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The analysis and optimum design of stiffened, shear webs in aircraft structures is addressed.
The post-buckling behavior of the webs is assessed using the iterative algorithm developed
by Grisham. This method requires only linear finite element analyses, while convergence
is typically achieved in as few as five iterations. The Grisham algorithm is extensively
compared with empirical analysis methods previously used for aircraft structures and also
with a refined, non-linear quasi-static finite element analysis.

The Grisham algorithm provides for both compressive buckling in two directions as well as
shear buckling, and overcomes some of the conservatism inherent in conventional methods of
analysis. In addition, the method is notably less expensive than a complete non-linear finite
element analysis, even though global collapse cannot be predicted. While verification of the
analysis methodology is the main focus of the study, an initial investigation into optimiza-
tion is also made. In optimizing stiffened thin walled structures, the Grisham algorithm is
combined with a genetic algorithm. Allowable stress constraints are accommodated using a
simple penalty formulation.
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Die analise en optimale ontwerp van verstyfde, dunwand skuifpanele in lugvaartstrukture
word aangespreek. Die post-knik gedrag van die panele word evalueer met 'n iteratiewe al-
goritme wat deur Grisham ontwikkel is. Hierdie metode gebruik slegs lineére eindige element
analises en konvergeer gewoonlik binne so min soos vyf iterasies. Grisham se algoritme word
vergelyk met empiriese metodes wat voorheen in lugvaartstruktuuranalise gebruik is, asook
met 'n nie-lineére eindige element analise.

Daar word getoon dat die Grisham algoritme voorsiening maak vir samedrukkingsknik in
twee rigtings asook knik in skuif, en die algoritme oorkom die konserwatiewe benadering
wat in konvensionele ontwerpsmetodes gebruik word. Boonop is die metode ook nie so duur
soos nie-lineére eindige element analises nie, alhoewel dit nie globaal die swigting van n
struktuur kan voorspel nie. Alhoewel verifikasie van die analiseringsmetodologie die hoof
doel van hierdie studie is, word 'n aanvanklike ondersoek in optimering ook gedoen. Om die
verstyfde, dunwand strukture te optimeer word die Grisham algoritme gekombineer met 'n
genetiese algoritme. Aanvaarbare spanningswaardes word in ag geneem deur 'n eenvoudige
boetefunksie te gebruik.
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Chapter 1

Introduction

1.1 Overview

In many aircraft structures, thin sheet structural components are designed to buckle under
shear load. The buckling can change the internal loads and stresses in neighboring panels
and the surrounding structure significantly. Initially, post-buckling effects were taken into
account using the theory of pure diagonal tension (PDT) proposed by Wagner [1, 2] in
1929, but this proved to be very conservative in practice. Wagner’s approach was gradually
modified to eventually cover the general approach of incomplete diagonal tension (IDT). The
theory of incomplete diagonal tension was developed by the National Advisory Committee
for Aeronautics (NACA) in the 1950’s after conducting an extensive testing program to
generate empirical relations [3, 4]. This approach, also known as the NACA method, has
become the accepted design approach used by most aircraft manufacturers, even though the
theory is still considered conservative. One of the factors neglected in the NACA approach
is the interaction of stresses in each web element on the element allowables, namely the
combination of compression and shear buckling, diagonal tension and post-buckled skin
softening in shear.

As an alternative to IDT, non-linear finite element codes can be used to assess buckling,
even though ”design-by-rule” failure criteria are more difficult to assess (Mello et al. [5]).
In addition, non-linear finite element analyses are computationally very expensive in initial
design iterations.

In this thesis, the iterative algorithm developed by Grisham [6], is implemented to assess and
evaluate the onset and magnitude of buckling in flat shear webs. Since few verifications of
the Grisham algorithm have previously been presented, the method is extensively evaluated
in this study. The results obtained using Grisham’s algorithm are also compared with a
non-linear finite element analysis.
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Flambage local du revétement d'un fuselage arriere
dans la partie non pressurisée, sous |'effet de I'effort tranchant
et de la flexion de fuselage.

Figure 1.2: Diagonal tension in airframe (Reproduced from [7])
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Figure 1.1: Diagonal tension beam (Reproduced from [3])

1.2 Diagonal tension

When a beam consisting of a thin shear web with transverse stiffeners is loaded until the
web buckles, it forms diagonal folds at approximately 45 degrees. These diagonal folds carry
load in tension. Compression stresses act perpendicular to theses folds while the stiffeners
act as compression columns. The beam can carry loads orders of magnitude higher than the
initial buckling load. Figure 1.1 shows such a thin web beam under a high test load that is
close to failure. The many parallel folds in the web are clearly visible.

If the load is increased further, indefinitely without rupturing the sheet, the compressive
stresses become smaller and smaller while the tensile stresses increase more and more, ap-
proaching a limiting condition known as pure diagonal tension (PDT). The theory of pure
diagonal tension (PDT) was developed by Wagner [1, 2]. Pure diagonal tension can only be
approached when the web is very thin, which is impractical. Most webs operate in a state
of stress that is intermediate between pure diagonal tension and the state that exists before
the web buckles. To cope with this approach, the engineering theory of incomplete diagonal
tension (IDT) was developed by NACA [3, 4].

Another example of diagonal tension, this time in a fuselage, is shown in Figure 1.2. Although
numerous aircraft skin panels may be in a buckled state during flicht, the intensity is very
low and is hardly visible to the human eye most of the time.

The incomplete diagonal tension approach divides the nominal web shear into two parts; a
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Txy :
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Odiag: ( 1 _k)TX‘/

Figure 1.3: Stress systems in web

pure shear component and a diagonal tension component, respectively defined as follows:
Ts = (1 — k)Tyy and Tpp = k7yy

where k is the diagonal tension factor. Figure 1.3 shows the stress state in a web for the
limiting cases when k£ = 0 and k£ = 1 and also for the intermediate case.

1.3 The Grisham algorithm

In 1978 Grisham proposed an iterative algorithm that incorporates web compression-compression
and shear buckling (including diagonal tension) in the internal loads solution of a linear finite
element analysis [6]. Buckling is incorporated through the use of pre-strain loading of the
web finite elements rather than through modifying the stiffness (thickness or elastic moduli)

of the webs.
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1.3.1 Outline of the Grisham algorithm

Without presenting the detailed mathematics involved! here, the steps in Grisham’s iterative
algorithm are as follows:

1.

Calculate the internal loads N; of the structure under consideration, using a linear
finite element analysis. NOTE: the stiffness matrix of the linear finite element analysis
is calculated once only and retained for following iterations; small displacement theory
applies in this case.

. Evaluate the onset of buckling using the internal loads obtained in Step 1 above, based

on analytical plate buckling criteria and an interaction equation.

If buckling does not occur, STOP. Else, calculate the post-buckling relaxation of plates
under compressive stress (o, and o,,), the post-buckled shear strain 7,,,, and the
associated diagonal tension (o, and oy, ).

Calculate the post-buckling strains (Ae, and Ae,) to relieve the compression and shear
stress that exceed the plate capability.

The post-buckling strains calculated above now become the pre-strains for the next
iteration.

If the ratio of the final compression stress (o, and o0,,) in the buckled plate to the
modified critical buckling stress (o, and o,,.) approaches unity, and the diagonal
tension stress (0, ,, and o,,,) converges, STOP. Else, go to Step 1.

1.3.2 Features of the Grisham algorithm

1.

Convergence is usually achieved rapidly. Typically, five iterations are required to obtain
convergence within 2 % variation between successive values of 0,,, and oy,

Provision is made for compressive buckling in both the length and width directions of
the web, as well as shear buckling. The latter causes the development of diagonal ten-
sion, accompanied by associated loading of the surrounding structure and ”softening”
of the buckled plate in shear.

The interaction of compression-compression and shear buckling is accounted for.

The stiffness matrix of the finite element model is not altered in any way to include
for post-buckling effects.

. Since the self-equilibrated pre-strains do not modify the stiffness matrix, precisely

equilibrated and compatible solutions are obtained.

The pre-strains calculated give a direct indication of the degree of ”softening” of the
structure caused by buckling.

Detailed mathematics is presented in Appendix A.
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7.

10.

Multiple load cases (each with a different buckling pattern) may be processed simul-
taneously in a single finite element analysis.

Curved geometries may also be analyzed; structural symmetry can be exploited through
the application of symmetric and anti-symmetric pre-strains if interaction equations
are available.

For curved shells, the membrane loads due to pressurization are incorporated, and the
stabilization effects due to hoop/longitudinal loads, are included through an interaction
equation.

Isotropic, isotropic-stiffened plates, and plates in pure shear may be evaluated using
the algorithm.
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Chapter 2

Verification of the Grisham Algorithm

2.1 Overview

No example problems or specific results were published by Grisham [6] to validate the algo-
rithm he presented. In order to verify the results of the current implementation, an example
is taken from Analysis and Design of Flight Vehicle Structures [8] and the results are com-
pared to the Grisham algorithm prediction.

2.2 Example problem

This example is a shear beam with 6 panels, schematically depicted in Figure 2.1, having
the following dimensions:

1. [ = 1524 mm (60 in)

2. h =762 mm (30 in)

3. he = 748 mm (29.45 in)

4. h, = 725.4 mm (28.56 in)

d = 254 mm (10 in)

t = 0.635 mm (0.025 in)

Ay, = 243.9 mm? (0.378 in?)
Ay, = 435.5 mm? (0.675 in?)

© »® X o o«

A, = 151.2 mm? (0.253 in?)
The web material is 2024-T3 aluminum sheet with the following material properties:

1. oy = 289 MPa (42 ksi)
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2. oy = 441 MPa (64 ksi)
3. B, = 72.4 GPa (10 500 ksi)

The two flanges are fabricated from 7075-T6 aluminium alloy extrusions, with the following
material properties:

1. oy = 483 MPa (70 ksi)
2. 0 = 538 MPa (78 ksi)
3. E; = 71.0 GPa (10 300 ksi)

The uprights are fabricated from 2014-T6 aluminium alloy extrusions, with the following
material properties:

1. 0, = 366 MPa (53 ksi)
2. 0y = 414 MPa (60 ksi)
3. B, = 72.4 GPa (10 500 ksi)

Both flanges have a T-shaped cross-section. The uprights are angles (25.4 mm x 25.4 mm
X 3175 mmor 1in X 1in X % in) and are made from 2014-T6 alloy. The shear load applied
to the beam is P = 60 048 N (13 500 Ib).

In this example two different methods are followed to solve the problem, namely the modified
Wagner equations based on [1, 2] and the NACA approach [3, 4]. The results of both these
approaches are compared to the current implementation of the Grisham algorithm. The
various assumptions and limitations of the two methods are discussed below.

The modified Wagner approach incorporates:

1. The shear strength of the beam flanges.

2. The shear carried by the web before the onset of buckling.

The remainder of the shear in the beam after subtracting the components listed in (1) and
(2) above is considered to be carried by the web in a buckled state in the form of a diagonal
tension field.

The NACA approach is to be used subject to the following restrictions:

1. The uprights on the web stiffeners should not be too thin; the ratio of the stiffener
thickness to web thickness should be greater than 0.6; i.e. %“ > (.6.

2. The upright or web stiffener spacing shall not be outside the range 0.2 < % < 1.0.

The NACA tests excluded very thin or very thick webs; non-conservative predictions may
occur if 2 > 1500 or if 2 < 200.

Since:
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Figure 2.1: Layout of the cantilever beam used in the example

1. =50
d _

2. 4=0.33

3. b =1142

the use of the NACA equations is acceptable for the example under consideration.

(It should also be noted that, strictly speaking, the empirical relations developed by the
NACA only apply to structures fabricated from 7076-T6 and 2024-T3 alloy since these were
the only materials used in the NACA’s extensive testing program.)

2.2.1 The finite element model

For the linear finite element analysis used in the Grisham algorithm, the flanges are modelled
using second order beam elements, having a T-shaped cross-section. The uprights are also
modelled with second order beam elements, having L-shaped cross-sections and their eccen-
tricity is accounted for. The thin web is modelled with second order, isoparametric, thin
shell elements having eight nodes per element. Small displacement theory is used. The shear
load is applied vertically and distributed along all the nodes at the end of the beam. The
ABAQUS® commercial finite element package is used for the linear finite element analysis.
(It is also used for all subsequent finite element analyses in this thesis.) Plasticity effects
are not taken into account and buckling of the uprights is also not considered. All four
edges of the web are assumed to be simply supported when calculating the critical shear and
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—

Figure 2.2: Finite element mesh for the verification example

compression buckling coefficients, as is done in the example in Bruhn [8]. Figure 2.2 shows
the finite element mesh of the beam used to evaluate the Grisham algorithm. A coarse 3 x
3 mesh is used for the web of each panel.

2.2.2 Web results

In Table 2.1, the results for the panels obtained using the iterative procedure of Grisham
are compared with results from the Wagner and NACA approaches. The four variables
compared in the table are:

1. k - the diagonal tension factor. It indicates the degree to which the diagonal tension is
developed and is defined as 7pr = k7. When £ = 0, no diagonal tension is present.
When k£ = 1, the web is in pure diagonal tension.

2. « - the diagonal tension angle. In pure diagonal tension (PDT) this is the angle of
the major principal stress relative to the horizontal for this example. In incomplete
diagonal tension (IDT), it is the angle that the major principal stress would have if
the sheet were not carrying part of the load in pure shear.

3. Tay - the shear stress in the web.

4. 1. - the critical web shear buckling stress. This is the stress at the onset of shear
buckling.
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Grisham algorithm Modified
Panel 2 Panel 3 Panel 4 Panel 5 Wagner NACA [3, 4]
k 0.649 0.673 0.673 0.635 — 0.690
a [degrees] 42.1 42.0 42.0 42.2 43.0 41.3
Ty [MPa] 126.9 127.3 127.2 127.3 130.4 135.1
Tor [MPal 2.624 2.624 2.624 2.624 2.358 2.551

Table 2.1: Comparison between Grisham algorithm, modified Wagner equations, and NACA
approach

The results of panels 1 and 6 are ignored since they include edge effects that are automatically
included via the finite element analysis and which are not accounted for in the NACA or
Wagner approaches. Only five iterations are required for the Grisham results; this means
that the system equations are solved only five times, while the stiffness matrix remains
constant throughout (since the analyses are linear, simple superposition principles can be
applied).

The results for the four panels obtained with the Grisham algorithm are very similar and
compare closely to those of the other two methods. The value of the diagonal tension factor
k from the Grisham algorithm is slightly lower than that of the NACA method. The diagonal
tension factor k£ indicates the percentage of the total load that is carried in diagonal tension
by the web. The value of £ = 0.69 using the NACA methodology indicates that 69 % of the
total load carried by the web is carried in diagonal tension and the rest in normal shear. The
Grisham algorithm takes compression-compression buckling in both directions into account
through an interaction equation which has an effect on the magnitude of the diagonal tension.
In the NACA method this is not taken into account, resulting in conservative predictions.
When neglecting this effect of compression-compression buckling in Grisham’s method, the
NACA result of k = 0.69 is obtained exactly.

The critical shear stress 7., (shear stress at the onset of buckling) for the Grisham algorithm
and Wagner approach are based on analytical relations that depend on geometry and material
properties. The NACA critical shear stress 7.. includes empirical data in its calculation,
relating to the stiffness of the flanges and uprights. The large difference between the critical
shear stress value 7. and the total web shear stress shows that the final stress carried by
the web is almost 50x higher than the initial buckling shear stress. The low value of 7, is
a result of the relatively thin plate (¢ = 0.635 mm).

Table 2.2 gives the diagonal tension stress values as well as the compression buckling stresses
of the web for each panel. The Modified Wagner and NACA methods do not produce values
that can be compared to these and are therefore not included in Table 2.2. The final
compressive stress values are very low. This indicates that the compressive-compressive
buckling effects are not significant in this example. Figures 2.3, 2.4 and 2.5 show the stress
results in the web from the Grisham algorithm’s finite element analysis. The shear stress
plot compares well to the results in Table 2.1. Figures 2.6 and 2.7 show vector plots of
the maximum and minimum principal stresses in the web. The magnitudes of the stress
values are very high for the web. In the worked example the intricacies of the finite element
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Figure 2.3: Unsmoothed shear stress distribution (7,,) in the web after the final iteration

method are not taken into account. Boundary conditions, having a localized effect are also
not considered.

Grisham algorithm
Panel 2 Panel 3 Panel 4 Panel 5
0spy |[MPa] 91.19 95.17 95.20 89.37
Oypr [MPal 74.47 7717 77.18 73.28
oz, [MPa] -0.473  -0.250 0.047 0.518
oy, [MPal 0.149 0.382 0.364 0.466

Table 2.2: Diagonal tension and compressive stress values calculated by means of the Gr-
isham algorithm

2.2.3 Upright results

The results for the upright stresses are plotted in Figures 2.9 to 2.11. Values are plotted
along the length of the upright at three different section points on the cross-section of the
upright. Uprights number 1 and 7 are not considered because of boundary conditions. Figure
2.8 shows the position of these section points on the cross-section of the upright.

From the data in Figures 2.9 to 2.11 it can be seen that for all the uprights, the values
at section points 5 and 9 are negative and therefore in compression while the values at
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Figure 2.4: Unsmoothed normal stress (o,) in the web after the final iteration
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Figure 2.6: Maximum principal web stress vector plot after the final iteration
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Figure 2.7: Minimum principal web stress vector plot after the final iteration
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Figure 2.8: Cross-section of the upright showing the location of the section points

section point 1 are positive and therefore in tension. The upright behaves as a column
loaded eccentrically along the median plane of the web by diagonal tension effects in the
web. Although this tends to pull the two flanges together, creating a compressive load in the
upright, it also causes bending due to the eccentricity and therefore the compressive stress
tends to decrease in the upright when moving away from the web plane (towards section
point 1). If the upright were symmetrical about the median plane of the web, the stresses
would be compressive at all section points. The NACA equations predict that the maximum
stress occurs in the upright at a point that coincides with the neutral axis of the beam. The
upright stress then reduces in magnitude (parabolically) until the minimum upright stress
is found at the two ends that are attached to the two flanges (known as the " gusset effect”).
The neutral axis of the beam in this example is slightly above the centroid of the upright.
At very high loading ratios (T—“i > 1), such as in this example, the parabolic profile flattens
out and all the stresses along the length of the upright are similar in magnitude.

Table 2.3 compares the results from the NACA method and that of the Wagner approach
with the Grisham results. The average stress values are calculated along the length of the
upright, using all the integration point values at section points 5 and 9. To compensate
for eccentric loading the NACA method uses an effective area and only calculates average
stresses at the median plane of the web. Section points 5 and 9 are closest to the median
plane of the web. Wagner assumes that the uprights are like columns with elastic supports;
that the web tension prevents the uprights from buckling out of the plane and that the total
cross-section of the upright is in compression.

The average upright stress values of the Grisham algorithm are lower than that predicted by
the NACA and Wagner approach. The stress magnitude in the upright is a direct indication
of the magnitude of diagonal tension in the web. Since the diagonal tension factor for the
Grisham algorithm is slightly lower than that predicted by the above mentioned methods,
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Figure 2.9: Axial stress along the length of the upright (o,) at section point 1
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Figure 2.10: Axial stress along the length of the upright (o) at section point 5
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Figure 2.11: Axial stress along the length of the upright (o,) at section point 9
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Grisham algorithm Modified
Upright 2 Upright 3 Upright 4 Upright 5 Upright 6  Wagner NACA
o.[MPa] -71.4 -99.7 -102.4 -95.5 -75.3 -123.6  -116.5
Oumas IMPa] -101.2 -119.7 -118.7 -118.7 -92.8 -123.6  -136.5

Table 2.3: Upright stress results
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Figure 2.12: Axial stress distribution in the flanges after the final iteration of the Grisham
algorithm

the upright stresses for the Grisham algorithm would also be lower.

2.2.4 Flange results

A contour plot of the axial stress distribution in the upper and lower flanges after the
final iteration of the Grisham algorithm is shown in Figure 2.12. The flange stress values
as calculated at section A-A in Figure 2.1 are given in Table 2.4. In the upper flange
(compression flange), the high values of o7, = -545.0 MPa and oy, = -467.2 MPa are due to
the secondary bending effects caused by diagonal tension in the web. Likewise in the lower
flange (tension flange), the compressive values of o, = -427.0 MPa and oy, = -288.4 MPa
are also due to secondary bending effects caused by diagonal tension in the web. In a real
life design situation both flanges would have to be redesigned because these values either
exceed the yield stress of the material or are too close to the crippling stress [8] of o , =
-434.4 MPa.
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The stress values for the Modified Wagner method as well as the NACA method can be split
into three components: (i) the bending stress due to the applied shear load, (ii) the axial
stress due to diagonal tension, and (iii) secondary bending stress due to diagonal tension.
According to Kuhn [9] the calculation of the secondary bending stresses is conservative and
can usually be neglected in practice. The flange stresses without the secondary bending
stresses are given in Table 2.5. All lower flange stresses are now in tension and the values
are also in much better agreement with those of the Grisham algorithm.

Grisham Modified
Algorithm  Wagner NACA

o, [MPa] (upper fibre) -216.9 -242.0  -237.2
o, [MPa] (lower fibre) -255.0 -545.0  -467.2
oy, [MPa] (upper fibre) 162.9 -427.0  -288.4
oy, [MPa] (lower fibre) 275.2 460.0  408.4
Table 2.4: Flange stress results
Grisham Modified

Algorithm  Wagner NACA
o, [MPa] (upper fibre) -216.9 -312.3  -292.7
o, [MPa] (lower fibre) -255.0 -304.5  -276.2
oy, [MPa] (upper fibre) 162.9 292.4  281.0
oy, [MPa] (lower fibre) 275.2 2045  276.7

Table 2.5: Flange stress results excluding secondary bending effects

According to Peery [10] the stresses in the uprights and flanges may be five times less than
that predicted by the theory of pure diagonal tension. The results predicted by Grisham are
certainly less conservative, making it a more attractive method to use.

2.2.5 Deflection results

For the sake of completeness the displaced shape of the beam at the end of the iterative
analysis is shown in Figure 2.13.
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Figure 2.13: Displaced shape of the finite element model after the final iteration (undeformed
shape in green)
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Chapter 3

Non-linear finite element analysis

In this chapter, the Grisham algorithm is further verified. The Grisham algorithm results
for the example problem in the previous chapter are now compared with the results of a
complete non-linear finite element analysis.

3.1 Overview

Global load control methods (e.g. the arc-length control method proposed by Riks and
Wempner [11, 12]) are suitable for global buckling and post-buckling analysis. However,
they are not ideal when the buckling is localized (when there is a local transfer of strain
energy from one part of the model to neighbouring parts). Alternatives are to analyze the
problem dynamically, or to introduce an artificial damping factor. In the dynamic case,
the strain energy released during local buckling is transformed into kinetic energy; in the
damping case the strain energy is dissipated. To solve a quasi-static problem dynamically is
expensive, however.

