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CHAPTER 5 

MODEL OF VEHICLE/TRACK SYSTEM DYNAMICS 

In t his chapter the development of the vehicleltrack model to be used in the 

Dyna mic Track Deterioration Prediction Model is described. Firstly, the rail support 

model is described, followed by a detailed description of the excitation model which 

consists out of the vertical space curve as well as spatial track stiffness variations. 

As the choice of assumptions and simplifications in the mathematical model of the 

vehicle is important in the development of the model, the basic philosophy in this 

respect is outlined before describing the development of the mathematical 

vehicle/track model. 

The first model that is described is a two degree-of-freedom model. This model was 

used to do a basic analysis of the influence of spatial t rack stiffness variations on 

the dynamic behaviour of such a model. After considering a number of alternative 

vehicle/track models the reasons for arriving at the eleven degree-of-freedom model 

become apparent. The validation of the eleven degree-of-freedom model is giv!Jol1 in 

Chapter 7. 

5.1 TRACK SUPPORT MODEL 

Although a discrete support appears to be more representative of track supported 

by discrete sleepers on a nonlinear and spatia lly varying flexible foundation, 

continuous support models are valid for calculating the dynamic response of the 

track at frequencies below 500 Hz (Knothe a nd Grassie, 1993) . The simplest 

representation of a continuous elastic foundation is the Winkler foundation model. 
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In this model the rail is represented by an infinite, uniform, Euler-Bernoulli beam 

supported by a continuous damped, elastic Winkler foundation. The effective mass 

of the sleepers is distributed uniformly and added to the mass of the rail (Winkler, 

1867; Winkler, 1875; Hetenyi, 1946; Fastenrath, 1977; Esveld, 1989; Li and Selig, 

1995). Winkler's hypothesis states that at each rail support the compressive stress 

is proportional to the local compression, that is 

where 
a = local compressive stress on the support, 

y = local deflection of the support, and 

Cf = foundation modulus [N/m 3
]. 

(5.1 ) 

Based on the Winkler theory, the track modulus, n, which represents the overall 

stiffness of the rail foundation (that is sleepers, rail pads, ballast, sub·ballast, and 

subgrade), is defined as the supporting force per unit length of rail per unit 

deflection. Thus 

u = !f.. 
y 

with q the vertical rail foundation force per unit length. 

The track stiffness itself is defined as 

k = P 
Y 

with P the concentrated force applied to the rail. 

(5.2) 

(5.3) 

The difference between the track stiffness and the track modulus is that the track 

stiffness includes the rail stiffness, EI, whereas the track modulus represents only 

the remainder of the superstructure and the substructure. The various components 

of ballasted track are shown in Figure 5.1. 
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Figure 5.1: Components of ballasted track. 

The linear differential equation of the beam-on-elastic foundation model is given as: 

where 

d 4 
El -y- + uy " 0 

d X4 

E = Young's modulus ofrail steel, 

I = rail moment of inertia about the horizontal axis, 

y = incremental track deflection, and 

x = distance from the applied load. 

Solving Equation (5.4) , the deflected shape of the track is 

y " P e - x l L, [cos(xIL)+sin(xIL)J 
2uLc 

(5.4) 

(5.5) 
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The characteristic length, L" is defined as 

Le ~ 4:1 (5.6) 

Substituting Equa tion (5.3) and (5.6) into Equation (5.4), the relationship between 

the track modulus and the track stiffness is given as 

u • 
(k)4/3 

(64E1) 1/3 
(5.7) 

Re-writing Equation (5.7), the relationship between track stiffness and track 

modulus is found to be 

k • 2u 

(5.8) 

As illustrated in Figure 5.2, the rail support can also be nonlinear. The slope of the 

line between 0 and 32.5kN gives an indication of the voids between the sleepers and 

the ballast in the influence length of the wheel load (Ebersiihn et aZ ., 1993). The 

32.5kN load is referred to as the seating load. For higher wheel loads the load 

deflection relationship is linear in most cases although in some cases stiffening of 

the track is found. This phenomenon makes it more complex to determine the 

deflection basin especially if the track stiffness also varies from point to point along 

the track. 

