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Appendix A: Transmissibility for SDOF system

my i X

S T
| s

X, = X, sin(mt)

The equation of motion for the system is

m, X, +cx, +kx, =k, x, +¢ %, (10.1)
The Laplace transformation for eq. 10.1 is

m, X;s” +¢,X;s+k, X, =k, X, +¢,X,s (10.2)
After simplification and substituting s = i®

1-X__ Kitico (10.3)
X, k, +ic,o-mom

or in non-dimensional form

1+i(2Lr)

= ReGt) (10.4)
1-r? +i(2&r)

Cy

)
where r=— and { =
®

n

2m,®

n

The magnitude for the above function can be plotted as the absolute value of the

180 _l(imag(T, )J.

function, and the phase angle is P=——tan
n

real(T,)
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Appendix B: Transmissibility for SDOF system with absorber

m, i X

[ |i X; = X, sin(ot)

The system with the absorber mass m, can now be modeled as a multi-degree-of-
freedom (MDOF) system. The equations of motion of the system can be written as:

m, X, +(k, +k,)x, +(c; +¢,)%, -k,x, -¢,%, =k x; +¢;%,

m,X, +k,x, +¢,%, -k,x; -¢,x, =0 (105
Eq. 1.4 can be written in matrix form
[ml 0 ][3&1]+[c1 +c, -c2:||:)'(1:|+|:k1 +k, 'kz]rﬁ}

0 m,|X%, -C, c, |x%, -k, k, ix, (10.6)

L{eh

The three system variables M, K and C can be extracted from eq. 10.5

[M]=[m‘ 0} [1<]=[lirkz 'kz] [c:]=[c1+C2 -Cz}(IOJ)

0 m, -k, k, -, c,
The frequency response function can be evaluated as:
[X]= [K]+ie[c]- Mo ] [F] (10.8)
The above equation results in the form
S
X, H,, HL|F
H,, is the frequency response function for X,/F,, in other words, the response of m,;

relative to a force applied at m;. The same argument applies for the other elements of
the [H] matrix. For this derivation however, the system is excited through base
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excitation. The force F, will thus be 0, and the Force F, =k;X; +ic,0X,. By
substituting this into eq. (10.9), the transmissibility function is obtained.

T, =H,, (k, +ic,0) (10.10)

The absorber can be optimally tuned by minimizing the numerator of the
transmissibility function of T,;=X,/X;. T;; looks like this:

(1(2 -m.o’ +ic20)Xk1 +ic®)
[k, +k, —m,0+iolc, +c, )]k, —m,0 +ioc, |- (k, +ioc, f

T, = (10.11)

Eq. (10.11) can also written in dimensionless form:

(1+iQ, 001 - yr* +i2y8,1))

T. =
B [1+[%JH“T2 +i(2§1r)+i(2” fzr)][ln(zvczr)ﬂzfz]“[1“(27@20{(%)““(;%}]
(10.12)
where
y (10.13)

o, = fﬁ- and ®, = ’k—z
m, m,

The transmissibility is a minimum at the frequency where the denominator of
eq. (10.10) is zero. The term (k2 ~-m,0° +ic 2(1)) must thus be equal to zero, which
will be true at the damped natural frequency of the second mass. The absorber should

thus be designed in such a way that o, =0, ‘/1 ~ &, is equal to the exciting frequency

of the system. For a given mass m,, and damping constant c,, the stiffness k, can be
calculated. Substituting the relations given in eq. (10.12) and rearranging gives

2
k,” —m,o,k, -% =0 (10.14)

where @, is the exciting frequency.
Solving the quadratic equation (10.11):

2 4 2 2 2 4 2 2
®_"m ®w._m, +c¢ ®_‘m \’(x) m, +c¢
kz — e 2 ex 2 2 _ Wex 2 ex 2 2 (10‘15)
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The second solution of k, yields a negative value and will thus be ignored. The
isolation frequency will be equal to the original system's resonant frequency when the
natural frequency ratio, v, is equal to 1.

The natural frequencies and mode shapes can be calculated by solving the eigenvalue
problem:

l[K]—c)2 [M] =0
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Appendix C: Transmissibility for theoretical lever absorber (DAVI)

DR w L.

Various methods can be used to derive the equation of motion for the system, but an
energy principle method would probably be the less cumbersome way to do it. The
Lagrange method will be used to derive the equations of motion for most of the
concepts. The first step is to express the motion of the absorber mass, x,, in terms of
the motion of the isolation mass, x;, and the base motion, x;.