Hence, the modified Riks algorithm, combined with damping, is selected as an analysis
option in the ABAQUS® environment. The modified Riks method is used where the load
magnitudes are controlled by a single scalar parameter. The load is considered unknown
and the algorithm solves for loads and displacements simultaneously. An arc length along
the equilibrium path is used as an indication of the progress of the solution and can be
used to specify the termination of the analysis. To account for instability in the non-linear
static problem, volume-proportional damping is added to the model. This provides viscous
forces that are large enough to prevent instantaneous collapse, but small enough not to affect
the results while the problem is stable and is a computationally efficient approach for the
analysis of localized buckling.

The damping factor is determined in such a way that the extrapolated dissipated energy is
a small fraction of the extrapolated strain energy. The damping factor is dependent on the
mesh size and material behavior.

22
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Figure 3.1: Non-linear finite element mesh

3.2 The finite element model

Again, the flanges and uprights are modelled using second order beam elements with the
appropriate cross-section. The eccentricity of the single uprights (angles on one side of the
web only) is taken into account. The web is modelled using isoparametric, second order,
thin shell elements. Figure 3.1 shows the mesh used in the non-linear analysis, which is
much more dense than the mesh used in the linear analysis for Grisham’s algorithm. In the
non-linear analysis 10 x 30 elements were used for the web of each panel as opposed to the
3 x 3 in the linear analysis. A distributed, vertical shear load is applied at the one end. The
flanges as well as upright number 7 are constrained not to deform out of the plane.

3.3 Web results

The onset of shear buckling occurs after 13 load increments at an applied shear load of 1 552
N, resulting in a nominal web shear stress of 7. = 3.370 MPa, which is slightly higher than
the values predicted by the Grisham algorithm (7. = 2.624 MPa), the Wagner method (7. =
2.358 MPa) and the NACA approach (7., = 2.551 MPa). The three above methods, however,
assume all four edges to be simply supported when calculating the buckling coefficients. This
is conservative since the flanges and uprights are not completely flexible in torsion. The
non-linear finite element method takes the torsional stiffness of the flanges and uprights into
account and therefore gives a more accurate, higher critical stress value. A less conservative
analytical estimate by Fehrenbach [7] gives a value of 7, = 3.195 MPa for this problem. The
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Figure 3.2: Shear stress (7,,) at the end of the analysis

analysis takes 102 load increments to reach the fully applied load of 60 048 N. The applied
load of 60 048 N is almost 39 times more than the initial buckling load of 1 552 N, showing
that the structure can hold a load orders of magnitude larger than the initial buckling load.

The stress results are shown in Figures 3.2 to 3.4. Figure 3.2 shows the shear stresses while
Figures 3.3 and 3.4 shows the maximum and minimum principal stresses respectively. The
effects of the folds in the web are clear as are the angles of the folds relative to the beam
axis.

3.4 Upright results

Table 3.1 shows the non-linear finite element results in the uprights compared with the
Grisham algorithm results (see Figure 2.8 for the location of the section points). The average
stress values compare well for section points 5 and 9. At section point 1 the average stress
results of the non-linear finite element analysis are slightly lower than the Grisham algorithm
results, varying by up to 50 %. This shows that the out of plane bending effects due to the
upright eccentricity is less evident in the non-linear finite element analysis. Except for
upright number 2, the maximum stress values of the non-linear finite element analysis are
higher than the Grisham algorithm results at all section points for all other uprights. The
values vary from 0.8 % to 34 %.

The non-linear finite element upright stress result plots are shown in Figures 3.5 to 3.7.
The upright stresses are negative at section points 5 and 9, indicating that the upright is in
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Figure 3.3: Maximum principal stress (o1) at the end of the analysis
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Figure 3.4: Minimum principal stress (o2) at the end of the analysis
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Upright stress - Section point 5
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Upright stress - Section point 9
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Six panel cantilever beam example - Bruhn [8]
Upright 2 Upright 3 Upright 4 Upright 5 Upright 6

T, (sp 1) - Grisham 51.2 73.2 77.1 72.9 67.3
o, (sp 1) - NL FEM 26.83 54.54 29.07 29.54 48.42
T, (sp 5) - Grisham -74.2 -100.6 -102.6 -95.5 -85.8
o, (sp 5) - NL FEM -78.29 -98.01 -102.25 -98.01 -87.39
T, (sp 9) - Grisham -68.6 -98.8 -102.2 -95.5 -64.7
o, (sp 9) - NL FEM -65.31 -81.77 -88.03 -85.74 -71.32
Oupmae (SD 1) - Grisham 69.3 85.7 84.2 88.1 67.7
oy (sp 1) - NL FEM 61.35 73.98 96.09  110.36  101.65
Oumae (SD D) - Grisham -101.2 -119.6 -115.7 -104.0 -89.6
0w, (5p5)-NLFEM 9044  -120.64  -130.83  -125.69  -119.48
Oumae (SD 9) - Grisham -71.4 -109.4 -118.7 -118.7 -92.8
Gu.. (sp9)-NLFEM 9921  -117.81  -122.24  -122.97  -141.72

Table 3.1: Upright stress results: non-linear finite element analysis

compression in the area attached to the web while the stresses at section point 1 are positive.
This is due to bending of the upright out of the plane, as a result of the eccentric loading.
Very high stresses occur at the two ends of the uprights at their attachment points to the
flanges. This is especially evident from the graphs of section points 5 and 9. These peak
stresses were ignored when calculating the average stress values and also when selecting the
maximum stress value in each upright. The top and bottom three elements in each upright
are ignored. These very high stresses are not realistic. In the finite element model, the
attachment point of the uprights to the flanges are at a single node, resulting in very rigid
joints with zero relative rotation of the joined elements. In practice, the uprights are riveted
to the vertical leg of the flange by two or more rivets that introduce a measure of flexibility,
thereby reducing the stresses at the extremities of the upright.

At high loading ratios (:—:f>> 1) the parabolic distribution in the upright flattens out ac-
cording to the NACA. This is also evident from the results of the non-linear finite element
analysis. The sinusoidal shape of the plots are due to the wrinkling effects of the web on the
upright. To compare the stress distribution in the uprights for the two approaches, plots of
each upright are made for the non-linear finite element model and the Grisham algorithm,
at each section point. The comparative results for the five uprights, at each section point,
are shown in Figures 3.8 to 3.22. The results of the two plots for section points 5 and 9
(adjacent to the web), compare very well. The results for section point 1 (the upright leg
perpendicular to the web and loaded eccentrically) are more erratic although the average
values still compare well.
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Upright # 2 - Section point 1
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Figure 3.8: Comparative stress values in upright 2 at section point 1
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Upright # 3 - Section point 1

——Non linear FEM = Grisham Algorithm

Length of upright

-30.00 0.00 30.00 60.00 90.00
Axial stress [MPa]

Figure 3.9: Comparative stress values in upright 3 at section point 1
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Upright # 4 - Section point 1
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Figure 3.10: Comparative stress values in upright 4 at section point 1
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Length of upright

Figure 3.11: Comparative stress values in upright 5 at section point 1
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Length of upright
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Figure 3.12: Comparative stress values in upright 6 at section point 1
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Figure 3.13: Comparative stress values in upright 2 at section point 5
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Upright # 3 - Section point 5
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Figure 3.14: Comparative stress values in upright 3 at section point 5
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Upright #4 - Section point 5
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Figure 3.15: Comparative stress values in upright 4 at section point 5
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Length of upright
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Figure 3.16: Comparative stress values in upright 5 at section point 5
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Upright # 6 - Section point §
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Figure 3.17: Comparative stress values in upright 6 at section point 5
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Upright # 2 - Section point 9
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Figure 3.18: Comparative stress values in upright 2 at section point 9
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Upright # 3 - Section point 9
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Figure 3.19: Comparative stress values in upright 3 at section point 9
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Upright # 4 - Section point 9
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Figure 3.20: Comparative stress values in upright 4 at section point 9
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Upright # 5 - Section point 9
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Figure 3.21: Comparative stress values in upright 5 at section point 9
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Figure 3.22: Comparative stress values in upright 6 at section point 9
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3.5 Flange results

Table 3.2 shows the stress results in the upper and lower flanges of the non-linear finite
element model compared to that of the Grisham algorithm. The correlation is reasonable,
although it is noticed that the Grisham results are no longer conservative.

Grisham Non-linear

Algorithm FEM
o, [MPa] (upper fibre) -216.9 -259.4
o, [MPa] (lower fibre) -255.0 -389.4
oy, [MPa] (upper fibre) 162.9 196.7
o [MPa] (lower fibre) 275.2 292.7

Table 3.2: Flange stress values at section A-A (Figure 2.1): non-linear finite element analysis

3.6 Deflection results

The displaced shape of the model, as viewed from the side, is shown in Figure 3.23. The
out-of-plane displacement results of the analysis are shown in Figures 3.24 to 3.27. Figure
3.24 shows the onset of shear buckling after 13 load increments (at an applied shear load of
1552 N). Figures 3.25 and 3.26 show increased effects of shear buckling after 20 and 30 load
increments into the analysis respectively. Figure 3.27 shows the final displaced shape after
102 load increments (at an applied shear load of 60 048 N).

Figure 3.28 shows a plot of the structure’s displaced shape as viewed from a small angle off
the mid-plane of the beam. This allows the "folds” in the webs, caused by diagonal tension
effects, to be seen clearly. This is of course not visible in the linear finite element model in
the Grisham algorithm. The maximum tensile principal stress in the sheet occurs parallel
to these "folds” while the minimum principal stress occurs perpendicular to the ”folds” and
is usually in compression.

Figure 3.29 shows the displaced shape of the upper frame only (without the shell elements)
so that the deformation of the upper flange and uprights can be viewed more clearly. The
concave shape in the upper flange is due to the vertical components of the web stress (diagonal
tension action pulling down), causing bending in the flanges between the uprights. The lower
flange has a similarly displaced shape due to the diagonal tension effect.

The deflection of the structure is another variable that can be used for comparative and
validation purposes between the non-linear finite element results and the Grisham algorithm
results. The bottom node of the loaded end deflected 22.3 mm for the Grisham algorithm
and 25.05 mm for the non-linear finite element model.
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Figure 3.23: Displaced shape of beam viewed from the side
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Figure 3.24: Onset of shear buckling - after 13 load increments (at an applied shear load of
1 552 N)
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Figure 3.25: Progressive shear buckling - after 20 load increments
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Figure 3.26: Severe shear buckling - after
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Figure 3.27: Excessive shear buckling at the end of the analysis - after 102 load increments
(applied shear load of 60 048 N)
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Figure 3.28: "Folds” visible in the displaced geometry
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Upper flange
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Upright #3

Upright #4

Figure 3.29: Upper flange deformation due to diagonal tension

3.7 The damping factor

For the example problem considered, the damping factor ¢ = 1.24 x 10° is the default value
selected by the ABAQUS® finite element analysis software. The sensitivity of the factor at
the onset of buckling of the structure is investigated in Table 3.3. The results show that the
damping factor has a very small effect on the onset of buckling for lower values of ¢ than
the default value. Even values slightly higher have little effect and only once the damping
factor is increased 1000 X, is a significant effect noted. The value of the damping constant
is therefore considered not to have a large influence on the results of the non-linear finite
element analysis.

C Sb
1.24 x10° 11828
1.24 x107 1747
1.48 x10% 1552
1.24 <10 1169
0.99 x10® 1163
1.24 x10° 1163
1.24 x10® 1163

able 3.3: Damping factor ¢ versus shear load at onset of buckling 5
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3.8 Mesh convergence study

A convergence study was done to ensure a reasonably inexpensive, yet adequately converged,
finite element mesh. Table 3.4 shows that a discretization of 3 x 10 is sufficient. The
discretizations in Table 3.4 are all selected to ensure acceptable element aspect ratios.

Mesh Torp
1x3 2.446
3 x 10 2315
5x 15 2314
10 x 30 2.356
20 x 60 2.380
30 x 90 2.388

Table 3.4: Mesh discretization versus critical buckling stress 7.,

3.9 Run-time comparison

A run-time comparison between the Grisham algorithm and the non-linear finite element
analysis is now used to indicate which method is more efficient from a computational point
of view. In order to do this effectively, identical mesh discretizations are used for the two
models. The results are shown in Table 3.5, where the mesh given represents the mesh for
the web of each panel. All analyses were run on a HP C200 workstation. Although cpu
times would be better, wall clock times are used in this comparison because the Grisham
algorithm code can only log real time. Cpu times would give the effective time that the
workstation spent on each run (process).

Time
Mesh Grisham Algorithm Non-linear FEM
3 x 3 31 secs 7 mins, 42 secs
10 x 30 30 min, 39 secs 4 hours, 59 mins

Table 3.5: Total wall-clock times for the Grisham method and non-linear finite element
analysis as a function of mesh discretization

The Grisham algorithm is run with [-values which allow for the solution to converge (see
Chapter 4). An initial estimate is made for the first run, after which minor adjustments are
made until the solution converges. This is achieved within 2 to 3 iterations. The results
indicate that the Grisham algorithm presents an efficient and simple methodology for initial
design sizing.
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Chapter 4

On convergence and aspect ratio

4.1 Convergence criteria

The two convergence criteria for the Grisham algorithm are:

1. the ratio of the compressive stress (o,,, 0, ) divided by the modified critical stress
(02ep» Oy,,) Must approach one [7*= — 1; U%,L — 1], and

Zer

2. the difference of the diagonal tension stress (04, 0y,,) from one iteration to the next
must approach zero. [04,, - Oupy = 05 0ypr = 0ypr  — 0]

Figures 4.1 and 4.2 show the convergence data for the example problem considered in Chap-
ters 2 and 3, as a function of the iteration count (the stopping criteria are disabled). It
is evident from the graphs that the stresses in the z- and y- directions, for the second
convergence criterion, converge within five iterations. This is to within a 0.037 % error
(taken relative to the final diagonal tension stress) and well within the 2 % margin allowed.
The negative value at iteration three, on the graph for the second convergence criterion, is
acceptable since convergence is not expected to be monotonic.

After another two iterations, the first convergence criterion converges to a value of one for
both the z- and y- directions. This is because the first convergence criterion depends on the
diagonal tension stress values. The first convergence criterion converges to within a 1.53 %
error value which is again well within the 2 % margin allowed.

The diagonal tension stresses from the previous iteration are subtracted from the membrane
stresses in the linear finite element stress results of the current iteration before they are
used in the equations of the Grisham algorithm (0w, - 0upy, 5 0y, - 0yp, ). The modified
stress values appear in the equation for determining the compressive stress values of the web
for each panel, which again are used in the first convergence criterion. Therefore, until the
diagonal tension stress values have converged (second convergence requirement), the first

convergence criterion will not be satisfied.

o1
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First convergence criterion - panel 5
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Figure 4.1: First convergence criterion for the Grisham algorithm
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University of Pretoria etd — Viljoen, A (2004)
CHAPTER 4. ON CONVERGENCE AND ASPECT RATIO 53

4.2 Effect of § values on convergence

The parameters 3, and (3, are defined by Grisham [6] as the ratios of the buckled stiffness
of the web in the x- and y- directions to the unbuckled stiffness of the web in the x- and y-
directions respectively ((%:1) and (%f)) for each panel. Since the stiffness of the buckled
webs are not known in advance, neither in the x- nor the y- directions initially, these values
are estimates of the actual values. In the implementation of the Grisham algorithm, an
initial value is assumed for both 3, and 3, for each panel. These values are then varied from
iteration to iteration until the first convergence requirement approaches unity. The 3 values
only affect the first convergence requirement (See A.29 and A.30).

When the Grisham algorithm runs through its iteration loop and the first convergence crite-
rion approaches a value larger than unity, the relevant [ value is increased and the algorithm
re-run. Alternatively, when the first convergence criterion approaches a value smaller than
unity, the § value is reduced, after which the analysis is re-run.

In Tables 4.1 to 4.6 the sensitivity of the § values with respect to changes in the web thickness,
flange areas and upright areas are summarized. The example considered in Chapters 2 and
3 is again used for this case study. Only panels 2 to 5 are considered since panels 1 and 6
include edge effects. For the flange area investigation, both the upper and lower flanges have
the same cross-sectional area.

Both the values of 3, and 3, values drop significantly when the web thickness is increased,
showing that they are rather sensitive to web thickness. The [ values increase only slightly
when the flange and upright areas are increased, showing less sensitivity to the change of
flange and upright areas. For all the tests, the values of 3, and [, remain within 0.565
< By, By < 1.098. These variations can all be accommodated using an iterative, adaptive
correction scheme.

Web thickness ¢ Panel 2 Panel 3 Panel 4 Panel 5

0.500 [mm)] 0.978 0.972 0.995 0.978
0.600 [mm)] 0.960 0.958 1.018 0.962
0.635 [mm)] 0.952 0.950 1.076 0.952
0.700 [mm] 0.937 0.935 1.098 0.941
0.800 [mm)] 0.892 0.894 0.770 0.912
0.900 [mm)] 0.854 0.850 0.822 0.872
1.000 [mm] 0.785 0.790 0.794 0.828

Table 4.1: Variation in [, as a function of web thickness ¢

4.3 Effect of aspect ratio on the diagonal tension angle

To investigate the effect of panel aspect ratio on the diagonal tension angle, the aspect ratio
of the example from Bruhn is now varied. The results are given in Table 4.7, and reveal a
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Web thickness ¢ Panel 2 Panel 3 Panel 4 Panel 5

0.500 [mm)]
0.600 [mm)]
0.635 [mm)]
0.700 [mm)]
0.800 [mm)]
0.900 [mm]
1.000 [mm]

0.966
0.922
0.898
0.845
0.714
0.664
0.565

0.972
0.940
0.928
0.891
0.818
0.732
0.641

0.966
0.938
0.930
0.905
0.852
0.790
0.696

0.958
0.922
0.912
0.885
0.824
0.772
0.688

Table 4.2: Variation in 3, as a function of web thickness ¢

Flange Area Ay Panel 2 Panel 3 Panel4 Panel 5

50.00 [mm?]
100.00 [mm?]
200.00 [mm?]
243.87 [mm?]
300.00 [mm?]
435.48 [mm?
1000.00 [mm?]
1500.00 [mm?]
2000.00 [mm?]

0.848
0.910
0.950
0.958
0.966
0.972
0.978
0.968
0.966

0.840
0.910
0.950
0.954
0.964
0.970
0.978
0.980
0.972

0.838
0.898
0.938
0.950
0.952
0.962
0.970
0.972
0.970

0.830
0.890
0.930
0.932
0.938
0.950
0.960
0.962
0.960

Table 4.3: Variation in 3, as a function of flange area Ay

o4

low sensitivity to aspect ratio. This is in agreement with the numerous experimental results

generated in the NACA investigation.
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Flange Area Ay Panel 2 Panel 3 Panel4 Panel 5

50.00 [mm?] 0.902 0.894  0.894  0.896
100.00 [mm?] 0910  0.902  0.900  0.896
200.00 [mm?] 0914 0910 0910  0.896
243.87 [mm?] 0918 0912 0910  0.896
300.00 [mm?] 0.924 0914 0910  0.904
435.48 [mm?] 0.928 0916  0.912  0.904
1000.00 [mm?] 0.940 0930 0924  0.914
1500.00 [mm?] 0.932  0.936  0.936  0.930
2000.00 [mm?] 0.904 0976  0.958  0.958

Table 4.4: Variation in 3, as a function of flange area A

Upright Area A, Panel 2 Panel 3 Panel 4 Panel 5

151.2 [mm?] 0952 0.950 1.076  0.952
182.9 [mm?| 0.951  0.949  1.078  0.953
217.7 [mm? 0.950 0.939 1.056 0.953

Table 4.5: Variation in 3, as a function of upright area A,

Upright Area A, Panel 2 Panel 3 Panel 4 Panel 5

151.2 [mm?] 0.898 0928 0930  0.912
182.9 [mm?] 0.927  0.943 0931  0.913
217.7 [mm?] 0.939 0947 0934  0.925

Table 4.6: Variation in 3, as a function of upright area A,

L,/L, o
4.000 43.1
2.330 41.2
1.500  39.5
1.000  38.2
0.667 37.1
0.428  36.5
0.250  36.1

Table 4.7: Panel aspect ratio L, /L, versus diagonal tension angle a
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Chapter 5

Further validation of the Grisham
algorithm

In this chapter, three further examples, some with experimental evidence, are selected from
the literature in an attempt to further validate the Grisham algorithm. The first of the
three examples is taken from the NACA Technical Notes [3]; the second example is taken
from a report by Tsongas and Ratay: Investigation of diagonal tension beams with very
thin stiffened webs [13] and the last example is taken from Mason et al.: The application of
non-linear analysis techniques to practical structural design problems [14].

5.1 Example 1 [3]

In this example one of the test beams used in the NACA test program is analyzed. In the
NACA program, about 50 beams were tested. These can be divided into three different
groups: medium sized beams which are either 635 mm (25 in) or 1016 mm (40 in) deep,
small, heavily loaded beams which are 308.4 mm (12 in) deep and large beams which are
1905 mm (75 in) deep. In this example, a 1016 mm (40 in) deep beam with double uprights,
designated by the NACA test program as: 1-40-4Da, is evaluated. Reference [4] also contains
measured stress results for the uprights and measured deflections which will be compared to
the results of the Grisham algorithm.

A schematic layout of the five panel test beam is shown in Figure 5.1. The dimensions are:

1. I = 2540 mm (100 in)

2. h = 1094.7 mm (43.1 in)

3. he = 1051.6 mm (41.4 in)
4. h, = 942.3 mm (37.1 in)

ot

. d =508 mm (20 in)

(=)

.t =10.99 mm (0.039 in)
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Figure 5.1: The NACA I-40-4Da test beam

7. Ay = 2293.3 mm? (3.554 in?)
8. Ay, = 2293.3 mm? (3.554 in?)
9. A, = 227.7 mm? (0.353 in?)

The flanges are fabricated from steel while the web and uprights are fabricated from 2024-T3
alloy, with the following material properties:

1. oy = 289 MPa (42 ksi)
2. 0y = 441 MPa (64 ksi)
3. E, = 72.4 GPa (10 500 ksi)

Both flanges have a T-shaped cross-section (two angles, 76.2 mm x 76.2 mm X 7.94 mm or
3in X 3 in X % in). The uprights also have a T-shaped cross-section (two angles, 19.05 mm
X 15.88 mm x 3.175 mm or % in x g in x % in). The beam eventually failed due to column
failure of the uprights at a load of 135.8 kN (30.3 kips). This load is designated the ”design
ultimate load” in the analysis. Two additional failure modes of the test beams are: forced
crippling of the uprights and web failure.

5.1.1 The finite element model

The flanges are modelled using second order beam elements, having a T-shaped cross-section
in the linear finite element analysis. The double uprights (two angles on each side of the web)
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Figure 5.2: Mesh of finite element model

are also modelled with second order beam elements, having a T-shaped cross-section. The
thin web is modelled with second order thin shell elements having eight nodes per element.
Small displacement theory is used. The shear load is applied vertically and distributed along
all the nodes at the end of the beam. Plasticity effects are not taken into account and buckling
of the uprights is also not considered. NACA assumes that the web edges are clamped for
calculating the critical shear and compression stress values in this example. Figure 5.2 shows
the finite element mesh for the linear analysis used in the Grisham algorithm.

