 

The Null Model Maxent procedure consisted of 1000 pseudo-presence observations with 

a mean AUC of 0.649 (Std. Dev. 0.0089). The model predicted presence significantly 

better than random based on the null model AUC 95% CI, p < 0.0001. 

 

Results of the 10 model training partitions were evaluated by using a one-tailed t-test. 

The average regularized cumulative training gain of the ten model partitions was 1.9254 

(H0: cumulative gain <= 1.5 and HA: cumulative gain > 1.5). The result rejects the null 

hypothesis and accepts the alternative hypothesis (t = 21.05 and p < 0.0001 at 95% 

CI). 
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The model identified the following areas (Figure 14) as most suitable for the occurrence 

of anthrax namely Northern Pafuri depression, Mpongolo-Shingwedzi confluence and the 

Letaba-Olifants confluence.  

 

 

Figure 14: Suitable anthrax areas within Kruger National Park. Black rectangles indicate core areas 

(greater than 80% probability).  

 

Table 10 contains estimates of the relative contributions of the 12 selected environmental 

variables in the final Maxent model. To determine the first estimate in each iteration of 

the training algorithm, the increase in regularized gain is added to the contribution of the 

corresponding variable (or subtracted if change is negative). This is a heuristic approach 

to model importance in which the contribution values are determined by the increase in 

gain in the model provided by each variable. Caution must be used when employing this 
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method as strong collinearity can influence results by indicating more importance for one 

of two or more highly correlated variables (Baldwin, 2009). For the second estimate, for 

each environmental variable in turn, the values of that variable on training presence and 

background data are randomly permuted. The model is re-evaluated on the permuted 

data, and the resulting drop in training AUC is shown in the table, normalized to 

percentages (Phillips et al., 2006). Maxent performs only a single permutation of the 

predictor to calculate the metric. Performing many such permutations would be more 

reliable (but that would take a lot more time). Both these estimates serve as guidelines for 

variable importance and should be interpreted in combination with other methods such as 

jackknife. 

 

Table 10: Variable contribution table including percent contribution and permutation importance of 

the variable listed. 

Variable Percent contribution Permutation importance 

sotersoilid 36.3 17.1 

precdryq 15.9 23.2 

landscapegert 9 13.7 

indvi 8.6 2.4 

altitude 7.3 2.5 

ltypeventer 6 5 

ephdist 4.6 9.5 

permdist 3.3 5.4 

seasdist 2.9 5.8 

tempseasonality 2.7 5 

geologyventer 2.2 2 

caventer 1 8.4 
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Figure 15: Jackknife results of the twelve variables used to construct the final model. 

 

Figure 15 displays the variable importance as determined by the jackknife procedure. 

Important variables can either have:  

1) large dark blue bars, indicating strong (but perhaps non-unique) contribution to 

presences (see sotersoilid, Figure 15); or  

2) short turquoise bars, indicating no other variable contains equivalent information (see 

indvi, Figure 15); or  

3) both 1 and 2, indicating the variable is independently predictive (see ltypeventer, 

Figure 15). 

 

The variable that had the highest gain when the jackknife procedure was applied was the 

SOTER classified soil class, indicating that this variable had the strongest contribution to 

presences.  
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Figure 16: Probability of presence of the different classes that make up the sotersoilid variable. Red 

bars indicate the average value over the 10 model runs, dark blue bars indicate the maximum values 

and the turquoise bars indicate the minimum values. 

 
Table 11: Sotersoilid class and name as listed in the SOTER database 

0 1 2 3 4 5 6 7 8 9 

ZW74 ZA21 ZA22 ZA29 ZA32 ZA41 MZ22 ZA55 ZA56 ZA62 

10 11 12 13 14 15 16 17 18 19 

ZA65 ZA80 ZA83 MZ223 ZA87 ZA98 ZA101 ZA115 ZA33 ZA145 

20 21 22 23 24 25 26 27 28 29 

MZ16 ZA160 ZA170 ZA189 ZA190 ZA202 ZA233 ZA245 ZA258 ZA262 

30 31 32 33 34 35 36 37 38 39 

ZA282 ZA283 ZA291 ZA314 ZA335 ZA357 ZA387 ZA450 ZA491 ZA533 

40 41 42 43 44 45 

ZA548 ZA564 ZA604 ZA610 ZA634 ZA641 

 

According to Figure 16, the most important soil classes within the sotersoilid variable 

were 1 and 2, which are ZA21, followed by ZA22 (Table 11).  

