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APPENDIX 1. FLAC MODELS AND DERIVATIONS

Al.1 Applied models for FLAC code

Al.1.1 Model for the vertical stress comparison between
the FLAC ubiquitous joints model and the
theoretical development in Jaeger and Cook
(1979)

title
Compressive strength of a shale specimen with a plane of
weakness
g5 10
set mess off
def hsol
loop k (0,18)
beta=90.0*(18.0-k)/18.0
alfa=90-beta
command
mo null
mo ubi
pro den 2700 bulk 4.5e9 she 2.3e9 fric 19 co 1.4e5 ten
3.5e5
pro jco le5 jfric 8 jang alfa jten 1le6
fixy j1l
fixy j 11
ini yvel -1le-7 j 11
ini yvel 1le-7 j 1
set st_damp comb
step 4000
print beta
print sigmav
print anal
end_command
end_loop
end

def sigmav
sum=0.0
loop 1 (1,igp)
sum=sum+yforce(i, jgp)
end_loop
Eigmav=sum/(X(igp,jgp)—x(1,jgp))
en

def ve

ve=(ydisp(3,1)-ydisp(3,11))/(y(3,11)-y(3E,1))
end
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aef anal
mc=cohesion(1,1)

m¥

i=friction(l,1)*degrad

jc=jcohesion(1,1)

jr

i=jfriction(l,1)*degrad

sm=2.0*mc*cos(mfi)/(1.0-sin(mfi))

it

beta=90*int(betas90) then

sj=-1

else

divsj=((1.0-

tan(j fi)*tan(beta*degrad))*sin(2.0*beta*degrad))

if divsj=0.0 then
sj=-1

else

sj=2.0*jc/divsj

end if

end_if

it

sj<0 then

anal=sm

else

anal=min(sj,sm)

end _i1f

end

hist
hist
hist
hist
hist
hist
hist
hsol
save
plot
plot

nstep 100
unbal
sigmav
anal

beta

ve
ywiljl

UCT.sav
hold grid
hold his 2 3 cross vs 4 begin 4000 skip 40

return

Al.1.2 Model for homogeneous sandstone profile with

undulated ground surface — 15° inclination at

the limb’s surface

g 250,100

mm

prop s=5.2e9 b=5.9e9 d=2600 fri=21 coh=1el0 ten=1el0

def mon

rj=1.0/jzones

sum=0.0

loop i (130,235)
y_change=-1_1*sin(igp*degrad)
y(i,D)=y(i-1,1)+0.9*y change
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sum=sum+(y(i-1,1)-y(1,1))
y(1,1)=y(i,1)-0.2*sum/i
loop j (2,j9p-1) o
) ) ) y(,D=y(@,1) + (y(i,jgp)-
y(i.,1))*(d-1)*rj

end_loop
end_loop
end
mon
fix x i=1
fix x 1=251
fix xy j=1
hist unbal
set large
solve

title
k=2.0; 15 deg incl.
prop s=5.2e9 b=5.9e9 ten=5.5e6 coh=7e5 fri=21 d=2600
def kO_set
loop i (1,izones)
loop j (1,jzones)
sxx(1,J)=2.0*syy(1,]j)
end_loop
end_loop
end
kO set

set grav=9.81

ini xdis=0 ydis=0
solve

save kl5-sst.sav

Al1.1.3 FLAC model for 2m thick embedded shale layer at

30m depth and 5° inclination at the limb’s

surface

g 250,100
mmgj 170
muj 71 72
mmj 73 100

prop s=5.2e9 b=5.9e9 d=2600 fri=21 coh=1el0 ten=1el0 j=1,70
prop s=2.3e9 b=4.5e9 d=2700 fri=14 coh=1el10 ten=1el0 j=71,72

prop ja=0 jc=1el0 jf=8 jt=1e10 j=71,72
prop s=5.2e9 b=5.9e9 d=2600 fri=21 coh=1el0 ten=1el0
J=73,100
deft mon
rj=1.0/jzones
sum=0.0
loop i (130,235)
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y_change=-1_1*sin(igp*degrad)
y(i,1)=y(i-1,1)+0.3*y_change
sum=sum+(y(i-1,1)-y(1,1))
y(i,1)=y(i,1)-0.2*sum/i
loop j (2,j9p-1) o
) ) ) y(a,p=y(,1) + (y(i,igp)-
y(a,1))*a-1*rj