5.1.2 Web results

Figures 5.3 through 5.7 show the stresses in the web after completion of the analysis. Figures
5.8 and 5.9 show a vector plot of the maximum and minimum stresses in the web respectively.

In Table 5.1, the web results for the panels obtained using the iterative procedure of Grisham
are compared with that of the NACA approach [3]. The correlation is good. No experimental
results from the NACA tests are available for the webs. Again, the results for panels 1 and
5 are ignored since they include edge effects that are automatically included via the finite
element analysis and are not accounted for in the NACA approach. The results for the three
panels using Grisham’s algorithm are very close to the results obtained using the NACA
method.

The critical shear stress value 7., using the Grisham algorithm is 7, = 2.568 MPa while
the NACA procedure gives a value of 7., = 2.868 MPa. The Grisham algorithm value is
based on analytical relations that depend on geometry and material properties. The NACA
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Figure 5.3: Unsmoothed shear stress distribution (7,,) in the web after the final iteration

approach uses analytical as well as empirical relations to calculate the critical shear stress.

Table 5.2 shows some additional output data from the Grisham algorithm: the diagonal
tension and compression-compression buckling stress values for each panel. The Modified
Wagner and NACA methods do not produce values that can be compared to this data. As
in the verification example, the final compressive stress values are very low. This indicates
that the compressive-compressive buckling effects are insignificant in this example.

Grisham algorithm
Panel 2 Panel 3 Panel 4 NACA [3]
k 0.673 0.667 0.657 0.680
a [degrees] 40.29 40.32 40.39 39.00
Ty [MPa] 12793  128.19  128.13 129.62

Table 5.1: Web data comparison for example 1

5.1.3 Upright results

The Grisham algorithm results for the upright stresses are given in Figures 5.11 and 5.12.
Again uprights number 1 and 6 are not considered because of boundary conditions. Figure
5.10 shows the position of these section points on the cross-section of the upright as well as
the position of the uprights relative to the web.
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Figure 5.4: Unsmoothed normal stress (o,) in the web after the final iteration
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Figure 5.6: Unsmoothed maximum principal stress (o) in the web after the final iteration
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Figure 5.7: Unsmoothed minimum principal stress (o2) in the web after the final iteration
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Figure 5.8: Maximum principal web stress vector plot
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Grisham algorithm
Panel 2 Panel 3 Panel 4
Oupr IMPa]  101.52  100.73 98.95
Oypr [MPa] 72.95 72.57 71.60
0, [MPal 0.162 0.243 0.557
oy, [MPa] 0.421 0.551 0.531

Table 5.2: Diagonal tension and compressive stress values calculated by the Grisham algo-
rithm

Section
Point 5

Section
Points 9 and 13

Loaded end of beam

Constrained %: R r—

end of beam | M

1

Section
Point 1

Figure 5.10: Cross-section of the upright showing the location of the section points

From the data in Figures 5.11 to 5.12 it can be seen that, for all the uprights, the values at all
section points are negative and therefore in compression. The diagonal tension effects in the
web tend to pull the upper and lower flanges together, loading the uprights in compression.
Because there is no eccentricity here as in the verification example, and therefore no out-of-
plane-bending, every point on the cross section is in compression.

The stress variation along the length of the uprights is nearly linear, increasing slightly
towards the lower flange. The NACA approach, however, predicts the maximum stress value
to be at a point on the neutral axis of the beam, which for this beam is half way between
the two flanges.

Table 5.3 compares the results from the NACA method with the Grisham results. Measured
stress values are also available from the NACA test program. The average and maximum
measured upright stress as a function of load, from [4], are shown in Figure 5.13. At a load
of 135.8 kN (30.3 kips) the average value is 98.6 MPa (14.3 ksi), while the maximum stress
is 120.7 MPa (17.5 ksi). The average stress values for the Grisham algorithm are calculated
along the length of the upright, using all the integration point values at all the section points.
The measured NACA results are taken from two or three uprights in the central portion of
the beam. Nine to thirteen gauge stations were used on each upright. The average measured
stress in the upright is taken as the average of all the gauge readings on the beam. The

.....
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Upright stresses - Section points 1 and 3

Length of upright

-140 =120 -100 -80
Axial stress [MPa]

-B0

—— Upright # 2
—&— Lpright # 3

Upright # 4
—— Upright # 5

Figure 5.11: Stress along the length of the uprights at section points 1 and 5
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Upright stresses - Section points 9 and 13

Length of upright
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Figure 5.12: Stress along the length of the upright at section points 9 and 13
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Figure 5.13: Measured upright stress data for beam I-40-4Da (Reproduced from [4])

Grisham algorithm NACA [3] NACA [4]

Upright 2 Upright 3 Upright 4 Upright 5 (theory) (measured)

Tu -94.8 -120.1 -115.2 -102.1 -116.5 -98.0
Ot -120.3 -128.9 -120.8 -105.9 -132.4 -121.0

Table 5.3: Upright stress comparison: 1-40-4Da

5.1.4 Flange results

Figure 5.14 shows the bending stresses along the upper and lower flanges. The upper flange
plot shows the stress in the upper fibre of the beam while the lower flange plot shows the
lower fibre stress in the beam.

5.1.5 Deflection results

The experimental results for the deflection of the beam as a function of load, from Kuhn [4],
are shown in Figure 5.15. From the graph the deflection at 30.3 kips is 0.85 inches which is
21.6 mm. The deflection value of the finite element analysis from the Grisham’s algorithm
is 28.4 mm. The displaced shape of the model at the end of the iterative analysis is shown
in Figure 5.16.
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Figure 5.14: Axial stress distribution in the two flanges after the final iteration

o Measured deflection
—-—- Calculated with Gy

Calculated with Gg-

————— Bending deflection only
—~—— Calculated with G

40

——
N
AY

N
O

O
O ====—T

Load, kips

-40-4D
5 10 15

Deflection , in.,

—

L A N A A

m o1 1 1. .a . 1.0, £ T A . /D 1 1 a1\
rigure o.1o: vieasured deriection data Ior peam 1-4U-aDa (heproduced I1rom |[4|)

67



University of Pretoria etd — Viljoen, A (2004)

CHAPTER 5. FURTHER VALIDATION OF THE GRISHAM ALGORITHM 68

Figure 5.16: Displaced shape of the finite element model after the final iteration

5.2 Example 2 [13]

The second example, like the previous one, has experimental data that can be compared
with the Grisham algorithm results (web stresses; upright stresses and shear deformation).
This three panel structure, shown in Figure 5.17, has a very thin web (0.129 mm) as well
as a very high aspect ratio (%:) of 6.12, placing it outside the scope of the accepted NACA
design criteria [3]. An extensive testing program (both static and fatigue) was carried out
on various geometric configurations (test specimens A to M) of this structure to obtain
empirical data to validate the use of the NACA design criteria for similar structures. Figure
5.18 shows a schematic layout of the test setup. Details regarding the tests can be found
in [13]. This kind of deep beam structure is used in spacecraft design to ensure minimum
weight. The test panels were chemically milled from 7075-T6 aluminium alloy web sheets.
This allowed for very thin webs to be manufactured. The web thickness was measured, after
manufacture, at various locations on the sheet and an average calculated. For test specimen
C this real thickness was found to be 0.117 mm.

Test specimen C, being one of three balanced designs, having very small margins of safety
for all principal modes of failure, and the one with the thinnest web, was selected for the
comparative study. The specimen eventually failed in the web at a load of 44 320 N (9.96
kips). Since data at the failure load is not accurate, a load value of half the failure load was
selected for the analysis.
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Figure 5.17: Chemically milled web sheet - test specimen C (Reproduced from [13])

5.2.1 The finite element model

The upright in this structure consists of a ’land’ section that is an integral part of the web
as well as a Z-shaped extruded section that is attached to the back of the 'land’, resulting in
an eccentric support system. The eccentricity was taken into account in the finite element
model.

The measured upright stresses showed very little evidence of bending even though eccentricity
is present in the structure. For this reason, second order beam elements of circular cross-
section are used for the uprights in the finite element model. For simplicity, because flange
stresses were not measured, the flanges are also modelled using second order beam elements
of circular cross-section. Second order, thin shell elements are used for the webs. Each panel
has a 3 x 9 web mesh density.

Figure 5.19 shows the finite element mesh for the linear model used in the Grisham algorithm.
The structure is built in at the one end. At the other end, to simulate the actual testing
conditions accurately, only the second degree of freedom, in which the applied load acts, is
free. The applied load is evenly distributed along all the nodes.
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Figure 5.19: Mesh of finite element model
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Figure 5.20: Magnitude and direction of the principal stresses in the web (Reproduced from

[13])
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Figure 5.21: Strain and dial gauge locations on the test specimen (Reproduced from [13])

5.2.2 Web results

We now consider experimental data. Figure 5.20 shows the measured web results of the
chemically milled sheet from strain gauge station "W3’. Figure 5.21 shows the locations of
the various strain gauge stations on the chemically milled web test piece. Stations "W1’ to
"W6’ all had very similar results. According to Figure 5.20 the minimum principal stress (f$
in the figure) remains close to zero for the duration of the test, while the maximum principal
stress (ff* in the figure) increases almost linearly. At half the failure load, 4.98 kips (22 160
N), which is also the load used in the finite element analysis, the maximum principal stress
has a value of o7 = 40 ksi (275.8 MPa). The angle of major principal stress o, as measured
from the flange line and computed from gauge readings, remains just above 45 degrees for
the duration of the test.

Figures 5.22 to 5.28 show the Grisham algorithm stress results in the web after the final
iteration. Figure 5.25 gives a contour plot of the maximum principal stress in the web and
shows this stress value in the middle bay to be in the range of o7 = 279.0 MPa to o, =
325.5 MPa. The measured value is 01 = 275.8 MPa. Figure 5.26 gives a contour plot of the
minimum principal stress in the web. Like the measured value this stress is compressive and
only slightly less than zero in the middle bay. Figures 5.27 and 5.28 show the vector plots
of the principal stresses in the web and clearly show the large difference in magnitude.

The angle of major principal stress calculated from the web results of the Grisham approach
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Figure 5.22: Unsmoothed shear stress (7,,) distribution in the web after the final iteration

has a value of o, = 40.2 degrees, compared to the measured value of the chemically milled
sheet ot = 45.4 degrees.

In Table 5.4 additional output data from the Grisham algorithm is listed for the mid bay
but with no measured data available for comparison. Panels 1 and 3 are ignored due to edge
effects from the finite element analysis.

Panel 2
k 0.552
a [degrees] 37.4
Toy [MPal -132.8

Oupy [MPal 95.81
o,pr [MPa] 5608
o, [MPa] -3.16
oy, [MPa] -6.86

Table 5.4: Output data from the Grisham algorithm

The initial sheet buckling stress was impossible to determine from the tests as the extremely
thin sheet would become unstable while the test piece was mounted in the machine.
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Figure 5.23: Unsmoothed normal stress (o, ) in the web after the final iteration
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Figure 5.26: Unsmoothed minimum principal stress (o2) in the web after the final iteration
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Figure 5.28: Minimum principal stress vectors in the web after the final iteration
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5.2.3 Upright results

Axial strains in one stiffener adjacent to the middle panel were measured at three cross-
sections along the length of the stiffener (See Figure 5.21). These values remained constant
as the applied load increased up to about half the failure load.

Figure 5.29 shows the measured results for the longitudinal stresses at the mid-length of
the stiffener. These measurements were taken on one of the uprights adjacent to the center
panel. The yellow line represents the reading from strain gauge ’41’ which is placed on the
land of the sheet. The blue line represents the reading from strain gauge '42” which is placed
on the free surface of the attached stiffener leg. The orange line represents the reading from
strain gauge '43” which is placed on the outside surface of the outer stiffener leg. Since the
readings of these three gauges show good agreement, there are no significant bending effects,
even though the upright is eccentric. Average upright stresses will therefore be compared.
From the graph in Figure 5.29 the stress values at a load of 22 151 N (P — = 0.5 in the

ult

figure) for the three strain gauges are:

1. 41" 0, = -9.5 ksi (-68.95 MPa)
2. 42 ¢, = -7 ksi (-48.26 MPa)
3. 43" o, = -7.5 ksi (-51.71 MPa)

The average value of these measured stresses is @, = -56.34 MPa. The average stress in
upright number 2 of the Grisham approach is 7, = -73.90 MPa. The average was calculated
from all the section points at the integration points along the upright length.

5.2.4 Deflection results

Figure 5.30 shows the displaced shape of the finite element model after the final iteration.
Figure 5.31 shows plots of the equivalent shear stiffness G}, and G§p. G pr is computed
using equations 31.a and 31.b in NACA TN 2661[3] and is represented by the blue dotted

line. G§r is the equivalent shear stiffness calculated from the test data. G = m

where yypr = . Gauges 3 and 4 are dial gauges used for measuring deflections
at two locations on the test specimen. See Figure 5.21 for the locations of the dial gauges.

Gauge3—Gauged
d

G5y is represented by the orange line on the graph. At ,:: a value of IDT = 0.56 is

obtained. With a shear modulus of 25.98 GPa for 7075-T6 alumlmum alloy, the equivalent
modulus calculated from the measured data is G¢, = 14.55 GPa. Substituting the values
for d and h. into the above equations and solving for the difference between the two gauge
readings, a value of Gauge 3 - Gauge 4 = 2.93 mm is obtained. In order to compare this
measured difference to the finite element analysis results, displacement values at the nodes,
corresponding to the locations on test specimen C were extracted and found to be: uy_,,.,
= 2.81 mm and ug,,,,., = 5.14 mm which gives a difference of 2.33 mm. This is 20 % lower
than the measured value of 2.93 mm.
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Figure 5.29: Measured longitudinal stresses at the mid-length of the stiffener (Reproduced
from [13])
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Figure 5.30: Displaced shape of the finite element model after the final iteration
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Figure 5.31: Shear stiffness variation as a function of load (Reproduced from [13])

5.3 Example 3 [14]

This example, like the two before, is a cantilever beam. Figure 5.32 gives the dimensional and
geometric detail. The approach followed in [14] is to model diagonal tension by using a single
model for multiple load conditions. As with the Grisham algorithm, the stiffness matrix is
formulated once only. The method uses the induced strain concept in conjunction with an
iterative procedure to enforce a condition of limited compressive principal stress within the
thin membrane elements. Only a pure diagonal tension (PDT) condition is considered in
this approach.

5.3.1 The finite element model

The webs are modelled using second order membrane elements while the bars are modelled
using second order truss elements. A vertical load of 10 kips (44.48 kN) is applied at the free
end of the beam. The mesh of the finite element model is shown in Figure 5.33. The critical
buckling shear stress for this example is 7., = 18.66 MPa which is much higher than that of
any of the previous three examples. Figures 5.34, 5.35 and 5.36 show the stress results in the
web at the end of the analysis. Figure 5.37 shows a vector plot of the maximum principal
stress in the web while Figure 5.38 shows a vector plot of the minimum principal stress.

5.3.2 Web results

The only variable used in this comparative study is the diagonal tension angle. The results

- m o1
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Figure 5.33: Mesh of finite element model

but with no measured data available for comparison.

Panel 1 Panel 2 Panel 3 Panel 4

Grisham algorithm 44.37 44.00 43.77 43.70
Induced strain approach [14] 47.9 44.6 44.5 40.7
NACA approach [3] 46.9 44.3 43.6 43.0

Table 5.5: Diagonal tension angle « (degrees) comparison

5.3.3 Deflection data

The displaced shape of the beam at the end of the iterative analysis is shown in Figure 5.39.

5.4 Discussion

From the results of the example problems in this chapter as well as the results from the
verification example in Chapter 2, it is evident that the Grisham algorithm yields good
correlation with the worked examples and experimental data from the literature. As a tool
during initial design iterations, it is certainly promising.
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Figure 5.34: Unsmoothed shear stress (7,,) distribution in beam after the final iteration
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Figure 5.35: Unsmoothed normal stress (o,) in the beam after the final iteration
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Figure 5.36: Unsmoothed normal stress (o,) in the beam after the final iteration
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Figure 5.37: Maximum principal stress vectors in the web after the final iteration
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Figure 5.38: Minimum principal stress vectors in the web after the final iteration
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Figure 5.39: Displaced shape of the finite element model after the final iteration
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Grisham algorithm

Panel 1 Panel 2 Panel 3 Panel 4
k 0.403 0.413 0.409 0.372
Toy [MPa] 172.45 172.39 172.38 172.55
O pr |[MPal 71.00 73.81 73.72 67.23
Oypr [MPal 67.98 68.84 67.66 61.43
0z, [MPal 4.04 2.14 2.76 6.57
oy, [MPa] 3.01 3.15 3.15 7.61

Table 5.6: Grisham algorithm web results
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Chapter 6

Structural optimization

Grisham’s algorithm is attractive in optimization, since the computational effort required
per function evaluation is relatively low. The algorithm can easily be combined with a well
known but simple optimization algorithm, namely the genetic algorithm (GA).

In this chapter, the example from Bruhn [8] considered in Chapter 2 is therefore optimized
with respect to minimum mass, using a u-GA with a binary representation (e.g. see Carroll
[15]). While a genetic algorithm is not necessarily the best algorithm for the problem under
consideration, it is selected here, as to easily allow for discrete design variables in future.

The development is as follows: Firstly, the optimal design problem is formulated. Next,
the genetic algorithm is briefly outlined, whereafter the differences between a GA and a
micro-genetic algorithm (u-GA) are described. (A pu-GA is based on, and is derived from,
the GA.) In the following, the presentations by Groenwold [16] and Bolton [17] are closely
followed. The chapter concludes with optimal design results for the example problem.

6.1 Objective function and constraints

The optimal design problem we consider in this chapter is formulated as follows: Find the
minimum f* such that

[T = f(®") = min f(z) (6.1)

subject to the general inequality constraints
gj(x*) <0, j=1,2,....m (6.2)

where @ is a column vector in IR" and f and g; are scalar functions of the design variables
x. x is subject to the subsidiary conditions z! < z; < 2%, with 2! and z% respectively
representing prescribed lower and upper bounds on z;.

(6.1) is denoted the objective function, and frequently represents mass, exposed area, cost,
etc. Constraints (6.2) may represent a limit on displacement, stress, strain, magnetic flux,
etc. In finding a low value for (6.1), (6.2) may never be violated. For example: when the

mass of an aircraft structure is minimized, the stresses in the members may never rise above

87



University of Pretoria etd — Viljoen, A (2004)
CHAPTER 6. STRUCTURAL OPTIMIZATION 88

a prescribed value. Else a very light structure is found, which however fails immediately
upon use.

6.2 The genetic algorithm (GA)

Genetic algorithms [18] are stochastic implicit enumeration methods based on Darwinism
and in particular, on the natural theory of survival of the fittest. In brief, genetic algorithms
attempt to improve the fitness of designs (expressed in terms of a scalar objective function)
in consecutive generations. The initial generation is populated in a random fashion with
chromosomes representing possible discrete designs. The genetic operators of selection, cross-
over and mutation are then used in a controlled random manner to ensure that fit parents
have a high probability of passing fit genetic material to their off-spring.

Even though GA’s are infamous for high computational costs (a large number of function
evaluations), GA’s are attractive to engineers, since their construction is quite simple. Nu-
merous applications of GA’s in engineering optimization have been presented. In addition,
GA’s are also suitable for implementation on massively parallel processing machines and
lend themselves to be tailored according to the behavior of the objective function under
consideration [16].

The most important aspects of a GA are briefly described as follows [17]:

6.2.1 Representation of design variables

Consider an initial design population, constituting of e design vectors (or ‘strings’ in GA
jargon) @, created by a random selection of the variables in the variable space for each design.

The values of the variables in the strings must be represented by a unique coding scheme.
We opt for binary coding, which is powerful and frequently used.

For example: the binary string (01101) of length [ = 5 represents the real number 22:
0-2041-2"41-2240-2°+1-2" =22

A real value z within bounds (xy, x.) is represented by binary coding in the following way:

(Te — 1)
T = Tpin * W + X (63)
where z
Tpin = 2 207 (6.4)
i=1

and z; can be either 1 or 0 with [ the binary string length.

If the objective function has several variables, then the design vector can be represented by a
concatenation of the coding of each variable [19]. For example, the three dimensional design
vector

x = [22 8 11]



University of Pretoria etd — Viljoen, A (2004)
CHAPTER 6. STRUCTURAL OPTIMIZATION 89

with corresponding binary code (01101); (00010); (11010) is represented as
X =[011010001011010]

(The uppercase symbol indicates that a concatenated string is considered.)

6.2.2 Selection

The selection operation selects e strings from the current population to form the mating
pool. The strings corresponding to fit objective function values have the greatest chance to
be selected for mating and hence to contribute to future generations. While a large number
of different selection processes are possible, only the well known expected value selection,
tournament selection and ranking selection are briefly discussed in the following.

Expected value selection (roulette wheel selection)

In the expected value selection [20], also known as the roulette wheel selection, the minimiza-
tion problem is converted to a maximization problem by multiplying the objective function
with -1. Also, the function values must be positive and therefore a constant must be added
to functions with negative values. The relative fitness p; for each design is calculated as
follows:

fi

Pi = —2 1=1,2,3,...e (6.5)
=1 Ji

where f; denotes the function value of design 7. The cumulative probability space d; is
defined as:

J
dj = Zpl j = 1, 2,3, ...€ (66)
i=1

String ¢ is selected for the mating pool if a random number v between 0 and 1 is generated
and satisfies the condition: d;_; < v < d; with dy = 0.

Tournament selection

Tournament selection simulates the process where individuals compete for mating rights in
the population [15]. In the GA, e tournaments are held between a sub group of strings
chosen randomly from the existing population. The design from each tournament with the
lowest function value is selected for the mating pool.

Ranking methods

After ranking the strings in ascending order according to the objective function values, the
relative fitness p; of member 7 is expressed as

t;
Di = (6.7)

T e ,
2.i=1 Ui
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where (e+1-1)
e+1—1)°
li=2 ———-7— .
(e2+e) (6.8)

c is taken as any value between 1 and 10 (typically 1) and e is the population size. The
cumulative probability space d; is constructed using the above defined relative fitness p; and
the strings are selected as in the expected value selection.

6.2.3 Crossover

After selecting e strings for the mating pool, new designs are explored by the crossover
process. Crossover allows selected individuals to trade characteristics of their designs by
exchanging parts of their strings. The mating pool strings are randomly grouped into pairs
and a breaking point in the strings for each pair is chosen randomly. The values at the string
positions after the breaking point are interchanged between the pair and the new designs
are copied to the new generation. Crossover for each pair is applied with a given probability
Pe, usually between 0.6 and 1. For example, when crossover is applied at the third crossover
position of the following strings

X, =[011|0100]
X, = [010[1101]
the strings exchange the last four bits and become:
X, = [011]1101]
X, =[010/0100]

If crossover for a pair is not applied, then the unchanged parents are copied into the next
generation. Sometimes, only one child is produced per parents. Frequently, more than one
braking or cross-over point is used during crossover.