 

The variable that decreased the gain the most when omitted was the integrated NDVI 

value, which means that it had the most information that was not present in other 

variables.  
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Figure 17: INDVI values for the 10 model runs. Red line indicates average and blue areas are 

deviations. 

 

Figure 17 has a very well defined peak value corresponding to a high anthrax probability. 

This INDVI value is 8-10 (with 80-100% probability). INDVI values smaller than 8 

display a lot of variation and INDVI values larger than 10 stay constant with an average 

probability of 65%.  

 

Other important variables were the landscape as classified by Gertenbach (1983), land 

type as classified by Venter (1990) and driest quarter precipitation. The six most 

important variables were identified using unpartitioned data (all positive points used for 

training) to utilize maximum information.  

 

According to the jackknife procedure, the six most important environmental predictors, 

(in descending order) were: 

 

1. SOTER soil ID (sotersoilid) 

2. Land type as defined by Venter (ltypeventer) 
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3. Landscape as defined by Gertenbach (landscapegert) 

4. Precipitation of the driest quarter (precdryq) 

5. Integrated NDVI value (INDVI) 

6. Altitude (altitude) 

 

This study found that the modelled niche for the B. anthracis spore can be defined by a 

narrow index of precipitation, NDVI and soil type. Soil type considers the land type, 

landscape and soil values. In addition to the above, Maxent response curves can be used 

to evaluate variable values for increased suitability (Appendix A, Figure 16 and Figure 

17). Annual rainfall in the modelled areas ranged between 400-500mm and the integrated 

NDVI values ranged from 8 in the north to 11 in the south. This indicates a higher plant 

biomass toward the south (Pettorelli et al., 2005). Thus a higher number of potential 

vectors for the dissemination of spores would most likely be found in the southern 

modelled areas. 

 

According to this study the most suitable ecological conditions for anthrax were a 

combination of low rainfall, soil type, high calcium in the soil and high animal biomass 

as reflected by the NDVI variables.  

 

Presence points from the 1959 outbreaks in KNP were plotted on the model output map 

(Figure 18). Figure 25 Map (a) contains the points of the first 1959 outbreak and upon 

visual inspection the model predicts the majority cases very well. Figure 18 Map (b) 

contains the points of the second 1959 outbreak and upon visual inspection only predicts 

some of the locations correctly. This model aims to find areas suitable for anthrax 

endemicity and because this was an epidemic outbreak it is unlikely to accurately predict 

all the epidemic areas.  
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Figure 18: 1959 Outbreak data plotted against modelled suitability map. a. First outbreak of 1959 

(Pienaar, 1960) b. Second outbreak of 1959 (Pienaar, 1961) c. Presence points used to train the model 

(1988 - 2011) 
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As mentioned earlier, two models were developed in this study – a 40 variable model and 

a final 12 variable model. In Figure 19, the output maps of the two models are displayed. 

 

 
 
Figure 19: Two models were developed in this study – a preliminary 40 variable model and a final 12 

variable model, 5000 iterations, with all presence points. 

 

Upon visual inspection there is not much difference between the 40 and 12 variable 

model output maps. Both models predict the same areas as suitable and also predict the 

same threshold areas. Note the increase in suitability in the southern KNP with the 12 

variable model. Based to the fact that the average suitability value in the southern area 

was still less than 30%, it can be concluded that there is no significant difference between 

the two output maps. 
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To determine the individual variable values of importance for ecological suitability, all 

points with a probability of occurrence higher than 80% were selected and the 

environmental variable values extracted (Table 12). According to Table 12, a low 

altitude, high soil calcium content and low driest quarter precipitation seem to play 

important roles in the suitability of the environment for anthrax. See Figure 14 for the 

map indicating these three areas. 

 

Table 12: Threshold point values for the top 12 variables and the three areas identified by the model 

(Figure 14) as having the highest suitability for anthrax occurrence. 