end_loop
end_loop
end
mon
set grav=9.81
fix x i=1
fix x 1=251
fix xy j=1
hist ydis i=76 j=100
solve

title
k=2.0; 2m shale; 05 deg
prop s=5.2e9 b=5.9e9 ten=5.5e6 coh=7e5 fri=21 d=2600 j=1
70 ;SST
prop s=2.3e9 b=4.5e9 ten=3.5e6 coh=4.4e5 fri=14 d=2700
J=71,72 ;Shale
prop ja=0 jc=1le5 jf=8 jt=1le6 1=36 120 j=71,72
prop s=5.2e9 b=5.9e9 ten=5.5e6 coh=7e5 fri=21 d=2600
J=73,100;SST
def kO_set
loop 1 (1,1zones)
loop j (1,jzones)
sxx(1,§)=2.0*syy(1,])

end_loop
end_loop
end
kO _set
ini xdis=0 ydis=0
set large
solve

Al.2 Stress analysis

Many authors, such as Singh (1979) and Feda (1992),
discuss shear stress as the only stress that triggers
slope failure. Kulhawy et al. (1973) seem to be the
first to mention the difference between the Mohr-
Coulomb shear fTailure criterion and the stress failure
criterion developed authors. Using Tinite element
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analysis, these calculated the safety factor based on
stress level after the assumption that the rock is

brought to failure by increasing the value of one of
the principal stresses o;, while holding the other, o3,

constant.

Figure Al.la shows a flaw or a micro fracture In a two-
dimensional Cartesian coordinate system. Let us assume
that a pair of stresses acts on the flaw (presented by
horizontal and vertical stress components). Their
result is the stress normal to the flaw’s plane. Since
the flaw is not collinear with one of the principal
stress directions, there iIs some shear stress at the
flaw’s plane as well. These stresses in the virgin
stress conditions are in equilibrium at the flaw, so
there i1s no flaw extension, propagation or coalescence
with the neighbouring ones. These stress conditions are

known as a virgin stress state and could be denoted as
virgin horizontal (oY), virgin vertical (oyw) and
virgin shear (o), ) stress components. In this case we
can denote the stress normal to the flaw’s plane as

v
o\ -

mining activities (Figure Al.1b) bring about a change
in the stress state, known as ‘“resultant stress state”.

These stresses could be denoted as resultant horizontal
stress (ok), resultant vertical stress (oy), and

resultant shear stress (o). The first two resultant

stress components (horizontal and vertical) will form a

new resultant state, normal to stress of the flaw’s

plane (of).
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Figure Al.1

Stress state i1in the infinitesimal flaw, In virgin

conditions, and b) after excavation
Therefore, we can say that any possible changes in the
flaw pattern (extension, new Fflaw propagation,
coalescence between microcracks in the rock or even

failure) will result from the difference between those

two loading conditions. Hence, it follows that:
Ao yy :O'Qx _O'\>/<x (Al.1)
Aoy =0y — Oy (Al.2)
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AGyy =05y — Oy (AL1.3)

where Ao, Aoy, and Aoy, are the stress differences
for the horizontal, vertical, and shear stress
components. Olson (1993) wuses this principle to
calculate stress changes caused by tectonic

irregularities.

One can easily see that the stress difference in
Equations Al.1 — Al1l.3 has a negative sign in the case
when the material relaxes from the virgin stress state
or a positive sign iIn the case of iIncreased loading

when using rock mechanics sign conversion.

Normal force to the failure plane iIs In use as a basal
element fTor the limit equilibrium methods 1in slope
stability analyses. As mentioned in Chapter 1, observed
failure planes with embedded anisotropic weaker layers
are mainly parallel to the sedimentation.

According to the type of horizontal and vertical
stresses (virgin and resultant), the normal to the
failure plane i1nduced stress (after Equations Al.1-
Al1.3) can be a combination of two compressive stresses,
a combination of two tensile stresses or a combination
of tensile and compressive stress. Figure Al.2 shows
the case of biaxial tension applied to the material

plane of weakness.