6.2.4 Mutation

The mutation operation protects against complete loss of genetic diversity by randomly
changing bit values in a string. For each bit in the population a random number is generated
and the bit value is changed if the random number is less than the prescribed probability of
mutation p,,. For example, if mutation occurs at position four of the following string

X, =[0110100]
the string becomes
X, =[0111100]

For an integer alphabet, the mutated value can randomly be selected from the possible values
from the alphabet (jump mutation), or given the value of a neighbor (creep mutation). In
a binary representation, prescribing the position has a similar effect (see the example in
Section 6.2.1).

Mutation typically occurs at low probability, else convergence can be impaired.
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6.2.5 Other operators

Numerous other operators have previously been proposed. It is outside the scope of this
study to name them all. However, one further operator frequently encountered is ‘elitism’.
It is described as follows: At any stage of the GA search, the best string found to date may
(permanently) disappear from the mating pool, due to the random nature of selection. If one
opts for an implementation that returns the best string found at some stage to the mating
pool, (after say every a generations), this process is known as elitism. Frequently, a value of
unity is used for a.

6.3 u-GA

A pu-GA is an implementation of the GA in which rebirth replaces mutation. The basic idea is
to use very small populations (say 5 individuals). It is then hoped that the small population
converges very quickly, whereafter 1 or at most 2 individuals are retained using tournament
selection. The remaining individuals are then killed off, and randomly repopulated, a process
called rebirth.

Rebirth was first proposed by Galante [21]. The implementation of Carroll [15] is similar to
that of Galante, except that Galante used larger generations than the norm in the p-GA. In
addition, Galante retained mutation, which probably is superfluous.

While the ‘free lunch’ theorem [22, 23] effectively prohibits a general, exhaustive comparison
between the GA and the u-GA, the latter has a secondary advantage: A reasonable solu-
tion may sometimes be obtained relatively quickly, due to the small generations typically
employed. This may be desirable when evaluation of the objective function is computation-
ally very expensive, (e.g. when using non-linear finite element analyses), and when a visual
inspection of the ‘current best’ solution can be used to defend additional computational
effort.

An inherent drawback of a u-GA is that premature convergence is likely. Terminating a
population is obvious: it can for example be done when a prescribed fraction (say 0.8) of
the population has converged to a given value. However, knowing when enough restarts
have been made, is not simple, and will probably be influenced by factors like computational
effort and the quality of the solution found to date.

6.4 Optimization of verification example

The minimum-mass design of the stiffened shear webs is taken as the objective function,
while the design variables represent the dimensions of the 6 panels. The single constraint
g considered in the optimization phase is the maximum allowable prescribed post-buckled

stress, expressed as
maxr Tpres

9= Tay zy (6.9)
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where 7,7%" represents the maximum shear stress in the webs. 717¢° represents the prescribed,

maximum allowable post-buckled stress. The objective function is then formulated as

I
f=>"mi+pplg)® (p>0and prescribed) (6.10)
k=1

where [ represents the number of structural members, m the mass of member £ and

[0 ifg<o0
,u_{ 1 otherwise (6.11)

For the current example the constraint is simply taken as the yield stress of the material:
oy = 483 MPa for both the web material, the flange and upright material.

Further to the single considered constraint on stress, a large number of bound constraints
are included to ensure validity of the solution. These constraints are all expressed in terms
of the relationships given in Grisham’s method, and are included in Tables 6.1 and 6.2 which
tabulate the numerical results.

The example is optimized using two different sets of design variables. Firstly, four geometric
variables are selected, whereafter eleven geometric variables are used. With reference to
Figure 2.1, the design variables for Case 1 are:

e the upper flange area,

e the lower flange area,

e the upright area (all equal), and

e the web thickness (all equal).

For Case 2, the variables are:
e the upper flange area,
e the lower flange area,
e the area of uprights number 2 through 6 (all different), and
e the web thickness of panels number 2 through 5 (all different).

In both cases, panels one and six are not considered because of the effects of the boundary
conditions.

6.4.1 u~GA parameters

In the implementation of the u-GA, we use a small population size of 5, and a uniform
cross-over with an 80% probability. One child per pair of parents is produced, and parent
selection is based on tournament selection. Elitism is included.

Eccentricity of the uprights is taken into account. The cross-sections in the example are
used; T-sections for the flanges and angle sections for the uprights. During the optimization
phase, the finite element mesh is never updated or changed in any way from the initial model.

6.4.2 Optimal results

For Case 1, using the u-GA, the optimum mass is obtained as 5.515 kg after 37 generations.
This gives an 11.01% saving on mass from the original mass of 6.122 kg. This is highly
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Variable Description Initial value Final value Bounds
1 Lower flange area [mm?] 243.87 201.0 100 < z; < 250
Zg Upper flange area [mm?] 435.48 400.4 200 < x5 < 450
T3 Upright area [mm?] 151.21 150.4 50 < x5 < 170
T4 Web thickness [mm] 0.635 0.5188 0.3<x4<0.9

Table 6.1: Case 1: Optimum results using the pu-GA

Variable Description Initial value Final value Bounds
1 Lower flange area [mm?| 243.9 197.7 100 < 27 < 250
T Upper flange area [mm?| 435.5 396.5 200 < x5 < 450
T3 Area of upright no. 2 [mm?| 151.2 140.1 50 < 23 < 170
24 Area of upright no. 3 [mm?| 151.2 142.8 50 < x4 <170
Ts Area of upright no. 4 [mm?| 151.2 138.5 50 < x5 < 170
T Area of upright no. 5 [mm?| 151.2 141.1 50 < 26 < 170
7 Area of upright no. 6 [mm?| 151.2 141.9 50 <z, < 170
Tg Panel 2: Web thickness [mm] 0.635 0.506 0.3 <25<09
Zg Panel 3: Web thickness [mm] 0.635 0.494 0.3<29<0.9
T10 Panel 4: Web thickness [mm] 0.635 0.490 0.3<xz10<0.9
11 Panel 5: Web thickness [mm] 0.635 0.497 0.3<z1; <09

Table 6.2: Case 2: Optimum results using the pu-GA

significant in aircraft structures. At the optimum, the stresses are o,,ises = 325.8 MPa in
the web and 0,,;5¢s = 392.4 MPa in the flanges.

The stress results of the optimized design for Case 1 are plotted in Figures 6.1, 6.2 and 6.3.
Figures 6.4 and 6.5 show vector plots of the maximum and minimum principal stresses in
the web.

For Case 2, the optimum mass is obtained as 5.366 kg after 23 generations. This gives a
14.08% saving on mass from the original mass of 6.122 kg. This is very similar to the four
variable case. At the optimum, the stresses are o,,iss = 307.7 MPa in the web and 0,,;5es =
427.8 MPa in the flanges.

It is noted that neither Case 1 nor Case 2 are converged, since neither the stress constraint
nor the variable bounds are active in either case. Case 2 does produce a more optimal result.
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Figure 6.1: Unsmoothed shear stress distribution (7;,) in the web after the final iteration
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Figure 6.2: Unsmoothed normal stress (o,.) in the web after the final iteration
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Figure 6.3: Unsmoothed normal stress (o) in the web after the final iteration
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Figure 6.4: Maximum principal web stress vector plot after the final iteration
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Figure 6.5: Minimum principal web stress vector plot after the final iteration
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Chapter 7

Closure

7.1 Summary of contributions

In this thesis, the iterative post-buckling algorithm proposed by Grisham was successfully
implemented and tested. The implementation was verified using various examples from the
literature, for some of which experimental results were also available. For most examples,
comparisons with results obtained using the modified Wagner and NACA approaches were
also performed. In addition, the results obtained using the Grisham algorithm were compared
with the results of a complete non-linear finite element analysis. The algorithm was then
used in an optimization exercise to determine the minimum mass of the structure using an
implementation of a genetic algorithm.

7.1.1 Software developed

The Grisham algorithm was programmed in FORTRAN77 and is now available for use at
the CSIR!. All the linear finite element models were analyzed using ABAQUS®. To achieve
this, portable FORTRAN7Y7 subroutines were developed within the ABAQUS® environment
to allow for the extraction of data and interaction with the Grisham algorithm.

7.2 Evaluation of the Grisham algorithm

7.2.1 Comparison with the Wagner, modified Wagner and NACA
approaches

For the verification example studied in Chapter 2, the Grisham algorithm gave comparable
results to those obtained using the Wagner and NACA approaches, with the Grisham algo-
rithm being less conservative. The web results compared very well. The diagonal tension
factor k was calculated to be between 2.5% and 6.0% lower (depending on the panel studied).

1See also Appendix B for a listing of the source code.
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The diagonal tension angle a of 42.2 degrees is roughly halfway between the Wagner and
NACA predictions, with the total shear stress in the web being 6% lower than that predicted
by NACA.

The average upright stress results varied between 12% and 38% below that of the NACA pre-
dictions, depending on the position of the upright. NACA again was some 6% lower than the
Wagner prediction. For the maximum stress values in the uprights, the Grisham algorithm
results were between 13% and 32% lower than that calculated using NACA (with the Wagner
approach not producing a maximum stress value). The flange stress results with the Grisham
algorithm resulted in far lower values than both the NACA and Wagner approaches (up to
as much as 138% difference). This may be accounted for by the secondary bending stresses
(04,, 07,) caused by diagonal tension. When ignored, the correlation improved dramatically
(within 44%).

7.2.2 Comparison with a full non-linear analysis

To further validate the Grisham algorithm theoretically, a non-linear finite element analysis
was performed for the verification example. While no diagonal tension factor is obtained
from the non-linear finite element analysis, a qualitative inspection reveals that the principle
stresses in the non-linear analysis agree well with the diagonal tension angle calculated using
the Grisham algorithm.

The web critical buckling shear stress (7,) calculated with the non-linear finite element anal-
ysis results is slightly higher and less conservative than that of the other methods (Wagner,
NACA and Grisham). The agreement between the non-linear analysis and the Grisham web
stress results is within 22%.

The highest average upright stress value is found in Upright 4 (the middle of the structure)
and reduces in magnitude by up to 35%, to both ends. This is the case with both the
non-linear analysis and the Grisham algorithm. Since the linear finite element analysis used
in the Grisham algorithm does not take into account all the intricacies of the non-linear
finite element analysis, the best way to compare the results in the uprights is probably to
refer to averaged values. The general trend of the two sets of data compare very well, the
non-linear finite element results being lower and probably less conservative than the Grisham
algorithm results. The flange results compare reasonably well although the Grisham results
are no longer conservative (within 16%, except for the upper flange values which are 30%
lower than that of the non-linear finite element analysis results). The deflection results
compare reasonably well, with the Grisham algorithm tip deflection being 11% lower than
that of the non-linear finite element analysis.

7.2.3 Computational effort

The comparative study revealed that the Grisham algorithm is much more efficient than
a non-linear finite element analysis. A run time comparison on an HP C200 workstation
showed that for a coarse mesh discretization, the Grisham algorithm ran 14 x faster than a
comparable non-linear finite element analysis. For a fine mesh discretization, the Grisham
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algorithm ran 10 x faster. This result seems influenced by external loads on the workstation.

For the non-linear finite element analysis, a refined mesh is a requirement, as to allow for
adequate representation of the buckling modes (viz. an element characteristic length should
probably at least be some 3-5 times smaller than the wavelength of the buckling mode).
The Grisham algorithm on the other hand is an approximate method that requires far less
accuracy in the finite element model.

Hence an advantage in computational efficiency of at least 10 x for most problems seems
reasonable.

7.2.4 Stopping criteria and parameters

The two convergence criteria used in the Grisham algorithm both typically converge within
five iterations to within a 2% margin. This seems quite efficient and realistic.

The method has two parameters (3 values) which are related to the stiffness of the buckled
webs. They are not known a priori. When the algorithm starts off, they are approximated
by initial estimates. The [ values reveal little sensitivity to the flange or upright dimensions,
but notable sensitivity to the thickness of the webs in the structure. Nevertheless, the 3
values can easily be adjusted using an iterative procedure and do not effectively impair
convergence.

7.2.5 Further verification

Three further examples taken from the literature were used to validate the Grisham algo-
rithm; the first two with experimental results. The Grisham algorithm results compared
reasonably well with the experimental values, providing further proof of the validity of the
procedure.

7.3 Structural optimization
The verification example was successfully optimized for mass, using a micro-genetic algorithm

(u-GA). Using only four design variables, an 11.01% saving in mass was achieved. Using
eleven design variables, a 14.08% saving was achieved.

7.4 Recommendation
Based on

1. the demonstrated accuracy of the Grisham algorithm, as well as

2. the computational efficiency as compared to a full non-linear finite element analysis,
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it is recommended that the Grisham algorithm be used in particular during initial design
iterations and optimization analyses.

After initial design iterations are complete, final designs can still be evaluated using a full
non-linear finite element analysis if desired. This will allow for a single expensive non-linear
finite element analysis to suffice during the design or optimization process.

7.5 Future work

The Grisham algorithm can relatively easily be extended to provide for box structures,
curved panels and composite materials. It is noted that the computational edge of the
Grisham algorithm can be expected to increase as the complexity of the structures analyzed
increases (since non-linear finite element analyses will become increasingly expensive).

In addition, the use of discrete design variables during optimization is of interest. This is
already provided for in selecting a genetic algorithm for the infrastructure.
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Appendix A

Summary of Grisham’s equations

A summary of the equations in Grisham’s paper is given below. Note that for all equations,
the buckling stress is positive.

First, the modified shear buckling allowable stress is evaluated:

o o
Teyer = Tayery \/1 B —— (A.1)

Og crg chro

If the linear finite element solution indicates a tension-tension stress state, else for tension-
compression and compression-compression the following equation is used:

2
2 T37ycr0 (O-xo-ycro + O-yaxcro )

T"L'ycr

- =0 A2
| Tl‘y | Oy crg Uycro Tibycr TmyCT‘O ( )

Once this is done, the modified membrane buckling stresses are determined:

|Txy| Oz Oy

(A.3)

|T5Bycr| B Ul'cr B Uycr

Once these have been calculated an interaction equation is used to determine if the web
buckles:

Trer | e | (Jzery2 g (A4)

Oz crg Uycro Txycro

If the web buckles, the diagonal tension factor, angle and stresses in the x- and y-directions
can be calculated:
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k = tanh(0.5log Ty ) (A.5)
Tibycr

The diagonal tension angle is calculated using the following equations and a series of suc-
cessive approximations:

6—€f

tan® a = A6
an” o p— (A.6)
where:
H
= ta,nla (A7)
€, = Hytana (A.8)
H.
€= — LA H, sin 2c (A.9)
sin 2«
Hy = — mllie] (A.10)
Ep(£L +0.5(1 — k)
—k|Tay|
H, = 2y A1l
* T By +0.5(1 - k) (4.11)
2k |7,
- |
Hy=(1—k+ p— pk) ) (A.13)

Ey,

Ay and A, are half of the summed stiffener areas in the x- and y-directions respectively.

The diagonal tension stress to be developed in the plate following shear buckling is:

Oupy = k|Tuy| cot (A.14)

Oypr = k| ey tan a (A.15)

The shear strain of the plate in its post-buckled state is:
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1—k k
+ =7y

%cy = [ Gw Gpdt

where:

1 1 4 E,L,ttan? o E, Lyt cot?

o~ 2Ga (L) 5220 T By(Ay + 05L.(0 — F)) T Ey(2A; + 050,01 — k)

Defining:
1 1
=—40
Gpdt Gw
then:
1 k(6 —1
Yy = (G_ + %)Twy

105

(A.16)

1 (A1)

(A.18)

(A.19)

where the second term is the shear deformation of the plate in its post-buckled state.

Therefore, the set of pre-strains required to induce the diagonal tension stresses in the plate

1S:

1 B,Lyt

€xpr = _Ew( AfEf + 1)(OxDT - UOyDT)

1 (Ewth
E," AE,

EyDT -

+ 1)(0yDT - IUO-JJDT)

k(6 —1)

Yzypr = G—)TMJ
w

The compressive stresses in the buckled plate are:

0. — 0203[0'33 — Uwcr]L + ,6:,;[1104[0"@ — O'ycr]L
re C1Cs

— 0104 [Uy — Uycr]L + ﬁyNCS [O-"L' — Uivcr]L
¢ C1Cy

Oy,

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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where:

L is a factor to control the rate at which compressive buckling is incorporated and has a
value between ‘0’ and 1’

L LytE,B,
Cr =1+ A,E, (A.25)
. LitEpB,
Cy=1+ AE. (A.26)
Cy=1-4, (A.27)
Ci=1-0, (A.28)
and
E,,
fo = . (A.29)
Ewy

The pre-strains corresponding to these changes in stress due to compression buckling are:

1 L,tE,
€z, = —E—w(l =+ W)(Ux — poy)|Be + BefBy — 1 (A.31)
1 L,tE,
€y, = —E_w<1 + AL, )(Uy - ,UO'J:)|ﬁy + ﬁxﬁy - 1| (A32)
Yoy = 0.0 (A.33)

The total change in strain for the first iteration is the sum of the diagonal tension strain and
the compressive strain:

Ney = €xpp + €, (A.34)

Aey = €y + €y, (A.35)
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k(O —1
A/ny = %)Txy (A36)

These strains then become the pre-strains in the finite element model, for the next iteration.
For the second and succeeding iterations, all the above equations are used. The diagonal
tension stress must first be removed from the finite element stress though. The total strain
for the n-th iteration is:

@ =+ A (A.37)

GZtotal = 62_1 + AGZ (A'38)
KM (O™ —1

Veyiotar — ¥7—:, (A?)g)
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Appendix B

Source code of the software developed

The Grisham Algorithm was implemented by coding the procedure in FORTRAN 77. The
program consists of a main routine and numerous subprograms, each fulfilling a different
task. An additional postprocessing program was also coded to extract data from the linear
finite element analysis results in the ABAQUS® environment which could then be read by
the main routine.

The code generates a flat structure of np, by np, panels in the z- and y- directions re-
spectively as specified by the user. Each panel has stiffener members around its perimeter
which may have totally different cross-sectional areas for each member. Once the number of
elements per flange and the elements per upright are chosen, they remain the same for all
flanges and all uprights.

The program also makes provision for all possible configurations of boundary conditions
for the web buckling critical values (all sides simply supported; all sides fixed; 2 horizontal
sides fixed and 2 vertical sides simply supported; 2 horizontal sides simply supported and 2
vertical sides fixed).

The web can be modelled using either shell or membrane elements. The flanges and uprights
can be modelled using beam or truss elements. Elements can be first or second order. Only
buckling of the web is considered, buckling of the uprights is not taken into account.
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C

C VARIABLE DEFINITIONS: (DOUBLE PRECISION)

C

C ALFA Diagonal tension angle; positive when measured

C from the local x- axis using the right hand rule

C ALFA11  Expansion coefficient in the x- direction

C ALFA22  Expansion coefficient in the y- direction

C ALFA12  Expansion coefficient - shear

C AX Half the summed stiffener areas in the x- direction

C of each panel

C AY Half the summed stiffener areas in the y- direction

C of each panel

C _____________________________________________________________________
C B Shortest side of plate (minimum of LX or LY)

C BETAX/Y Parameter used to indicate whether pre- or post-buckling
C modulus of elasticity is applicable in the x- or y-

C direction of the plate/sheet

C BBETAX/Y Coefficients used in incremental change in strain equations
C (second and succeeding iterations) to assist convergence of
C previously compressively buckled plates that have become
C unbuckled

C BNF1 Beam nodal force - component 1

C BNF2 Beam nodal force - component 2

C BNF3 Beam nodal force - component 3

C BUCK The interaction equation used for bi-axial compression

C and shear buckling

C _____________________________________________________________________
C C1-C4 Variables used in calculating the compressive stresses in
C a plate

C CONV1X  Convergence requirement 1

C CONV1Y  Convergence requirement 1

C CONV2X  Convergence requirement 2

C CONV2Y  Convergence requirement 2

C _____________________________________________________________________
C DFX12 Difference in total nodal force between points 1 and 2

C of the panel in the x-direction (normal to side)

C DFX23 Difference in total nodal force between points 2 and 3

C of the panel in the x-direction (normal to side)

C DFX34 Difference in total nodal force between points 3 and 4

C of the panel in the x-direction (normal to side)

C DFX41 Difference in total nodal force between points 4 and 1

C of the panel in the x-direction (normal to side)

C DFY12 Difference in total nodal force between points 1 and 2

C of the panel, in the y-direction (// to side)

C DFY23 Difference in total nodal force between points 2 and 3
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C of the panel, in the y-direction (// to side)

C DFY34 Difference in total nodal force between points 3 and 4
C of the panel, in the y-direction (// to side)

C DFY41 Difference in total nodal force between points 4 and 1
C of the panel, in the y-direction (// to side)

C _____________________________________________________________________
C ENODE Eccentricity of uprights !! (not flanges) - node to node
C ECC Eccentricity of uprights - centroid to centroid

C EP Modulus of Elasticity of plate

C EQN1X Equation used in first test for BETAs

C EQN1Y Equation used in first test for BETAs

C EQN2X Equation used in second test for BETAs

C EQN2Y Equation used in second test for BETAs

C EQN3X Equation used in third test for BETAs

C EQN3Y Equation used in third test for BETAs

C ERR % error made while calculating successive approximations of the
C diagonal tension angle (ALFA)

C ES Minimum % error allowed in calculating root of

C equation (subroutine)

C EXB Modulus of Elasticity of beam in x- direction

C EXC Strain in the x-direction due to compressive loading

C only

C EXDT Strain in the x- direction due to diagonal tension

C EXP Effective Modulus of Elasticity of buckled plate in x-
C direction

C EXT Total strain in the x- direction [compressive loading +
C diagonal tension]

C EXYDT Shear strain due to diagonal tension

C EXYT Total shear strain

C EYB Modulus of Elasticity of beam in y-direction

C EYC Strain in the y- direction due to compressive loading

C only

C EYDT Strain in the y- direction due to diagonal tension

C EYP Effective Modulus of Elasticity of buckled plate in y-
C direction

C EYT Total strain in the y- direction[compressive loading +
C diagonal tension]

C ____________________________________________________________________
C FLA Flange T-section dimension

C FLB Flange T-section dimension

C FLT1 Flange T-section dimension

C FLT2 Flange T-section dimension

C _____________________________________________________________________
C GP Shear modulus of plate
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C H1-H4 Variables used to calculate the diagonal tension angle in
C a plate

C _____________________________________________________________________
C IXX Moment of Inertia of upright about an axis through its own
C centroid and parallel to the web plane

C _____________________________________________________________________
C K Diagonal tension factor

C KS Shear buckling coefficient for a flat plate

C KX Buckling coefficient in x-direction for a flat plate

C KY Buckling coefficient in y-direction for a flat plate

C _____________________________________________________________________
C L Factor between 0.0 and 1.0 to control the rate at which
C buckling is incorporated in the solution