Section Pafuri Shingwedzi Letaba 
Study area 

mean (range) 

n 186 2 30 597 

Altitude 

(altitude) 
228.8064516 281 225.9333333 

292 (145 – 

570) 

Calcium 

(caventer) 
171.835714 184.6258 198.0494133 

148 (10 – 

282) 

Ephemeral 

Distance 

(ephdist) 

2069.046753 0 13181.526 
3618 (0 – 

20384) 

Seasonal 

Distance 

(seasdist) 

3169.587167 0 7038.007 
4124 (0 – 

14764) 

Permanent 

Distance 

(permdist) 

2190.000172 46840.2 733.3333333 
12461 (0 – 

53450) 

Geology Venter 

(geologyventer) 
LB, CS, AL AL EC 

LB, CS, AL, 

EC 

INDVI (indvi) 8.58999014 9.36794 8.867802667 
7.34 (-775 – 

15) 

Landscape 

(landscapegert) 
25,28 35 21,22 

21, 22, 25, 28, 

35 

Landtype Pa04,Pa05 Le05 Le01 
Le01, Le05, 

Pa04, Pa05 
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(ltypeventer) 

Precipitation 

Driest Quarter 

(precdryq) 

9 14 23.73333333 14.7 (8 – 36) 

SOTER Soil ID 

(sotersoilid) 
ZA21,ZA22 ZA115 ZA282 

ZA21, ZA22, 

ZA115, 

ZA282 

Temperature 

Seasonality 

(tempseasonality) 

3389.096774 3687 3759.933333 
3439 (2838 – 

3828) 

 

Geology Legend (Gertenbach, 1983): 

LB – Karoo system. Olivine rich basalts, sub-ordinate alkali basalts, shoshonites. 

CS – Karoo system. Fine grained sandstone, mudstone, chert (Cave sandstone and 

redbed stages). 

AL – Quarternary. Alluvium. 

EC – Karoo system. Shale with coal seams, mudstone, grit (Ecca series). 

 

Landscape Legend (Venter, 1990): 

15 – Colophospermum mopane forest 

21 – Combretum / Acacia nigrescens rugged veld 

22 – Combretum / Colophospermum mopane rugged veld 

25 – Adansonia digitata / Colophospermum mopane rugged veld 

28 – Limpopo / Luvuvhu floodplain 

35 – Salvadora angustifolia floodplains 

 

SOTER Soil ID Legend (Dijkshoorn et al., 2008): 

ZA21, ZA115 – Eutric cambisols 

A cambisol (CM) can be defined as having either a cambic or a mollic horizon. 

A cambic horizon is a weakly developed mineral soil horizon and a mollic horizon 

is a surface horizon of mineral soil that is dark in colour, relatively deep and 

contains (dry weight) at least 1% organic matter or 0.6% organic carbon. 
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ZA22 – Eutric leptosols 

A leptosol (LP) can be defined through (1) a limit in depth by continuous hard rock 

within 25 cm from the soil surface, (2) overlying material with a calcium carbonate 

equivalent of more than 40 percent within 25 cm from the soil surface or (3) less 

than 10 percent (by weight) fine earth to a depth of 75 cm or more from the soil 

surface. 

 

ZA282 – Leptic phaeozems 

Continuous rock starting between 50 and 100 cm from the soil surface with a 

mollic horizon and (1) a base saturation of 50 percent or more and no secondary 

carbonates, at least to a depth of 100 cm from the soil surface and (2) with no 

diagnostic horizons other than an albic, argic, cambic or vertic horizon. 
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Finally, the result of the gap analyses is displayed in Figure 20 below: 

 

 

Figure 20: Gap analyses on Maxent model output. Red areas indicate areas where no 

presence points were used as training data, but that have a very high likelihood of producing 

positive cases. Thus red indicates highest sampling priority, followed by orange and lastly 

yellow. 
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4. Discussion 

This study presents an estimate of ecologically suitable areas for anthrax occurrences 

throughout the KNP. According to the model, there are at least three geographically 

distinct regions within the Park – Pafuri, Shingwedzi and Letaba – that are highly suitable 

for spore dormancy and survival. The Pafuri ranger region is the only region to be 

described in the literature as endemic to anthrax. Since most of the positive occurrences 

from the dataset were from Pafuri, it was expected that the region will have a very high 

suitability for anthrax. The other two identified areas were predicted with a significantly 

smaller amount of positive occurrences. This can reflect reality, overestimate (for Pafuri), 

or underestimate (for the rest of KNP) anthrax occurrences due to bias in sampling effort 

and location.  