To analyse the effect of w heel loads on the shape of the track deflection basin, and 

on the distribution of the wheel loads across a number of adjacent sleepers when the 

track has a spatially varying nonlinear support stiffness, a track model using elastic 

Euler-Bernoulli beams supported on a nonlinear discrete support has to be used. 

The rail in such a model is thus modelled by a finite element flexible beam and the 

structure is approximated as an assemblage of discrete elements interconnected at 

their nodal points. To find the solution to the nonlin ear structural response, a load 

stepping procedure like the Newton-Raphson iteration procedure can be used. This 
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procedure is stable and converges quadratically alt hough the stiffness matr ix has 

to be inver ted during each iteration . 
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Figure 5.2: Track deflection basin . 
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In 1995, Moravcik made a n a na lysis of r ail on nonlinear discrete elastic supports . 

According to Moravcik the theoretical model of the rail as a beam on a continuous 

elastic founda tion provides a basis for t rack design and stress a nalysis of the t rack 

componen ts. However , due to on-track tests which revealed that the relationship 

between the ver tical rail deflect ion and the wheel load is genera lly nonlinear , a 

different approach was required and a nonlinear finite element progra m was used 

to solve the problem. The nonlinear rela tionship between the wheel load a nd the 

ver tical displacement of the sleeper was a pproximated by a bilinear spring, suppor ts 
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with gaps, or a piecewise linear spring characteristic. Such a nonlinear analysis of 

the deflection basin provided a better picture of the r ail behaviour, specially under 

locally poor track conditions where a large reduction in support resistance could be 

the major cause of overstressing in the track structure. A standard linear a nalysis 

generally underestimates the stresses in the track structure. 

In this research a continuous one-layer pseudo-static t rack support model is used, 

but a llowing the track stiffness to vary with time according to the instantaneous 

local track stiffness values underneath each wheel on both the left a nd the right 

hand rail of the track. Track damping is assumed to be constant along the track. 

5.2 TRACK INPUT 

The vehicleltrack model is excited by the vertical space curve of the track as well as 

spatia l vertical track stiffness variations . The excitation model is a moving 

excitation model, that is the vertical space curve and the stiffness variations are 

effectively pulled through under the wheelset. 

If the track stiffness is lineal', the vertical track profile variations can simply be 

multiplied by the track stiffness to determine the effective force input. However , if 

the track stiffness is nonlinear, an effective linearised loaded track stiffness , h", and 

an effective loaded track deflection, Y" as shown in Figure 5.3 has to be used. Using 

the nonlinear track stiffness as measured at each sleeper, the following procedure 

is used to derive the effective linearised loaded track stiffness . 

Let P, be the static wheel load and 

D..P . ('P, (5 .9) 

where (, is the dynamic wheel load increment. The wheel load increment is obtained 

from the prevailing dynamic wheel load as measured by the load measuring 

wheelset. If such a value is not available a good estimate is 0.3. 
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Using cubic-polynomial interpolation , the values y , / and Ys2 are found at (Ps-f::,. P) and 

(P, +f::,.p) respectively. With these values available, the effective linearised loaded 

t rack stiffness is defined as 

(5. 10) 

and the static t rack deflection is defined as 

(5. 11 ) 
2 

I'.P 

I'.P 

Ys1 Ys Ys2 

Track deflection 

Figure 5.3: Effective linearised loaded track stiffness. 

Linearisation is thus done over a ra nge of static wheel load plus the dynamic 

increment. Figure 5.3 clearly shows t hat only a minimal deviation occurs between 

the lineal' approximation and the measured nonlinear stiffness. Note that due to the 

static load at a pa rticular sleeper that is suppor ted by a nonlinear t rack stiffness, 

the sleeper is deflected by a cer tain amount Ys• Would there be no spa tial varia tion 

in the t rack stiffness, this would not be important , but as there are con tinuous 
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variations in the t rack stiffness, these deflections due to static or dyna mic loading, 

vary as a function ofthe specific spatia lly varying load-deflection curve. An example 

is given in Figure 5.4. These varying deflections a re added to the unloaded vertical 

space curve to obtain the effective loaded t rack geometry profile . This profile is then 

multiplied by the effective linearised loaded t rack stiffness at a par t icular point in 

the track to give th e required input force to the mathematical model of the 

vehicleltrack system . An effective linearised loa ded track stiffness a nd loaded 

geometry profile which depends on the static and dynamic wheel load is thus 

obtained. 