C L1 if LX >= LY then L1 = LY and L2 = LX

C L2 if LY > LX then L1 = LX and L2 = Ly

C L12 Plate side length; between corner nodes 1 and 2

C L23 Plate side length; between corner nodes 2 and 3

C L34 Plate side length; between corner nodes 3 and 4

C L41 Plate side length; between corner nodes 4 and 1

C LPNX Length between nodes in the x-direction

C LPNY Length between nodes in the y-direction

C LTOTX Total length of model in x-direction

C LTOTY Total length of model in y-direction

C LX Length of plate in x-direction

C LY Length of plate in y-direction

C ______________________________________________________________________
C NCX Nodal x-coordinate generated within program

C NCY Nodal y-coordinate generated within program

C NCZ Nodal z-coordinate generated within program

C NF1T Total force at node - component 1 read from ABAQUS output
C NF2T Total force at node - component 2 read from ABAQUS output
C NF3T Total force at node - component 3 read from ABAQUS output
C ______________________________________________________________________
C POISS Poisson’s ratio

C ______________________________________________________________________
C RHO Radius of gyration of the upright area

C ______________________________________________________________________
C SNF1 Shell nodal force - component 1

C SNF2 Shell nodal force - component 2

C SNF3 Shell nodal force - component 3

C SX Average panel normal stress in the x-direction

C SX12 Normal stress to plate edge between nodes 1 and 2

C SX23 Normal stress to plate edge between nodes 2 and 3

C SX34 Normal stress to plate edge between nodes 3 and 4

C SX41 Normal stress to plate edge between nodes 4 and 1
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SXC Total compressive stress acting on plate in x-direction
SXCR Modified buckling allowable stress in x- direction
SXCRO Critical buckling stress in x-direction (geometry only)
SXDT Diagonal tension stress in plate following buckling
SXEFF Effective (resultant) tensile/compressive stress applied to

panel/sheet calculated from panel/sheet nodal
forces [x-direction]
SXY Average panel shear stress

SXY12 Shear stress alongside plate edge between nodes 1 and 2
SXY23 Shear stress alongside plate edge between nodes 2 and 3
SXY34 Shear stress alongside plate edge between nodes 3 and 4

SXY41 Shear stress alongside plate edge between nodes 4 and 1

SXYEFF  Effective (resultant) shear stress applied to panel/sheet
calculated form panel/sheet nodal forces [same value on each
of the 4 sides]

SXYCR Modified buckling shear allowable stress

SXYCRO  Critical shear buckling stress (geometry only)

SY Average panel normal stress in the y-direction

SYC Total compressive stress acting on plate in y-direction
SYCR Modified buckling allowable stress in y- direction

SYCRO Critical buckling stress in y-direction (geometry only)
SYDT Diagonal tension stress in plate following buckling

SYEFF Effective (resultant) tensile/compressive stress applied to

panel/sheet calculated from panel/sheet nodal
forces [x-direction]

oNoNoNoNoNOINOINOINONOINONOINOINONONOINONONONONONONONONS]

C ______________________________________________________________________
C T Plate/sheet thickness

C TDB Buckling equation rounded to four decimal places value

C THETA Diagonal tension angle

C ______________________________________________________________________
C UPRA Angle cross-section dimension

C UPRT Angle cross—-section thickness dimension

C UPRY Angle cross-section dimension

C ______________________________________________________________________
C XALFA Guestimate of diagonal tension angle in method of successive
C approximations to determine ALFA

C XN The root of the equation (subroutine)

C XR1 Initial guess of root of equation (subroutine)

C XR2 Initial guess of root of equation (subroutine)

C ______________________________________________________________________
C YCENT Centroid position of angled upright

C ______________________________________________________________________
C

C

C VARIABLE DEFINITIONS: (INTEGERS)
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C

C BENF Beam element node force array used with node forces

C BNNNF Beam node number for node force data

C BTOT Total number of panels that are not buckled at the end

C of the analysis

C ______________________________________________________________________
C Cc20 Constant that = 2 when second order elements are used

C ______________________________________________________________________
C ELBH Horizontal beam element set

C ELBHN Horizontal beam element number

C ELBV Vertical beam element set

C ELBVN Vertical beam element number

C ELS Shell element set

C ELSN Shell element number

C ______________________________________________________________________
C FN File number for each panel

C FN FIle number for each panel

C ______________________________________________________________________
C IC1,2.. Counters

C ICB Beam element counter

C ICBH Horizontal beam element counter

C ICBV Vertical beam element counter

C ICS Shell element counter

C M Maximum number of iterations allowed to determine root of
C equation (subroutine)

C ITN Iteration number

C ______________________________________________________________________
C K1,K2 Constants

C ______________________________________________________________________
C NALL A1l the nodes in the linear FEA model

C NBEPP Total number of beam elements associated with each panel
C NEX Number of elements per panel/sheet along the x-axis

C NEY Number of elements per panel/sheet along the y-axis

C NFLS Number of flange element sets

C NI Same as ITER

C NINCY Node number increment per row along the y-axis

C NIPPX Node increment per panel/sheet in the x-direction

C NIPPY Node increment per panel/sheet in the y-direction

C NNXMAX  Maximum node number value in the x-direction

C NNYMAX  Maximum node number value in the y-direction

C NONX Total number of nodes along the x-axis

C NONY Total number of nodes along the y-axis

C NP Number of panels in structure

C NPX Number of panels/sheets along the x-axis

C NPY Number of panels/sheets along the y-axis\
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C NRBNF Number of records in the beam element node forces file

C NSEPP Total number of shell elements associated with each panel
C NTOTAL Total number of nodes generated

C ______________________________________________________________________
C PCNN Panel corner node number

C PNLBE Panel beam elements (panel number,panel beam element

C number - random)

C PNLNN Panel corner node numbers [4] (panel number,panel corner node
C number - clockwise; must be clockwise and start at 0,0,0
C so that stresses in each direction can be calculated

C correctly)

C PNLSE Panel shell elements (panel number,panel shell element

C number - random)

C ______________________________________________________________________
C SHENF Shell element node force array used with node forces

C SHNNNF  Shell node number for node force data

C ______________________________________________________________________
C YINC Node number increment per row along the y-axis;

C = relevant NINCY value

C ______________________________________________________________________
C

Cokoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk of ok ok ok sk ok sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk ok ok ok sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok ok
VARIABLE DEFINITIONS: (CHARACTERS)

COMMA A comma
UPRE Upright eccentricity presence (=NOE or ECC)

QA

(C %k 3k sk >k 5k 3k >k 5k 5k 5k >k >k 5k >k 5k 5k >k 5k 5k 3k 5k 5k 5k >k 5k 5k >k >k 5k >k >k 5k 5k >k 5k 5k >k 5k 5k >k >k 5k >k >k 5k 5k >k >k 5k >k >k 5k >k >k >k >k >k >k 5k >k >k 5k >k >k 5k >k %k >k %k %
(C 3k sk sk sk 5k sk sk sk sk sk sk sk sk sk ok k sk sk sk sk sk sk 3k sk ok 3k >k sk 3k >k sk ok 3k sk ok 3k sk sk 5k sk sk ok 3k sk sk 3k sk ok 3k >k sk 5k >k sk ok 3k >k ok 3k >k >k 5k sk sk 5k >k sk >k >k %
C
C MAIN PROGRAM
C
(C %k 3k sk >k 5k 3k >k 5k 5k 3k >k >k 5k >k 5k 5k 5k 5k 5k >k 5k 5k 5k >k 5k 5k >k >k 5k >k >k 5k >k >k 5k 5k >k >k 5k >k >k 5k >k >k 5k 5k >k >k 5k >k >k 5k >k >k 5k >k >k >k 5k >k >k 5k >k >k >k >k %k >k %k %
(C 3k sk sk sk 5k sk sk sk sk sk sk sk sk sk ok k sk sk sk sk sk sk 3k sk ok 3k >k sk 3k >k sk ok 3k sk ok 3k sk sk 5k sk sk ok 3k sk sk 3k sk ok 3k >k sk 5k >k sk ok 3k >k ok 3k >k >k 5k sk sk 5k >k sk >k >k %
C
C

DOUBLE PRECISION ALFA,

+AX,AY,

+B,BETAX (301) ,BETAY(301) ,BBETAX,BBETAY,

+EP,ERR, EXB,EXP,EYB,EYP,ECC(301) ,ENODE (301) ,

+EQN1X,EQN1Y,EQN2X,EQN2Y,EQN3X,EQN3Y,

+FLA(301) ,FLB(301) ,FLT1(301) ,FLT2(301),

+GP,

+H1,H2,H3,H4,

+IXX(301),
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+K,KS,KX,KY,
+L,L1,L2,LPNX,LPNY,LTOTX,LTOTY,LX,LY,

+P0ISS,PI,

+RHO(301),

+SXCRO,SYCRO, SXYCRO,

+T(301) ,THETA, TDB,

+UPRA(301) ,UPRT(301) ,UPRY(301),

+XALFA,

+YCENT (301),
+SXAV,SYAV,SXYAV, SX,SY,SXY, BB, SXYCR1, SXYCR2, SXYCR,
+SXCR,SYCR,SXCRI(301),SYCRI(301),SXMOD,SYMOD,
+BUCK,EPSX,EPSY,EPS,

+SXDT(301) ,SYDT(301) ,EXDT,EYDT,EXYDT,C1,C2,C3,C4,
+SXC,SYC,EXC,EYC,EXT(301) ,EYT(301) ,EXYT,
+SXPS(301),SYPS(301),SXYPS(301),
+SXDTI(301),SYDTI(301),SXDTII(301),SYDTII(301),

+NCX (1000) ,NCY (1000) ,NCZ(1000),
+S811(1000),822(1000),S12(1000) ,

+SXAVE(301) ,SYAVE(301) ,SXYAVE(301),

+SXAVP(301) ,SYAVP(301) ,SXYAVP(301),

+SXTE(1000) ,SYTE(1000) ,SXYTE(1000),

+SXTP(1000) ,SYTP(1000) ,SXYTP(1000),

+K1X,K1Y,K1XP,K1YP ,K2X,K2Y,K2XP,K2YP ,K1XN(301) ,K1YN(301),
+K1XNN(301) ,K1YNN(301) ,K2XN(301) ,K2YN(301) ,K1XPP,K1YPP,
+K2XPP,K2YPP,K2XNN (301) ,K2YNN(301) ,K2XPPP ,K2YPPP,
+K1XVAL(301) ,K1YVAL(301),

+K1XNC(301) ,K1YNC(301) ,PVAL,

+UPRRAD (301) ,FLRAD(301) ,AFL(301) ,AUPR(301) ,AUPRE(301)

INTEGER BHTOT,BVTOT,C20,
+CONA(301) ,CONB(301) ,CONC(301) ,COND(301),
+BCONA (301) ,BCONB(301),
+CTOT,BCTOT,
+FN,FN2,
+ITN,
+NBEPP,NP,NFLS,NRBNF,NINCY,
+NSEPP, NUPRS,
+SEC,
+TSTART, TSTOP,
+YINC,
+ELE(1000),
+ELBH(1000,1000) ,ELBHN(1000) ,ELBV(1000,1000) ,ELBVN(1000) ,
+ELSN(1000) ,
+IPT(1000),SPT(1000),
+NALL(1000),
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+PCNN(1000) ,ELS(1000,1000),

+PNLNN(1000,6) ,PNLSE(1000,20) ,PNLBE(1000,20) ,

+K1XID(301) ,K1YID(301),
+BPL(301) ,BTOT,BPID(301),
+CONAT , CONBT, CONCT , CONDT,

+IBCMAX, IFAC

CHARACTER* (1) COMMA
CHARACTER* (3) UPRE

OPEN(10,FILE="bukl.dat’)
OPEN(21,FILE=’convl.dat’)

OPEN(12,FILE=’inputdata.dat’)

OPEN(13,FILE=’conv2.dat’)

OPEN(31,FILE="pnll-x.
OPEN(32,FILE=’pnl2-x.
OPEN(33,FILE="pnl3-x.
OPEN(34,FILE="pnl4-x.
OPEN(35,FILE="pnl5-x.
OPEN(36,FILE="pnl6-x.
OPEN (41,FILE="pnli-y.
OPEN (42,FILE="pnl2-y.
OPEN (43,FILE="pnl3-y.
OPEN (44,FILE="pnld-y.
OPEN (45,FILE="pnl5-y.
OPEN (46, FILE="pn16-y.

INPUT DATA:

NPX=6
NPY=1
NEX=3
NEY=3
LX=0.254
LY=0.7254
NP=NPX*NPY

DO 63 I=1,NP+1
UPRA(I)=0.0254
UPRT(I)=0.003175

dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)
dat’)

I e 2 B S

I e 2 B S
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63 CONTINUE
UPRE="ECC’

DO 64 J=1,NP
T(J)=0.000635
FLRAD(J)=0.00881
FLRAD(NP+J)=0.01177

64 CONTINUE

EXB=71.0E9
EYB=71.0E9
EP=72.4E9
GP=26.92E9
P0OISS=0.3
C20=2

COMMA=",~
PVAL=0.0

IBCMAX=60
PI=3.14159265359

L SIS

PROGRAM STARTS

I e 2 B S

PN oNONONONONS!

CALL TIME(SEC)
TSTART=SEC
WRITE(10,10) TSTART
10 FORMAT (’TSTART = ’,120)

geometric calculations for structure

aQQa

LTOTX=LX*NPX
LTOTY=LY*NPY
NNXMAX=C20*NPX*NEX+1
NONX=NNXMAX
NONY=C20*NPY*NEY+1
NIPPX=C20*NEX
NBEPP=2*NEX+2*NEY
NSEPP=NEX*NEY
LPNX=LTOTX/ (NONX-1)
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aQQa

15

14

LPNY=LTOTY/ (NONY-1)
NINCY=NNXMAX
NNYMAX=C20*NPY*NEY+1
NTOTAL=NNXMAX*NNYMAX
NIPPY=C20*NEY*NINCY

DO 67 I=1,NPX*NPY+NPX
AFL (I)=PI*FLRAD(I)**2
CONTINUE

Geometric properties of uprights calculated
DO 14 I=1,NPX+1

AUPR(I)=(UPRA(I)-UPRT(I))*UPRT(I)+UPRA(I)*UPRT(I)
YCENT (I)=((UPRA(I)-UPRT(I))*UPRT(I)*UPRT(I)/2.0+

+ UPRA(I)*UPRT(I)*UPRA(I)/2.0)/((UPRA(I)-
+ UPRT(I))*UPRT(I)+UPRA(I)*UPRT(I))

UPRY (I)=UPRA(I)-YCENT(I)
IXX(I)=(1.0/3.0)*(UPRT (I)*UPRY (I)**3+UPRA(I)*

+ (UPRA(I)-UPRY(I))**3-(UPRA(I)-UPRT(I))*
+ (UPRA(I)-UPRY(I)-UPRT(I))**3)

RHO(I)=SQRT(IXX(I)/AUPR(I))

IF(I.EQ.1)THEN
ECC(I)=YCENT(I)+T(I)/2.0
ENODE(I)=-(T(I)/2.0+UPRT(I)/2.0)

ELSE IF(I.EQ.NPX+1)THEN
ECC(I)=YCENT(I)+T(I-1)/2.0
ENODE(I)=-(T(I-1)/2.0+UPRT(I)/2.0)

ELSE
ECC(I)=YCENT(I)+(T(I-1)+T(I))/4.0
ENODE(I)=-((T(I-1)+T(I))/4.0+UPRT(I)/2.0)

ENDIF

AUPRE (I)=AUPR(I)/(1+(ECC(I)/RHO(I))**2)

WRITE(10,15)I,AUPR(I),YCENT(I),IXX(I),RHO(I),

+ECC(I) ,AUPRE(I) ,ENODE(I)

FORMAT(/,’ Upright No’,I3,/,
+?AUPR = ’,G15.5,/,
+’YCENT = ’,G15.5,"° IXX = > .G20.5,/,
+’RHO = ’,G15.5," ECC = > G15.5,/,
+?AUPRE = ’,G15.5,"° ENODE = ’,G15.5)
CONTINUE

CALL FNODES(NPX,NPY,NEX,NEY,C20,LTOTX,LTOTY,UPRE,

+ENODE,NALL ,NCX,NCY,NCZ ,NTOT ,NTFLAT)
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CALL ELEMENTS(NPX,NPY,NEX,NEY,C20,UPRE,NALL,ELS,ELBH,
+ELBV,ELBVN,ELBHN,ELSN,PNLSE, ICS,ICBH,ICBV,NTFLAT)
PRINT *,’ Finished subroutine ele !!!1I’

Iterative loop to determine best value for BETAX and BETAY
for each panel to satisfy convergence !

QaQaQQn

DO 650 I=1,NP

BETAX(I)=0.85

BETAY(I)=0.85
650  CONTINUE

DO 3500 IBC=1,IBCMAX

PRINT *,’IBC = ’,IBC
WRITE(10,651)IBC
WRITE(13,651)IBC
651  FORMAT(/,’ %hkhhhhhhhihhk Loop’,I3,” for the BETAs’,
+’ convergence iterations ! %%hllhlslelelolstelsts’ s /)

DO 655 I=1,NP
BPL(I)=0
BPID(I)=0
SXCRI(I)=0.
SYCRI(I)=0.
SXDTI(I)=0.
SYDTI(I)=0.
SXDTII(I)=0.0
SYDTII(I)=0.0
K1XN(I)=0.0
K1YN(I)=0.0
K1XNN(I)=0.0
K1YNN(I)=0.0
K2XN(I)=0.0
K2YN(I)=0.0
K2XNN(I)=0.0
K2YNN(I)=0.0
K1XVAL(I)=0
K1YVAL(I)=0
CONA(I)=0
CONB(I)=0
CONC(I)=0
COND(I)=0

655  CONTINUE

OOOO
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C
C skxkskokskokskokskkskkskkskkx JTERATION LOOP STARTS HERE skksksk sk sk sk sk sk k 5k 5k 5k ok 5k >k 5k >k 5k >k 5k %k 5k
C

DO 658 FN=31,36,1

WRITE(FN,657)

657  FORMAT(/,’IBC ITN K1X=SXC/SXCR’,4X,’SXC’,3X,’SXCR=SXYCR/SXY’,
+4X,’SXYCR’,8X, ’SXY’,6X, >SX-SXCR’,7X, >SY-SYCR’,8X, ’SX’,8X, ’SXAV’,
+6X,’SXDT(I)’)

658  CONTINUE

DO 661 FN2=41,46,1
WRITE(FN2,662)

662  FORMAT(/,’IBC ITN K1Y=SYC/SYCR’,4X,’SYC’,3X,’SYCR=SXYCR/SXY’,
+4X,’SXYCR’,8X, ’SXY’,6X,’SY-SYCR’,7X, >SX-SXCR’,8X, ’SY’,8X, ’SYAV’,
+6X,’SYDT(I)’)

661  CONTINUE

DO 3000 ITN=1,20

WRITE(10,692)ITN
WRITE(21,692)ITN

692  FORMAT (/,’ ####################  Tteration °,I2,
+7 SRR /)

DO 690 I=1,NP
SXTP(I) 0
SYTP(I) 0
SXYTP(I)=0.0
SXAVP(I)=0.0
SYAVP(I)=0.0
SXYAVP(I)=0.0

690 CONTINUE
C

=0
=0

DO 691 J=1,ICS
SXTE(J)=0.0
SYTE(J)=0.0
SXYTE(J)=0.0
SXAVE(J)=0.0
SYAVE(J)=0.0
SXYAVE(J)=0.0
691 CONTINUE
C
CALL FEMINP(NPX,NPY,NEX,NEY,C20,ICS,ICBH,ICBV,
+NTFLAT ,NTOT,PNLSE,ITN,UPRE,T,SXPS,SYPS,SXYPS,NALL,
+NCX,NCY,NCZ,ELS,ELSN,ELBHN, ELBH, ELBVN , ELBV)
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CALL SYSTEM("abg58 job=femmodel interactive")

C
CALL SYSTEM("strdata.x")
C
C read in the stresses for the panel elements
C

NRBNF=0

WRITE(12,1082)

1082 FORMAT(/,2X’ELE’,3X,’INTGR PT’,9X,’SECT PT’,11X,’S11’,11X,’822’,
+3X,’812”)

OPEN(4,FILE=’panelstress.txt’)

DO 1080 I=1,10000000
READ(4,*,END=1081)ELE(I),IPT(I),SPT(I),S11(I),S822(I),S812(I)
WRITE(12,*)ELE(I),IPT(I),SPT(I),S11(I),S822(I),S12(I)

1080 CONTINUE

1081 NRBNF=I-1
PRINT *,’NRBNF =’,NRBNF
CLOSE(4)

DO 1090 I=1,ICS
ICES=0
WRITE(10,1092)ELSN(I)
1092  FORMAT(/,’Element Number:’,I14,/,’-————————-———--—————-— .
+ /,8X,’Integr pt’,
+ 6X,’S11°,17X,7822°,17X,’S12°)
DO 1095 J=1,NRBNF
IF(ELSN(I) .EQ.ELE(J))THEN
SXTE(I)=SXTE(I)+S11(J)
SYTE(I)=SYTE(I)+S22(J)
SXYTE (I)=SXYTE(I)+S12(J)
ICES=ICES+1
WRITE(10,1096)IPT(J),S11(J),822(J),S12(J)
1096 FORMAT(10X,I4,6X,F18.3,2X,F18.3,2X,F18.3)
ENDIF
1095 CONTINUE
WRITE(10,1099)ICES,SXTE(I) ,SYTE(I),SXYTE(I)
1099  FORMAT(/,’TOTAL:’,4X,I4,10X,F18.3,2X,F18.3,2X,F18.3)
SXAVE (I)=SXTE(I)/ICES
SYAVE(I)=SYTE(I)/ICES
SXYAVE(I)=SXYTE(I)/ICES
WRITE(10,1098)SXAVE(I) ,SYAVE(I),SXYAVE(I)
1098 FORMAT(/,’AVERAGE:’,12X,F18.3,2X,F18.3,2X,F18.3,/)
1090 CONTINUE

DO 1120 I=1,NP
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1122

1140

1131
1130

1125

1128
1120

1163

1166

WRITE(10,1122)I

FORMAT(/, ’Panel Number: ’,I3,/,’—————————————— >/,
+ 9X, ’SXAVE’ ,16X,’SYAVE’, 13X,
+’SXYAVE’)
DO 1130 J=1,NSEPP
DO 1131 K=1,ICS
IF(PNLSE(I,J) .EQ.ELSN(K))THEN
SXTP(I)=SXTP(I)+SXAVE(K)
SYTP(I)=SYTP(I)+SYAVE(K)
SXYTP(I)=SXYTP (I)+SXYAVE(K)
WRITE(10,1140)SXAVE(K) ,SYAVE(K) ,SXYAVE(K)
FORMAT (20X ,F18.3,2X,F18.3,2X,F18.3)
ENDIF
CONTINUE
CONTINUE
WRITE(10,1125)SXTP(I),SYTP(I),SXYTP(I)
FORMAT(/,’TOTAL:’,18X,F18.3,2X,F18.3,2X,F18.3)
SXAVP (I)=SXTP(I)/NSEPP
SYAVP(I)=SYTP(I)/NSEPP
SXYAVP(I)=SXYTP(I)/NSEPP
WRITE(10,1128)SXAVP(I),SYAVP(I),SXYAVP(I)
FORMAT(/,’AVERAGE:’,12X,F18.3,2X,F18.3,2X,F18.3,/)
CONTINUE
calculate average panel stress
NPC=0
BTOT=0
CTOT=0
CONAT=0
CONBT=0
CONCT=0
CONDT=0
DO 1163 IJ=1,NP
K1XNC(IJ)=0
K1YNC(IJ)=0
K1XID(IJ)=0
K1YID(IJ)=0
CONTINUE
WRITE(13,1166)IBC,ITN
FORMAT(’IBC = ’,I4,/,’ITN = ’,I4)
Individual panel loop !