 

In addition to sampling bias, lack of information from the occurrence data can have a 

negative impact on the model performance through the influence of environmental 

variables which contains large gradients in their values. For example, the environmental 

variable altitude will have a much higher value on a mountain. If the data point location 

is erroneously reported as on top of a mountain instead of at its foothills, it can have a 

negative (or false positive) impact on the predictive contribution of the altitude variable.  

 

According to Van Ness (1971), the conditions favourable for the persistence of anthrax 

spores would be i) calcareous soils which were rich in nutrients and contained a high 

moisture content, ii) high soil pH levels (>7), iii) low lying depressions where water 

stagnated and organic matter decayed, iv) rocklands that were dried up rivers and v) 

hillside seeps where organic matter accumulated during run-off. Dragon and Rennie 

(1995), referred to these areas as 'storage areas'. The modelled predictions appear to 

follow associated rivers eastward, with the highest suitability points at river confluences. 

This is most likely due to the alluvial deposition of spores after flooding. Spores have a 

high surface hydrophobicity, allowing clumping in water and a high buoyant density, 

allowing clumped organic matter to float (Dragon and Rennie, 1995). This also 

contributes to spore concentration during run-off into stagnant pools.  
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Calcium (Ca) has been shown to be important for both spore germination and the 

maintenance of dormancy. The Pafuri, Shingwedzi and Letaba regions have high pH and 

Ca levels, corresponding to the requirement for the dormancy of soil spores as mentioned 

by Dragon and Rennie (1995). High levels of Ca in the soils may act as a buffer to the 

internal spore Ca supply and greatly extend its survivability (Dragon and Rennie, 1995). 

Anthrax spores have increased survivability in alkaline soil because the free Ca is readily 

available. As the soil pH increases above 7.2, due to additional soil Ca, the "free" Ca is 

not absorbed into the soil and can bind with other compounds (Spectrum Analytic Inc, 

2012). Table 13 lists soil sample values for four locations in KNP indicating that high 

levels of Ca, pH and CEC (cation exchange capacity) in soil might support anthrax 

spores.  

 

Table 13: Selected parameters from soil sample points in Kruger National Park indicating anthrax 

presence or absence (Dijkshoorn et al., 2008). 

Parameter* Pafuri Shingwedzi Letaba Pretoriuskop 

Ca 255.3 254 221 30 

pH 7.7 9 7.7 5 

CEC 324.7 440 313 150 

Na 1.7 10.9 2.7 10 

Anthrax Present Present Present Absent 

* Ca: Calcium; CEC: cation exchange capacity; Na: Sodium 

 

Lower CEC soils hold less Ca, and high CEC soils hold more (Spectrum Analytic Inc, 

2012). Note the very low CEC value for Pretoriuskop in Table 13 and the correlation to 

the absence of anthrax. Abnormally high levels, or application rates of other cations, in 

the presence of low to moderate soil Ca levels tends to reduce the uptake of Ca. Excess 

sodium (Na) in the soil competes with Ca, and other cations to reduce their availability 

(Spectrum Analytic Inc, 2012). Thus pH, CEC and Na parameters all influence the Ca 

concentration. These soil parameters correspond to results from previous studies which 

stated that anthrax spores need a high calcium level in the soil to persist for extended 
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periods (Van Ness, 1959a; Van Ness, 1971; De Vos, 1990; Dragon and Rennie, 1995; 

Hugh-Jones and Blackburn, 2009). 

 

Contrary to the findings of Blackburn (2007) altitude did not play a major role in model 

prediction, which is likely due to the small variation in altitude within the KNP.  

 

 

Figure 21: Suitable anthrax areas within Kruger National Park. Black rectangles indicate core areas 

(greater than 80% probability). Grey rectangles indicate notable areas (60% - 80% probability). 

