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CHAPTER IX 

RESEARCH DESIGN 

 

9.1 INTRODUCTION 

 What social researchers find most interesting about studying social organizations is not how 

well they operate, but which characteristics do not seem to further their goals - in other 

words, which activities are dysfunctional (Baker, 1988:9). 

 

 In this chapter the research design, the population and sample determination, the collection 

and interpretation of data, and the relevant statistical methods are discussed. 

 

9.2 THE RESEARCH DESIGN 

 According to Leedy (1993:139) the nature of the data and the problem for research dictate the 

research methodology. “All data, all factual information, all human knowledge must 

ultimately reach the researcher either as words or numbers. If the data is verbal, the 

methodology is qualitative; if it is numerical, the methodology is quantitative”. Leedy 

(1993:243) describes quantitative methods as valuable to express and describe information 

that is more difficult by using words only. According to Dooley (1990:276) qualitative 

research refers to social research based on non-quantitative observations made in the field and 

analyzed in non-statistical ways. Dooley (1990:277) explains that non-quantitative 

observation is less structured than quantitative research, being flexible, spontaneous, and 

open-ended. A qualitative observer who looks, listens, and flows with the social currents of 

the setting can be expected to acquire perceptions from different points of view. Comparing 

and contrasting different interviews and perceptions of the same subject or behaviour are 

likely to produce a more detailed and less distorted understanding of the real issues at hand.  

 

 Thus, even though the quantitative criteria of reliability and validity cannot be applied to 

qualitative data, such data have an intuitive appeal as accurate and unbiased (Dooley, 

1990:277). The most obvious difference between quantitative and qualitative research can be 

seen in the notational system used to report the findings. Numbers, figures, and inferential 

statistics appear in the result sections of quantitative studies. In contrast, qualitative research 

typically reads like a story written in everyday language (Dooley, 1990:279). In this study a 

qualitative and quantitative research strategy were utilized to investigate the factors that 

influenced the effectiveness or ineffectiveness of the transformation process. Quantitative 

techniques were used to assess attitudes of the factors that influenced transformation, to 
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investigate work-related needs, work motivation, and locus of control variables. A qualitative 

strategy was used to gather information about the need for change in this organization, the 

diagnosis of the current organization, planning of change strategies, implementation of 

change interventions, and management of the transformation process within the organization. 

The researcher's role was established as an objective observer of each and every aspect of the 

transformation process that entailed data collection, evaluation and feedback to the external 

consultants. The data for the quantitative research is highlighted in terms of age, home 

language, religion, qualifications, income, job grades, geographical area employed, and 

occupational levels as independent variables. The survey method (questionnaires) was 

selected as the most appropriate method to gather data from the employees.  

 

9.2.1    SURVEY RESEARCH 

Dane (1990:338) defines survey research as a method of “obtaining information directly from 

a group of individuals”. Chadwick, Bahr and Albrecht (1984:442) view it as “a research 

technique that puts questions to a sample of respondents by means of a questionnaire or an 

interview”. Self-administered questionnaires, interview surveys, and telephone surveys are 

three main methods of survey research (Baker, 1988:168; Babbie, 1989:238).  

 

Theron (1992:337) notes that the survey research process starts with the selection of valid 

measurement(s)/questionnaire(s) that contain the questions that measure the intended 

concept(s). Therefore the questions need to be worded carefully and unambiguously, must be 

acceptable to the respondents, not give offence, and be easily understood by everyone 

(Theron, 1992:337). Once the questionnaire has been selected or developed, the respondents 

need to be selected. The relevant criterion in selecting respondents is that the questions should 

apply to the population from which the respondents have been selected (Theron, 1992:337). 

The next step was to administer the questionnaires. The questionnaires were distributed by 

the researcher to all employees in the organization with instructions on how they had to be 

completed, and when they had to be returned. 

 

9.2.2    THE SURVEY RESEARCH PROCESS 

Baker (1988:174-175) discusses four types of questions that may form part of a questionnaire, 

viz. closed-ended questions, open-ended questions, contingency questions, and matrix 

questions. Examples of a matrix questionnaire are the response categories of a Likert scale. 

The respondents select a response from a set of five or seven response categories, as used in 

the Motivation, Locus of Control, and Transformation Questionnaire. Open-ended questions 
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were also used near the end of the Transformation Questionnaire for more detailed and 

personalized answers to sensitive questions. Open-ended questions should be worded in such 

a way that they are understandable. The set of questions should also be designed in such a 

way that they effectively assess the attitudes towards, and measure the topic concerned 

(Baker, 1988:168). 

 

9.2.3 ADMINISTERING THE QUESTIONNAIRES 

Chadwick et al.(1984:147) suggest two strategies for collecting data by self-administered 

questionnaires, namely hand-delivered to individual respondents and collected after a few 

days, or administered to groups. According to Chadwick et al.(1984:147) the second strategy 

is more efficient. It enables the instructor to explain the purpose of the questionnaire, as well 

as the instructions for completion and to handle individual enquiries. The strategy also 

ensures a common understanding and motivation of the group, which saves time and still 

allow respondents time to complete the questionnaire privately.  

 

The Motivation and Locus of Control Questionnaire was administered after the first five 

months of transformation, to groups of voluntary employees in Head Office and all the 

Branches of the organization. The researcher administered the questionnaires to all the 

groups, explaining the purpose and aim of the study, as well as the instructions for 

completion. On completion the questionnaires were handed to the instructor. 

  

The Transformation Questionnaire was administered after the first eleven months of 

transformation, to groups of voluntary employees in Head Office only. The researcher 

administered the questionnaires to all the groups, explaining the purpose and aim of the study, 

as well as the instructions for completion. On completion the questionnaires were handed to 

the instructor. 

 

9.3 POPULATION AND SAMPLE DETERMINATION 

 Baker (1988:144) argues that the quality of a sample, however careful the selection, can be no 

better than the sampling frame from which it is drawn. If the sampling frame is not truly 

representative of the population, it supposedly enumerates, then the sample cannot be 

representative of the population. Steyn, Smit and Du Toit (1987:12) define the population as 

the total group of people or the comprehensive collection of items that are relevant to the 

study. Supporting that definition, De la Rey (1978:16) argues that a population should be seen 

as a whole, while the sample can be viewed as a part of the whole. Baker (1988:144) defines 
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a sample as a selected set of elements or units drawn from a larger whole of all the elements, 

the population. The population, in this case, is the total work force of a large agricultural 

financier, which amounts to 1 022 employees. Table 9.1 presents the population of the 

organization.   