XFAC1=0.0
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IFAC=0
DO 3002 I=1,NP
WRITE(10,1161)I,ITN
1161 FORMAT (/,1X, 7 xkskskkskkkkkkkkkk*k*k* Analyzing Panel No’,I3,
+2 / TIteration No’,I3,’ s kkkskskkokkkskskkkkkkskkkkkkskkk’ /)

C
SXAV=SXAVP(I)
SYAV=SYAVP (I)
SXYAV=SXYAVP (I)
WRITE(10,1162)SXAV,SYAV, SXYAV
1162 FORMAT(’SXAV = ’,F18.3,” SYAV = ’,F18.3,’ SXYAV = ’,F18.3)
C

WRITE(*,1031)AFL(I),AFL(I+NPX)
WRITE(10,1031)AFL(I),AFL(I+NPX)
1031 FORMAT(’AFL(I) = ’,F15.10,’ AFL(I+NPX) = ’,F15.10)
AX=0.5%(AFL(I)+AFL(I+NPX))
IF (UPRE.EQ. ’ECC’) THEN
AY=AUPRE(I)
ELSE
AY=0.5%(AUPR(I+IFAC)+AUPR(I+1+IFAC))
ENDIF
IFAC=INT(I/NPX)
WRITE(10,1021)AX,AY,IFAC

1021 FORMAT(’AX = ’,F15.10,° AY = ’ F15.10,/,’IFAC = ’,I4)
C

C Buckling coefficients

C

KX=1.985x ((LY*%2) / (LX*%2))+0.941% (LY/LX) +6.31
KY=1.985% ((LX**2) /(LY**2))+0.941%(LX/LY)+6.31
IF(LX.GE.LY) THEN
according to ILENGTH requirements !
L1=LY
L2=LX
ELSE
L1=LX
L2=LY
ENDIF
KS=5.21*%((L1*x2) /(L2*%2))+0.14*(L1/L2)+8.05

WRITE(10,FMT=1020)KX,KY,KS,L1,L2
1020 FORMAT(’KX = ’,F15.9,/,’KY = ’ ,F15.9,/,’KS = 7,
+F15.9,/,’L1 = ’,F15.9,/,’L2 = ’ ,F15.9)
IF(LX.GE.LY) THEN
B=LY
ELSE
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B=LX
ENDIF
WRITE(10,FMT=1042)B
1042 FORMAT(’B = ’,F15.9)
C
SXCRO=KX*EP* ((T(I)/LY)**2)
SYCRO=KY*EP* ((T(I)/LX)**2)
SXYCRO=KS*EP* ((T(I)/B)**2)
WRITE(10,FMT=1045)SXCRO,SYCRO, SXYCRO
1045 FORMAT(’SXCRO = ’,F15.3,3X,’SYCRO = ’,F15.3,3X,’SXYCRO = ’,F15.3)
C
L=1.0
IF(ITN.EQ.1) THEN

SX=-1.0%SXAV
SY=-1.0%SYAV
SXY=SXYAV
WRITE(10,1200)SX,SY,SXY
1200 FORMAT(’SX = ’,F18.3,” 8Y = ’,F18.3,” SXY = ’,F18.3)
C
IF(SX.LT.0.0.AND.SY.LT.0.0) THEN
SXYCR=SXYCRO* ( (1-SX/SXCRO-SY/SYCRO) **0.5)
ELSE
BB=( (SXYCRO*%2) * (SX*SYCRO+SY*SXCRO) ) / (ABS (SXY) *SXCRO*SYCRO)
SXYCR1=(-BB+(BB**2+4*SXYCRO**2) **0.5) /2.0
SXYCR2=(-BB- (BB**2+4*SXYCRO**2) **0.5) /2.0
WRITE(10,1210)BB,SXYCR1,SXYCR2
1210 FORMAT(’BB = ’,F18.3,/,’SXYCR1 = ’,F18.3,/,
+’SXYCR2 = ’ ,F18.3)
IF (ABS(SXYCR1) .GE.ABS(SXYCR2) ) THEN
SXYCR=SXYCR1
ELSE
SXYCR=SXYCR2
ENDIF
ENDIF
SXCR=SX* (ABS (SXYCR) /ABS(SXY))
SYCR=SY* (ABS (SXYCR) /ABS(SXY))
WRITE(10,1220)SXYCR,SXCR,SYCR
1220 FORMAT(’SXYCR= ’,F18.3,’ SXCR= ’,F18.3,’ SYCR= ’,F18.3)
C
BUCKT1=SXCR/SXCRO
BUCKT2=SYCR/SYCRO
BUCKT3=(SXYCR/SXYCRO) **2
WRITE(10,1215)BUCKT1,BUCKT2,BUCKT3
1215  FORMAT(’BUCKT1 = ’,F20.10,/,’BUCKT2 = ’,F20.10,/,
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1222

1224

1230

1240
1245

1250

+ ’BUCKT3 = ’,F20.10)

BUCK=SXCR/SXCRO+SYCR/SYCRO+ (SXYCR/SXYCRO) **2

TDB=NINT (BUCK*10000.0)/10000.0
WRITE(10,1222)BUCK,TDB

FORMAT (’Buckling Equation = ’,F20.10,/,’TDB =’,F20.4)

IF(TDB.LT.1.0)THEN
BPL(I)=BPL(I)+1
WRITE(10,1224)1I
FORMAT(° Panel no’,I2,’ does not buckle !’,/)
GOTO 3002
ENDIF

K=TANH(0.5*L0G10(ABS(SXY)/ABS(SXYCR)))

H1=(-K*ABS (SXY) )/ (EXB*(2.0%AX/LY/T(I)+0.5%(1-K)))
H2=(-K*ABS (SXY) )/ (EYB*(AY/LX/T(I)+0.5%(1-K)))
H3=ABS (SXY) *2.0%K/EP

H4=(1-K+P0OISS-POISS*K)* (ABS(SXY)/EP)
WRITE(10,1230)K,H1,H2,H3,H4

FORMAT(’K = ’,F7.5,/,

+’H1 =’ ,F15.11,’ H2 = ’,F15.11,> H3 = ’ F15.11,
+’> H4 = ’,F15.11)

XALFA=PI/4.0

WRITE(10,1245)XALFA

FORMAT (’XALFA = ’,F10.7)
EPSX=H1/TAN(XALFA)

EPSY=H2*TAN (XALFA)
EPS=H3/SIN(2+XALFA)+H4*SIN (2+XALFA)
WRITE(10,1250)EPSX,EPSY, EPS

FORMAT(’EPSX = ’,F10.8,° EPSY = ’,F10.8,° EPS = ’,F10.8)

IF((EPS-EPSX) .LT.0.0.AND. (EPS-EPSY) .GT.0.0) THEN

PRINT *,’ Diagonal tension angle cannot be calculated !’

GOTO 3001
ELSE IF((EPS-EPSX).GT.0.0.AND. (EPS-EPSY).LT.0.0)THEN

PRINT *,’ Diagonal tension angle cannot be calculated !’

GOTO 3001
ELSE IF((EPS-EPSY).EQ.0.0)THEN

PRINT *,’ Diagonal tension angle cannot be calculated !’

GOTO 3001

ENDIF

ALFA=ATAN ( ((EPS-EPSX) / (EPS-EPSY) ) **0.5)
ERR=(ABS(ALFA-XALFA))*100.0

125
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WRITE(10,1255)ALFA,ERR
1255 FORMAT(’ALFA = ’,F10.7,’ % ERR = ’,F6.3)
IF(ERR.GE.0.1) THEN
XALFA=ALFA
GOTO 1240
ENDIF
WRITE(10,1256)I,ALFA%*180.0/3.141596
1256 FORMAT(/,’ Diagonal Tension Angle for Panel’,I3,’ = ’,F6.3,
+’ degrees !’,/)
C
SXDT (I)=K*ABS(SXY)/TAN(ALFA)
SYDT (I)=K*ABS(SXY)*TAN (ALFA)
WRITE(10,1260)SXDT(I),SYDT(I)
1260 FORMAT(’SXDT(I) = ’,F18.3,’SYDT(I) = ’,F18.3)
C
EXDT=(-1.0/EP)* (EP*LY*T(I)/2.0/AX/EXB+1)* (SXDT(I)-POISS*SYDT(I))
EYDT=(-1.0/EP) * (EP*LX*T(I) /AY/EYB+1) * (SYDT (I)-POISS*SXDT(I))
WRITE(10,1265)EXDT,EYDT
1265 FORMAT(’EXDT = ’,F13.10,’ EYDT = ’,F13.10)
C
THETA=(1.0/(2%(1.0+P0ISS)))*(4.0/(SIN(2*ALFA))**2+
+(EP*LX*T (I)*(TAN(ALFA)) *%x2) / (EYB* (AY+ (0. 5*LX*T (1)) *(1-K) ) )+
+(EP*LY*T(I)/(TAN(ALFA))*%2) / (EXB* (2.0%AX+(0.5%LY*T(I))*(1-K))))
EXYDT=K* (THETA-1) *SXY/GP

C
C1=1+LY*T(I)*EP*BETAX(I)/2.0/AX/EXB
C2=1+LX*T (I)*EP*BETAY(I)/AY/EYB
C3=1-BETAX(I)
C4=1-BETAY (I)
WRITE(10,1270) THETA,EXYDT,BETAX(I) ,BETAY(I),C1,C2,C3,C4
1270 FORMAT(’THETA = ’,F10.6,’  EXYDT = ’,F13.10,/,
+’BETAX(I) = ’,F10.6,” BETAY(I) = ’,F10.6,/,
+’C1 = ’,F10.6,” C2 = ’,F10.6,> C3 = ’,F10.6,” C4 = ’,F10.6)
C
SXC=(C2*C3* (SX-SXCR) *L+BETAX (I) *POISS*C4* (SY-SYCR) *L) /C1/C2
SYC=(C1%C4* (SY-SYCR) *L+BETAY (I) *POISS*C3* (SX-SXCR)*L)/C1/C2
WRITE(10,1275)SXC,SYC
1275 FORMAT(’SXC = ’,F18.3,” SYC = ’,F18.3)
C

EXC=(-1.0/EP)* (1+LY*T(I)*EP/2.0/AX/EXB)* (SXC-POISS*SYC) *
+(ABS(BETAX (I)+BETAX (I)*BETAY(I)-1))
EYC=(-1.0/EP) * (1+LX*T(I)*EP/AY/EYB)* (SYC-POISS*SXC) *
+(ABS(BETAY (I)+BETAX(I)*BETAY(I)-1))
WRITE(10,1280)EXC,EYC

1280 FORMAT(’EXC = ’,Fi13.10,’ EYC = ’,Fi13.10)
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C
EXT(I)=EXDT+EXC
EYT(I)=EYDT+EYC
EXYT=EXYDT
WRITE(10,1285)EXT(I) ,EYT(I),EXYT
1285 FORMAT(’EXT(I) = ’,F13.10,’ EYT(I) = ’,F13.10,
+’  EXYT = ’,F13.10)
C
SXPS(I)=-EP*(EXT(I)+POISS*EYT(I))/(1-POISS**2)
SYPS(I)=-EP*(EYT(I)+P0OISS*EXT(I))/(1-POISS**2)
SXYPS (I)=-EP*EXYT/ (2x(1+P0ISS))
WRITE(10,1290)SXPS(I),SYPS(I),SXYPS(I)
1290 FORMAT(’SXPS(I) = ’,F18.3,’ SYPS(I) = ’,F18.3,
+’>  SXYPS = ’,F18.3)
C
IF(ITN.GE.2)THEN
SXMOD=SXAV-SXDTI(I)
SYMOD=SYAV-SYDTI(I)
WRITE(10,1363)SXMOD, SYMOD
1363 FORMAT(’SXMOD = ’,F18.3,’ SYMOD = ’,F18.3)
C
SX=-1.0*SXMOD
SY=-1.0%SYMOD
SXY=SXYAV
WRITE(10,1360)SX,SY, SXY
1360 FORMAT(’SX = ’,F18.3,” SY = ’,F18.3,’ SXY = ’,F18.3)
C
IF(SX.LT.0.0.AND.SY.LT.0.0) THEN
SXYCR=SXYCRO* ( (1-SX/SXCRO-SY/SYCRO) **0.5)
ELSE
BB=( (SXYCRO**2) * (SX*SYCRO+SY*SXCR0) ) / (ABS (SXY) *SXCRO*SYCRO)
SXYCR1=(-BB+ (BB**2+4*SXYCRO**2)**0.5) /2.0
SXYCR2=(-BB- (BB**2+4*xSXYCRO**2) **0.5) /2.0
WRITE(10,1370)BB,SXYCR1,SXYCR2
1370 FORMAT(’BB = ’,F18.3,/,’SXYCR1 = ’,F18.3,/,

+’SXYCR2 = ’ ,F18.3)
IF (ABS(SXYCR1) .GE.ABS(SXYCR2) ) THEN
SXYCR=SXYCR1
ELSE
SXYCR=SXYCR2
ENDIF
ENDIF
SXCR=SX* (ABS (SXYCR) /ABS(SXY))
SYCR=SY* (ABS (SXYCR) /ABS(SXY))
WRITE(10,1380)SXYCR,SXCR,SYCR
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1380 FORMAT(’SXYCR= ’,F18.3,° SXCR= ’,F18.3,’ SYCR= ’,F18.3)
C
BUCKT1=SXCR/SXCRO
BUCKT2=SYCR/SYCRO
BUCKT3=(SXYCR/SXYCRO) **2
WRITE(10,1376)BUCKT1,BUCKT2,BUCKT3
1376 FORMAT (’BUCKT1 = ’F20.10,/,’BUCKT2 = ’F20.10,/,
+ ’BUCKT3 = ’,F20.10)
BUCK=SXCR/SXCRO+SYCR/SYCRO+(SXYCR/SXYCRO) %2
TDB=NINT (BUCK*10000.0)/10000.0
WRITE(10,1382)BUCK,TDB
1382 FORMAT(’Buckling Equation = ’,F20.10,/,’TDB = ’,F20.4)

IF(TDB.LT.1.0) THEN
BPL(I)=BPL(I)+1
WRITE(10,1384)1I

1384 FORMAT(’ Panel no’,I2,’ does not buckle !’,/)
GOTO 3002
ENDIF
C
K=TANH(0.5%L0G10 (ABS (SXY) /ABS(SXYCR)))
C
H1=(-K*ABS(SXY) )/ (EXB*(2.0%AX/LY/T(I)+0.5%(1-K)))
H2=(-K*ABS (SXY) )/ (EYB* (AY/LX/T(I)+0.5%(1-K)))
H3=ABS (SXY)*2.0%K/EP
H4=(1-K+P0OISS-POISS*K) * (ABS (SXY) /EP)
WRITE(10,1400)K,H1,H2,H3,H4
1400 FORMAT(’K = ’,F7.5,/,
+’H1 =’ ,F15.11,’ H2 = ’,F15.11,’ H3 = ’ F15.11,
+’> H4 = ’,F15.11)
C

XALFA=3.141596/4.0
1450 WRITE(10,1420)XALFA
1420 FORMAT(’XALFA = ’,F10.7)
EPSX=H1/TAN(XALFA)
EPSY=H2*TAN (XALFA)
EPS=H3/SIN(2*XALFA)+H4*SIN(2*XALFA)
WRITE(10,1430)EPSX,EPSY,EPS
1430 FORMAT(’EPSX = ’,F10.8,’ EPSY = ’,F10.8,’ EPS = ’,F10.8)

IF((EPS-EPSX) .LT.0.0.AND. (EPS-EPSY) .GT.0.0) THEN

PRINT *,’ Diagonal tension angle cannot be calculated !’
GOTO 3001

ELSE IF((EPS-EPSX).GT.0.0.AND. (EPS-EPSY).LT.0.0)THEN
PRINT *,’ Diagonal tension angle cannot be calculated !’
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1440

1460

C
2400

2540

2560

GOTO 3001

ELSE IF((EPS-EPSY).EQ.0.0)THEN
PRINT *,’ Diagonal tension angle cannot be calculated !’
GOTO 3001

ENDIF

ALFA=ATAN ( ((EPS-EPSX) / (EPS-EPSY) ) **0.5)
ERR=(ABS(ALFA-XALFA))*100.0

WRITE(10,1440)ALFA,ERR

FORMAT(’ALFA = ’ ,F10.7,° % ERR = ’,F6.3)
IF(ERR.GE.0.1) THEN

XALFA=ALFA

GOTO 1450

ENDIF

WRITE(10,1460)I,ALFA*180.0/3.141596

FORMAT(/,’ Diagonal Tension Angle for Panel’,I3,’ = ’,F6.3,

+’ degrees !’,/)

SXDT (I)=K*ABS(SXY)/TAN(ALFA)
SYDT (I)=K*ABS(SXY)*TAN(ALFA)
WRITE(10,1500)SXDT(I),SYDT(I)
FORMAT(’SXDT(I) = ’,F18.3,” SYDT(I) = ’,F18.3)

Tests 1 to 5 in the Grisham algorithm

BBETAX=0.0
BBETAY=0.0

EXDT=(-1.0/EP)*(EP*LY*T(I)/2.0/AX/EXB+1) * (SXDT(I)- (1-BBETAX) *
+SXDTI(I)-POISS*(SYDT(I)-(1-BBETAX)*SYDTI(I)))

EYDT=(-1.0/EP)* (EP*LX*T(I)/AY/EYB+1)* (SYDT(I)-(1-BBETAY)*
+SYDTI(I)-POISS*(SXDT(I)-(1-BBETAY)*SXDTI(I)))
WRITE(10,2540)EXDT,EYDT

FORMAT(’EXDT = ’,F13.10,° EYDT = ’,F13.10)

THETA=(1.0/(2%(1.0+P0ISS)))*(4.0/ (SIN(2*ALFA))**2+

+(EP*LX*T (I)*(TAN(ALFA)) *%2) / (EYB* (AY+ (0. 5*LX*T(I))*(1-K)))+
+(EP*#LY*T(I)/(TAN(ALFA))*%2) / (EXB* (2.0%AX+(0.5%LY*T(I))*(1-K))))
EXYDT=K* (THETA-1) *SXY/GP

WRITE(10,2560) THETA,EXYDT

FORMAT(’THETA = ’,F10.6,’ EXYDT = ’,F13.10)

C1=1+LY*T(I)*EP*BETAX(I)/2.0/AX/EXB
C2=1+LX*T (I)*EP*BETAY(I)/AY/EYB
C3=1-BETAX(I)

C4=1-BETAY (I)
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WRITE(10,2580)C1,C2,C3,C4,BETAX(I) ,BETAY(I)

2580 FORMAT(’C1 = ’,F10.6,’> €2 = ’,F10.6,” C3 = ’,F10.6,
+> C4 = ’,F10.6,/,’BETAX(I) = ’,F10.6,’ BETAY(I) = ’,F10.6)
C
SXC=(C2%C3* (SX-SXCR) *L+BETAX (I) *POISS*C4* (SY-SYCR) *L)
+/C1/C2
SYC=(C1*C4* (SY-SYCR) *L+BETAY (I)*POISS*C3* (SX-SXCR) *L)
+/C1/C2
WRITE(10,2600)SXC,SYC
2600 FORMAT(’SXC = ’,F18.3,° SYC = ’,F18.3)
C
EXC=(-1.0/EP)* (1+LY*T(I)*EP/2.0/AX/EXB)* (SXC-POISS*SYC) *
+(ABS(BETAX (I)+BETAX (I)*BETAY(I)-1))
EYC=(-1.0/EP)* (1+LX*T(I)*EP/AY/EYB) * (SYC-POISS*SXC) *
+(ABS(BETAY (I)+BETAX (I)*BETAY(I)-1))
WRITE(10,2620)EXC,EYC
2620 FORMAT(’EXC = ’,F13.10,’ EYC = ’,F13.10)
C
EXT(I)=(1-BBETAX)*EXT(I)+EXDT+EXC
EYT(I)=(1-BBETAY)*EYT(I)+EYDT+EYC
EXYT=EXYDT
WRITE(10,2640)EXT(I),EYT(I),EXYT
2640 FORMAT(’EXT = ’,F13.10,’” EYT = ’,F13.10,’ EXYT = ’F13.10)
C
SXPS (I)=-EP*(EXT(I)+POISS*EYT(I))/(1-POISS**2)
SYPS (I)=-EP*(EYT(I)+POISS*EXT(I))/(1-POISS**2)
SXYPS (I)=-EP*EXYT/ (2x(1+P0ISS))
C
WRITE(10,2660)SXPS(I),SYPS(I),SXYPS(I)
2660 FORMAT(’SXPS(I) = ’,F18.3,° SYPS(I) = ’,F18.3,
+’  SXYPS(I) = ’,F18.3)
ENDIF
C
C calculate convergence parameters
C
WRITE(10,2680)SXC,SXCR,SYC,SYCR
2680 FORMAT(’SXC = ’,F18.3,” SXCR = ’,F18.3,/,

+’8YC = ’,F18.3,” SYCR = ’,F18.3)
IF (ABS(SXCR) .LT.1.0E-5)THEN
WRITE(21,2682)

2682 FORMAT(’> KiX --> INF ; KiXP --> 07)
ELSE IF(ABS(SXC).LT.1.0E-5)THEN
WRITE(21,2684)

2684 FORMAT(’ KiX --> 0 ; KiXP --> INF’)
ELSE
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2687

2686

2688

2689

2662

2663

2704
2700

K1X=SXC/SXCR

K1XP=(K1X-K1XN(I))*100.0/K1X
K1XPP=(K1XN(I)-K1XNN(I))*100.0/K1XN(I)
WRITE(10,2687)K1X,K1XP,K1XPP

FORMAT(’K1X = ’,F10.3,5X,’K1XP = ’,F10.3,5X, ’K1XPP = 7,
+F10.3)

ENDIF

IF(ABS(SYCR) .LT.1.0E-5)THEN
WRITE(21,2686)

FORMAT(®> K1Y --> INF ; K1YP --> 0?)
ELSE IF(ABS(SYC).LT.1.0E-5)THEN
WRITE(21,2688)

