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Recently parallel platforms, also known as Stewart platforms, have been the subject of much
active tesearch because of their distinct advantages over serially linked manipulators. Parallel
platforms may have a great impact, especially in the field of machine tools. Parallel platforms
are however, not yet commonly used as machine tools. The main reason for this is the lack of a
general and rationally based design system that is also easily implementable. The availability of
such a system will allow for the set-up of a platform so that, not only will the task be
executable, but it will also be performed in an optimum manner according to a criterion
specified by the user. This study proposes an easy to use methodology that may by applied to

the optimum design of planar parallel platforms for machining applications.

The design methodology presented here is based on mathematical optimization. This approach

is simple and intuitive, and all the most important design criteria can be implemented, in some
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mathematical form, in thekapp]‘ication of the proposed optimization methodology. Six possible
design variables are defined, all related to the physical dimensions and placement of the
platform for a prescribed task. Different platform designs are studied by using different
combinations of design variables, where some design variables are fixed at specific values
while the remaining design variables are allowed to vary. Two types of design constraints are
considered, namely geometrical constraints that specify physical bounds on the platform size
and placement, and secondly, limits on the maximum and minimum allowable actuator leg
lengths. The platform design is optimized according to a prescribed criterion. Two design
criteria, also called cost functions, are considered in this study. The first is the minimization of
the actuator forces as the manipulator executes a prescribed task. The actuator forces are
calculated by means of a dynamical analysis software package, DADS. The other design

criterion is the maximization of the so-called quality index over the prescribed tool path.

The success of mathematical design optimization depends largely on the optimization algorithm
that is used to solve the minimization problem. It is shown in this study that the minimization of
the actuator forces is a difficult problem to solve by mathematical optimization. Important
reasons for this are that some of the cost functions considered here have discontinuities in their
gradients with respect to the design variables, and that they are also highly non-convex and non-
quadratic. Another difficulty is the presence of numerical noise superimposed on the cost
functions. For this reasons the robust and reliable LFOPC optimization algorithm, of Snyman
was used. This method, although relatively slow to converge, was highly successful in solving

the various design optimization problems.

Because of the slow convergence of the method and the computational cost of evaluating the

actuator force cost function and gradients when many design variables are involved, it was



1
decided to attempt to speed up convergence by the use of an approximation method. The
approximation algorithm. Dynamic-Q also proposed by Snyman, was selected and its

application illustrated by solving a design problem with many design variables. This algorithm

quickly converged to an aceeptable optimum design.

The main conclusion of this study is that the design methodology proposed here can
successfully be applied to the design of planar Stewart platforms and may easily be extended to
also apply to spatial Stewart platforms. This methodology solves difficult design problems that
are inherent to the design of parallel manipulators. Tts future implementation in a more
comprehensive design and operating system for Stewart platforms to be used for machining

tasks is therefore imperative.
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Parallel-platforms, ook bekend as Stewart platforms, is onlangs die onderwerp van baie
navorsing weens die besondere voordele wat hierdie manipuleerders het bo serte-gekoppelde
manipuleerders. Parallel-platforms mag in besonder moontlik ‘n groot bydrae lewer in die veld
van masjinering. Parallel-platforms word egter nog nie algemeen gebruik as
masjineringsgereedskap nie. Die hoofrede hiervoor is die tekort aan ‘n algemeen- en rasioneel-
gebaseerde ontwerpstelsel wat maklik implementeerbaar is. Die beskikbaarheid van so ‘n stelsel
sal die opstelling van ‘n platform moontlik maak sodat, nie alleen die voorgeskrewe taak
uitvoerbaar is nie, maar ook sodanig dat die taak optimaal uitgevoer word ten opsigte van ‘n
voorgeskrewe kriterium. Hierdie studie stel ‘n eenvoudige ontwerpsmetodologie voor wat
toegepas kan word op die optimale ontwerp van vlak parallel-platforms vir

masjineringstoepassings.
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Die ontwerpsmetodologie wat hier gegee word is gebaseer op wiskundige optimering. Hierdie
benadering is eenvoudig en intuitief. Al die belangrikste ontwerpskriteria kan in wiskundige
vorm in die aanwending van die voorgestelde optimeringsmetodologie geimplementeer word.
Ses moontlike ontwerpsveranderlikes word gedefinieer, waar al ses verband hou met die fisiese
afmetings en plasing van die platform vir ‘n voorgeskrewe taak. Verskillende platform-
ontwerpe word bestudeer deur die ontwerpsveranderlikes in verskillende kombinasies te
gebruik. Sommige ontwerpsveranderlikes word beperk tot vaste waardes, terwyl dié ander
onderwerpsveranderlikes toegelaat word om te varieer. Twee tipes ontwer_psbegrensings word
beskou, naamlik geometriese begrensings wat fisiese grense plaas op die platform grootte en
plasing, en tweedens, word daar limiete op die minimum en maksimum toelaatbare aktueerder-
lengtes geplaas. Die platform word geoptimeer volgens ‘n voorgeskrewe kriterium. Twee
ontwerp kretiria, ook genoem koste funksies, word in hierdie studie beskou. Die eerste is die
minimering van die aktueerderkragte soos die platform die voorgeskrewe baan volg. Die
aktueerder kragte word bepaal met behulp van ‘n dinamiese analise sagteware pakket, DADS.
Die ander ontwerp kriterium is die maksimering van die sogenaamde kwaliteitsindeks oor die

voorgeskrewe baan wat die beitel volg.

Die sukses van wiskundige optimering hang grootliks af van die optimeringsalgoritme wat
gebruik word om die minimeringsprobleem op te los. Daar word aangetoon dat die minimering
van aktueerder kragte ‘n mocilike probleem is om op te los deur middel van wiskundige
optimering. Belangrike redes hiervoor is dat sommige van die kostefunksies wat hier beskou
word, diskontinuiteite het in hulle gradiénte met betrekking tot die ontwerpsveranderlikes, en
verder dat die kostefunksies ook hoogs nie-konveks en nie-kwadraties is. Nog ‘n probleem is

die teenwoordigheid van numeriese geraas in dic kostefunksies. Vir hierdie redes is die robuuste
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en betroubare LFOPC optimeringsalgoritme van Snyman gebruik. Alhoewel hierdie metode
relatief stadig konvergeer, het dit die verskillende optimeringsprobleme suksesvol opgelos.