 

 From Table 9.1 it is evident that the majority of the population is 40 years and younger. The 

majority is male and married. From the population 17,8% have tertiary qualifications. The 

largest group of the population have more than 21 years of service and the second largest 

group have 16-20 years of service. 
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 TABLE 9.1: BIOGRAPHICAL DATA OF THE POPULATION. 

 Frequency Percentage Cumulative percentage 

Age    

18 - 20 years 14 1,4 1,4 

21 - 25 years 184 18,0 19,4 

26 - 30 years 213 20,8 40,2 

31 - 40 years 337 33,0 73,2 

41 - 50 years 196 19,2 92,4 

Over 51 years 78 7,6 100,0 

Total 1 022 100,0 - 

Gender    

Male 581 56,8 56,8 

Female 441 43,2 100,0 

Total 1 022 100,0 - 

Marital status    

Married 630 61,6 61,6 

Unmarried 336 32,9 94,5 

Divorced 56 5,5 100,0 

Total 1 022 100,0 - 

Educational 
qualifications 

   

Matric 840 82,2 82,2 

Diploma 93 9,1 91,3 

Degree 70 6,8 98,1 

Post-graduate degree 19 1,9 100,0 

Total 1 022 100,0 - 

Years of service    

Less than a year 51 5,0 5,0 

1 - 2 years 131 12,8 17,8 

3 - 5 years 112 10,9 28,7 

6 - 10 years 152 14,9 43,6 

11 - 15 years 148 14,5 58,1 

16 - 20 years 183 17,9 76,0 

More than 21 years 245 24,0 100,0 

Total 1 022 100,0 - 
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9.4 STATISTICAL METHODS 

 Data will be extensively analyzed according to criteria developed and expressed by Ferguson 

(1981), Tabachnick and Fidell (1983 and 1989), Ott and Mendenhall (1990), Shavelson 

(1981) and Harris (1975). The major tools of analysis may be descriptive statistics, 

correlational statistics, analysis of variance, Student’s t test, Kruskal-Wallis non-parametric 

one-way analysis of variance, Hotelling’s T 2  test, discriminant analysis and the Mann-

Whitney test. The researcher hopes to ascertain the influence of independent or moderator 

variables such as age, gender, language, marital status, religion, educational qualifications, 

income, years of service, geographical area employed, and job grade on transformation 

factors. 

 

 The applicable statistical methods available on the computer programmes Statistical Packages 

for the Social Sciences (SPSSR), and Statistical Analysis Systems (SAS) - will be utilized to 

analyze the work-related needs or motivation factors, the locus of control factors, and the 

attitudes related to transformation factors. 

 

9.4.1 ANALYSIS OF VARIANCE 

             Bohrnstedt and Knoke (1988:219) define analysis of variance (Anova) as “a statistical test of 

the difference of means of two or more groups”. Ferguson (1981:234) defines Anova as “a 

method for dividing the variation observed in experimental data into different parts, each part 

assignable to a known source, cause or factor”. Anova is thus a method to statistically 

ascertain whether or not differences between two or more groups exist (Theron, 1992:343). 

The variance is partitioned into variance between groups: 

                                                       n Σd2 

   σ  2  =    
                                                       r  –  1                …..A 

                        and variance within groups: 

                                                          ΣΣx i2 

                                         σ  2  =   

                                                        r (n  – 1)           …..B 

 
                                                           A  

             and is expressed as the ratio B , called the F ratio (Du Toit, 1963:108). Theron (1992:343) 

notes that besides the fact that groups can be compared to establish reliable differences 

between them, the extent to which the dependent variables differ as a function of group 
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membership can be determined, as well as the strength between independent and dependent 

variables. According to Theron (1992:343) the logic behind an analysis of variance may be 

explained as follows: “The Anova model tests the null hypothesis (Ho ) that all sample means 

are drawn from the same population and therefore are equal. The Ho  may be presented as Ho : 

µ1 = µ2  ….. = µj. This implies that the group means will be equal to the grand mean. The 

Anova model revolves around the question of how much of the total variation in the 

dependent variable (DV) can be explained by the independent variable (IV) (treatment 

variable) and how much is left unexplained” (Theron, 1992:344). The general Anova model 

with one IV may be presented as: 

 
           Yij = µ + aj + eij where 
 
 

eij  = error term. (Error term is the difference between the observed score and the score 

predicted by the model). 

 
 This formula, according to Bohrnstedt et al.(1988:222), indicates that the score of 

observation I, which is also a member of group j (hence Yij), is a function of a group effect, 

aj, plus the population mean and random error, eij. The numerator of the sample variance is 

then partitioned into two independent additive components to enable the researcher to 

estimate the proportion of variance in Yij. The formula: 

   n 
   Σ    ( Yi –  Y ) 2  is applied to divide the numerator into two  
                      i = 1 
 

   components. 
   
     
   N             J           nj 
   Σ    ( Yi –  Y ) 2  =       Σ           Σ               (Yij – Y ) 2   as the sum of the  
            i = 1                      j = 1      i = 1 
   

observations across the J subgroups or treatments equal the total sample size N. The term:  

    

   J           nj 

    Σ Σ (Yij –  Y ) 2   is called the sum total  
              j = 1      i = 1  

 
of the squares (SS total) and is partitioned into a between sum of squares  

(SS between) and a within sum of squares (SS within). Variance is thus expressed as the F ratio: 
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 MS between 

 MS within              (Theron, 1992:345). 

 

The total sum of squares refers to a number obtained by subtracting the scores of a 

distribution from their mean, squaring and summing these values. Between sum of squares is 

a value obtained by subtracting the grand mean from each group mean, squaring these 

differences for all individuals and summing them. Within sum of squares refers to the value 

obtained by subtracting each subgroup mean from each observed score, squaring and 

summing them (Bohrnstedt  et al., 1988:219-224; Ott et al., 1990:527-540). Dividing the 

SSbetween and SSwithin by their respective degrees of freedom, provide the SSbetween and the 

SSwithin with which the F ratios may be calculated. 

