
UNIVERSITY OF PRETORIA 

DEPARTMENT OF MINING ENGINEERING 

PRETORIA 

 

 

 

 

 

 

 

 

 

SLOPE STABILITY ANALYSES IN COMPLEX 

GEOTECHNICAL CONDITIONS – 

THRUST FAILURE MECHANISM 

 

by 

 

Krassimir Nikolov Karparov, PrEng 

 

 

 

 

 

Submitted in partial fulfilment of the requirements for 

the degree Philosophiae Doctor (Mining Engineering) in 

the Faculty of Engineering, Built Environment and 

Information Technology, University of Pretoria, 

Pretoria  

 

 

 

January, 2007 
 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  KKaarrppaarroovv,,  KK  NN    ((22000077))  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As far as the laws of 

mathematics refer to reality, 

they are not certain, and as 
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do not refer to reality. 
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of Physics, Chapter 2 (1975). 
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SUMMARY 

SLOPE STABILITY ANALYSES IN COMPLEX GEOTECHNICAL 

CONDITIONS – THRUST FAILURE MECHANISM 

by 

Krassimir Nikolov Karparov 

Supervisor: Prof. Matthew Handley 

Department: Mining Engineering 

Degree: Philosophiae Doctor (Mining Engineering) 

 

Key terms: slope stability, undulated formation, 

embedded weaker layer, co-linear flakes, cohesive zone, 

frictional zone, relaxation stress, active block, 

passive block, and safety factor. 

 

In this thesis a previously unknown mechanism of 

failure in multilayered slope profiles is identified. 

In some conditions this mechanism does not confirm to 

the known failure models (relating to circular failure) 

used in slope stability analysis. For this reason, 

major failures have occurred in the artificial cuts 

despite the fact that the limit equilibrium methods 

suggest that these cuts would be stable. The limit 

equilibrium methods were originally created to apply to 

earth dam walls. In the open pit mining environment, 

where we face inhomogeneous and inclined multilayered 

structures, the assumptions of these limit equilibrium 

methods appear to be inapplicable (e.g. assumption for 

the equal shear strength along the failure surface). 

 

Analysis starts with a general picture of the stress 

state in the highwall slope, given extant geological 

conditions and rock properties.  The study then focuses 

on a comparison of the crack-tip stress changes in the 

rockmass with and without inclusions at the microscopic 
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level. Basing some assumptions on binocular microscope 

observations of grain structures, it is possible to 

measure the size of the different inclusions and show 

that the microscopic carbon flakes present in the rock 

fabric make a major contribution to the failure process 

in a mudstone layer in the slope. 

 

The approach adopts the fracture-process zone ahead of 

a crack tip as the controlling parameter of flaw 

propagation in rock.  Flaw coalescence, which is poorly 

accounted for in current fracture models, is 

attributable to two phenomena: the flaw propagation due 

to high level of applied stress; and the linking of 

fracture-process zones due to the small distance 

between neighbouring flaws. A condition of flaw 

coalescence is given based on these two mechanisms.  

 

This development allows defining of two zones along the 

failure surface (frictional and cohesive). In the 

slope-stability field the shear strength of the rock 

along the failure plane is a composite function of 

cohesive and frictional strength.  

 

For instance, the relaxation stress normal to bedding, 

induced by overburden removal, provides an 

investigation method for the determination of the 

weakest minerals, which may act as flaws for fracture 

propagation in low-porosity rock.   A method has been 

developed to determine the critical stress for tensile 

fracture propagation due to the rock structure and the 

stress reduction normal to bedding. 

 

A proposed failure mechanism is based on the polygonal 

failure surfaces theory developed by Kovari and Fritz 
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(1978), Boyd’s field observations (1983), Stead and 

Scoble’s (1983) analyses, Riedel (1929) Shear Fracture 

Model, Tchalenko and Ambraseys (1970), Gammond’s (1983) 

and Ortlepp (1997) observations for natural shear 

failures, computer modelling by McKinnon and de la 

Barra (1998), the results of many laboratory 

experiments reported by Bartlett et al. (1981) and the 

author’s experience. The proposed failure mechanism 

evaluates stability of the artificial slope profile due 

to the embedded weak layer structure, layer thickness, 

layer inclination and depth of the cut. On the basis of 

the observations and the above-mentioned modified 

fracture model, the slope profile is divided into two 

blocks; passive and active blocks. With this new model, 

it is possible to calculate slope safety factors for 

the slope failure cases studied in the industry.  It 

has been found that, whereas the conventional slope 

stability models predict stable conditions, the new 

model suggests that the slope is only marginally stable 

(i.e. that failure can be expected). 
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LIST OF NOTATIONS 

 

A Area 

Actual contact area 

Area of an element 

Half of the crack length 

Critical half crack length 

Half of the distance between the outer ends of 

two neighbor co-linear flakes with developed FPZ 

Rock cohesion 

Cohesion along the plane of weakness 

Undrained shear strength 

Average cohesion of the profile 

Cohesion of the Active block inner side 

Cohesion of the Active block outer side 

Crack tip opening displacement 

Dugdale-Barenblatt 

Displacement discontinuity method 

Grain diameter 

Half of the distance between the inner ends of 

two neighbor co-linear flakes 

Half of the distance between the outer ends of 

two neighbor co-linear flakes 

Normal load 

Final difference method 

Initial load 

Factor of safety 

Shear modulus (Rigidity) 