 

Core Sections (Figure 21) 

The final model indicated areas with a probability of 80 – 100% of having suitable 

ecological conditions for anthrax. These areas were: 

1. Northern Pafuri 
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2. Mpongolo-Shingwedzi confluence 

3. Letaba-Olifants area 

 

The Northern Pafuri depression 

This area (Figure 22) is classified by Venter (1990) as the Pafuri Land Type (Pa05) and is 

located in the Pafuri ranger section of KNP. It's endemicity to anthrax has been described 

by De Vos (1990).  

 

 

Figure 22: Pafuri region suitability map for Bacillus anthracis. This map depicts the predicted area 

in more detail. 

 

Alluvial lowlands flank the lower Luvuvhu and Limpopo rivers with sandy to deep red 

silt sediments. Several large seasonal pans occur in this area and large floodplains are 

present. Pans are replenished by run-off water after heavy rains. Oakleaf and Valsrivier 
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soil forms dominate these floodplains. The average rainfall for the area is 400mm per 

year. Table 14 indicates favourable soil parameters for the survival of B. anthracis spores 

where the soil properties of anthrax endemic Pafuri land type is compared with 

unfavourable soil properties on non-anthrax Pretoriuskop land type (Sk01).  

 

Table 14: Selected soil properties of Pafuri land type (Pa05) where anthrax is endemic compared 

with anthrax unfavourable Pretoiuskop land type (Sk01) (Venter, 1990) 

Property* Value Pa05 (Pafuri) Value Sk01 

(Pretoriuskop) 

Clay (%) 31 – 33 20 – 40 

CEC (me/kg) 275 – 450 150 

pH 8.25 – 10.5 4.5 – 5.5 

K (me/kg) 3 – 15 1 – 1.5 

Ca (me/kg) 260 – 280 20 – 50 

Mg (me/kg) 36 – 46 10 – 30 

Na (me/kg) 0 – 3 5 – 15 

Phosphorus (mg/kg) 8 – 12 5 – 9 

* CEC (Cation exchange capacity), K (Potassium), Ca (Calcium), Mg (Magnesium), Na 

(Sodium).   

 

Mpongolo-Shingwedzi confluence 

This area (Figure 23) is classified by Venter (1990) as the Shingwedzi Land Type (Le05) 

and includes the Shingwedzi river and its major tributaries Bububu, Phugwane, 

Mphongolo and Nkokodzi. Significant alluvial deposits occur along the Shingwedzi river 

system. The area is characterized by peripheral incised areas with shallow soils, which 

slope down gently towards the rivers. Undulating landforms along rivers are frequent, 

with flat alluvial plains alongside drainage channels. Very high pH and Ca levels occur 

along valley bottoms with predominantly dense and heterogeneous riverine vegetation. 

The Valsrivier soil form is most prevalent and Colophospermum mopane is the most 

dominant woody plant species in the valley bottom hillslope unit. 
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Figure 23: Shingwedzi region suitability map for Bacillus anthracis. This map depicts the predicted 

area in more detail. 

 

The Shingwedzi land type with its high pH and Ca levels (Table 15), corresponding to the 

requirement for the occurrence of soil spores compared to the low pH and Ca level of 

unfavourable conditions of the Pretoriuskop land type (Sk01) as indicated by the model. 

 

Table 15: Selected soil properties of Shingwedzi land type (Le05) favourable for anthrax compared 

to unfavourable anthrax Pretoriuskop land type (Sk01) (Venter, 1990) 

Property Value Le05 (Mpongolo-

Shingwedzi confluence) 

Value Sk01 

(Pretoriuskop) 

Clay (%) 33 – 35 20 – 40 

CEC (me/kg) 440 – 550 150 

pH 8.8 - 10.3 4.5 – 5.5 

K (me/kg) 18 – 23 1 – 1.5 

Ca (me/kg) 255 – 275 20 – 50 

Mg (me/kg) 35 – 55 10 – 30 
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Na (me/kg) 10 – 65 5 – 15 

Phosphorus (mg/kg) 8 – 70 5 – 9 

 

Letaba-Olifants area  

This area (Figure 24) is classified by Venter (1990) as the Letaba landtype (Le02) and is 

characterized by extensive, flat to strongly undulating plains with calcareous soils, 

dominated by C. mopane woody vegetation.  