Omdat die mc;tode stadig konvergeer, en weens die betreklike lang berekeningstyd wat vereis
word om die aktueerderkrag kostefunksie en gradignte te bereken as daar baie
ontwerpsveranderlikes betrokke is, is daar besluit om die konvergensie te probeer versnel deur
gebruik te maak van ‘n benaderingsmetode. Die benaderingsmetode Dynamic-Q, ook deur
Snyman voorgestel, is gekies en die toepassing daarvan is geillustreer deur ‘n

ontwerpsprobleem met baie ontwerpsveranderlikes op te los. Die algoritme het vinnig na ‘n

aanvaarbare optimumontwerp gekonvergeer.

Die hoofgevolgtrekking uit hierdie studie is dat die voorgestelde ontwerpsmetodologie
suksesvol toegepas kan word op die ontwerp van viak Stewart platforms. Die metodologie kan
ook maklik uitgebrei word om ruimtelike Stewart platforms te éntwerp. Hierdie metodologie los
moeilike ontwerpsprobleme op wat inherent is aan die ontwerp van parallel-manipuleerders, Dit
is noodsaaklik dat hierdie ontwerpsmetodologie in die toekoms geimplimenteer word in ‘n meer

omvattende ontwerp-en-beheerstelsel van Stewart platforms vir masjineringstake.
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Chapter 1: Introduction

Recently parallel platforms, also known as Stewart platforms, have been the subject of much
active research and development because of their distinct advantages in many practical
applications over serially linked manipulators [20]. In particular machine tool manufacturers are
already designing and fabricating platform devices to replace conventional milling

machines [1].

A major and essential requirement for the practical use of a planar platform in machining is that,
for a prescribed tool path in the workpiece, the design (or set-up) of the platform should be such
that the completion of the tool path within the workspace is guaranteed. This problem is
addressed in this study. An optimization methodology is proposed and demonstrated which not
only yields a design which accommodates the prescribed tool path, but also places the tool path

in a manner which minimizes the actuator forces required for the execution of the task.

Introductory to this study this chapter describes general parallel platforms and then discusses
the problems that may be encountered in designing such platforms. Work published on the
design of parallel platforms are also briefly reviewed. The chapter concludes with a brief
overview of the special purpose of the present study. An outline of the presentation in the

chapters that follows will also be given in the final section of this chapter.

1.1 Description of a Stewart platform

A Stewart platform, also known as a Gough platform, is a parallel linked mechanism as shown

in Figure 1.1. The Stewart platform consists of a rigid mobile end-effector (manipulator) which
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is attached to a fixed base via linear actuators. The actuators are attached to the mobile platform

and the fixed base with suitable joints, such as universal- or ball-and-socket joints.

Maohbile platform

Linear actuators

Fixed base

Figure 1.1: Stewart platform

As the actuators extend and contract, the mobile platform moves inside the workspace. The size
and shape of the workspace 1s detefmined by the minimum and maximum lengths of the
actuators, as well as the placement of the actuator end-points on the fixed base and on the
mobile platform. The workspace is not freely reachable, i.e. some points in the workspace can
only be reached for certain orientations of the mobile platform. This gives rise to the term,
dextrous workspace. The dextrous workspace refers to the region in the reachable workspace,

for which the mobile platform can have all the orientations from a set of prescribed orientations.

A Stewart platform has several advantages over serially linked manipuiators [10, 20]:

1. the load is distributed approximately equally amongst the actuators,

2. loads in the actuators are mostly traction—compres.sion, which make the use of linear
actuators ideal,

3. the platform has a high load-to-weight ratio,
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4. the position of the manipulator is less sensitive to errors in the actuator sensors, and

5. the platform is more stiff.

These advantages make Stewart platforms ideal for certain applications, such as flight
simulators, accurate positioning devices, force measuring devices, milling machines, six degree-

of-freedom joysticks, and active vibration dampers [20].

Despite the obvious advantages these platforms have over classical manipulators, it is not
commonly used. Their use is limited due to the lack of a good design methods. The architecture
of parallel platforms are much different from classical manipulators, therefore the design

methods developed for these manipulators cannot in general be applied to parallel platforms.

1.2 Stewart platform design

The design of a Stewart platform for specific practical applications is difficult for several
reasons. One reason is that the workspace of a Stewart platform, for a particular geometry and
given dimensions, is difficult to determine. The fact that the workspace is much smaller
compared to that of a similar sized serially linked manipulator, stresses the importance of

having a detailed knowledge of the size and shape of the workspace.

The platform workspace should contain the actual desired workspace in which the practical task
is to be performed. But as the platform workspace is fixed relative to the fixed base, this
translates to proper placement of the fixed base relative to the desired workspace. This optimal

placement of the fixed base relative to the desired workspace is, in general, not straightforward.
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Another property of Stewart platforms that complicate the design process, is that there may be
singularities inside the workspace. Singularities are positions and orientations of the platform in
which it cannot balance external forces, and the platform collapses. In the vicinity of
singularities, the actuator forces tend to become infinite. It is therefore important to have a well-
conditioned workspace, i.e. a workspace in which the mobile platform will not become unstable

or difficult to control'.

From the above it is clear that a design method is needed that will find the optimal platform
design according to some suitable criteria, which takes into account singularities, the placement
of the fixed base and workspace requirements. Unfortunately it appears from the literature that

very little work has been done on this subject.