 

The different techniques of analysis of variance are one-way analysis of variance, factorial 

Anova, one-way Manova and factorial Manova. A one-way classification of variance enables 

the researcher to measure the effect of an independent variable on (a) dependent variable (s) 

(Ferguson, 1981:235). In factorial Anova two independent variables or experimental variables 

are simultaneously investigated. It involves two bases of classification. These classification 

variables in analysis of variance are called factors. Because there are two factors, the design is 

termed a “two-way design” (There might be three or more factors but the larger the design the 

more difficult the interpretation of results). The two-way design contains an effect term for 

each factor and a term for the interaction effect produced by both factors operating 

simultaneously. Each score is considered to be influenced by its row, column and cell.  

Effects due to either column or row are called main effects while the effects due to column 

and row in combination are called interaction effects (Mason et al., 1989:231). Main effects 

are thus due to a single factor while interaction effects refer to influences of two or more 

factors in combination. 

 

In a two-way factorial Anova the total sum of squares is partitioned into three parts, viz. a 

between-rows sum of squares, a between-columns sum of squares and an interaction sum of 

squares. The total sum of squares of all observations about the grand mean is: 

     

R        c        n 
         Σ        Σ        Σ     ( Xrci – X….)2  (Ferguson, 1981:253). 

     r = 1   c = 1   i = 1     
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However, with more than one measurement for the treatment combinations (experimental 

conditions), the total sum of squares may be divided into four additive components, viz. a 

between-rows sum of squares, a between-columns sum of squares, an interaction sum of 

squares and a within-cells sum of squares.  The variance is expressed as the ratio of the 

interaction effects (Src
2) to the within cells effect (Sw

2): 

       Src
2 

       Frc   =   
   Sw

2 
  

(Ferguson, 1981:252-266; Theron, 1992:347). 

 

Multivariate analysis of variance (one-way Manova) is “a generalization of analysis of 

variance to a situation in which there are several dependent variables” (Tabachnick et al., 

1989:371). For example, a researcher would like to measure the effect of different types of 

treatment on three types of anxiety (test anxiety, anxiety related to life stresses, and so-

called free-floating anxiety). The independent variable is the different types of treatment 

offered (desensitization, relaxation treatment, and a control group with no treatment). 

Subjects are then randomly subjected to the treatment, and are measured on the three types 

of anxiety. The dependent variables are the scores on all three measures for each subject. 

Manova is used to assess whether a combination of the three anxiety measures varies as a 

function of the treatment (Tabachnick et al., 1989:371). Factorial Manova implies the 

extension of Manova to research comprising more than one independent variable 

(Tabachnick et al., 1983:58). Manova has the advantage that the measuring of several 

dependent variables may improve the chance of discovering changes produced by different 

treatments and interactions. Manova may also reveal differences not shown in separate 

Anovas. However, the analysis is quite complex. In factorial Manova, a “ best linear 

combination’ of dependent variables is formed for each main effect and interaction. The 

combination of dependent variables that best separates the groups of the first main effect 

may be different from the combination that best separates the groups of the second main 

effect or the cells from an interaction” (Tabachnick et al., 1989:371). 

 

Manova is also subjected to the limitations of unequal sample sizes, multivariate normality, 

outliers, linearity, multi-collinearity and singularity and homogeneity of variance-

covariance (Tabachnick et al., 1983:226-227). These limitations are discussed in detail 

under the heading “Discriminant analysis” in paragraph 9.4.3. 
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Manova revolves around research questions such as: Is change in behaviour associated with 

different levels of an independent variable due to something other than random fluctuations 

or individual differences occurring by chance (main effects of independent variables) and 

do independent variables interact in their effect on behaviour (interactions among 

independent variables)(Tabachnick et al., 1983:226-227)? According to Tabachnick et al. 

(1983:235-238) an appropriate data set for Manova should contain one or more 

independent variable(s) (classification variables) and two or more dependent variables 

(measures) on each subject or sampling unit within each combination of independent 

variables. Each independent variable may have two or more levels. The Manova equation 

for equal n can be developed through extension from Anova. Anova involves the 

partitioning of the total variance into two independent additive components, viz. sum of 

squares.  For factorial designs the variance between groups can be further partitioned into 

variance associated with the first independent variable, variance and variance associated 

with the interaction between the two independent variables. Each n is the number of scores 

composing the relevant marginal or cell mean or SSbg = SSD + SST = SSDT   (Tabachnick et 

al., 1983:238; Theron, 1992:348). 

 

Analysis of variance may also be used to conduct a profile analysis as Anova is analogous 

to the parallelism test, levels test and flatness test (discussed under Hotelling’s T 2 test). 

Treatments correspond to rows, the dependent variables to columns and the interaction 

between columns and rows is also assessed (Harris, 1975:81). 

 

Multiple comparison techniques (mean separation tests) allow the researcher to investigate 

post hoc hypotheses involving the means of individual groups or sets of groups. Examples 

of multiple comparison techniques are the Duncan test, the T test, Tukey’s test, the 

Bonferroni test, and the Scheffé test. According to the SAS /STAT Users’ Guide (1990) 

there is a serious lack of standardized terminology in the literature on multiple 

comparisons. Failure to reject a hypothesis that two or more means are equal should not 

lead to the conclusion that the population means are equal. “Failure to reject the null 

hypothesis implies only that the difference in population means, if any, is not large enough 

to be detected with the given sample size” (SAS /STAT Users’ Guide, 1990:941). The 

Scheffé test is the most popular and is a relatively conservative multiple comparison 

technique (Shavelson, 1981:470; Howell, 1989:240). This test is done on all pairs of means 

- the T option in the means statement. However, it is difficult to calculate the exact 

probability, but a pessimistic approximation can be derived by “assuming the comparisons 
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are independent, giving an upper bound to the probability of making at least one type of 

error” (SAS /STAT Users’ Guide, 1990:941). Two other methods, the Bonferroni (Bon) 

additive inequality, and the Sidak multiplicative inequality, can be utilized for control of 

the maximum experiment wise error rate (MEER) under a set of contrasts, or other 

hypothesis tests. According to the SAS /STAT Users’ Guide (1990:943) the Bonferroni 

inequality can provide simultaneous inferences if more than one hypothesis has to be 

tested. Any statistical application can be utilized in these comparisons. Tukey, as quoted by 

the SAS Users’ Guide, proposed a test specifically for pair wise comparisons based on the 

studentized range. This test is also called the “ honest significant difference test ” that 

controls the MEER when sample sizes are equal (SAS /STAT Users’ Guide, op.cit.).  