FORMAT(® K1Y --> 0 ; K1YP --> INF’)
ELSE

K1Y=SYC/SYCR
K1YP=(K1Y-K1YN(I))*100.0/K1Y
K1YPP=(K1YN(I)-K1YNN(I))*100.0/K1YN(I)
WRITE(10,2689)K1Y,K1YP,K1YPP
FORMAT(’K1Y = ’,F10.3,5X,’K1YP = ’,F10.3,5X, ’K1XPP = ’,
+F10.3)

ENDIF

FN=I+30

WRITE(FN,2662)IBC,ITN,K1X,SXC,SXCR,SXYCR,SXY,SX-SXCR,SY-SYCR,

+SX, SXAV,SXDT(I)
FORMAT(213,10G12.5)

FN2=I+40

WRITE(FN2,2663)IBC,ITN,K1Y,SYC,SYCR,SXYCR,SXY,SY-SYCR,SX-SXCR,

+SY,SYAV,SYDT(I)
FORMAT(213,10G12.5)

WRITE(10,2700)SXDT(I),SXDTI(I),SYDT(I),SYDTI(I)
FORMAT(’SXDT(I) = ’,F18.3,” SXDTI(I) = ’,F18.3,/,
+’8YDT(I) = ’,F18.3,’ SYDTI(I) = ’,F18.3)
K2X=SXDT(I)-SXDTI(I)

K2Y=SYDT(I)-SYDTI(I)

K2XP=(K2X/SXDT(I))*100.0
K2YP=(K2Y/SYDT(I))*100.0
K2XPP=(K2XN(I)/SXDTI(I))*100.0
K2YPP=(K2YN(I)/SYDTI(I))*100.0
K2XPPP=(K2XNN(I)/SXDTII(I))*100.0
K2YPPP=(K2YNN(I)/SYDTII(I))*100.0
WRITE(10,2710)I,K1X,K1XP,K1Y,K1YP ,K1XPP,K1YPP,
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+K2X ,K2XP,K2Y,K2YP ,K2XPP ,K2YPP ,K2XPPP ,K2YPPP
WRITE(21,2710)I,K1X,K1XP,K1Y,K1YP ,K1XPP,K1YPP,
+K2X ,K2XP,K2Y ,K2YP ,K2XPP ,K2YPP ,K2XPPP ,K2YPPP

2710 FORMAT(’Panel No ’,I2,/,’KiX = ’,F18.3,’(’,F10.3,’ %),
+5X,’K1Y = ’ ,F18.3,’ (’,F10.3,’ %)’,/,24X,’ (’,F10.3,” %),
+29X,’ (?,F10.3,” W’,/,
+’K2X = ’,F18.3,’(’,F10.3,” %)’ ,5X,’K2Y = ’,

+F18.3,’ (’,F10.3,” %)’,/,24X,’ (°,F10.3,’ %)’ ,29X,
+ (°,F10.3,” %)’,/,24X,’ (’,F10.3,” %)’,29X,
+ (?,F10.3,7 %))

SXCRI (I)=SXCR

SYCRI(I)=SYCR

SXDTII(I)=SXDTI(I)

SYDTII(I)=SYDTI(I)

SXDTI(I)=SXDT(I)

SYDTI(I)=SYDT(I)
WRITE(10,2720)SXCRI(I),SYCRI(I),SXDTI(I),SYDTI(I),
+SXDTII(I),SYDTII(I)

2720 FORMAT(’SXCRI(I) = ’,F18.3,° SYCRI(I) = ’,F18.3,/,
+’SXDTI(I) = ’,F18.3,’ SYDTI(I) = ’,F18.3,/,
+’SXDTII(I) = ’,F18.3,’ SYDTII(I) = ’,F18.3)

K1XNN(I)=K1XN(I)
K1YNN(I)=K1YN(I)
K1XN(I)=K1X
K1YN(I)=K1Y
K2XNN (I)=K2XN(I)
K2YNN (I)=K2YN(I)
K2XN (I)=K2X
K2YN (I)=K2Y

WRITE(10,2726)K1XNN(I) ,K1YNN(I),K1XN(I) ,K1YN(I)
2726 FORMAT(’K1XNN(I) = ’,F10.3,5X,’K1YNN(I) = ’,F10.3,/,
+’K1XN(I) = ’,F10.3,5X, ’K1YN(I) = ’,F10.3)
WRITE(10,2728)K2XNN(I) ,K2YNN(I) ,K2XN(I) ,K2YN(I)
2728 FORMAT(’K2XNN(I) = ’,F18.3,5X,’K2YNN(I) = ’,F18.3,/,
+’K2XN(I) = ’,F18.3,5X,’K2YN(I) = ’,F18.3)
C
C Test for convergence:
C
IF(ITN.GE.3)THEN
IF(ABS(K1XP) .LT.5.0.AND.ABS(K1XPP) .LT.5.0) THEN
WRITE(13,2730)K1X,I,ITN
2730 FORMAT (4X, ’K1X converges to’,F10.3,’ for plate ’,I3,
+ 7 11 (ITN=’,I3,7)7)
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K1XVAL(I)=K1X
CONA(I)=1
ELSE IF(CONA(I).NE.1)THEN
K1XNC(I)=K1X

K1XID(I)=1
WRITE(13,2735)K1XNC(I),K1XID(I),I

2735  FORMAT(’K1XNC(I) =’,F15.7,° K1XID(I) =’,I3,’ I =",1I3)
ENDIF

IF(ABS(K1YP) .LT.5.0.AND.ABS(K1YPP) .LT.5.0) THEN
WRITE(13,2740)K1Y,I,ITN
2740 FORMAT (4X, K1Y converges to’,F10.3,’ for plate ’,I3,

+ 2 1 (ITN=,13,7)°)
K1YVAL (I)=K1Y
CONB(I)=1

ELSE IF(CONB(I).NE.1)THEN
K1YNC(I)=K1Y

K1YID(I)=1
WRITE(13,2745)K1YNC(I) ,K1YID(I),I

2745  FORMAT(’K1YNC(I) =’,F15.7,’ K1YID(I) =’,I3,’ I=",I3)
ENDIF

IF(ABS(K2XP) .LT.2.0.AND.ABS(K2XPP) .LT.2.0.AND. ABS (K2XPPP) .
+LT.2.0) THEN
WRITE(13,2780)I,ITN
2780 FORMAT (4X, ’K2X converges for plate ’,I3,’ !! (ITN=’,
+ 13,7)7)
CONC(I)=1
ENDIF
IF(ABS(K2YP) .LT.2.0.AND.ABS(K2YPP) .LT.2.0.AND.ABS(K2YPPP) .
+LT.2.0) THEN
WRITE(13,2790)I,ITN
2790 FORMAT (4X, ’K2Y converges for plate ’,I3,’ !! (ITN=’,
+ I3,7)7)
COND(I)=1
ENDIF
ENDIF
CONAT=CONAT+CONA(TI)
CONBT=CONBT+CONB(I)
CONCT=CONCT+CONC(I)
CONDT=CONDT+COND(I)
3002 CONTINUE
C
IF (CONAT+CONBT+CONCT+CONDT . EQ. 4*NP) THEN
NOIT=ITN
WRITE(13,3003)N0IT
3003  FORMAT(’NOIT = ’,I3)
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GOTO 3006
ELSE
NOIT=ITN
ENDIF

C

3000 CONTINUE

C

3006 WRITE(13,3007)ITN

3007 FORMAT(’ITN = ’,I5)
BCTOT=0
DO 3005 I=1,NP
BCONA(I)=0
BCONB(I)=0

3005 CONTINUE

C

IF (IBC.EQ.IBCMAX) THEN
WRITE(13,3206)IBC

3206 FORMAT (’Maximum number of iterations reached - ’,I3,’ - still’,
+ 7 no convergence !’)
GOTO 3001
ENDIF
C

DO 3051 I=1,NP
x-BETA values

modify the BETAs when the solution does not buckle

QO

IF(BPL(I).EQ.NOIT)THEN
WRITE(13,3011)I,BETAX(I)
3011 FORMAT(’Panel no’,I3,’ converges to an unbuckled state !’,/,
+ ’The BETAX value will therefore remain as is:’,/,
+ ’BETAX(I) = ’,F10.7)
ELSE IF(BPL(I).LT.NOIT.AND.BPL(I).GT.0.AND.CONA(I).EQ.O)THEN
WRITE(13,3012)I,BPL(I)
3012 FORMAT (’Panel number’,I3,’ buckled less than 12 times (BPL=’,
+ 13,’);’,/,’probably does not converge to an unbuckled state !’)
WRITE(13,3013)I,BETAX(I)
3013 FORMAT(’01d BETAX(I) value for panel no’,I3,’ is:’,F10.7)
BETAX(I)=BETAX(I)+0.02
IF(BETAX(I).GE.1.0)BETAX(I)=0.001
WRITE(13,3014)I,BETAX(I)
3014 FORMAT(’New BETAX(I) value for panel no’,I3,’ is:’,F10.7)

C modify the BETAs when the solution does not converge
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ELSE IF(K1XID(I).EQ.1.AND.K1XNC(I).LT.1.0)THEN
WRITE(13,3050)I,BETAX(I)
3050 FORMAT(’K1X of panel no’,I3,’ did not converge !’,/,
+ ’01d BETAX(I) value for panel’,I3,’ is: ’,F10.7)
BETAX(I)=BETAX(I)-0.016
IF(BETAX(I).LE.0.0)BETAX(I)=0.001
WRITE(13,3055)I,BETAX(I)

3055 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(K1XID(I).EQ.1.AND.K1XNC(I).GT.1.0)THEN
WRITE(13,3060)I,I,BETAX(I)

3060 FORMAT(’K1X of panel no’,I3,’ did not converge !’,/,

+ ’01d BETAX(I) value for panel’,I3,’ is: ’,F10.7)
BETAX(I)=BETAX(I)+0.02
IF(BETAX(I).GE.1.0)BETAX(I)=0.999
WRITE(13,3065)I,BETAX(I)

3065 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.

C modify the BETAs when the solution converges

ELSE IF(CONA(I).EQ.1.AND.K1XVAL(I).LT.0.8)THEN
WRITE(13,3015)I,BETAX(I)

3015 FORMAT (’01d BETAX(I) value for panel’,I3,’ is: ’,F10.
BETAX (I)=BETAX(I)-0.02
WRITE(13,3020)I,BETAX(I)

3020 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONA(I).EQ.1.AND.K1XVAL(I).GE.O.8.AND.

+ K1XVAL(I).LT.0.95)THEN

WRITE(13,3021)I,BETAX(I)

3021 FORMAT(’01d BETAX(I) value for panel’,I3,’ is: ’,F10.
BETAX (I)=BETAX(I)-0.002
WRITE(13,3022)I,BETAX(I)

3022 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONA(I).EQ.1.AND.K1XVAL(I).GT.1.2)THEN
WRITE(13,3025)I,BETAX(I)

3025 FORMAT (’01d BETAX(I) value for panel’,I3,’ is: ’,F10.
BETAX (I)=BETAX(I)+0.02
WRITE(13,3030)I,BETAX(I)

3030 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONA(I).EQ.1.AND.K1XVAL(I).GT.1.05.AND.

+ K1XVAL(I).LE.1.2)THEN

WRITE(13,3031)I,BETAX(I)

3031 FORMAT(’01d BETAX(I) value for panel’,I3,’ is: ’,F10.
BETAX (I)=BETAX(I)+0.002
WRITE(13,3032)I,BETAX(I)

7)

7)

7)

7)

7)

7)

7)

7)

7)
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3032 FORMAT(’New BETAX(I) value for panel’,I3,’ is: ’,F10.7)
ELSE IF(CONA(I).EQ.1.AND.K1XVAL(I).GE.0.95.AND.
K1XVAL(I).LE.1.05)THEN

BCONA(I)=1

WRITE(13,3040)I,BETAX(I),BCONA(I)

3040 FORMAT(’BETAX(I) is the correct value for Ki1X to converge’,

+

+ ? for plate ’,I3,’(BETAX(I) = ’,F10.7,’)’,/,’BCONA = *,I3)
C
C modify BETAs when none of the above apply
C

ELSE
WRITE(13,3041)I,BETAX(I)
3041 FORMAT(’Default change - 01d BETAX(I) value for panel’,I3,
+ 2 is: ’,F10.7)
BETAX(I)=BETAX(I)+0.03
IF(BETAX(I).GE.1.0)BETAX(I)=0.001
WRITE(13,3044)I,BETAX(I)
3044 FORMAT(’Default change - New BETAX(I) value for panel’,I3,
+ 2 is: ’,F10.7)
ENDIF

y-BETA values

modify the BETAs when the solution does not buckle

QA

IF(BPL(I) .EQ.NOIT)THEN
WRITE(13,2791)I,BETAY(I)
2791 FORMAT(’Panel no’,I3,’ converges to an unbuckled state !’,/,
+ ’The BETAY value will therefore remain as is:’,/,
+ ’BETAY(I) = ’,F10.7)
BTOT=BTOT+1
BPID(I)=1
ELSE IF(BPL(I).LT.NOIT.AND.BPL(I).GT.0.AND.CONB(I).EQ.O)THEN
WRITE(13,3128)I,BPL(I)
3128 FORMAT (’Panel number’,I3,’ buckled less than 12 times (BPL=’,
+ 13,’);’,/,’probably does not converge to an unbuckled state !’)
WRITE(13,3129)I,BETAY(I)
3129 FORMAT(’01d BETAY(I) value for panel no’,I3,’ is:’,F10.7)
BETAY(I)=BETAY(I)+0.02
IF(BETAY(I).GE.1.0)BETAY(I)=0.001
WRITE(13,3131)I,BETAY(I)

3131 FORMAT(’New BETAY(I) value for panel no’,I3,’ is:’,F10.7)
C
C modify BETAs when solution does not converge

C
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ELSE IF(K1YID(I).EQ.1.AND.K1YNC(I).LT.1.0)THEN
WRITE(13,3110)I,I,BETAY(I)
3110 FORMAT(’K1Y of panel no’,I3,’ did not converge !’,/,
+ ’01d BETAY(I) value for panel’,I3,’ is: ’,F10.7)
BETAY(I)=BETAY(I)-0.016
IF(BETAY(I).LE.0.0)BETAY(I)=0.001
WRITE(13,3115)I,BETAY(I)
3115 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(K1YID(I).EQ.1.AND.K1YNC(I).GT.1.0)THEN
WRITE(13,3120)I,I,BETAY(I)
3120 FORMAT(’K1Y of panel no’,I3,’ did not converge !’,/,
+ ’01d BETAY(I) value for panel’,I3,’ is: ’,F10.7)
BETAY(I)=BETAY(I)+0.02
IF(BETAY(I).GE.1.0)BETAY(I)=0.999
WRITE(13,3125)I,BETAY(I)
3125 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.

C modify BETAs when solution converges

ELSE IF(CONB(I).EQ.1.AND.K1YVAL(I).LT.0.8)THEN
WRITE(13,3075)I,BETAY(I)

3075 FORMAT(’01d BETAY(I) value for panel’,I3,’ is: ’,F10.
BETAY(I)=BETAY(I)-0.02
WRITE(13,3080)I,BETAY(I)

3080 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONB(I).EQ.1.AND.K1YVAL(I).GE.O.8.AND.

+ K1YVAL(I).LT.0.95)THEN

WRITE(13,3081)I,BETAY(I)

3081 FORMAT(’01d BETAY(I) value for panel’,I3,’ is: ’,F10.
BETAY(I)=BETAY(I)-0.002
WRITE(13,3082)I,BETAY(I)

3082 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONB(I).EQ.1.AND.K1YVAL(I).GT.1.2)THEN
WRITE(13,3085)I,BETAY(I)

3085 FORMAT(’01d BETAY(I) value for panel’,I3,’ is: ’,F10.
BETAY(I)=BETAY(I)+0.02
WRITE(13,3090)I,BETAY(I)

3090 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.
ELSE IF(CONB(I).EQ.1.AND.K1YVAL(I).GT.1.05.AND.

+ K1YVAL(I).LE.1.2)THEN

WRITE(13,3091)I,BETAY(I)

3091 FORMAT(’01d BETAY(I) value for panel’,I3,’ is: ’,F10.
BETAY(I)=BETAY(I)+0.002
WRITE(13,3092)I,BETAY(I)

3092 FORMAT(’New BETAY(I) value for panel’,I3,’ is: ’,F10.

7)

7)

7)

7)

7)

7)

7)

7)

7)

~l
~
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ELSE IF(CONB(I).EQ.1.AND.K1YVAL(I).GE.0.95.AND.
+ K1YVAL(I) .LE.1.05)THEN
BCONB(I)=1
WRITE(13,3100)I,BETAY(I),BCONB(I)
3100 FORMAT(’BETAY(I) is the correct value for K1Y to converge’,
+ ’ for panel ’,I3,’(BETAY(I) = ’,F10.7,’)’,/,’BCONB = ’,I3)

Q

modify BETAs when none of the above apply

ELSE
WRITE(13,3101)I,BETAY(I)
3101 FORMAT(’Default change - 01d BETAY(I) value for panel’,I3,
+ 7 is: ?,F10.7)
BETAY(I)=BETAY(I)+0.03
IF(BETAY(I).GE.1.0)BETAY(I)=0.001
WRITE(13,3104)I,BETAY(I)
3104 FORMAT(’Default change - New BETAY(I) value for panel’,I3,
+ 7 is: ?,F10.7)
ENDIF
BCTOT=BCTOT+BCONA (I)+BCONB(I)
WRITE(13,3180)BTOT,BCTOT
3180 FORMAT(’BTOT = ’,I4,’ BCTOT = ’,I4)
3051 CONTINUE

IF(BTOT.NE.NP.AND.BCTOT.EQ. 2% (NP-BTOT) ) THEN
WRITE(13,3512)
3512  FORMAT(’BETAs adjusted successfully - all no 1 convergence’,
+ ? criteria is satisfied !’)
IF(CONCT.EQ.NP) THEN
WRITE(13,3513)
3513 FORMAT(’The Diagonal tension stress requirement in the x-dir’,/,
+ ’is satisfied (no 2 requirement)’)
ELSE
WRITE(13,3514)
3514  FORMAT(’Requirement no 2 is not satisfied in x-dir !’)
ENDIF
IF (CONDT.EQ.NP) THEN
WRITE(13,3516)
3516  FORMAT(’The diagonal tension stress requirement in the y-dir’,/,
+ ’is satisfied (no 2 requirement)’)
ELSE
WRITE(13,3517)
3517  FORMAT(’Requirement no 2 is not satisfied in y-dir !’)
ENDIF
GOTO 3001
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3518

3500

3505

Cok sk ok ok ok >k ok ok 3k ok ok ok >k ok ok ok ok ok ok ok ok 5k ok ok ok ok ok 3k 5k >k ok ok ok 3k 3k >k >k ok ok 5k 3k >k >k >k >k 5k 3k 5k >k >k >k ok 3k 5k >k >k >k >k 3k >k >k >k >k &

C

C

Cok sk sk ok ok >k ok ok 3k ok ok ok ok ok 5k ok ok ok ok ok 3k ok ok ok ok ok k 3k 5k ok ok ok ok 3k 5k >k ok ok ok 3k 5k >k >k >k ok 5k 3k >k >k >k >k 5k 3k >k >k >k >k >k 3k >k >k >k %k %k %k

C
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ELSE IF(BTOT.EQ.NP)THEN
WRITE(13,3518)
FORMAT (’No panels buckled !’)

GOTO 3001
ENDIF

CONTINUE

CALL TIME(SEC)

TSTOP=SEC

WRITE(10,3505) TSTOP
FORMAT(’TSTOP = ’,I20)

CLOSE(10)
CLOSE(20)
CLOSE(21)
CLOSE(13)
CLOSE(12)
CLOSE(31)
CLOSE(32)
CLOSE(33)
CLOSE(34)
CLOSE(35)
CLOSE(36)
CLOSE(41)
CLOSE(42)
CLOSE(43)
CLOSE(44)
CLOSE(45)
CLOSE(46)

STOP
END

SUBROUTINE FNODES(NPX,NPY,NEX,NEY,C20,LTOTX,LTOTY,UPRE,
+SENODE, SNALL, SNCX,SNCY, SNCZ,SNTOT, SNTFLAT)

Subroutine to generate all nodes for the
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C finite element model
Ok ok sk sk ok sk ok ok sk ok sk ok sk sk ok s ok ok ok ok s ok sk ok ok 3k ok sk ok ok sk ok s ok ok ok ok ok ok ok sk ok ok ok sk ok s ok ok ok ok ok ok sk ok ok ok
C
DOUBLE PRECISION LTOTX,LTOTY,LPNX,LPNY,
+SNCX (1000) ,SNCY (1000) ,SNCZ(1000) ,SENODE(301)
INTEGER YINC,SNALL(1000),C20,NPX,NPY,NEX,NEY,SNTOT, SNTFLAT
CHARACTER* (3) UPRE

OPEN(20,FILE="nodedata.dat’)

NNXMAX=C20*NPX*NEX+1
NONX=NNXMAX
NONY=C20*NPY*NEY+1
NIPPX=C20*NEX
NBEPP=2*NEX+2*NEY
NSEPP=NEX*NEY
LPNX=LTOTX/ (NONX-1)
LPNY=LTOTY/ (NONY-1)
NINCY=NNXMAX
NNYMAX=C20*NPY*NEY+1
NTOTAL=NNXMAX*NNYMAX
NIPPY=C20*NEY*NINCY
WRITE(10,30)NNXMAX,NNYMAX,NONX,NONY,NIPPX,NIPPY,
+ NBEPP,NSEPP,LPNX,LPNY
30 FORMAT (’NNXMAX = ’,I5,/,’NNYMAX = ’,I5,/,
+ °NONX = ’,I5,/,’NONY = ’,I5,/,’NIPPX =
+ /,’NBEPP = ’,I5,/,’NSEPP = ’ I5,/,’LPNX
+ ’LPNY = ’,F10.4)

15,/,’NIPPY = ’,I5,
’,F10.4,/,

[

Q

generate nodes in one plane

NCOUNT=0

YINC=1

DO 120 J=1,NONY

DO 100 I=1,NONX

K=1
IF(J.EQ.1) THEN
NCOUNT=NCOUNT+1
SNALL (NCOUNT)=NCOUNT
SNCX (NCOUNT)=0.0+LPNX*(I-1)
SNCY(NCOUNT)=0.0
SNCZ (NCOUNT)=0.0
WRITE(20,101)SNALL(NCOUNT),I,J,NCOUNT,YINC,SNCX(NCOUNT),

+ SNCY (NCOUNT) , SNCZ (NCOUNT)
101 FORMAT (’ SNALL(NCOUNT) = °’,I4,’ I =’,I14,’ J =,14,
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+ > NCOUNT = ’,I4,’ YINC = ’,I4,’ SNCX(NCOUNT) = ’,F10.4,
+ > SNCY(NCOUNT) = ’,F10.4,° SNCZ(NCOUNT) = ’,F10.4)
GOTO 100
ELSE

NCOUNT=NCOUNT+1

SNALL (NCOUNT) =NCOUNT

SNCX (NCOUNT)=0.0+LPNX* (I-1)