1.3 Review of work done on Stewart platforms

The parallel manipulator was first studied by Cauchy [3] around 1813, as an “articulated
octahedron”. In 1949 Gough [13] used a parallel manipulator o test wear on tires (a parallel
linked mechanism is sometimes referred to as a “Gough platform™), and in 1965 Stewart [38]
made use of a parallel structure for a flight simulator. In spite of this earlier work, it was not
until 1987 that interest into parallel manipulators grew widespread [21] with the study of their

potential application to a wide variety of practical areas.

' The quality index can be used to determine the condition of the platform in a certain position and orientation.

Refer to Appendix C for a discussion on the quality index.
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1.3.1 Workspace

Many researchers have published work on the determination of the workspace, but none have
yet published work on determining the workspace for a completely general Stewart platform.
Du Plessis gives a good review of the work done in this area [8].

Recent work on a new method for workspace determination was done by Snyman et. al. [31]
and du Plessis [8]. They present a general numerical optimization technique for determining the
workspace of a planar Stewart platform, as well as a spatial 6-3 Stewart platform. The latter
platform is depicted in Figure 1.2. This platform has actuator joints on the mobile platform that
are paired so that two actuators are effectively joined at one point. The proposed technique
makes use of mathematical optimization to find the boundary of the workspace. The work done

by du Plessis includes the determination of various types of accessible workspaces.

Figure 1.2: -3 Stewart piatform.

The work of du Plessis was extended for planar Stewart platforms by Hay and Snyman [16] to
allow for non-convexity of the workspace and voids in the workspace. Their method also takes

into account limits imposed on the orientation of the actuators by the mechanical joints.

The numerical methods proposed by Snyman, du Plessis and Hay are general, and can be

extended to determine the workspace of any manipulator.
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1.3.2 Singularities

Singularities in the workspace of parallel platforms have been studied [23]. It is known that for
singular manipulator configurations, the determinant of the associated Jacobian matrix becomes
zero. This property is commonly used to plot singular loci inside the workspace. According to
Merlet [20], two accepted approaches used in determining the singular loci, are the numerical

continuation method of Haug et. al. [15] and the geometrical approach of Gosselin [11].

The design problem concerning singularities in the workspace is not to determine their location,
but to find a suitable platform design for which the mobile platform will not come near these
singularities. There are almost always singularities in the workspace, but the platform can be
designed so that in performing a prescribed task, it never comes close to these singular

configurations.

1.3.3. Design

As already stated, research into the design of a spatial Stewart platform has been limited, but
some important work on this subject have been have been done {17, 22]. Most of the published
work is on the design of three degree-of-freedom Stewart platforms. Since so little work has
been published on this subject, it is useful to also look at the work done on the optimal design ot
other types of manipulators. Some representative examples of the work done in the area of

design are presented in the following subsections.

1.3.3.1 Spatial Stewart platform

The work done by Ji [17] on the design of the 6-3 Stewart platform shown in Figure 1.2, can be
used to determine the optimal placement of the fixed platform in a reference system, for a given
manipulator task. The design criterion is that the actuator lengths during the manipulator task,

should be close to the average actuator lengths (the average of the minimum and maximum
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allowable actuator lengths). A placement is penalized if the actuator lengths are outside the
specified minimum and maximum lengths at some point during the manipulator task. A
placement is evaluated using geometrical relationships, and the of,»timal placement 1s found
using mathematical optimization. This method cannot be used for the complete design of a
platform, as it determines only the optimal placement of the fixed base, given a platform

geometry.

In the study of spatial Stewart platform design, Merlet [22] uses a geometrical approach based
on the geometrical relationships of the platform to find the optimal platform design. A reduced
set of design variables are used in investigating a special case of the six degree-of-freedom
platform. For this special case, the only two unknowns are the radii at which all the actuator
joints are placed on the fixed base, and radii at which all the actuator joints on the mobile
platform are placed. For this case the allowable region of the reduced set of design variables are
mapped. This allowable region is a region that includes all platform designs whose workspaces
will embody a prescribed workspace geometry, such as for example a tool path trajectory. Out
of this allowable region, an exhaustive search reveals the optimal design for some specified
criterfon. The design criteria that can be used in this approach is maximum accuracy, minimum
articular forces for a given load, maximal stiffness in some direction and maximum velocities or
accelerations of some point of interest for given actuator velocities and accelerations. This

method does not allow for a dynamical analysis of the platform.

1.3.3.2 Three degree-of-freedom parallel platform

Gosselin and Angeles [12] used an analytical approach to find the optimum kinematic design of
a planar three degree-of-freedom parallel manipulator. This platform uses rotational actuators.
in contrast to linear actuators, as shown in Figure 1.3. They derived the kinematic equations of

the platform, as well as the analytical equations describing the design criterion. These equations
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are then solved analytically where possible, otherwise numerically. The work does not include a
dynamical analysis, although it should be possibié to also include dynamical aspects in the

analytical design criteria.

& firad joint

Figure 1.3: Planar Stewart platform with rotational actuators.

Stamper et al. [37] studied a three degree-of-freedom translational platform shown in Figure
[.4. They derived analytical expressions that describe the platform kinematics and the design
criterion. The optimal design was found using mathematical optimization to solve the system of
analytical equations. The two design criteria used was the maximization of the workspace, and
the conditioning of the workspace. This work does not allow for dynamical effects, although it

could also be included.
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vy Platiorm

Fixad Platom

Figure 1.4: Three degree-of-freedom translational Stewart platform.

1.3.3.3 Optimal design of other types of manipulators

This sections briefly investigates methods used to find the optimum designs for some other
types of manipulators. These methods may very well be applied to the design of Stewart

platforms.

Datoussaid et al. [6] used a dynamical simulation to predict the behavior of a multibody system.
Analytical equations that describe the dynamics of the system, are programmed, and solved
numerically by computer. The output of this program is used in a mathematical optimization
algorithm which optimize the design parameters. Once the analytical equations are
programmed, the process of finding the optimal design is done automatic by the computer. This

method was successfully applied to the optimization of an urban railway vehicle.