In matrix notation, stress transforms as follows

/

o] =[2]le]l2] (A1.4)
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where [1] is directional cosine matrix. For the angle «

shown In Figure Al1.2

Vlz{comx ﬁna} (AL.5)

—sina cosa

Applying Equation Al.4, we could write
Y’ Y

< Aoy _ Aoxx

Aﬁxh :2 —> %

< —>
R
Aoyy
Figure Al1.2

Stress state applied to the plane of weakness and
remote biaxial loading

!
011 = 11011 + 41412010 + 4411001 + 41244202,

(A1.6)
= 0, 0082 & + 01, SIN @ COS & + Ty SIN A COS @ + Ty, SINZ
’
012 = A1401011 + 414000710 + AoAdn 01 + 41242202
= —0y4 SIN @ COS & +01,608% &t — 01 SINZ @ + Ty, SIN 2 COS 1 (A1.7)
1
=071
!
Op2 = A1 401011 + A21 402015 + Appdp1021 + App A0 (A1.8)

= 0,4 SiN°a — 04, SIN@ COS @ — 0y, SIN A COS @ + 0y, COSZ 1
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Hence, for the new set of the co-ordinate system
(X’Y?), the normal stress difference Aoy, =Acy will

have the form of

where Aoy, Aoy and Ac,, are the stress differences

between the stress state after slope excavation and the
virgin stress state for the horizontal, vertical and
shear stress components respectively. See Equations
Al.1 to Al1.3.

Al.3 Equations in Chapter 4

Al1.3.1 Equation 4.16

1

C 2 215
KP =—20t‘/%tan%jcos%§{(sin%j —(sin%‘tj ] ng (A1-10)

Replace sinﬂ—gzu. Then du=£cos”—§d§ and Equation A1.10
w w w

has the form:

,j& ngmfﬁ
KD __ZGtW WtanW J.W du (Al.ll)
=
. zic
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sinE
W
:—ZJtW‘/itanﬂ—carcsin u = (A1.12)
T W W . 7C
sin—
W sin@
W
20W [1 g%wj
__Lo —tan”—C arcsinl—arcsin——< | = (A1.13)
T W W . (ﬁCj
sin| —
W
. (ra
sin| —
200N [1 . zc|x . (m/j (A1.14)
=— —tan=—| = —arcsin——< | =
r VW w2 . (ncj
sin| —
W

(A1.15)

. T
,
=—0 Wtanﬂ—C 1-—arcsin———=
t W T .
sm(

=323

Al1.3.2 Equation 4.19

e NP, (1)
Aoy W tanZS — o, W tanZS |1- Zarcsin——"2 | =0 (A1.16)
W W n .(zcj
sin| —
W
Dividing both sides on Equation Al1.16 by ‘/Wtan”WC:

. (ﬁa]
SINf —
W -0 (A1.17)

o]

Aoy — oy |1-—arcsin
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. (ra

SIn| —
20, . W
——arcsin

()
"l

5] o)

arcsin =

. (ﬂ'Cj 20,
sSinf —
W

M
6

=0, — Aoy

oy -a0y)
20;

e .
——=arcsin
W

(O.SEAGN j
coS§| ———
Ot

. [ma
SINf ——
W : W
C =—arcsin
T 0.57A0
COS| ———

Oy

Replacing c with c=a+l

(Al.

(AL.

(Al.

(Al.

(Al.

(Al.

18)

19)

20)

21)

22)

23)
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. (ra
sin| =—
w ) w
| =—arcsin
T 0.57A0)
cos| —

Oy

—a

Al1.3.3 Equation 4.21

W_ . sinfza/w)
= —arcsin

I -
Vs COS(O.57Z' Aoy /O't)

C

all +a) _ arosin sin(z a /W)
cos(0.57 Ay / o)

sin(za/W)

sinfz(l, +a)/W]= cos(0.57 Aoy / &)
. N t

sin(za/W)

cos(0.57 Aoy | o,)= sin[z(l. +a)/ W]
c

sin(za /W)
sin[z(l, +a)/ W]

0.57 Aoy | o, =arccos

Aoy, _ 2% arecos _sin(za/W)
w sin[z(l, +a)/ W]

Al.3.4 Equation 4.24

Substituting Equation 4.19 into Equation 4.23:

(Al.

(Al.

(Al.

(Al.

(Al.

(Al.

(Al.