SNCY (NCOUNT)=SNCY (NCOUNT)+(J-1) *LPNY

SNCZ (NCOUNT)=0.0

WRITE(20,102)SNALL (NCOUNT),I,J,NCOUNT,YINC,SNCX (NCOUNT),
+ SNCY (NCOUNT) , SNCZ (NCOUNT)

102 FORMAT(’SNALL(NCOUNT) = ’,I4,> I = ’,14,> J =, 614,
+ > NCOUNT = ’,I4,’ YINC = ’,I4,’ SNCX(NCOUNT) = ’,F10.4,
+ > SNCY(NCOUNT) = ’,F10.4,° SNCZ(NCOUNT) = ’,F10.4)
ENDIF
100 CONTINUE
YINC=NINCY

120  CONTINUE
SNTFLAT=NCOUNT

Q

generate nodes in second plane for upright eccentricity

IF(UPRE.EQ.’ECC’) THEN
YINC=1
DO 115 J=1,NONY
NUPRC=0
DO 110 I=1,NONX,C20*NEX
NUPRC=NUPRC+1
IF(J.EQ.1)THEN
NCOUNT=NCOUNT+1
SNALL (NCOUNT)=NCOUNT
SNCX (NCOUNT)=0. 0+LPNX*(I-1)
SNCY (NCOUNT)=0.0
SNCZ (NCOUNT) =SENODE (NUPRC)
WRITE(20,105) SNALL (NCOUNT) ,I,J,NCOUNT,YINC, SNCX(NCOUNT),
+ SNCY (NCOUNT) , SNCZ (NCOUNT)

105 FORMAT (’SNALL(NCOUNT) = °,I4,” I =’,I14,> J = ,614,
+ > NCOUNT = ’,I4,” YINC = ’>,I4,’ SNCX(NCOUNT) = ’,F10.4,
+ > SNCY(NCOUNT) = ’,F10.4,° SNCZ(NCOUNT) = ’,F10.4)

GOTO 110
ELSE

NCOUNT=NCOUNT+1

SNALL (NCOUNT)=NCOUNT

SNCX (NCOUNT)=0.0+LPNX*(I-1)

SNCY (NCOUNT)=SNCY (NCOUNT) +(J-1) *LPNY
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SNCZ (NCOUNT) =SENODE (NUPRC)
WRITE(20,106)SNALL (NCOUNT),I,J,NCOUNT,YINC,SNCX(NCOUNT),
+ SNCY (NCOUNT) , SNCZ (NCOUNT)

106 FORMAT (’SNALL(NCOUNT) = ’,I4,’ I = ’,I14,’ J =,614,
+ > NCOUNT = ’,I4,” YINC = ’>,I4,’ SNCX(NCOUNT) = ’,F10.4,
+ > SNCY(NCOUNT) = ’,F10.4,’ SNCZ(NCOUNT) = ’,F10.4)
ENDIF
110 CONTINUE
YINC=NINCY

115 CONTINUE
SNTOT=NCOUNT
PRINT *,’SNTOT
ELSE
SNTOT=NCOUNT
PRINT x*,’SNTOT
ENDIF

’,SNTOT

> ,SNTOT

CLOSE(20)
RETURN
END

Cokoskoskosk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ook sk ok sk ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skskokok ook skokskok sk ok ok
C
SUBROUTINE ELEMENTS(NPX,NPY,NEX,NEY,C20,UPRE,NALL,
+SELS, SELBH, SELBV, SELBVN, SELBHN, SELSN, SPNLSE,
+ICSS,ICBHS,ICBVS,NTFLAT)

C

Cok ok ok sk sk sk ok ok ok ok o ok o ok ok ok sk ok sk ok ok ok ok o ok ok ok sk sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok o o ok ok ok ok sk sk sk sk ok ok ok ok ok ok
C Subroutine to generate all elements for the

C finite element model

ok ok ok ok ok ok ok ok K ok Kok Kok K ok Kk KK oK ok K KKK KoK ok oK o Kok o ok ok ook ook ok ok ok ok ok ok
C
INTEGER NALL(1000),NPX,NPY,NEX,NEY,C20,NNXMAX,
+SELS(1000,1000) ,SELBH(1000,1000) ,SELBV(1000,1000),
+SELBVN(1000) , SELBHN(1000) ,SELSN(1000) ,SPNLSE(1000,20),
+ICSS,ICBHS,ICBVS,NTFLAT
CHARACTER* (3) UPRE
PRINT *,’NPX =’ NPX
PRINT =*,’NPY =’ NPY
PRINT *,’NEX =’ ,NEX

PRINT *,’NEY =’ ,NEY
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PRINT *,°C20 =’,C20
PRINT *,’UPRE =’,UPRE

OPEN(20,FILE=’element-data.dat’)
NNXMAX=C20*NPX*NEX+1

NONX=NNXMAX
NONY=C20*NPY*NEY+1

Q

generate the shell elements

1CSS=0
NINC=0
DO 169 I=1,NEY*NPY,1
NINC=(I-1)*NONX*C20
DO 171 NCOUNT=1+NINC, (NONX-C20)+NINC,C20
ICSS=ICSS+1
SELSN(ICSS)=ICSS
SELS(ICSS,1)=NALL(NCOUNT)
SELS(ICSS,2)=NALL (NCOUNT+C20)
SELS(ICSS,3)=NALL (NCOUNT+NONX*C20+C20)
SELS(ICSS,4)=NALL (NCOUNT+NONX*C20)
SELS(ICSS,5)=NALL (NCOUNT+C20/2)
SELS(ICSS,6)=NALL(NCOUNT+NONX+C20)
SELS(ICSS,7)=NALL (NCOUNT+NONX*C20+C20/2)
SELS(ICSS,8)=NALL (NCOUNT+NONX)
WRITE(20,181)ICSS,SELS(ICSS,1),ICSS,SELS(ICSS,2),ICSS,
+ SELS(ICSS,3),
+ ICSS,SELS(ICSS,4),ICSS,SELS(ICSS,5),ICSS,SELS(ICSS,6),ICSS,
SELS(ICSS,7),ICSS,SELS(ICSS,8),I
181 FORMAT(’SELS(’,I13,’,1) = ’,I5,” SELS(’,I13,’,2) = ’,I5,
> SELS(’,13,7,3) ’ 15, SELS(’,I3,’,4) = ’,15,/,
’SELS(’,I3,’,5) = ’,I5,” SELS(’,13,’,6) = ’,I5,
> SELS(’,I13,’,7) = ’,I15,” SELS(’,I3,’,8) »,15,/,
T = 2 ,1I3)
171 CONTINUE
169 CONTINUE

+

+ + + +

create element sets (shells) related to panels/sheets

aQ Q Q

IC4=0
IC5=0
WRITE(20,*)’
DO 530 IL=1,NEY
IC3=0
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DO 505 I=1,NEY*NPY,NEY
DO 500 J=1,NEX*NPX,NEX
I1C3=IC3+1
DO 510 IK=1,NEX
IC4=IK+NEX* (IL-1)
I1C5=1C5+1
SPNLSE(IC3,IC4)=SELSN(IC5)
WRITE(20,520)IC3,IC4,SPNLSE(IC3,IC4)
520 FORMAT(1X, ’SPNLSE(’,12,’,7,1I2,’) = ?,I3)
510 CONTINUE
500 CONTINUE
I1C5=IC5+NEX*NPX* (NEY-1)
505 CONTINUE
IC5=NEX*NPX*IL
530 CONTINUE

generate the beam elements - horizontal

aQ Q Q

NINC=0
ICBHS=0
ICB=ICSS
DO 194 I=1,NPY+1,1
NINC=(I-1)*NONX*C20*NEY
DO 192 NCOUNT=1+NINC,NONX-C20+NINC,C20
ICB=ICB+1
ICBHS=ICBHS+1
SELBHN (ICBHS)=ICB
SELBH(ICBHS,1)=NALL(NCOUNT)
SELBH(ICBHS,2)=NALL (NCOUNT+C20/2)
SELBH(ICBHS,3)=NALL (NCOUNT+C20)

WRITE(20,191) ICBHS,SELBHN(ICBHS) ,ICBHS,SELBH(ICBHS,1) ,ICBHS,

+ SELBH(ICBHS,2),ICBHS,SELBH(ICBHS,3),I,J

191 FORMAT(’SELBHN(’,I3,’) = ’,I5,” SELBH(’,I3,’,1) = ’,I5,
+ > SELBH(’,I3,’,2) = ’,I5,” SELBH(’,I3,’,3) = ’,I5,/,
+ ’I = 2,15, J = ’,Ib)

192 CONTINUE

194 CONTINUE

aQ Q aQ

IF(UPRE.EQ.’NOE’) THEN
ICBVS=0

NINC=0

DO 210 I=1,NPX+1,1
NINC=(I-1)=*NEX*C20

generate the beam elements - vertical - no eccentricity
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DO 220 NCOUNT=1+NINC,NONX*NEY*C20+NINC,NONX*C20
ICB=ICB+1
ICBVS=ICBVS+1
SELBVN(ICBVS)=ICB
SELBV(ICBVS,1)=NALL(NCOUNT)
SELBV(ICBVS,2)=NALL (NCOUNT+NONX)
SELBV(ICBVS,3)=NALL (NCOUNT+NONX*C20)
WRITE(20,211) ICBVS,SELBVN(ICBVS),ICBVS,SELBV(ICBVS,1),ICBVS,
+ SELBV(ICBVS,2),ICBVS,SELBV(ICBVS,3),I,J,ICB

211 FORMAT(’SELBVN(’,I3,’) = ’>,I5,’ SELBV(’,I3,’,1) = ’,I5,
+ > SELBV(’,I3,’,2) = ’,15,” SELBV(’,I3,’,3) = ’,I5,/,
+ ’T = ?,15,> J = ,I5,7 ICB = ’,I5)

220  CONTINUE
210  CONTINUE

C
C generate the beam elements - vertical - with eccentricity
C
ELSE IF(UPRE.EQ.’ECC’)THEN
ICBVS=0
NINC=0
DO 240 I=1,NPX+1,1
NINC=I-1
DO 235 NCOUNT=NTFLAT+1+NINC,NTFLAT+NPY*NEY*C20* (NPX+1)+NINC,
+(NPX+1)*C20
ICB=ICB+1
ICBVS=ICBVS+1
SELBVN(ICBVS)=ICB
SELBV(ICBVS,1)=NALL (NCOUNT)
SELBV(ICBVS,2)=NALL (NCOUNT+NPX+1)
SELBV(ICBVS,3)=NALL(NCOUNT+(NPX+1)*C20)
WRITE(20,230) ICBVS,SELBVN(ICBVS),ICBVS,SELBV(ICBVS,1),ICBVS,
+ SELBV(ICBVS,2),ICBVS,SELBV(ICBVS,3),I,J,ICB
230 FORMAT(’SELBVN(’,I3,’) = ’>,I5,’ SELBV(’,I3,’,1) = ’,I5,
+ > SELBV(’,I3,’,2) = ’,I5,” SELBV(’,I3,’,3) = ’,I5,/,
+ ’I = 7,15, J =,15,” ICB = ’,Ib)

235  CONTINUE
240 CONTINUE

ENDIF
C

CLOSE(20)
C

RETURN

END
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Cokosksk sk sk ok sk sk ok sk sk ok ok sk sk ok ok ok ok sk sk sk ok ok ok sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk ok ok ok ok
C
SUBROUTINE FEMINP(NPX,NPY,NEX,NEY,C20,ICS,ICBH,ICBV,
+NTFLAT ,NTOT,PNLSE, ITN,UPRE, T, SXPS,SYPS,SXYPS,NALL,
+NCX,NCY,NCZ,ELS,ELSN,ELBHN, ELBH,ELBVN, ELBV)

C
Cookeok ok sk ok st ok ok s ok st ok sk s ok s ok sk ok ok s ok st ok ok s ok st ok sk sk ok s ok sk ok ok s ok st ok sk s ok st ok sk s ok s ok ok ok s ok ok ok k
C Subroutine to write the ABAQUS input deck

ook ok sk ok ok sk ok ok ok o ok ko ok ok ok ok ko ok ok K o K ok K ok oK ok K ok K o K oK oK oK oK oK KKK KK KoK KoK oK
C
DOUBLE PRECISION SXPS(301),SYPS(301),SXYPS(301),
+NCX (1000) ,NCY (1000) ,NCZ(1000) ,T(301)
INTEGER ITN,ELS(1000,1000),ELSN(1000),ELBHN(1000),
+ELBH (1000, 1000) ,ELBVN(1000) ,ELBV(1000,1000),
+NALL (1000) ,PNLSE(1000,20) ,C20
CHARACTER* (3) UPRE
CHARACTER* (1) COMMA

OPEN(30,FILE=’femmodel.inp’)

COMMA=",~
NP=NPX*NPY
NSEPP=NEX*NEY
NONX=C20*NPX*NEX+1
NONY=C20*NPY*NEY+1

WRITE(30,700)
700  FORMAT(’*PREPRINT,HISTORY=NO,ECHO=NO,CONTACT=NO’,/,
+?*RESTART,WRITE,FREQ=1")
IF(ITN.GE.2)THEN
WRITE(30,705)
705  FORMAT(’*INITIAL CONDITIONS,TYPE=STRESS’)
DO 703 I=1,NP
WRITE(30,704)I,COMMA,SXPS(I),COMMA,SYPS(I),COMMA,
+SXYPS(I) ,COMMA
704  FORMAT(’E-PL’,I3,A1,G20.12,A1,G20.12,A1,G20.12,A1)
703  CONTINUE

ENDIF
C
C write nodal coordinates (includes eccentricity nodes)
C
WRITE(30,706)
706  FORMAT(’*NODE,NSET=N-ALL’)
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DO 266 NCOUNT=1,NTOT
WRITE(30,FMT=710) NALL (NCOUNT) ,COMMA,NCX (NCOUNT) ,COMMA,
+ NCY (NCOUNT) ,COMMA ,NCZ (NCOUNT)

710 FORMAT(I7,A1,G15.8,A1,G15.8,A1,G15.8)
266 CONTINUE

C

C generate node sets for BEAM MPC

C

NINC=0
WRITE(30,761)
761  FORMAT(’*NSET,NSET=N-SUPR’)
DO 764 I=1,NONY,1
NINC=(I-1)=*NONX
DO 771 NCOUNT=1+NEX*C20+NINC,NONX+NINC,NEX*C20
WRITE(30,765)NALL (NCOUNT) ,COMMA

765 FORMAT(I7,A1)

771 CONTINUE

764 CONTINUE
NINC=0

WRITE(30,781)
781  FORMAT (’*NSET,NSET=N-ECC’)
DO 784 I=1,NONY,1
NINC=(I-1)*(NPX+1)
DO 783 NCOUNT=NTFLAT+2+NINC,NTFLAT+NPX+1+NINC,1
WRITE(30,788)NALL(NCOUNT) ,COMMA

788 FORMAT(I7,A1)

783 CONTINUE

784 CONTINUE

C

C write shell elements
C

WRITE(30,720)

720  FORMAT (’*ELEMENT, TYPE=S8R5, ELSET=E-MEMB’)
DO 280 J=1,ICS
WRITE(30,721)ELSN(J),COMMA,ELS(J,1) ,COMMA,ELS(J,2),

+  COMMA,ELS(J,3),COMMA,ELS(J,4),COMMA,ELS(J,5) ,COMMA,

+ ELS(J,6),COMMA,ELS(J,7),COMMA,ELS(J,8)
721 FORMAT(I6,A1,16,A1,16,A1,16,A1,16,A1,16,A1,16,A1,16,A1,1I6)
280 CONTINUE

generate seperate element sets for each panel (shell elements only)
seperate panel thicknesses
- max no of panels: 999

QOO

DO 725 I=1,NP
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754

752

753

728
727
725

aQ Q aQ

730

731
290

740

741
300

Qa0

801

810

IF(I.LE.9)THEN
WRITE(30,754)1
FORMAT (’ *ELSET ,ELSET=E-PL’ ,I1)
ELSE IF(I.GE.10.AND.I.LE.99)THEN
WRITE(30,752)1
FORMAT (’*ELSET ,ELSET=E-PL’ ,I2)
ELSE
WRITE(30,753)1
FORMAT (’ *ELSET ,ELSET=E-PL’ ,13)
ENDIF
DO 727 J=1,NSEPP
WRITE(30,728)PNLSE(I,J),COMMA
FORMAT (I7,A1)
CONTINUE
CONTINUE

create beam elements

WRITE(30,730)
FORMAT (’ *ELEMENT , TYPE=B32, ELSET=E-BHORI’)
DO 290 J=1,ICBH
WRITE(30,FMT=731)ELBHN(J) ,COMMA,ELBH(J,1),COMMA,
+ ELBH(J,?2),COMMA,ELBH(J,3)
FORMAT(I6,A1,16,A1,16,A1,16)
CONTINUE
WRITE(30,740)
FORMAT (’ *ELEMENT, TYPE=B32 ,ELSET=E-BVERT’)
DO 300 J=1,ICBV
WRITE(30,FMT=741)ELBVN(J),COMMA,ELBV(J,1),COMMA,
+ ELBV(J,2),COMMA,ELBV(J,3)
FORMAT(I6,A1,16,A1,16,A1,16)
CONTINUE

create seperate element sets for each upright so that

max no of upright sets = 999

BVTOT=0

NUPRS=ICBV/NEY
WRITE(10,801)NUPRS

FORMAT(’NUPRS = ’,I3)

DO 800 I=1,NUPRS

IF(I.LE.9)THEN

WRITE(30,810)1

FORMAT (’ *ELSET ,ELSET=E-UP’ ,I1)
ELSE IF(I.GE.10.AND.I.LE.99)THEN
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811

812

815

805
800

808

QQ

840

845

846

847

835

855
850

aQQ a

~
S
S}

WRITE(30,811)1
FORMAT (’ *ELSET ,ELSET=E-UP’ ,I2)
ELSE
WRITE(30,812)1
FORMAT (’ *ELSET,ELSET=E-UP’ ,13)
ENDIF
DO 805 J=1,NEY
BVTOT=BVTOT+1
WRITE(30,815)ELBVN (BVTOT) , COMMA
FORMAT(I6,A1)
CONTINUE
CONTINUE

WRITE(30,808)
FORMAT (’ *NSET,NSET=N-ENDC, ELSET=E-UP7’)

create seperate element sets for each part of the flange

between two uprights; max no of flange sets = 999

BHTOT=0
NFLS=ICBH/NEX
WRITE(10,840)NFLS
FORMAT(’NFLS = ’,I3)
DO 850 I=1,NFLS
IF(I.LE.9)THEN
WRITE(30,845)1
FORMAT (’ *ELSET,ELSET=E-FL’ ,I1)
ELSE IF(I.GE.10.AND.I.LE.99)THEN
WRITE(30,846)1
FORMAT (’ *ELSET ,ELSET=E-FL’> ,I2)
ELSE
WRITE(30,847)1
FORMAT (’ *ELSET,ELSET=E-FL’ ,13)
ENDIF
DO 855 J=1,NEX
BHTOT=BHTOT+1
WRITE(30,835)ELBHN (BHTOT) , COMMA
FORMAT(I6,A1)
CONTINUE
CONTINUE

create seperate element sets for the upper and lower flange

WRITE(30,742)
FORMAT (’ *ELSET ,ELSET=E-BH1’)
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DO 743 I=1,NEX*NPX
WRITE(30,745)ELBHN(I) ,COMMA
745 FORMAT (16,A1)
743 CONTINUE
WRITE(30,746)
746  FORMAT (’*ELSET,ELSET=E-BH2’)
IF (NEX*NPX.EQ. 1) THEN
1Y=2
ELSE
IY=NEX*NPX+1
ENDIF
DO 747 J=IY,NEX*NPX*(NPY+1)
WRITE(30,748)ELBHN(J) ,COMMA
748 FORMAT (16,A1)
747 CONTINUE
WRITE(30,813)
813  FORMAT (’*NSET,NSET=N-UPFL,ELSET=E-BH2’,/,
+?*NSET, NSET=N-LOWFL , ELSET=E-BH1’)

Q

write shell section properties for all shells

DO 880 I=1,NP
IF(I.LE.9)THEN
WRITE(30,882)I,T(I),COMMA
882 FORMAT (’*SHELL SECTION,ELSET=E-PL’,I1,’ ,MATERIAL=ALU-S’,
+/,G12.7,A1)
ELSE IF(I.GE.10.AND.I.LE.99)THEN
WRITE(30,884)I,T(I),COMMA
884 FORMAT (’*SHELL SECTION,ELSET=E-PL’,I2,’ ,MATERIAL=ALU-S’,
+/,G12.7,A1)
ELSE
WRITE(30,886)I,T(I),COMMA
886 FORMAT (’*SHELL SECTION,ELSET=E-PL’,I3,’ ,MATERIAL=ALU-S’,
+/,G12.7,A1)
ENDIF
880  CONTINUE

WRITE(30,755)
755  FORMAT(’*BEAM SECTION,ELSET=E-BH1,MATERIAL=ALU-B,SECTION=I’,/,

+’0.0055,0.02937,0.0571,0.0,0.00318,0.0,0.00238",/,

+’0.0,0.0,-1.07,/,

+’*BEAM SECTION,ELSET=E-BH2,MATERIAL=ALU-B,SECTION=I",/,

+’0.02952,0.0381,0.0,0.05874,0.0,0.00519,0.00397",/,

+’0.0,0.0,-1.07,/

T

+’*BEAM SECTION,ELSET=E-BVERT ,MATERIAL=ALU-B,SECTION=L’,/,
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759

760

762

770

780

+’0.0254,0.0254,0.003175,0.003175",/,
+’0.0,0.0,-1.07,/,

+’*MATERIAL ,NAME=ALU-B’,/,’*ELASTIC’,/,’71.0E9,0.3’,/,
+’*MATERIAL ,NAME=ALU-S’,/,’*ELASTIC’,/,’72.4E9,0.3’,/,
+’*BOUNDARY’,/,’1,1,6°,/,738,1,6°,/,°75,1,6°,/,
+’112,1,6°,/,°149,1,6°,/,°186,1,6°,/,°223,1,6°)

IF(UPRE.EQ.’ECC’) THEN
WRITE(30,FMT=759)

FORMAT (’*MPC’,/, ’BEAM,N-SUPR,N-ECC’)
ENDIF

WRITE(30,760)
FORMAT (’*STEP’,/, ’*STATIC’)

WRITE(30,FMT=762)

FORMAT(’*CL0OAD’,/,’37,2,8578.3,/,°74,2,8578.3",/,
+’111,2,8578.3’,/,7148,2,8578.3’,/,7185,2,8578.3",/,
+’222,2,8578.37,/,7259,2,8578.37)

WRITE(30,FMT=770)
FORMAT(’*EL FILE’,/,’S,SINV’,/,’*NODE FILE’,/,’COORD’)
WRITE(30,FMT=780)

FORMAT (’*EL PRINT,TOTALS=YES’,/,’S,MISES’,/,’SP’,/,’*END STEP’)

ENDFILE (UNIT=30)

CLOSE(30)

RETURN
END
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