Takano et al. [39] developed a system called “TOCARD” (Total Computer Aided Robot
Design) to design a serial linked robot arm. This system uses the kinematic and dynamic

analysis of the robot arm to evaluate objective functions. Some of the objective functions
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considered are the workspace, deflection, position accuracy and controllability. The computer
program automatically generates and solves the kinematic and dynamic equations for any given
robot arm. The program does not find the optimum design, but a user interface allows for easy

changes in the design.

Snyman and Berner [2, 30], and Snyman and van Tonder [36] also proposed optimal design
methodologies to find the optimum designs of secrially linked robotic manipulators. The
optimization objectives were the minimization of torque and energy requirements subject to

prescribed design constraints.

1.4 Purpose and outline of present study

This thesis proposes a method for the optimal design a planar Stewart platform for prescribed
machining tasks. It is a combination of the computer aided kinematic and dynamical analysis
approach used by Takano et. al. [39], and the mathematical optimization approach used by

Datoussaid et. al. [6] and Snyman et. al. [2, 30, 40].

The advantages of using a parallel manipulator instead of a serially linked manipulator have
already been discussed in section 1.1. These advantages give a parallel manipulator great
potential to be applied to the machine tool industry. As already indicated, the platform will be
faster, more stiff and more accurate than conventional machine tool equipment. One reason that
parallel platforms are not yet generally applied in the machine tool industry, is the lack of a

complete design and operating system.

This study illustrates how numerical simulation combined with mathematical optimization, can

be used to design a planar Stewart platform for use in a milling application. All the factors
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influencing the design are taken into account, such as the workspace, singularities in the
workspace, placement of the fixed platform relative to the desired workspace and dynamical
effects. The method is general and intuitive, and although it is not applied to a spatial Stewart

platform, it can easily be extended to be utilized for the design of such a platform.

This work also has immediate impact on the South African industry. The plastic injection and
blow moulding manufacturing industry requires atfordable five-axis CNC-machines to produce

moulds. As these machines are very expensive, there is a need for an affordable alternative.

There are many three-axis, non-NC machine tools in South Africa that are currently under
utilized. These machine tools can be fitted with a planar Stewart platform, to produce a machine
tool that will meet the needs of the plastic injection and blow moulding industry. Figure 1.5

shows a three-axis machine tool fitted with a planar Stewart platform.

Tool

Planar Stewart
platform

Y -axis

Figure 1.5: Side view of three-axis milling machine fitted with a planar Stewart platform.

The University of Pretoria in co-operation with local industry, is currently doing research on the
possibility of fitting a planar Stewart platform to a three-axis milling machine, and has indeed

already built a planar Stewart platform for research purposes.




Chapter 1: Introduction 12

In the presentation of this study extensive use are made of appendices (A-G). This is done to
ensure fluency and continuity in the presentation of the main theme of the study, namely the
development of an optimal design methodology for a planer Stewart platform required to
perform a prescribed task. The rationale behind this kind of presentation is to avoid a situation
where the reader “cannot see the wood for the trees”. Although placed separately the appendices
are as important as the main chapters and should be read in parallel with the central theme of

the study.

Briefly the outline of the presentation is as follows. Chapter 2 gives the formulation of the
design problem of a planar Stewart platform in a form that may be tackled by mathematical
optimization. Chapter 3 discusses the implementation of the design procedure and also gives the
optimum designs that were obtained using the LFOPC optimization algorithm. In chapter 4 the
optimum designs given by the approximation method, Dynamic-Q), are discussed. The thesis
concludes in chapter 5 with a discussion of the implications of the present study, and with

suggestions for further research in this area.
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Chapter 2: Formulation of the design problem

This chapter presents the formulation of the design problem for a planar Stewart platform in a

form that allows for the optimal design to be found using mathematical optimization.

2.1 Basic optimization methodology

An optimization problem can formally be stated as:

minimize F(x) with x =[x,,x,,.....,x,] ;x, € R
x

(2-1)
such that ¢, (x) < 0; j = 12,.,mand A (xX)=0k=12,..,p<n

where F is the cost function that is being minimized, x is the vector of design variables, ¢ is the

vector of inequality constraint functions and / is the vector of equality constraint functions.

The design variables may comprise some geometrical parameter, e.g. the width of the moving
platform, or the distance between the tool and the fixed base. The design constraints on a planar
Stewart platform may include maximum and minimum actuator lengths that should not be
exceeded as the platform executes its task, or maximum allowable actuator velocities. The
following sections expand on the cost function, design variables and design constraints that are

specified in designing a planar Stewart platform.

2.2 Manipulator model

The manipulator consists of a moving platform, to which the workpiece is fixed. Figure 2.1
shows the platform with the tool. The global coordinate system OXY is fixed to the tool tip.

Forces induced by the milling process are modeled as external forces to the platform.
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For the application considered here the dimensions (lengthxheightxwidth) of the moving
platform are chosen as 0.75mx0.1mx0.5m. The workpiece have dimensions of
0.5mx0.2mx0.3m. The platform weighs 135kg and is made out of steel. This platform weight
takes fitting-holes in the platform into account. The workpiece is made out of aluminium and

weighs 80kg.

Workpiece

Actuator

Moving
platform

Fixed base

Figure 2.1: Manipulator modeL

The actuators are modeled as driving constraints, with negligible mass and moment of inertia
compared to the platform and workpiece. The driving constraints are distance drivers, 1.e. the

lengths of the actuators are specified as functions of time.

2.2.1 Tool force

The too] force is modeled as a force of constant magnitude and direction relative to the global
reference system. The effect of the tool force on the platform, i.e. the resultant of the tool force
that works through the platform origin, and the moment of the tool force about the platform
origin, is cqiéulated and applied to the platform origin as external forces. In Appendix A the
calculation of the effect of the tool force on the platform is given. In the applications considered
here the tool force has a component perpendicular to the tool path (and axially along OY) of

440N, and a tangential component of 1600N perpendicular to OF and opposite to the direction
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of relative motion between the tool and the workpiece surface. Appendix A shows how the
magnitude of these components were determined for the particular prescribed type and speed of

the machining operation.