 

Tukey (1953) and Kramer (1956) independently proposed a modification for unequal cell 

sizes, and the Tukey-Kramer method was developed. This method is less powerful than the 

Bon, Sidak, and Scheffé methods, and also more conservative (SAS /STAT Users Guide, 

1990:944). However, the Scheffé test is compatible with the overall ANOVA  F, in that this 

method never declares a contrast significant before the overall F is significant. The Scheffé 

method is less powerful than the Bon and Sidak methods if the number of comparisons is 

largely relative to the number of means. Multiple comparisons by means of the Scheffé test 

may be conducted regardless of whether the overall F is significant. Howell (1989:235) 

presented the formula: 

 

   t =       X1 – X2 

    √MS error  (   1   +   1   ) 
                    n1       n2  
       

with degrees of freedom (df) equal to the number of groups –1 and N 1 + N2 – 2 in order to 

perform the Scheffé test. The specific approach used for the calculation of the post hoc 

Scheffé test, describing the data, is that of Horvath (1985:226). It is similar to the method 

described by Howell (1989:236-240) but differs in terms of the formula by which the 

critical values in the F tables are determined. Horvath (op. cit.) uses the normal critical F 

values while Howell’s approach is similar, except that the obtained F ratio is multiplied by 

a factor of (k – 1) where k is equal to the number of groups or subgroups (i.e. the row-

effect). 
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9.4.2 HOTELLING’S T 2  TEST 

Hotelling’s T 2  test enables the researcher to compare two groups on several variables 

simultaneously (De la Rey, 1978:71). Student’s t test and Hotelling’s T 2  test can both be 

employed to test a single group or two independent groups (Harris, 1975:67). According to 

Tabachnick et al.(1983:56) Hotelling’s T 2  test is a special case of multivariate analysis of 

variance (as the t test is a special case of univariate analysis of variance) in which two 

groups compromise the independent variable. Hotelling’s T 2 test is applied to determine 

whether the groups differ on a set of dependent variables (Theron, 1992:347). Hotelling’s  

T 2 test determines whether the centroids (combined averages on the dependent variables) 

differ for the two groups. Harris (1975:78) offers the following formula to compute 

Hotelling’s T 2 test: 

  

  T 2  =  [N1N2 / (N1 + N2) ] (X1 - X2) 1SC – 1 ( X1 – X2) 

 

There is no evidence relating to the robustness of T 2  except that large sample sizes are 

needed. The test, therefore, is N sensitive. So a large and representative sample of 

determined size is needed for reliable and valid results. When the dependent measures 

originated from a normal distribution, the computed T 2 values conform to the F distribution 

(Harris, 1975:87). 

 

Certain assumptions, however, have to be met before a T 2 analysis of data may be 

conducted (Harris, 1975:85-88). The averaging together of the covariance matrices for two 

groups (the independent variable) before conducting a T 2 analysis of the differences 

between two groups, involves the implicit assumption that the differences between S1 and 

S2 simply represent random fluctuations about a common population covariance matrix Σ. 

The null hypothesis (Ho) includes both the hypotheses that µ1 = µ2 and that Σ1  = Σ2. 

However, the second hypothesis is only an assumption on which the correctness of the 

validity of the first one depends. Rejection of the Ho thus could be due to the fact that Σ1  ≠  

Σ2  rather than to non-null differences between µ1 and µ2. Hotelling’s T 2  test is more 

sensitive to difference in means than to differences in variances and covariances, and the 

true significance level of T 2 is unaffected by discrepancies between Σ1 and Σ2 , as long as 

the sample sizes are fairly large and N1 = N2  (Harris, 1975:85). The symbol Σ refers to the 

common population covariance matrix. 
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In some situations the entries in the population variance-covariance matrix are a priori 

specified (preplanned). The observed variances could be uniformly larger than the 

hypothesized values suggest. The individual differences in choice probability are inflating 

the response variabilities. The researcher should therefore be careful to apply formulas for 

the mean and variance of a multinominal distribution to situations where the assumption 

that all SS have the same generating probability (ties) is unlikely to be met. According to 

Harris (1975:86) the formula for T 2 is easily corrected to known covariance formulas 

simply by substituting Σ for S or Sc. The significance of the resulting T 2 is then obtained 

from the chi-square table with p degrees of freedom. Another assumption on which 

Hotelling’s T 2 test is based is that the vectors of outcomes of variables are sampled from a 

multivariate normal distribution. As already stated, little is known about the robustness of  

T 2.  For fairly large samples however, computed T 2 values conform to the F distribution, 

no matter what shape the parent population takes (Theron, 1992:352). 

 

Besides Hotelling’s T 2  test, other methods to determine profile similarities are the method 

of Du Mas, the method of Du Toit, the method of Osgood and Suci, and Cattell’s method 

(Smit, 1991:97-104). However, because these methods are not going to be used in the case 

in hand, they will not be discussed in detail. Hotelling’s T 2 test is a suitable test to apply in 

profile analysis as the overall T 2 test for two samples “lumps together two sources of 

differences between the two groups’ response vectors (profiles): a difference in the level of 

the two curves and differences in the shapes of the two curves” (Harris, 1975:80).  Methods 

that analyze these two sources of difference, viz. level and shape, separately and in 

addition, provide a simple test of the flatness of the combined or pooled profile for the two 

groups are known as profile analysis. Three methods are available in profile analysis to test 

the response vectors, viz. a parallelism test, the levels test, and the flatness test (Harris, 

1975:80-81). The parallelism approach tests the hypothesis that the profiles of the two 

groups have the same shape, that is: 

 

µ slope 1  = µ slope 2  = 0. 

 

In this instance the slope of each line segment making up that profile will be the same for 

each group. The levels approach tests the hypothesis that the profiles for the two groups are 

at the same mean level, that is µw1 – µw2 = 0. This implies that the aggregali mean of the 

means of the separate variables is identical for the two groups, which means that the 

difference between two group means on any variable is zero. The flatness test tests the 
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hypothesis that the pooled profile for the two groups combined is perfectly flat. The 

combined means are all equal to the same value. The flatness test takes advantage of the 

fact that a flat profile implies that all line-segment slopes are truly zero (Harris, 1975:81; 

Theron, 1992:352). 