24)

25)

26)

27)

28)

29)

30)
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2a+ﬁarcsin sin(zza/W) -2a=W (A1.31)
T COS(O.57Z'AUN /O't)

and
Earcsin ﬁn@aHN) = (A1.32)
V4 COS(O.572'AO'N /O't)

sin(ma /W) _ sin(zj _1 (A1.33)
cos(0.57A0y / o) 2
sin(za /W )= cos{Z Ady J (A1.34)

2 o,

We can replace sin(%a] at the left hand side of the

Equation A1.34 with a cos(f), which is shown in

Equations Al.35a and A1.35b below.

_ COS(Z N ”_aj (A1.352)
> W
ra
SII‘](WJ: or
COS[Z B ”_aj (A1.35b)
> W

Let us first combine Equations Al1.34 and Al.35a. Then
we have:

- cos(£+ﬂ—aj _ cos| ZA%N (A1.36)
2 W

20,
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As the cosv=cos(-v), then the Equation Al1.36 has four
possible solutions. If the both arguments are with the
same sign (“+” or “-), then after applying the inverse
cosine function the Equation A1.36 can be written as:

_(7,7ma)_7 Aoy (A1.37)
2 W) 2 o

Dividing both sides of Equation A1.37 by n/2 we obtain

with further manipulation:

_W+2a _ Aogy (A1.38)
W Oy

It is seen that Equation A1.38 1is an impossible
solution because the left-hand side of the equation
always will have negative value (W and a are real
positive numbers), while the right-hand side always

will be positive.

IT we assume that both arguments of cosine functions in
Equation A1.36 are with opposite signs, then we will

have:

T ma 7w Aoy

== . A1.39
2 W 2 o ( )
and similar to Equation A1.38 we can write:

W+2a _ Aoy (A1.40)

W Ot

It 1s also seen that Equation Al1.40 1i1s impossible
solution because left-hand side of the equation always
will have value bigger than one, while the right-hand

side always will have value lower than one.
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Let us now combine Equations Al1.34 and A1.35b. Then we
have again two options: both cosine arguments are
either the same or opposite sign. Let us first consider
the case with the same sign arguments. Hence, we will

have equation in the form of:

cos| £ 721 _ cos TATy (A1.41)
2 W 20,

Therefore,

T ma 7w Aoy

2 W 2 o

(A1.42)

Dividing both sides of Equation A1.40 by n/2, we obtain

after further manipulation:

W-2a_Aoy (A1.43)
W Ot

Equation Al.43 has only meaning if W-2a>0
(particularly, when W>2a.) and can be used 1iIn the
further because its both sides are with the same sign.
After assuming that 2a is smaller than W, both sides of

Equation Al1.43 are positive and smaller than one.

IT we assume that the cosine arguments in Equation

Al.41 have different signs, then we can write:

ra 7n 7 Aoy

ra_z Al.44

W 2 2 o ( )

and

22-W _Aoy (AL1.45)
W O_t

It can be seen that Equation Al.45 is also possible
solution because both sides of the equation are the
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same sign and smaller than one in cases where 2a>W .
On the other hand the condition 2a>W does not comply
with Equation 4.23 and Figure 4.9, Chapter 4.
Therefore, the only possible solution is the equation
Al1.43. If 2a = W, then we will have pre-existing

tensile fracture propagation and consequently, Ao, =0.

Hence we can write

o =0, (A1.46)
W

Al.4 Equations iIn Chapter 5

Equation 5.16

tand =tan ¢ + cl (A1.47)

Rcoso

Multiply both sides of Equation Al1.47 by coss, we will

have

ﬁndzﬂan¢cos§+%% (A1.48)

Substituting coss=+1-sin®s in Equation Al.48:
ﬁn5:ﬂan¢V1—ﬁn25+%;- (A1.49)

IT we transfer the coefficient %;-'from right-hand side

of Equation Al1.48 to the left-hand side and square both
sides:

2
sinzé—z%lsin5+[;—lj =tan’ ¢ —sin’ S tan’ ¢ (A1.50)
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Equation A1.50 becomes after simplification:

2
sm256+Um2¢%2%;ﬂn5+(%;j-—mn2¢:0 (A1.51)

This 1s a quadratic equation iIn sing in which there is a
real solution only if:

4(C_Ij2—4(1+tan2¢) Czlz—tanzgﬁ >0 Al.52)
R R’ - )
Equation A1.51 simplifies to
I 2

sec%ﬁ—(%) >0 (A1.53)
where

cl
sec¢2E (A1.54)
and

4(cl
¢ >sec (Ej (A1.55)
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