 

 

Figure 24: Letaba-Olifants region suitability map for Bacillus anthracis. This map depicts the 

predicted area in more detail. 

 

Fairly extensive alluvial deposits occur along the Letaba river, consisting of mainly 

Oakleaf and Valsrivier forms. Once again the high pH, Ca and CEC of Letaba land type 

indicates favourable soil parameters for the survival of B. anthracis spores (Table 16).  
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Table 16: Selected soil properties of Letaba land type (Le02) favourable for anthrax compared to 

unfavourable anthrax Pretoriuskop land type (Sk01) (Venter, 1990) 

Property Value Le02 (Letaba-

Olifants Area) 

Value Sk01 

(Pretoriuskop) 

Clay (%) 33 – 35 20 – 40 

CEC (me/kg) 425 – 470 150 

pH 7.8 – 8 4.5 – 5.5 

K (me/kg) 3 – 4.5 1 – 1.5 

Ca (me/kg) 230 – 275 20 – 50 

Mg (me/kg) 52 – 60 10 – 30 

Na (me/kg) 4.4 – 4.6 5 – 15 

Phosphorus (mg/kg) 0 – 3 5 – 9 

 

A striking feature of all three these suitable areas is the high Ca and pH values (similar to 

De Vos (1990); Dragon and Rennie (1995)), indicating potentially favourable soil 

conditions for anthrax spores. The pH layers used implicitly in this model, surprisingly 

did not play a significant role in predicting suitability, but this could be due to lack of 

information at the spatial scale at which they were employed in this model. 

 

Noteworthy sections (Figure 21) 

The model indicated areas with a probability of 60 – 80% of having suitable ecological 

conditions for anthrax in the following ranger sections:  

1. Kingfisherspruit 

2. Lower Sabie and Crocodile Bridge 

 

Kingfisherspruit 

This area (Figure 25) is classified by Venter (1990) as the Orpen landtype (Sa05). Soils in 

this area are shallow to moderately deep, black, occasionally calcareous clay (Mayo, 

Bonheim, Milkwood and Arcadia soil forms).  
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Figure 25: Kingfisherspruit region suitability map for Bacillus anthracis. This map depicts the 

predicted area in more detail. 

 

The black soils are associated with olivine gabbro and Acacia nigrescens is the dominant 

woody plant species. Table 17 indicates high pH, Ca and CEC of Orpen land type 

compared to Pretoriuskop land type that is unsuitable for anthrax.  

 
Table 17: Selected soil properties of Orpen land type (Sa05) suitable ecological conditions for 

anthrax compared to unfavourable anthrax Pretoriuskop land type (Sk01) (Venter, 1990) 

Property Value Sa05 

(Kingfisherspruit) 

Value Sk01 

(Pretoriuskop) 

Clay (%) 25 – 40 20 – 40 

CEC (me/kg) 250 – 350 150 

pH 7.0 – 8.0 4.5 – 5.5 
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K (me/kg) 5 – 10 1 – 1.5 

Ca (me/kg) 150 – 250 20 – 50 

Mg (me/kg) 40 – 45 10 – 30 

Na (me/kg) 2 – 4 5 – 15 

Phosphorus (mg/kg) 2 – 5 5 – 9 

 

Lower Sabie and Crocodile Bridge 

This area (Figure 26) is classified by Venter as the Satara landtype (Sa01) and is 

characterized by Olivine poor areas with shallow red and brown, paraduplex clay 

(Shortlands and Swartland forms).  

 

 

Figure 26: Crocodile Bridge region suitability map for Bacillus anthracis. This map depicts the 

predicted area in more detail. 
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Vegetation is dominated by open Sclerocarya birrea / Acacia nigrescens tree savanna. 

Calcareous soils are restricted to depressions and valley bottoms in this land type. The 

altitude of the area ranges from 140 m to 310 m. Table 18 shows that the area contains 

very high soil Na values. Since Na competes with Ca, it decreases the probability of 

extended spore survival (Spectrum Analytic Inc, 2012). 