 

These three tests are analogous to a two-way univariate analysis of variance in which 

treatments correspond to rows and response measures (dependent variables) correspond to 

columns. Harris (1975:81) puts it quite aptly: “The levels test corresponds to a test of the 

row main effect; the flatness test to a test of the column main effect; and the parallelism test 

to a test of the interaction between rows and columns. Thus in profile analysis, as in two-

way analysis of variance, the interaction test takes precedence with significant departure 

from parallelism implying that (a) the two groups must be compared separately on each 

outcome measure and non-significant departures from the equal levels test hypothesis and 

or the flatness test hypothesis are essentially non-interpretable since the significant 

interaction between groups and measures implies that both are significant sources of 

variation”. Greater attention is paid to the concept “Profile analysis” in the next section. 

 

9.4.3 DISCRIMINANT ANALYSIS 

Measures of profile analysis such as measures of profile similarity which entail clustering 

of variables with factor analysis, measuring the relationship with Bravais-Pearson product-

moment correlation, and Osgood and Suci’s (1952) distance measure D will not be 

discussed in detail here as the researcher plans to utilize either Hotelling’s T 2  test or 

Discriminant analysis for profile analysis. Discriminant analysis can be employed as a 

measure for profile analysis. Nunnally (1967:372) views profile analysis as “a generic term 

for all methods concerning groupings of persons”. Nunnally proceeds by advancing two 

major classes of problems in profile analysis, viz. that in which the group composition or 

group membership is known in advance of the analysis and those problems where group 

membership is not known in advance. The purpose of the analysis in the first instance is to 

distinguish groups from one another on the basis of scores in a data matrix or scores 

obtained on a battery of tests. In the second instance the basis of the analysis is to assign 

individuals to group in terms of their profile scores (Nunnally, 1967:372). 

 

In the case in hand group membership is known in advance and the purpose of the analysis 

(discriminant) is to distinguish the groups on the basis of scores in the data matrix. The 

major purpose of discriminant analysis is to predict group membership from a set of 
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predictors (Tabachnick et al., 1989:505). The predictors are a set of psychological test 

scores such as individual-centred leadership, coaching for development, job satisfaction, 

team spirit, social and esteem needs, combined motivation needs, and locus of control 

orientation. Discriminant analysis is Manova turned around. Manova can be used to 

determine whether group membership produces reliable differences on a combination of 

dependent variables. If this is the case then the combination of variables can be used to 

predict group membership - the Discrim procedure. In the Discrim procedure the 

independent variables are the predictors and the dependent variables are the groups 

(Tabachnick et al., 1989:506). Classification is a major extension of Discrim over Manova. 

Each group must be a sample from a multivariate normal population and the population 

covariance matrices must all be equal. Linear combinations of the independent variables (or 

predictors) are formed to serve as the basis for classifying cases into one of the groups 

(Norusis, 1990:137). 

 

According to Nunnally (op.cit., 1967:373-374) profiles have three characteristics, viz. 

level, dispersion and shape. The level of the profile is defined by the mean score of the 

person over the variables in the profile. The dispersion refers to the extent or degree of 

divergence from the average. The standard deviation of scores for each person may be seen 

as a measure of the dispersion. The shape refers to the curve and its high and low points. 

The method used for clustering profiles in the case in hand is discriminant function 

analysis. Discriminant function analysis is employed when groups are defined a priori and 

the purpose of the analysis is to distinguish the groups from one another on the basis of 

scores obtained in a battery of tests or scores in a data matrix (Nunnally, 1967:388).  

 

According to Theron (1992:355) discriminant function analysis is extremely sensitive to 

multivariable outliers. Outliers are cases with extreme values on a variable or combination 

of variables that unduly influences the average and variability of scores and invalidates the 

generalizability of the solution to the population. Therefore outliers have to be eliminated 

or transformed before discriminant analysis can be performed. The discriminant model also 

assumes a linear relationship among all predictor variables within each group. Violation of 

this assumption, however, simply leads to reduced power rather than to an increase in Type 

I error (a statistical decision error that occurs when a true null hypothesis is rejected; its 

probability is 1 - α). The discriminant model is also based on the assumption of 

homogeneity of variance-covariance. If classification is the goal of the analysis this 

assumption has to be met. If the sample sizes are quite large, discriminant function analysis 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  WW    ((22000044))  

 

156

displays robustness in respect of violation of the assumption of equal variance-covariance 

matrices. With unequal and/or small sample sizes, homogeneity of variance-covariance 

should be assessed (Theron, 1992:355). 

 

Scatterplots of the scores on the first two canonical discriminant functions can also be 

assessed for each group separately. Scatterplots roughly equal in size give evidence of 

homogeneity of variance-covariance matrices. The discriminant model also assumes that 

two variables in a matrix should not be perfectly or almost perfectly correlated 

(multicollinearity). Neither should one score be a linear or nearly linear combination of 

others (singularity). Multicollinearity and singularity make the inversion of matrices 

unreliable (Tabachnick et al., 1983:300-301). The discriminant function minimally or 

maximally separates two groups and the second discriminant function, which operates 

orthogonally to the first, then separates the remaining groups on the basis of information 

not accounted for by the first discriminant function (Tabachnick et al., 1983:295). 

According to Tabachnick et al.(1983:295) the total number of possible discriminant 

functions is either one fewer than the number of groups or equal to the number of predictor 

variables. However, the authors are adamant that only the first two discriminant functions 

discriminate significantly and reliably among groups. 

 

The significance of a set of discriminant functions is established by partitioning the 

variance in the set of predictors into two sources, viz. variance that is attributable to 

differences between groups and variance attributable to differences within groups 

(Tabachnick et al., 1983:302). Tabachnick et al. advance as a fundamental formula for 

testing the significance, the equation: 

                                                              

            ΣΣ (Y1 j – GM )2  = nΣ  (Yj – GM)2 + ΣΣ (Y1 j – Yj )2 
             ij       j          ij  
 

and use this procedure to form cross-products matrices in the following way: 

 

          Stotal  =  Sbg  +  Swg   (Tabachnick et al., 1983:237,302). 