2.3 Design variables of manipulator

The manipulator together with six possible design variables x, /=1, 2, ..., 6, are shown in Figure
2.2. The origin O of the fixed global coordinate system OXY coincides with the fixed tool tip as
shown in Figure 2.2. The global coordinates of the base of the left leg D is denoted by (x4, x3).
The local coordinate system Op&ry is attached to the platform as shown with the origin Op af the

midpoint of AC.

Many other design variables can be chosen, but only the six indicated in Figure 2.2 are used

here to illustrate the method of finding an optimal design.

Actuator 1

()

Actuator 3

{4y

Actuator 2
(L

B

Figure 2.2: Possible design variables x;, i=1, 2, ..., 6.
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2.4 Constraints on manipulator

Constraints on the manipulator are specified by the designer, and may differ from one design

problem to another. Here only inequality constraint are considered.

Limits are imposed on the maximum and minimum actuator lengths. Notice that for a
prescribed path the maximum and minimum values attained by the actuators are dependent on

the design vector x. The respective maximum and minimum values for the different actuators
are given by 1" =max[/,(,x)] and ™" =min[/,(¢,x)] for i=123 over the time interval
¢ €[0,T]. The allowable maximum and minimum actuator lengths are given by I, and /,

respectively. The first six constraints, written in standard form (see (2-1)), are therefore:

¢.(x)=max[l(t,x)[-1, <0 i=123 with r[0.7]

2-2)
¢.(x)=1,~min[L(t,x)] <0 i=1,23 with ¢ €[0,T]

Physical bounds on the design variables define the foliowing additional constraints:

Cou (X)) =X, "'"";f <0 i=12,..,n
(2-3)
06+n+i(-x):£,-—x£$0 ixl,z,...,n

with X, and x, respectively denoting the upper and lower limits on variable x;.

2.5 Cost functions

The choice of cost function depends on the design criterion and the particular application. For
example, a high accuracy positioning device could be designed by using stiffness as a cost
function, or for a good design for a computer plotter, the size of the workspace arca may be the

appropriate criterion.
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In the optimal design of a milling machine considered in this study, two cost functions are used,
namely the maximum actuator force and the quality index. Using maximum actuator force as a
cost function will give a design which minimize the forces in the actuators, and will thereby
reduce the required actuator capacity. It is difficult to give an exact physical meaning to the
quality index, other than to say that it gives a measurement of “closeness” to a singular
position®. Using the quality index as a cost function to be maximized for the prescribed path,
will give a design where the platform is “far away” from singular positions. Such a design
should therefore also correspond to one that also reduces the magnitude of the required actuator

forces.

2.5.1 Maximum actuator force as design criterion

The manipulator is to be designed such that the forces in the respective actuators fi(#), &~1, 2, 3,
are minimized in some sense over the time interval [0,77]. The particular criterion used here is
that of the minimization of the maximum absolute value of the actuator forces, i.e. the cost

function F{x) is defined as:
F(x) = max {rnaxifk 1) te {0,?]} (2-4)
k=1,2,3 ¢

2.5.2 Quality index as design criterion

The optimum design using the quality index A(f) as criterion (see Appendix C) can be found by
maximizing the minimum value of the quality index, over the time interval [0,7]. In this case

the cost function for the minimization problem (2-1) can mathematically be stated as:

F(x):—mrinli(t)l 1[0,T) @)

2 A singular position can mathematically be described as a configuration for which the Jacobian matrix of the
system is singuiar. Physically this is a configuration in which the driving forces become infinitety large, for

example where the line of action for the three actuators meet in a point,
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2.6 Manipulator tasks and tool path

A parallel platform is to be designed for the particular task it should perform. In this study, only
machining tasks are considered. The machining task is completely specified by:

1. the tool path that the tool should cut out of the workpiece,

2. the relative angle between the tool axis OY (Figure 2.1) and the tool path, and

the tool velocity, i.e. the velocity with which uncut material is fed to the tool.

Lot

The tool path should be specified in the local coordinate system, Opén, because coordinates in
this system are independent of the design, x. The two tool paths, A and B, that are considered in
this study are shown in Figure 2.3(a) and (b) respectively. Note from Figure 2.3 that here the
tool paths are chosen to start and end on the top level surface of the workpiece, which is located
at 77=0.2m . Also note that for these cases the tool paths are centered about £=0 (the p-axis).
For both tasks, it is required of the tool axis OY to remain perpendicular to the tool path

throughout the execution of the manipulator task.

T T T T i ] |

s 021777 5 ] T 02t T

M 019 : : : N o019 e | -

0187 0.18 " ]‘

004 002 0 002 004 004 002 O 002 004
E—» E—»

Figure 2.3 (a), (b): Respective tool paths, A and B, that are considered in this study.

In machining applications the tool velocity is a function of time, and here has a profile that is
shown in Figure 2.4. This profile is calculated from the maximum allowable tool velocity, viax,
as well as the maximum magnitude of any acceleration of the workpiece tangential the tool
path, dmax. Appendix B gives details of the calculations involved in determining the velocity

profile.
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A

Max

Figure 2.4: Velocity profile of tool relative to workpiece.

2.7 Actuator drivers

The actuator lengths change continuously with time as the manipulator executes its task. In
order for the manipulator to execute a specific task, the actuator drivers for this task need to be
calculated. An actuator driver is a curve specifying the actuator length as a function of time, i.e.

the distance driver between the joints of the actuator.

The actuator drivers, which are functions of the manipulator design, x, are found by performing
the inverse kinematics of the prescribed manipulator path. Appendix B describes how the

actuator drivers are found given the manipulator task.

2.8 Discretisation of continhuous functions

The manipulator executes a continuous task, which implies that all functions of time, the tool
path, actuator lengths, actuator forces etc., are continuous. These continuous functions cannot
be used directly by a computer, as a computer can only handle discrete information. By using
however the values of the function at a large number, ,, of discrete points, a continuous

function can be approximated as accurately as required.