-0 P, 
ro 
.2 
Q) 
Q) 
.c 
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Y'(1) Y '(2) Y .(3) 

Track deflection 

Figure 5.4 : Varying static track deflections. 

5.3 VEHICLE MODEL 

Alth ou gh a ra n ge of vehicle models a re available to the ra il vehicle dyna micist, 

unique requiremen ts make it necessary to develop more suitable models from time 

to t ime. Such a unique application is the development of the Dyna mic Track 

Deterior ation Prediction Model that is to be used to predict and show the impor tant 

rela tionsh ip between spatia lly varying t rack stiffness a nd t rack deterioration . 
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Before proceeding with the developmen t of the vehicle/track model that is to be 

incorporated in the Dyna mic Track Deteriorat ion Prediction Model, the basic 

philosophy behind the assumptions and simplifications in the development of 

vehicle models is given . 

When developing a mathematical model of a railway vehicle it is importa nt to have 

accura te dat a for parameters such as m asses, stiffnesses, da mping rate, fr iction 

levels etc. Furthermore it is up to the experienced railway vehicle dyna micist to 

make a n informed judgement as to what level of detail to include in t he model. 

Provided that realis tic sensitivity studies ha ve been done during the development 

of a new model to ensure that t he parameters used are either not crit ical or at least 

reasonably realistic, calculated trends and comparisons can give a good insight into 

dynamic r ail vehicle behaviour. 

As the objective of this thesis is to predict the dynamic inte raction between the 

vehicle and the t rack , a nd not the dyna mic behaviour of the vehicle alone, the 

developmen t of the vehicle model is done in terms of the development of the total 

vehicleltrack system model. 

5.4 VEHICLE/TRACK MODEL DEVELOPMENT 

This section discusses the development of the vehicle/track model. The first model 

t ha t is described is a two degree-of-freedom model. This is followed by a set of 

alternative models which systematically strive to adequately simulate the dynamic 

behaviour in the vehicle/track system. Finally, a n eleven degree-of-fr eedom 

vehicleltrack model is described. This model is sufficien t for investigating the 

relationship between spatial track stiffness variations and track deterior ation . For 

the inte rested reader some background information on dyna mic modelling of a 

simple one degree -of-freedom system is given in Appendix D. 
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5.4.1 Two Degree-of-Freedom Vehicle/Track Model 

To be able to gain a better understanding of the dynamic interaction between a 

vehicle and the track, a two degree-ol-freedom model as shown in Figure 5.5 was 

initially developed. The two degree-of-freedom model was used to determine the 

dynamic wheel loads in the vehicle/track system due to a nonlinear and spatially 

varying track stiffness (Frohling et 0.1., 1996a). By restricting the number of degrees 

offreedom to be investigated, a simpler understanding of the problem was formed 

and the emphasis was placed on effects due to the nonlinear spatially varying track 

stiffness. 

Vehicle body 

Wheel 

Track k2 

Figure 5.5: Two Degree-of-Freedom VehicielTrack Model. 

In this simplified model the following assumptions were made: 

• The effect of the primary suspension of the vehicle was neglected. 

• The stiffness and damping of the secondary suspension of the vehicle was 

assumed to be linear. 

• A continuous one-layer track support model was used. 

• The mass of the vehicle body represents one eighth of the sprung mass of the 

vehicle as this is the mass that is effectively carried by each of the eight wheels 

of the vehicle. 

• Both the vehicle and the wheel are assumed to be rigid bodies. 
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The following nonlinear equa tions of motion describe the dynamic beh a viour of the 

two degree-of-freedom vehicleltrack model. 