 

The total of cross-products matrices is partitioned into cross-products matrices with 

differences between the two groups (Sbg) and differences associated with subjects within 

groups (Swg). A classification equation is developed for each group to classify cases into 
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groups. According to Tabachnick et al.(1983:306) each case has a classification score for 

each group. A case is assigned to the group for which it has the highest classification score. 

Tabachnick et al.(1983:306) advance a classification equation: 

 

            Cj  =  cjo  +  cj1Y1  + cj 2Y2  + … + cjpYp. 

 

A score on classification function for group j(Cj) is determined by multiplying the raw 

score on each predictor variable (Y) by its associated classification function coefficient cj. 

Then these products are summed over all predictor variables and are added to a constant cjo 

(Tabachnick et al., 1983:306). 

 

There are three types of discriminant function analysis, viz. direct discriminant function 

analysis, hierarchical discriminant function analysis and stepwise discriminant function 

analysis. The direct discriminant function solves equations simultaneously on the basis of 

all predictor variables. All the predictor variables enter the equations at once and the 

dependent variables are considered simultaneously. The hierarchical mode evaluates 

contributions to group discrimination by predictor variables as they enter the equations in 

some priority order that is determined by the researcher. This enables the researcher to 

assess the predictive power of each variable. The researcher may thus determine if the 

classification of cases to groups improves by adding a specific variable (or a set of 

variables). When prior variables are viewed as co-variates and the added variable as a 

dependent variable, this can be seen as an analysis of the covariance. Stepwise discriminant 

function analysis refers to the determination of the order of entry of variables into the 

discriminating equation by means of available statistical criteria. The researcher has no a 

priori reason for ordering entry of variables (Tabachnick et al., 1983:309-313). Stepwise 

analysis is used for the case in hand. As the researcher does not have a priori reasons for 

ordering the entry of variables into the discriminant equations, statistical criteria, which are 

available with the Stepwise function, have to be applied to determine the order of entry. 

 

The maximum number of discriminant functions extracted within a single discriminant 

analysis is the lesser of either the number of groups minus one, or equal to the number of 

predictor variables. However, not all the functions may carry important information. It 

happens quite frequently that the first few discriminant functions account for the major 

share of discriminating power with no additional information forthcoming from the 

remaining functions (Tabachnick et al., 1983:318). 
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Discriminant function plots may be used to interpret the discriminant functions. The 

discriminant functions are presented by way of pairwise plots of group centroids on all 

significant discriminant functions. These centroids are the means of obtaining the 

discriminant scores for each group on each dimension. A discriminant function plot is 

simply a plot of the canonical discriminant functions evaluated at group means (Tabachnick 

et al., 1983:313,319). 

 

Discriminant functions may also be interpreted by examining the loadings of predictor 

variables on them. Loading matrices are basically factor-loading matrices. These factor-

loading matrices comprise correlations between predictor variables and each of the 

discriminant functions (also called canonical variables) that enable the researcher to name 

and interpret the functions. Mathematically, the loading matrix “is the pooled within group 

correlation matrix multiplied by the matrix of standardized discriminant function 

coefficients” (Tabachnick et al., 1983:320). 

 

9.4.4  STUDENT’S  T TEST 

Like Hotelling’s T 2  test, Student’s t test is also an inferential statistic to test for significant 

differences between two groups. The two groups may be dependent or independent. 

Student’s t test enables the researcher to decide whether observed differences between two 

sample means are caused by chance or represent a true difference between populations 

(Shavelson, 1981:419). De la Rey (1978:71) states the following assumptions that have to 

be met before the t test can be used: 

- The scores in the respective populations must be normally distributed; 

- As the t test is based on sample means, the two samples must be big and of equal or 

almost equal size; 

- The measurements must be on interval or ratio level; and 

- The scores in the groups must be randomly sampled from their respective 

populations. 

 

The use of the t test also imposes a number of requirements on the collection of data: 

- There is one independent variable with two levels (i.e. groups); 

- A subject appears in one and only one of the groups; and 

- The level of the independent variable may differ from one another either 

qualitatively or quantitatively (Shavelson, 1981:421). 
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Applied to test hypotheses, the purpose of the t test is to decide whether or not to reject the 

null hypothesis which is a probabilistic decision as it cannot be made with complete 

certainty. To determine the probability of observing the difference between the sample 

means of the two groups under the assumption that the null hypothesis (Ho) (Ho  = no 

difference between the means of two groups) is true, a significance test to decide whether 

the observed sample difference in means has a low probability of occurring in the 

populations, has to be performed. Bohrnstedt et al.(1988:204-205) advance the formula for 

doing this: 

  
S 2  =  (N1 – 1)S1

2 + (N2 – 1) S2
2 

 

     N1 + N2 – 2                   where  
 

N1  +  N2  -  2 are the degrees of freedom which are associated with S2.  The value of t is 

calculated by applying the formula: 

 

               (  Y2  –   Y1 ) – (µ 2 - µ 1)  

   t (N1 + N 2 – 2 ) =  

      S  (Y2  –  Y1 ) 

        

      =      Y2  –  Y1 

 

        √    S 2             +       S 2 

           N1                  N2 
 

Student’s t test assumes that the distribution of variables in the populations, from which the 

samples are drawn, is normal. But it also assumes that the variances in the populations from 

which the samples are drawn are equal (σ1
2  = σ2

2). This is known as homogeneity of 

variance (Ferguson, 1981:179, 245). According to Ferguson (1981:245), moderate 

departures from homogeneity should not have a serious effect on the inferences drawn from 

the data. Gross departures from homogeneity, however, may lead to serious errors in the 

results. Ferguson (1981:245) recommends that under circumstances of gross departures 

from homogeneity, a transformation of the variable that may lead to greater uniformity of 

variance be used or a nonparametric procedure be applied. Ferguson (1981:182) also 

advances a formula when testing the difference between means for independent samples, 

assuming homogeneity of variance. A single estimate S 2 is used in calculating the t value: 
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 t  =            (X1  –  X2 ) 
  

       √ S 2         +     S 2 

     N1              N2    

However, should the two population variances be different (σ1
2 ≠ σ2

2), two variance 

estimates are obtained, viz. S1
2 and S2

2 which are estimates of σ1
2 and σ2

2. The difference is 

divided by the standard error of the difference and t is computed simply by using the 

separate variance estimate. The resulting ratio is: 

    

         t ′   =             (X 1  –  X 2 ) 
  

       √ S1 2        +     S2 2 

        N1               N2 

 

This ratio (t ′ ) is neither normal nor does it approach a t-distribution. 