In practice a continuous function of time, f¢), is discretised by evaluating the function at .

discrete time instants, i.e. f{¢) is represented by the sequence A1), i=1, 2, ..., n,, where ¢, €{0,T]
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such that 7, =0; t, <t,,; t, =T . The discretisation of the tool path, platform path and actuator

drivers are described in Appendix B
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Chapter 3: Optimization using the LFOPC algorithm

The minimization problem stated in (2-1) has to be solved by a suitable optimization algorithm.
This chapter describes the implementation of the LFOPC (Appendix E) constrained
optimization algorithm of Snyman [26, 27]. This is a very robust and reliable gradient based
optimization algorithm. The optimum design problem is solved using LFOPC for various
conceptual designs, cost functions and manipulator tasks. All the results presented are for the

tool path shown in Figure 2.3(a), unless otherwise stated.

3.1 Implementation of optimization procedure

The procedure of finding the optimum platform design, given an initial and usually infeastble
design, x", is shown in Figure 3.1 and Figure 3.2 for the respective cost functions. The injtial
design is evaluated and the design variables are then changed by the algorithm. The effect of the
changes on the design criterion is tracked and new changes to the design are computed by the
optimization algorithm. The process of changing the design variables in a systematic manner
and checking the design criterion is continued until no further significant improvement in the

design criterion is obtained. This design is then taken as the optimum design, x.

1 J8RIe<2 )

bic7zesn
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and platform geometry
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Figure 3.1: Diagram of optimization procedure for the maximum actuaror force cost

function.
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and platform geometry
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Evaluation of |_ !
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Figure 3.2: Diagram of optimization procedure for the quality index cost function.

The following sections describe the different practical aspects related to the implementation of
the optimization algorithm such as, for example, the calculation of the actuator forces and

evaluating the gradient vector of the cost function.

3.1.1 Cost functions

Evaluating the actuator force cost function (2-4), requires a dynamic analysis. This analysis is

done using the numerical Dynamic Analysis Design System (DADS v.9.0) [14].
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The prescribed manipulator tasks do not require large accelerations of the platform. This means
that a static analysis can be used as an approximation to the dynamic analysis. In this static
analysis, the actuator forces are calculated at each time instant, 7, /=1, 2, .., n,. Since the
configuration of the platform may be determined at each time instant, ¢, the actuator forces,
J{t), may be solved for as if the platform is static in that configuration. The static analysis of the

platform is performed using the Jacobian matrix of the structure (see Appendix D).

The quality index cost function requires that the quality index of the platform be calculated at
each time instant, #;, i=1, 2, ..., np. At each time instant, #;, the configuration of the platform is

determined, and the quality index, A(#)), 1s calculated (see Appendix C).

The different cost functions are labeled as follows:

1. F, . ,(x) refers to the actuator force cost function based on the dynamic analysis,
2. F,..(x) refers to the actuator force cost function based on the static analysis, and

3. F,,{x) refers to the quality index cost function based on the kinematic analysis.

3.1.1.1 Scaling

For efficient performance the LFOPC algorithm requires the 1nagnitude of the cost function
gradient vector at the initial design, xo, should be of the order of unity. The actuator force cost
function is therefore multiplied by a factor of 0.001, which implies that the forces are measured

in kN instead of N.

3.1.1.2 Singularities

The F

' r» cost function requires the use of dynamic analysis software. This software calculates

the actuator forces as the platform executes its prescribe task. If the platform at any time during
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the analysis assumes a near singular configuration, the actuator forces become infinitely large
and the numerical solver breaks down. In these cases the actuator forces cannot be calculated
over the whole time interval, and the cost function is therefore undefined and cannot be

computed.

This problem is overcome by defining the actuator forces over the remainder of the path and
time interval, to be the same as it was at the last instant where it could be calculated [29). Since
it is expected that the values at the last non-singular point would be large, the resultant artificial
value of the cost function will also be artificially large. The optimization algorithm, using the
artificial cost function where necessary, will therefore drive the design away from singular

configurations.

The F, . cost function also exhibits this problem. If the Jacobian that is used to calculate the

actuator forces, is ill-conditioned the actuator forces are extremely large, or if the Jacobian is

singular, the actuator forces cannot be calculated at all.

In these cases the same strategy is applied to the cost function as is described above. The
condition of the Jacobian is determined before the actuator forces are computed. If the Jacobian
is ill-condition or singular, the actuator forces over the remainder of the time interval are
defined to have the same values it had at the last time instant when the Jacobian was

well-conditioned.

For near-singular configurations, the quality index approaches zero, hence the £, cost

function is defined for all possible design variables, x.
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3.1.2 Gradient vector evaluation

The LFOPC algorithm is a gradient based algorithm which requires that the gradient
components of the cost function and of the constraint functions be known at any design x. Some
of these gradient components are not analyticaily known. In these cases approximations to the
gradients are computed using forward finite differences. For example, the approximation to the

i-th component of the gradient vector of F(x) at x; is taken as:

OF  f(x, +9) - f(x,)
ax, S,

/ !

(3-1)

where 6, =[0,0, ..., 5,0, ..., O]T, 00, i.e. only the i-th component of ¢, is non-zero and equal

to &, a suitably chosen small positive number.

The gradient components of the constraints are calculated in the same manner where these

constraint gradients are not analytically available.

The accuracy of the gradient components depends largely on the values of &. Figure 3.3
graphically shows the dependence of the approximation to the first component of the gradient
vector of the cost function, F, ., . on different d;-values at two different design points. The
approximations to the other components of the cost function gradient vector with corresponding
steps, o, i=2, 3, ..., 6, show similar trends. From the study of the approximations to the cost
function gradient components, o-values for each of the design variables are chosen. In

particular &, is chosen as 2-10™* (Figure 3.3).
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Figure 3.3: Approximate values of the first gradient component, = i—, plotted against &,
X
for (a) x=(0.4, 0.6, -0.6, -0.8, 0.7, 0.0)", (b) x=(0.7, 0.8, -1.2, -0.8, 0.7, 0.0)".