X, =%x3 -(Lf)xl (10.16)

The kinetic energy of the system is:

| S | 1.,
Ek =i—m1x12 +5m2x22 +5192 (1017)
where
e:(xl 'x3) (10.18)

14
Substituting eq. (10.16) and (10.18) into eq. 10.17:
2 . . 2

E, =}‘m1f(12 +-1—m2 1:').(3 "("]:":‘1‘]5(1 +—1—I s X3) (10.19)

2 2 i L 2 14
The potential energy can be defined as:
E, =%k1(x1 ~-x,) (10.20)
Rayleigh's dissipation function is:

|

R= Ecl(x1 ~%,) (10.21)

The Lagrangian formulation states:
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(02 ‘0

(10.22)

d (aEkj_aEk LJOR OB, o

del ok, ) ox, ox, ox,

The external force vector F, is zero in this application, and after substitution the
equation of motion looks like this:

[ L Y 1l
m, + ?——1 m, +zz— X, +o,x, +kix; =
L

- (10.23)

L L [. .
\ ?—1 z’ m, +z? X, +CX, +1(1X3
For simplicity two alternative variables are defined as:

2
Meql =m, +(£‘1) m, +—'I'z—
¢ 14
(10.24)

L L I
Meq3 2(7—11—[%2 +£—2

After substitution, following the procedure described in B.1, the transmissibility of the
system can be computed with the following equation:

r-Xlkh “Clm‘Meqﬁ“’j (10.25)
X; k +ico-M_ 0
Eq. (10.25) can also be written in dimensionless form
. _ 2.2
_ 1+i(2¢r)—v,’r (10.26)
1+i(2¢r) - r?

where
C: <1 , = © andy_—_m‘

M ®Oyr Oyt @,

The frequencies ®y; and @, are the frequency of maximum transmissibility and
isolation frequency respectively.

k,
O, =
MT Meql
(10.27)
kl
@, =
Meq3
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The phase angle can be computed with

p=180 nn imag(T,) (10.28)
b1 r(-:al(Tr )

X
The transmissibility function S(—z can be calculated by substituting eq. (10.25) into eq.

3

(10.16).
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Appendix D: Mode shapes of nodal beams

‘ X x; = X; sin(mt)
L

i i

For a uniform beam, using elementary theory of bending of beams and vibration
principles, the differential equation of motion can be written down (Rao, 1995: 524):

4 2
v .‘Zx_f(x,t)+aaT§V(x,t)=o (10.29)

Where

v ’EI_ (10.30)
pA

The variables w, E, I, p and A are vertical displacement, Young's modulus, moment of
inertia, density and area respectively. Note that there is no external force in eq. (10.29).
That is because only the mode shapes are important for the purpose of this thesis, and
not the exact response of the beam.

The solution of eq. (10.29) can be found by using the method of separation of
variables. The vertical displacement in terms of x is:

W(x)=C, cos(Bx)+ C, sin(Bx)+ C, cosh(Bx)+ C, sinh(Bx) (10.31)

Where

pt = PAO” (10.32)
El

Applying the boundary condition for the specific application can solve the constants
Cy4 in eq. (10.31). The boundary condition for a pinned beam is:

w(,L)=0
2 (10.33)
g YOL) "gi?’L) =0

The solution for a beam pinned on both ends thus yields:

W_(x)=C, sin(B_x) (10.34)
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Appendix E: Transmissibility for LIVE system

my ix

1

P
< »
| Ii X3

The equations of motion for the LIVE system will once again be derived with the
Lagrange method. The first step is to write the displacement x, in terms of the
displacements x; and x;. By applying flow continuity:

b b—a
X, =—X; —
a

Xy (10.35)

The kinetic energy of the system is described by:

E, =—21—m1)'(12 + %mzizz (10.36)

where m; is the mass of the fluid in the port.
After substitution,

R (1037

a a

The potential energy of the system can be written as:
E =ik,(x, -x,) (10.38)
» =5k, X, — X, .
Rayleigh's dissipation function:
| R
R=5c1(x1 -x,) (10.39)

After substitution in eq. 10.17, the equation of motion is:
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[ (b—ajz ] .
m, +{ — | m, ¥, +¢;%x, +k;x, =

2 (10.40)
(@)ng +c,%, +kx,
For simplicity define

2

Meql =m, +(b—-a) m,

o )a (10.41)

-a

Meq3 =(_—a7——-)m2

After substitution, following the procedure described in B.1, the transmissibility of the
system can be computed with the following equation:

T _X k, +ic,0 - M_,0° (10.42)
X,k +ic0-M,0°

The phase angle can be computed with

p_180 - imag(T) (10.43)
T real(T)

X .
The transmissibility function —iz— can be calculated by substituting eq. (10.42) into eq.
3

(10.35).