  

9.4.5 NON-PARAMETRIC STATISTICS 

Two non-parametric statistics are considered, viz. the Kruskal-Wallis one-way analysis of 

variance and the Mann-Whitney U test. Applying non-parametric statistics one or more of 

certain assumptions have to be met (De la Rey, 1978:113): 

- The distribution of scores has to be skewed; 

- Measurement must be on nominal or ordinal level; 

- The sample size must be small (N < 30); 

- Situations where it is impossible to make certain assumptions in regard to the 

sample; and 

- Situations where it is impossible to realize certain research aims because appropriate 

parametric statistics are not available. 

 

9.4.5.1  KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE 

The Kruskal-Wallis one-way analysis of variance is applied to help to decide if k 

independent samples from different populations differ significantly. There should be more 

than two independent samples. The decision is also probabilistic as the problem according 
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to Siegel (1956:84) is to determine whether differences among samples represent merely 

chance variations or signify genuine population differences. Siegel (1956:184) observes 

that the Kruskal-Wallis statistic tests the H0 that the k samples come from the same 

population or from identical populations with respect to averages. 

 

In the computation of the Kruskal-Wallis test the observations or scores are all ranked in a 

single series. Siegel (1956:185) supplies the following formula to calculate the Kruskal-

Wallis statistic (H) and observes that if the null-hypothesis (Ho) is true, then H is distributed 

as chi-square with degrees of freedom = k – 1, provided that the sizes of the various k-

samples are not too small: 

 

  12   k Rj2 
   H =        N (N + 1)     Σ  - 3 (N + 1)   
                j=1        nj 

 

   where k   = number of samples 

               nj  = number of cases in j th sample 

            N  = Σnj, the number of cases in all samples combined 

      Rj  = sum of ranks in the j th sample  

   k      = directs one sum over the k samples. 
   Σ 
  j =1 
 

 
9.4.5.2    MANN-WHITNEY U TEST  

The Mann-Whitney U test is a well-known distribution-free test for two independent 

samples. Although it is a non-parametric test for comparing the central tendency of two 

independent samples, it may also be applied to normally distributed populations. Instead of 

computing means as the sample statistic, however, the Mann-Whitney U test is based on 

the ranking of sample scores. Ranking is a sophisticated mathematical operation and can be 

performed at ordinal level data. The Mann-Whitney U test tests the Ho that the two samples 

were randomly drawn from identical populations. This test is especially sensitive to 

population differences in central tendency (Theron, 1992:365). 

 

This Ho is broader than the Ho tested by the corresponding t test that deals with means of 

the two samples. The Ho tested by the Mann-Whitney U test is based on the assumption that 

the two populations have the same shape and dispersion (Theron, 1992:365). 
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According to Theron (1992:365) the logic of the Mann-Whitney U test is quite easy to 

understand. To compute U, the scores from both samples are pooled and ranked from 

highest to lowest. Tied observations are then assigned to the mean of the rank position they 

would have occupied had there been no ties. The ranks of observations from group 1 are 

then summed. Thereupon the ranks for the two samples are totalled and compared. The 

statistic used in this test, viz. the U value is then given by the number of times a score in 

one group (with n 2 cases) precedes a score in the other group (with n1 cases) in the ranking. 

If the two samples represent populations not significantly different from each other, then 

the total ranks should be similar in value. Tied scores are assigned to the average of the 

ranks they would have had if they had not been tied. The formula to compute U is: 

                  N1 (N1 + 1) 

U = N1 N2 +                     - ΣR1         

                                   2   

where  ΣR1  = the sum of ranks for sample 1 (Siegel, 1956:120). 

 

On determining the value of U, the test of significance has to be conducted. A z-score is 

obtained with the aid of the formula: 

 

          U - µ u  
Z (obtained)  =   

            σ u 

 

 
where  U = the sample statistic 

  µ u   = the mean of the sampling distribution of sample U’s 

 σu      = the standard deviation of the sampling distribution of sample U’s (Siegel, 

1956:121), to find the critical region as marked by Z (critical). Based on Z (critical) the 

researcher makes a decision to reject or to accept the Ho of no difference (Healy, 1990:193-

197; Howell, 1989:300-305). 

 

9.4.6 CORRELATIONAL STATISTICS  

Ott et al.(1990:417) define correlation as a “measure of the strength of the relationship 

between two variables x and y”. The value so obtained is called the coefficient of linear 

correlation, or simply the correlation coefficient. The stronger the correlation, the better x 

predicts y. The population correlation coefficient r (rho) is computed as: 

 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  WW    ((22000044))  

 

163

            Sxy 
   r  =   

    √  Sxx . Syy 
 

This is called the Bravais-Pearson product-moment correlation coefficient. Bohrnstedt et al. 

(1988:271) present the formula as: 

 

   rxy  =    √  Ry
2. x 

 

 The Bravais-Pearson product-moment correlation may have a positive or negative sign 

attached to it to indicate the direction of the correlation. The value of r can range between –

1,00 for a perfect inverse association to +1,00 for a perfect positive correlation with zero (r 

= o) indicating no relationship at all. Bohrnstedt et al.(1988:271) see the usefulness of the 

correlation coefficient in its communication of directionality and magnitude of the 

association. Ott et al.(1990:420-422) note several interpretations of the coefficient of 

correlation: 

- A correlation coefficient equal to 0,5 does not mean that the strength of the 

relationship between two variables (x and y) is halfway between no correlation and 

perfect correlation. The more closely x and y are linearly related, the more the 

variability in the y-values can be explained by variability in the x-values and the 

closer r 2 will be to 1. If r  = 0,50 the independent variable x is accounting for 25% 

(r 2  = 0,25) of the total variation in the y-values. r 2 is called the coefficient of 

determination. The coefficient of determination is a proportional reduction in error 

statistic (a characteristic of some measures of association which allows the 

calculation of reduction in errors predicting the dependent variable) for linear 

regression that expresses the amount of variation in the dependent variable 

explained or accounted for by the independent variable (Bohrnstedt et al., 

1988:269). 