The gradient components for the /. and F,, cost functions, as well as for the constraint
functions are less sensitive to the choice of the values of &, than is the case with the 7, ., cost

function. The reason 1s that in the latter case a comprehensive numerical analysis is necessary
for the dynamical simulation, which adds noise to the cost function and as a result complicates
the computation of the pradient approximations. This is not the case for the other two cost

functions where the noise componenents are negligibly small.

dc, (x)

Typically Figure 3.4 shows negligible noise in the approximation of p
X

i

x={0.4, 0.6,-0.6, -0.8, 0.7, O.O)T. This trend is similar for the approximations to the gradient
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components of the F, ¢ and F,, cost functions and for the approximations to the gradient

components of all the constraints. For these cases ¢; is chosen as 10" throughout.
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Figure 3.4: Approximate value of the gradient of ¢; w.r.t. x,, = —L,

Ox
!

3.1.3 Number of discretisation points, 1,
The number of discretisation points also influence the accuracy to which a cost function is
calculated. The inaccuracies are illustrated by Figure 3.5 and Figure 3.6 for task path A (see
Figure 2.3) over the interval [0,7]=[0,12]. Figure 3.5 shows the actuator force, f3(¢) plotted at
time instants #, i=1, 2, ..., n,. Figure 3.6 is an enlargement of Figure 3.5 showing plots for

different numbers of discretisation points, .
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Figure 3.5: The variation of actuator lorce f3(7), for the design
x=(0.4, 0.6, -0.6, -0.8, 0.7, 0.0)" and tool path A.
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Figure 3.6: An enlargement of part of Figure 3.5, showing the effect of the number of

discretisation points, r,, on f,.

Figure 3.5 show that near the end of the time interval [0,7], the actuator force f; appears to be
inaccurate for n, large, with the presence of oscillations relative to the smooth behavior for

smaller #,.

Too many points therefore cause numerical inaccuracy of the actuator forces near the end of the
manipulator task. These inaccuracies originate from the manner in which the tool path is
discretised (Appendix B). A time instant, #, is associated with each point on the tool path
(which is transformed to the actuator drivers). Near the end of the tool path, these time instants
are calculated inaccurately due to the cubic-spline approximation which is used to determine

them. Figure 3.7 shows how the time instants, ¢, are calculated from the distance, s;, the tool has



Chapter 3: Optimization using the LFOPC algorithm 29

traveled along the tool path. At the end of the tool path, the cubic-spline has a very large slope,
which cause the time instants to be calculated inaccurately, as is shown by the large error in

time, g, that results from a small error, ¢, in the distance.

On the other hand, if too few points are sampled along the prescribed path, the peak in the cost
function may not be accurately determined. On the basis of the available evidence the

compromised choice of 7,61 was used throughout.

BN

Figure 3.7: The cubic-spline used to find the time instant, 7, at which the tool has travelled a

distance .

3.1.4 Accuracy and noise

The dynamic analysis software system, DADS, gives all results to single precision accuracy.
The cost function is therefore also only accurate to single precision. The actual practical
accuracy of the cost function is shown in Figure 3.8, where the cost function value Fix) is
plotted against the design variable x; at x=(0.4, 0.6, -0.6, -0.8, 0.7, O.O)T, over a very small

interval . From this figure it is clear that the function value is accurate to within 107,

The cost function is expected to be smooth, but Figure 3.8 reveals the existence of noise in the

cost function. It is common for numerical simulations, which is also used in CFD or FEM
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software, to have numerical noise. The noise is a result of limited computer precision and

cumulative computational errors.

10.105524 |
10.106522 1
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Figure 3.8: The accuracy of the value of the cost function F is shown to be within 10,

3.1.5 Algorithm parameters

LFOPC requires only three parameter settings, &, &, and DELT (see Appendix E). Different
algorithm parameters are used for the different cost functions, because of the nature of the cost

functions. The £, ., cost function has numerical noise in its gradient, because it assumes
discrete values (Figure 3.8). The other cost functions F, .. and F,, are calculated to double

precision accuracy, which gives a smoother cost function and therefore a smoother gradient

with negligible noise.

For F,,., the convergence stop tolerance for the design variables, &, was set to 107. The
convergence tolerance for the cost function gradient, &,, was set to 107 (see termination criteria
for LFOPC in Appendix E). The maximum optimization trajectory step size, DELT, is set to

0.2+/n, where 0.2 is the order of the variable range expected and » is the number of design

variables. The maximum number of steps per phase is set to 1000 (see paragraph E.2 of

Appendix ).
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For F, ., and F,, the same values are used as for F, ., except that the convergence stop

tolerance, &, is changed to 10”7, because these cost functions are calculated more accurately

than F,,,,. The maximum number of steps per phase is changed to 2000.

3.2 Optimum designs

Here follow the optimum designs obtained for different combinations of cost functions, tool
paths, and choice of number of design variables. The results for three design variables are
presented in detail in Section 3.2.1, whilst the results for the other cases are dealt with more

concisely in Section 3.2.2 and summarized in Appendix G.

In all cases the actuator lengths are constrained (see (2-2)) to a minimum value of 0.6m and a

maximum value of 1.2m, i.e. /,=0.6 and I, =12, i=1,2.3.

3.2.1 Results for three design variables

The three design variables that are used here are, x,, /=1, 2, 3. The other design variables are
fixed at the values x4=-0.8, x5=0.7 and x¢=0.0. The constraints on the variables (see (2-3)) are
settor 0.1<x, <0.75, 0.1<x, 0.8, x, £0.