Earth acceleration 

Depth (Chapter 2) 

Slope height 

K-ratio (Chapter 2); argument (Chapter 4) 

Stress concentration coefficient for horizontal 
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dA 

a 
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Oc  
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 stress component 

Stress concentration coefficient for vertical 

stress component 

Mode-I fracture toughness coefficient 

Fracture toughness calculated using linear 

elasticity 

Difference between the near the tip SIF and the 

field SIF 

Near the tip SIF 

Field SIF 

Stress intensity factor under the load ΔσN

Stress intensity factor in the fracture process 

zone 

Stress intensity factor under the load ΔσN in 

point A 

Stress intensity factor under the load ΔσN in 

point B 

Stress intensity factor under the load ΔσN in 

point C 

Stress intensity factor under the load ΔσN in 

point D 

Inclusion’s length (in Chapter 5); Length of the 

fracture process zone (in Chapter 6) 

Critical length of the fracture process zone 

Length of the Passive block failure surface 

Cohesive zone length along the Passive block 

failure surface 

Frictional zone length along the Passive block 

failure surface 

Shear failure length along the inner side of the 

Active block 

Shear failure length along the outer side of the 

Active block 
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n 

OCR 

p 

PA 

PF 

Pc 

RP 

 

R  

 

 

SCC 

TAT 

W 

Axes along the plane of weakness (Chapter 2) 

Layer thickness (Chapter 8) 

Axes normal to the plane of weakness 

Overconsolidation ratio 

Plasticity factor 

Active block load 

Frictional zone load 

Cohesive zone load 

Passive block reaction applied to the active 

block 

Combined action of the active block load and the 

passive block reaction to the active block outer 

shear failure surface 

Stress concentration coefficient 

Tributary area theory 

Inclusion’s thickness or width 

 

 

Greek symbols 

 

α Inclination angle (Chapters 2 and 3) 

Δδp Displacement difference between two cycles during 

the loading process before failure 

Δδi Displacement difference between two cycles during 

the unloading process before failure 

β Angle formed by the principal stress direction 

and the joint (Chapter 2) 

Slope angle (Chapter 3) 

Angle between the axes and the center point of an 

element (Chapter 4) 

βI Inclination of the inner side of the active block 

shear failure plane 

βO Inclination of outer side of the Active block 
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shear failure plane 

γ Total unit weight of the soil 

λ Directional cosine matrix 

φ Angle of internal friction 

φj Joint plane friction angle 

ϕ Failure plane angle 

ϕj Dilation angle along the weak bedding plane 

χ Stress coefficient 

ρ Rock density 

π The number pi 

ν Poisson’s ratio 

σ0 Stress on element 

ΔσN Normal to sedimentation stress difference 

Δσij Stress difference 

ΔσXX Stress difference of the horizontal stress 

components 

ΔσYY Stress difference of the vertical stress 

components 

ΔσXY Stress difference of the shear stress components 

σH Horizontal stress component 

σN Normal to the fracture stress component 

σV Vertical stress component 

σH
F Horizontal stress component calculated by FLAC 

σV
F Vertical stress component calculated by FLAC 

σV
xx Horizontal stress component in virgin condition 

σV
yy Vertical stress component in virgin condition 

σV
xy Shear stress component in virgin condition 

σR
xx Resultant horizontal stress component 

σR
yy Resultant vertical stress component 

σR
xy Resultant shear stress component 

σV
N Normal to sedimentation stress component in 

virgin condition 
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σR
N Normal to sedimentation stress component 

calculated from resultant stress components 

( )xσ~  Tensile stress in the fracture process zone 

σ(x) Closing cohesive stress 

σ1 Local maximum principal stress at the crack tip 

σ3 Minor principal stress 

σt Tensile strength 

σtj Tensile strength along the sedimentation 

σtt Tensile stress 

σc Maximum pressure for a uniaxial compressive test 

(Chapter 2) 

Critical fracture stress (Chapter 4) 

σCD Crack damage stress 

c
Nσ  Critical stress corresponding to the crack 

propagation 

L
Nσ  Critical stress corresponding to the linking of 

the fracture process zone 

P
Nσ  Stress of the co-linear flaws propagation and 

coalescence 

c
NσΔ  Critical value of the normal to sedimentation 

stress difference 

P
NσΔ  Normal to bedding stress difference of the co-

linear flaws propagation and coalescence 

σV
ij Virgin stress component 

σR
ij Resultant stress component 

σI
ij Induced stress component 

σy Yield strength 

τ Shear stress 

τf Shear stress of failure 

ξ Local distance 

ε Strain 

ϖ Layers inclination angle 
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ϖA Layers inclination angle in the active block 

wedge 

ϖF Layers average inclination angle along the 

passive block frictional zone 

ϖC Layers average inclination angle along the 

passive block cohesive zone 
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