 

Table 18: Selected soil properties of Satara land type (Sa01) suitable ecological conditions for 

anthrax compared to unfavourable anthrax Pretoriuskop land type (Sk01) (Venter, 1990) 

Property Value Sa01 (Lower Sabie 

/ Crocodile Bridge) 

Value Sk01 

(Pretoriuskop) 

Clay (%) 50 – 60% 20 – 40 

CEC (me/kg) 35 - 45 150 

pH 7 – 8.2 4.5 – 5.5 

K (me/kg) 5 - 6 1 – 1.5 

Ca (me/kg) 185 - 240 20 – 50 

Mg (me/kg) 58 - 95 10 – 30 

Na (me/kg) 100 - 225 5 – 15 

Phosphorus (mg/kg) 5 - 10 5 – 9 

 

Another factor to consider in the distribution of anthrax within KNP is the specific strain 

involved (Smith et al., 2000). The A type strain is more prevalent in the north of the Park 

and also less pathogenic, while the B type is more prevalent in the central KNP. The A 

type is able to withstand adverse environmental conditions for longer periods of time than 

type B. Type B is also associated with significantly higher soil Ca levels than type A. 

Determining the spore type along the Letaba-Olifants regions can give an indication of 

endemicity of the type B strain. A separate model for ecological suitability should be 

created for the two types since type B requires even more specific environmental 

conditions. 

 

None of the evaluation methods employed in this study can be used in isolation to  

measure model performance (Pearce and Boyce, 2006). Several methods, including AUC, 

null model evaluation and threshold dependant binomial statistics, were used to assess 
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whether the model predicts better than random. Results of all the methods indicated that 

the model predicts suitable habitat for anthrax survival significantly better than random (p 

< 0.05).  

 

A prominent feature of all the models was the little difference variable removal made to 

the model outcome, suggesting that only a few of the variables made a high contribution 

to the final prediction. These variables were precipitation during the driest quarter 

(precdryq), landscape as defined by Gertenbach (landscapegert), land type as defined by 

Venter (ltypeventer) and the SOTER soil class (sotersoilid). 
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5. Synthesis 

5.1. Conclusion 

The aim this study was to identify and map areas within the KNP that were ecologically 

suitable for the harbouring of B. anthracis spores within the soil. This was achieved using 

maximum entropy as a statistical model, a range of environmental predictors and 

provided anthrax occurrence data. A regularized training gain of 1.9254 was achieved 

and a bootstrapped AUC of 0.9372. This research yielded a distribution model with a 

good fit to the sample data and a good performance on test data. 

 

Three regions within the KNP have been identified and described as ecologically suitable 

for the long term survival of B. anthracis spores. The only area that has historically been 

described as endemic to anthrax in the KNP was the northern Pafuri (De Vos, 1990). 

Comparison of the environmental conditions in Pafuri with those at the other suitable 

sites revealed very similar ecological parameters.  

 

The most useful predictors were found to be land type as classified by Venter, the large 

integral NDVI values as indicators of plant biomass, the soil class and the precipitation 

during the driest quarter of the year.  

 

Finally, a gap analyses revealed the areas where future surveillance efforts should receive 

priority. The results of this study concurs that the northern Pafuri region is endemic to 

anthrax, but in addition, also provides at least two further potential areas for anthrax 

endemicity, namely the Mpongolo-Shingwedzi confluence and the Letaba-Olifants river 

region.  

5.2. Recommendations and future work 

 Compare the results of the Maxent model with the results of other modelling 

techniques, e.g. GARP (Stockwell and Peters, 1999). 

 Use location data from negative cases in the dataset as “absence” records to 

build presence/absence models, using e.g. DOMAIN (Carpenter et al., 1993) 
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 Strain typing on future cases from the Letaba region to determine if the type B 

strain is endemic in the area. 

 Collection of soil Ca and pH data as part of anthrax surveillance data will 

significantly enhance the accuracy of this model. Soil data is needed for every 

sampling point. 

 Use the proposed sampling areas as a starting point for future anthrax 

surveillance efforts. 