The isolation and MT frequencies can be evaluated eq. (10.27):
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Appendix F: Transmissibility for alternative liquid absorber

m, i X

L Zp e

The first step in the Langrange formulation is:

_ bx, —ax,
X, = ————=
b-a

(10.44)

By following the same steps used in the previous derivations, the equivalent masses can
be calculated as:

2
a
Meq1=m1+m2( )

b-a (10.45)

The transmissibility function can be calculated using eq. (10.42) and (10.43), while the
MT and isolation frequencies can be calculated using eq. (10.27).
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Appendix G: Transmissibility for hand arm vibration absorber

A s A AN I A

i

of

x4

\NII\\\\I&@I&I\

P

L N N A, B B i R A N, A N R AR AR ORI

Definition of geometrical variables:

b=D,L

a=np—:-:-DpZ (10.46)

Following the first step in the Lagrange formulation:

X, =2y, Dz (10.47)
a a

Eq. (10.47) is the same as eq. (10.35). The rest of the derivation will thus be the same
as that of the LIVE system.
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Appendix H: Transmissibility for diaphragm type absorber

m |1

X

Xy

Diaphragm — |

i x; = Xosin(ot)

The declaration of geometrical variables:

(10.48)

The displacement of the fluid in the port in terms of the base and handle
displacements is:

b-a, by (10.49)

a a

X, =

The transmissibility can now be calculated as done in the previous derivations.
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Appendix I: Rubber stiffness calculation

Qi Q

NN
o

- "

The total load F=2nr,QQ, must be equal to the total shear force at a distance r from the
center, 2nr(),. Thus

Q =-Sum (10.50)

r

Ugural (1981,31) gives the governing shear force differential equation for
axisymmetrical as

Q.= —Di li(rd—wj (10.51)
drjrdr\ dr
Et’

where D = -——(———) (E is Young's modulus, and v is Poisson's ratio.
124t — v?

After substitution of eq. (10.50), and integration of eq. (10.51), the displacement is

erbr
4D

In(r) +c, (10.52)

The integration constants can be found by applying the boundary conditions

w(r,)=0

‘Z—W(ra)= 0 (10.53)
T

d

—f(r,,) =0

The last boundary condition in eq. (10.53) implies that although the rubber is free to
translate at r = r, it cannot rotate.

The stiffness of the rubber is thus:
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2nr,

k = - (10.54)

T

3
%(ln(rb) - 1)+ Cl::’ +c,In(r,) +c,
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Appendix J: Flow damping calculation

The flow losses in the port for laminar flow is (White, 1994)

_ 32pulx,

h
T gD’

(10.55)

Eq. (10.55) will only be valid for a Reynolds number R 4 < 2100, where

x,D
R, =220 (10.56)
M

The pressure loss due to fluid damping is thus

32p Lk,

P

AP, (10.57)

The damping force can now be calculated as
- _3_2&1;_’2_ A (10.58)
D

P

FL
where A = D,L.

If the Reynolds number is higher than 2300, turbulent flow is assumed. The flow losses
for this case is
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1 Lx,’
hy; =0,316-R 3 - —2 (10.59)
2D g
The pressure loss is then
1 . 2
AP, =0,158-R i - P2 (10.60)
1%
The damping force is
1
F,_=0,158-R 7% -nl’px,’ (10.61)

The flow losses due to sudden contraction and expansion are also calculated. Although
the port has been slightly angled to reduce flow losses, the damping calculation will
make the conservative assumption that there is no diffuser action. The loss coefficient
for sudden expansion is

DY
KSE=2hmg=(1— ") (10.62)

. 2 2
X, D,

The loss coefficient for sudden contraction is:

D 2
K. = 2—1“;-% = 0.42(1 as X ) (10.63)
5(2 Dl

The flow losses due to sudden expansion and contraction is:

.2
X,

hSE/C = KSE/C ?g_ (10.64)

The pressure drop can be calculated as:

. 2

AP, =Kg; c "% (10.65)

The resulting damping force is then:

nd’px,’

FL = KSE/C 3

(10.66)

In both the turbulent flow and entrance-exit compensation, the damping force is a
function of x,”. This implies that the equivalent damping coefficient is a function of
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the port velocity. Rao (1995, 227) presents an energy method to approximate this
quadratic damping effect. The equivalent damping coefficient is

Cq = -3§—ac0X , if F_ is in the form F, =ax’ (10.67)
T

The solution method is thus the following procedure:

e Determine the Reynolds number by using eq. 10.56 and decide turbulent or
laminar flow.
Guess a mean value for X, and V,. :
Calculate the damping coefficient by adding all the above damping forces.

e Verify the values of X, and V, according to dynamic principles and correct if
necessary.

e Verify the Reynolds number and iterate again if necessary
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