- X and y could be perfectly related in some way or other than in a linear manner 

when r  = 0 or a very small value. 

- Correlations are difficult to add up. The sum of coefficients of correlation does not 

account for the variability of the y-values about their sample mean. 

 

According to Theron (1992:368-369) Spearman’s correlation coefficient for ranked data (rs) 

may also be calculated. This coefficient of correlation is based on ranked data. Ranking 
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details separate ranking of a number of items on two dimensions. Based on this ranking, the 

correlation between the two sets of ranks is determined. (Ranked data are data for which 

the observations have been replaced by their numerical ranks from lowest to highest, and 

Spearman’s correlation (rs) is a correlation coefficient based on ranked data). Howell 

(1989:110) presents the formula for the calculation of Spearman’s rho (rs) as: 

 

         6ΣD 2 
rs   =    1  -   

     N (N 2 – 1) 
 
 

9.4.7 DESCRIPTIVE STATISTICS 

Mason et al.(1989:428) define descriptive statistics as statistics used to summarize data. 

Bohrnstedt et al.(1988:66-81) divide descriptive statistics into measures of central tendency 

and measures of variation (or dispersion). 
 

9.4.7.1   MEASURES OF CENTRAL TENDENCY 

The mode, the median and the mean are measures of central tendency. The mode is the 

value or category in a frequency distribution that has the largest number, or percentage of 

cases. The median refers to the value or score that exactly divides an ordered frequency 

distribution into equal halves, viz. the outcome is associated with the 50 th percentile. The 

most frequently used measure of central tendency is the mean that is commonly called the 

average. The mean is the sum of all scores in a distribution divided by the number of 

scores, viz. the mean is the arithmetic average. In this research the mean is the measure of 

central tendency that may be applied to interpret the result of t-scores, discriminant analysis 

and one-way and other approaches to analysis of variance. 

 

9.4.7.2 MEASURES OF VARIATION, SKEWNESS, AND KURTOSIS 

Besides the skewness, and kurtosis, the measures of distribution variation that would be 

calculated and presented, are the variance, standard error of the mean, and the standard 

deviation.  

 

Skewness indicates the dispersion of a distribution “based on the observation that when a 

distribution is symmetrical the sum of cubes of deviations above the mean, will balance the 

sum of cubes of deviations below the mean”(Ferguson, 1981:69). A value of 0 for 

skewness indicates a normal distribution (Norusis, 1984:40). If the distribution is skewed to 
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the right (longer tail to the right), the sum of cubes of the deviations above the mean will be 

greater than the corresponding sum of cubes of the deviations below the mean (Ferguson, 

1981:69). If the distribution is skewed to the left (longer tail to the left), the sum of cubes of 

the deviations below the mean will be greater than the corresponding sum of cubes of the 

deviations above the mean (Ferguson, 1981:69).   

 

Kurtosis gives an indication of the peak of a distribution. A kurtosis value of 0,263 

indicates a normal distribution. When the distribution is flatter than a normal distribution, 

the kurtosis value is less than 0,263 (the distribution is platikurtic). When the distribution is 

more peaked than a normal distribution, the kurtosis value is more than 0,263 (the 

distribution is leptokurtic) (Steyn et al., 1987:79).  

 

The variance is a measure of dispersion for continuous variables of scores about the mean 

and the standard deviation is the square root of the variance and is also used to describe a 

dispersion of a distribution. The usual way of assigning meaning to the standard deviation 

is in terms of how many scores fall no more than a standard deviation above or below the 

mean. For a normal distribution exactly two-thirds of observations lie within one standard 

deviation of the mean. The standard deviation is basically a measure of the average of the 

deviation of each score from the mean (Shavelson, 1981:305). 

.  

The standard error of the mean refers to the standard deviation of sample means in a 

sampling distribution. It provides information about the amount of error likely to be made 

by inferring the value of the population mean from the sample means. The greater the 

variability among sample means, the greater the chance that inferences about the population 

mean from a single sample mean will be in error (Shavelson, 1981:305). 

 

9.4.7.3  FREQUENCY TABLES 

Frequency tables comprise of information about the frequencies across values for the 

biographical variables, work-related motivational needs, locus of control factors, and work-

related attitudes during transformation. The percentage and cumulative percentage will be 

used to describe and summarize the data. 

 

9.4.7.4  CROSS-TABULATION 

A frequency distribution is a useful display of the quantitative attributes of continuous 

variables or the qualitative attributes of discrete variables. But a cross-tabulation (joint 
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contingency table) is “a tabular display of the joint frequency distribution of two discrete 

variables which has r rows and c columns” (Bohrnstedt et al., 1988:101). Thus a cross-

tabulation indicates the joint outcomes of two variables. The cells that comprise the body of 

any table show these joint outcomes of two variables. Bohrnstedt et al.(1988:103) view a 

cell as “an intersection of a row and a column in a cross-tabulation of two or more 

variables”. Marginal distributions consisting of row marginals and column marginals are 

frequency distributions of each of two cross-tabulated variables. Row marginals are the row 

totals and column marginals are the column totals. Cross-tabulations will be used to display 

the demographic variables in relation to the work-related motivational needs, or locus of 

control factors, or the work-related attitudes during transformation. 

 

9.5 CONCLUSIONS 

 In this chapter the research design was discussed. The research strategy consisting of both a 

qualitative approach and quantitative research included, were explained. The process of 

survey research was discussed in detail and was related to the aim of this study. The 

population was demarcated, the method and procedures for administering the 

questionnaires, and the data-collection were discussed. The relevant statistical methods 

including descriptive and inferential methods were explained. The various statistical 

methods were discussed, namely descriptive statistics, different approaches to the analysis 

of variance, profile analysis (discriminant analysis), the Student’s t test, Hotelling’s T 2  test, 

non-parametric inferential statistics, and correlation statistics. 

 

In the next three chapters the information gathered for the qualitative strategy regarding the 

need for change in this organization, the diagnoses of the current organization, planning of 

change strategies, implementation of change interventions, and management of the 

transformation process within the organization are discussed.   
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