 Model the potential distribution of anthrax in KNP under multiple climate 

change scenarios (Joyner et al., 2010) 

 

The most important factor for improving the model accuracy is improvement of locality 

data of occurrence records, which includes specific GPS coordinates and intensification 

of passive surveillance efforts. 
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7. Appendices 

Appendix A 

Maxent Variable Response Curves 
Results of B._anthracis.html 

 
These curves show how each environmental variable affects the Maxent prediction. The 

curves show how the logistic prediction changes as each environmental variable is 

varied, keeping all other environmental variables at their average sample value. Note 

that the curves can be hard to interpret if you have strongly correlated variables, as the 

model may depend on the correlations in ways that are not evident in the curves. In other 

words, the curves show the marginal effect of changing exactly one variable, whereas the 

model may take advantage of sets of variables changing together (Phillips, 2006). The 

red in the figures below indicate the mean value, while the blue indicate variation around 

the mean. 
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In contrast to the above marginal response curves, each of the following curves 

represents a different model, namely, a Maxent model created using only the 

corresponding variable. These plots reflect the dependence of predicted 

suitability both on the selected variable and on dependencies induced by 

correlations between the selected variable and other variables. They may be 

easier to interpret if there are strong correlations between variables (Phillips, 

2006). 
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Appendix B 

Model output maps for different threshold values 
 
Binary output maps after applying a threshold. Red indicates suitable, green indicates unsuitable. 

For an explanation of each value see Table 2. 
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Appendix C 

Borehole Closures in KNP 
 

BOREHOLE  SECTION  DRILL DATE  
DATE 

CLOSED  

Mavumbye Satara 1950-01-01 1972 

Machayipan Pafuri  1961-01-01 1980 

Nsemane Satara 1950-01-01 1982 

Rhilazeni Satara 1950-01-01 1982 

Sweni Nwanetsi 1950-01-01 1982 

Olienhoutfontein Pretoriuskop 1976-11-02 1989 

Bvumanyundu Pafuri  1964-09-08 1990 

Rhidonda Phalaborwa 1975-01-01 1991 

Mack Crocodile Bridge 1976-08-31 1992 

Rietpan Tshokwane 1983-01-01 1994 

Metsimetsi Tshokwane 1971-07-12 1995 

Ribbokrand Tshokwane 1973-01-01 1995 

Ruigtevlei Skukuza 1975-04-25 1995 

Koorsboom Pafuri  1980-03-01 1996 

Kremetart  Pafuri  1975-09-13 1996 

Buffeldoring Crocodile Bridge 1973-01-01 1998 

Bejane Skukuza 1971-08-01 1999 

Biyamite West Pretoriuskop 1965-07-01 1999 

Jock Malelane 1973-01-01 1999 

Kirkman Pretoriuskop 1950-01-01 1999 

Lushof Tshokwane 1976-08-17 1999 
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Manyahule Skukuza 1970-08-01 1999 

Mavukani Stolsnek 1965-10-01 1999 

Mikstok Stolsnek 1976-10-16 1999 

Mlambane West  Stolsnek 1973-01-01 1999 

Môrester Pretoriuskop 1976-10-28 1999 

Newu Stolsnek 1965-11-01 1999 

Ngwenyeni Stolsnek 1965-07-01 1999 

Nkombanine Stolsnek 1969-07-01 1999 

Nwatindlopfu N Tshokwane 1962-07-01 1999 

Peru North Houtboschrand 1958-01-01 1999 

Sithungwane Pretoriuskop 1965-07-01 1999 

Vutomi Boloop Tshokwane 1969-07-01 1999 

Shitlhave Pretoriuskop 1965-07-01 1999 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



Appendix 

 

97 

 

Appendix D 

Software images 

 

 

Figure 27: Creation of a personal geodatabase in ArcCatalog to enable addition of individual records 

of anthrax cases. 

 

 

Figure 28: Maxent GUI, main screen indicating features selected. 
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Figure 29: Basic options selected in Maxent. Note the 25 random test percentage. 

 

 

Figure 30: Advanced options in Maxent. Note the number of maximum iterations to ensure 

convergence. 

 

 
 
 



Appendix 

 

99 

 

 

Figure 31: Null Model creation with ENMTools. 

 

 

Figure 32: Maxent model surveyor output. Two variable sets with optimal AUC are displayed 

containing 10 and 11 variables respectively. 

 

 
 
 