(S. 12) 

(S. 1 3) 

(S. 14) 

The insta nta neous value for the track stiffness, k2, is obtained from a bi-varian t 

cubic polynomial interpolation in the two-dimensional data set of measured t rack 

stiffness values. The value of the track stiffness is also dependant on the prevailing 

static wheel load. 

To solve the system of equations a s given by Equations (5. 12) to (5. 14), t he 

derivatives in the differential equa tions are replaced by finite centra l difference 

approximations (Levy a nd Wilkinson , 1976). In the approximation the derivative 

of y with respect to t is defined at t=to by 

(5 .1 5) 

Likewise, a similar approximat ion can be made for the acceleration which is t he 

second derivative: 

(S. 1 6) 

By introducing these approximations, the derivatives in the equations of motion can 

be replaced by the differences between successive positions taken by the mass at 

successive incremen ts in time. These differences a re known as fini te differences 

because they are sepa rated by finite time increments. 
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Equations (5. 12) and (5.13) are thus re-written as: 

The three simultaneous nonlinear equations are solved a t each time step , using the 

Newton-Raphson algorithm. Having obtained the displacement values y 1(1) and Y 2( 1)' 

and the instantaneous track stiffness, the values y 1(2) and Y 2(2) a re found in terms of 

the already calculated values. This process of finding the new displacement based 

on knowledge of the two previous displacements is known as a step-by-step process 

of integration. The procedure is simple in concept, but can, with repetitive 

application, yield the complete time history of the behaviour of the system . By 

adjusting the size of the time step l1 t, the desired accuracy can be obtained. 

Convergence with a nonlinear set of equations is readily obtained using this 

approach. This numerical solution technique was used in a computer progra m 

which was developed to solve the system of equations of the two degree-of-freedom 

vehicle/track model at each consecutive time step using the instantaneous 

information on track geometry and track stiffness variations . 

The two degree-of-fi'eedom model was used to simulate both an empty and a loaded 

vehicle, both alternatively equipped with a low and a high secondary damping, 

running over a section of inegular track (Frohling et aZ. , 1996a) . Under these 

conditions, the vertical acceleration of the vehicle body and the dynamic loading of 

the track was analysed as a function of the vertical space curve of the track and an 

infinite track stiffness, the vertical space curve of the track and a constant track 

stiffness, no track geometry irregularities a nd only a spatially varying track 

stiffness, a nd spatially varying track stiffness superimposed on the vertical space 

curve of the track. From simulations over single vertical track geometry 

inegularities, it was found that it is not the nonlinearity of the track stiffness in 

itself that causes a dynamic input, but the spatial change in track deflection under 

a given load. 
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Using the two degree-of-freedom model a nd comparmg the results to those 

measured during on-track tests, it became clear that the model is not able to 

simulate the low frequency dynamic behaviour that originates from the rolling 

motion of the wagon body. These motions were dominant in the measured results . 

Furthermore, the model was not able to simulate the difference in track input 

between the left and the right rail. Hence, further model development was required. 

5.4.2 Alternative Vehicle/Track Models 

After realising the limitations of the two degree-of-freedom vehicleltrack model, the 

search for a more appropriate vehicle/track model started. The first step was to 

incorporate the load sensitive damping of the secondary suspension into the two 

degree-of-freedom model by using Equations (Bl) to (83) given in Appendix B. This 

was done because of the nonlinear displacement that was measured across the 

secondary suspension during the on-track tests, and its influence on the force 

transmitted through the seconda ry suspension and thus also the resultant force 

between the wheel and the rail. 

The next step was to include the rolling motion of the wheelset and the vehicle body. 

This was done using a two dimensional four degree-of-freedom model with va rying 

track input between the left and the right r ail. This model was tested with and 

without load sensitive frictional damping. Comparing its results to those measured 

on track, it became clear that this model was unable to simulate the coupling 

between the dynamic wheel load in the fron t of the vehicle and that at the trailing 

end that occurs due to the distance based track input. To include this effect, the 

pitching motion of the vehicle was included. This resulted in a seven degree-of­

freedom model. 

At this stage the magnitude of the dynamic wheel load and the vertical 

displacement across the seconda ry suspension was still not representative of the 

measured results. Patterns were however becoming similar. 
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5.4.3 Eleven Degree-of-Freedom Vehicle/Track Model 

The next step was to include the vertical stiffness and damping of the primary 

suspension, increasing the degrees·of-freedom of the model to eleven . At this stage 

the vehicle/track model was still simulating a two-axle vehicle and not a two-bogie 

vehicle as used during the on-track tests. The following was however done to include 

some influence due a bogie with two wheelsets on the dynamic behaviour of the 

vehicle/track system . 

• To get the correct dynamic track deflection, the mass and the inertia of the two 

wheelsets of the bogie were added together to create a wheelset with twice the 

mass of the actual wheelset. The two wheelsets were thus seen to be close 

enough to one another to act as one inertial system and the exact behaviour of 

the unsprung mass was thus of secondary importance. 

• To simulate the vertical space curve of the track as seen by a bogie, the average 

between the vertical space curve at the leading and the trailing axle on one side 

of the bogie was calculated at any point in time and used as excitation input. 

This made it possible simulated the effect the side frames have on averaging the 

force input to the secondary suspension. 

• To compensate for the fact that only one and not two wheels are in contact with 

the track on one side of the bogie, the track stiffness as observed at any point in 

time at the leading and the trailing wheel on one side of the bogie was added 

together to simulate the fact that a quarter of the vehicle is effectively being 

supported by two times the track stiffness. 

The simulated results were checked against results obtained with the multi-body 

simulation program MEDYNA (Schielen, 1990). In the MEDYNA model the side 

frames of the bogies were modelled as separate bodies. The results showed that the 

approximation described above was sufficient to predict the magnitude of the 

dynamic wheel load, the vertical displacement across the secondary suspension, and 

the dominant frequencies in the system. The validation of the eleven degree-of-
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freedom vehicleltrack model is done in Chapter 7. A complete list of assumptions 

and the overall motivation for these assumptions is also given in Chapter 7. 

The vehicle/track model was thus developed in close conjunction with experimental 

results. In particular the patterns and the magnitudes of the vertical displacement 

across the secondary suspension and the dynamic wheel loads were used for this 

purpose . Fault finding and sensitivity s tudies were also part of the development 

process. A schematic of the eleven degree-of-freedom vehicle/track model is shown 

in Figure 5.6. Note that the mathematical procedure to include the effect of the 

bogie on the excitation of the model is not shown in the figure . 
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Figure 5.6: Eleven degree-of-freedom vehicle/track model. 

As mentioned, all the major body modes of vibration were included to simulate the 

influence of track input being different at the front and the rear of the vehicle at 

any point in time as this has a significant influence on the dynamic behaviour of the 

vehicle, in particular its rolling motion, and the subsequent dynamic loa ding of the 
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track. Furthermore, the nonlinearity of the seconda ry suspension was included as 

it significantly influences the magnitude and fre quency of the loading between the 

vehicle and the track. Equations (5.19) to (5 .29) below describe the model in terms 

of its equations of motion. Note that h2 is defined by Equation (5 .10) and is a 

function of the static load a nd its position along the track. 

] i:i. 
p 

12if>F - bF.rr. + bF.rr. 
In IFR 

+ 2b2pp<i>F- 2bkl(b8 - b<PF) +2b 2kp<PF-2 b2ppwF- 2b 2kpWF: 0 

12if>B - bF.rr.8L + bFff, .. 

+ 2b 2pp<i>B- 2bkl(b8 - b<PB) +2b2kp<PB - 2b2ppwB- 2b2kpWB 0 

m"zF + 2 (pp + P2)zF+ 2 kpzF+k2FL ZF+k2FR z F- 2 PpY F- 2 kpYF 

- k2FLYFL,- k2FRYFRi+ k2FL lwF- k2FR !wF : 0 

m,JB + 2(PP +P)zB+2 kpzB+ k2BLzB+ k2BRzB - 2 ppYB- 2kpYB 

- k2BLYBLi - k2BRYBRi+k2BL lwB - k2BR lwB : 0 

(5 .19) 

(5.20) 

(5.21) 

(5.22) 

(5 .23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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with the friction forces, Fff, defined as follows: 

FifFL: If (Yj -YF+ bB - b<i>F- bcc a) < 0.0 

- (x + (Yj -YF+ bB - b<l>F- b cx.» k 1.1 then F = S5 cc 5S 

if,., tan cx. + II 
W ,... 

If (Yj -YF+ bB - b<i>F- bcc a) > 0.0 

(x" + (Yj -Yp+b B - b <l>F- b cc cx.» k" 1.1 
then Fjf, : 

FL tancx. ",- I.l 

.if IC I (yj-yF+ bB - b<i>F- b a)1 < IFjf, I 
,~ IT FL 

then FifFL : C,lope (Yj -YF+ bB - b<i>F- bcc a) 

.if (Yj -YF- bB +b<i>F- bcc a) > 0.0 

(x,,+ (Yj -YF- bB +b<l>F- bcc cx.»k" 1.1 
then Fjf, : 

f> tan cx. ... - I.l 

.if IC,loP.(Y j -YF- bB +b<i>F- bcc a)1 < IFif".l 

then FifFR : C,lope (Yj -YF- bB +b<i>F- bcc a) 

- ( x +(Yj -Ys+ bB - b<l>s+ b cx.»k 1.1 then F = S5 CC ss 

fl., tan cx. + II 
", ,.. 

If ()i j -Ys+ bB - b<i>B+ bcc a ) > 0.0 

(x s, + (y j - Y B + b B -b <I> B + b cc cx. » k" 1.1 

tancx. ", - I.l 

If IC I (Yj-Ys+ bB - b<i>B+ b a)1 < IFjf, I 
,~ IT. 

then Fjf, : C I (Y j -YB+ b B - b<i>B+ b a) 
BL s ope cc 

(5.30) 

(5.3 1 ) 

(5.32) 
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!f (Y\ -YB - b6 +b<i>Bbcc li) > 0.0 

(xss + (Y\ -YB- b e +b <t>B +b cc a» kss f.l 
(5.33) 

then 
tan aU" - f.l 

!f IC , (y\ -yB- b6 +b <i>B+ b 1i)1 < IF" I s ~ a_ 
then F ffBR = Cs/ope(Y\ -YB - b6 +b<i>B +bcc li) 

To solve this system of equations the derivatives in the differential equations were 

replaced by finite central difference approximations and solved using the same 

technique as described in Section 5.4. l. In terms of the force between the wheel and 

the rail, the average force between the leading and the trailing wheel on either side 

of each bogie is given as ou tput. 

During the development of the vehicle/t rack model, a para meter varia tion analysis 

was done to evaluate the sensitivity of the vehicle/track model to changes in certain 

suspension parameters. In this study it was found that under the prevailing 

relatively good t rack condition, changes in the da mping of the prima ry suspension 

as well as changes in the stiffness of the secondary suspension have no significant 

influence on the dyna mic wheel load. Changes in the stiffness of the primary 

suspe nsion only resulted in cha nges in the frequency of the dynamic wheel load. 

The most significant changes were observed when cha nging the coefficient of 

friction in the load dependent friction damper of the secondary suspension. An 

increase in the coefficient offriction resulted in a higher dynamic wheel load. From 

laboratory tests as described in Appendix B Section B.l. 2, a realis tic coefficient of 

friction could however be chosen to achieve realistic dynamic wheel loads. 
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Summary 

After considering the track support model to be used and defining the type of track 

input, a number of alternative vehicleltrack models were evaluated. The final 

eleven degree-of-freedom model is described in terms of its equations of motion . In 

Chapter 6, this model is implemented in the Dynamic Track Deterioration 

Prediction Model. 
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