Tool path A is prescribed here (Figure 23(a)). The initial design is chosen as |

x"=(0.4, 0.6, —0.6)7'. For the given initial design the value of the cost function is

F, ., (x")=10.107 kN. The optimum design is found to be x'=(0.123, 0.8, -0.995)", with a

considerably reduced cost function value of F, . ,(x")=4.887 kN. The actuator forces for the

initial and optimum designs are shown in Figure 3.9 and Figure 3.10 respectively. r
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ffs]

Figure 3.9: The actuator forces
vs. time plot for the iunitial

configuration.

fs]

Figure 3.10: The actuator forces
vs. time plot for the optimal

configuration.

The actuator length variation for the initial configuration violates the constraints on the actuator
lengths, as shown in Figure 3.11. After optimization the optimum configuration satisfics the

actuator length constraints as shown in Figure 3.12. The active constraints at the optimum, X,

aremax[ll]éfl and x, <0.8.

1.2 ' 1.2I ''''''' i=1
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fs]

Figure 3.11: The actuator lengths

I{r) for the initial configuration.

Figure 3.12; The actuator lengths
I{t) for the optimum ‘

configuration.

The convergence histories of the cost function F - p(x) and the design variables x; i=1, 2, 3 are

depicted in Figure 3.13 and Figure 3.14 respectively. Effective convergence is clearly obtained
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in little more than 60 LFOPC trajectory steps. The total computation time on a Pentium I11-266

is Iess than 20 minutes.

11
i=2
0.5 =1
x, 0O
-0.5
_ =3
-1
-1.5 4
0 20 40 60 0 20 40 B0
[teration number [teration number
Figure 3.13: The convergence Figure 3.14: The convergence
history of the design variables x; history of the cost fnnction
i=1,2,3 are shown. F, pp{x) is shown.

Figure 3.15 to Figure 3.18 show the configurations for the initial design, x0=(0.4, 0.6, ~O.6)T and

the optimum design x =(0.123, 0.8, -0.995)".
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Figure 3.15: Start position of Figure 3.16: End position of
platform for initial design, x". platform for initial design, x".
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¥

Figure 3.18: End position of

platform for optimum design, x'.

Figure 3.17: Start position of

platform for optimum design, X

3.2.1.1 Local optima
By using a different initial design of x” =(0.7, 0.4, -1.0)", a local optimum was reached at

x;*:(0.750, 0.604, ~0.932)T, which is different to the previous local optimum
x'=(0.123, 0.8, -0.995)". The value of the cost function at this point is F,, ,(x;)=4.795,
compared to the value of F,,,(x")=4.887 at the previous local optimum. The values of the

cost function at these two design optima are of similar magnitude, which gives the designer of

the platform a choice between two very good, but different, feasible designs.

=(0.5, 0.8, -06) a local optimum at

With another initial design of xi

xpr =(0.469, 0.863, -0.837) is obtained, for which the cost function is F, . ,(x, ) =8.481. For

the initial design, the platform moves through a singular configuration yielding an extremely
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large (~10%) cost function value. The initial design is therefore in a region of the design space
for which the platform assumes singular configurations. The components of the cost function
gradient are inaccurately calculted in such regions (due to the fact that the actuator forces are
only calculated for the time interval until the platform moves through a singular configuration).

Nevertheless the optimization algorithm succeeds in moving away from the undesirable region
of the design space, terminating at x;; with a cost function value F, ., (x},)=8.481, larger than

the previous local optima, but dramatically less than the value at x,q”.

3.2.1.2 Non-differentiable cost function
The F,,., and F, . cost functions may be non-differentiable in certain regions. Figure 3.14
shows the plot of F,,, vs. x; with the other design variables held constant at x;=0.437,
x3=-0.846, x4=-0.8, x5=0.7 and x¢=0.0. For x, £ 0.3769, the slope of the cost function takes on
the value —10.220 while for x, >0.3769 the slope has the vatue 1.091. The cost function is

therefore non-differentiable at x;=0.3769.

T T
3.865
3.86
3855
FA,F'I)
3.850
3.845 _ i . L

0.375 0.3755 0.376 03765 0.377 03775 0378 0.3785 0.379
X
Figure 3.19: Discontinuity in the siope of the cost function £y p.p as x; varies but x;,

=2, 3, ..., 6, are kept fixed.
Non-differentiable cost functions make it difficult for gradient based optimization algorithms to
converge to the optimum, as some components of the gradient vector change abruptly for small
changes in the design variables. For Figure 3.19 the x; component of the gradient changes from

-10.220 to 1.091 as x| increases from 0.3768 to 0.3769. Because of the nature of the cost
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function defined in (2-4), discontinuities in the gradient are expected at the various local

minima that may occur.

3.2.2 Overall discussion of all the results

A summary of the results obtained for different choices and numbers of design variables,
different cost functions, tool paths and initial designs, are given in Appendix G. A brief

discussion of the overall results foilow here.

The F,,, cost function gives, as expected, similar results to £, .. This makes £, .. a
preferred cost funcion over F, ., as it is computationally far less expensive. The time to
determine the optimum design using F, ., for five variables is around ! hour compared to 10
minutes using £, ..

For three design variables with tool path B, the value of <, ,, at x;‘! =(0.750, 0.653, —0.944)7:
which is the optimum design obtained from £, , is 3.788. This value is more than 3.392, which
is the value that is obtained from the optimum design x), ., =(0.184, 0.800, -1.019)"
using F, - , as a cost function. The value of /), at the optimum design obtained from £, .,
x, . ,=(0.184, 0.800, -1.019)’, is -0.366, which is considerably more than the minimum value,
-0.476 that is found using /,,. Thus the two criteria used as cost functions are not exactly

equivalent, although minimizing the one results in a reduction in the other, and vice versa.

A further reason for the difference in optimum designs using £, ., and F,,,, is that F,, does

not take external forces on the platform into account. However, as already indicated, an
optimum design found by using one of the cost functions is a fairly good design under the

criterion of the other cost function.
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The importance of design optimization can be shown by comparing arbitrary feasible designs
(designs where all the design constraints are met) with the optimum designs. An arbitrary
feasible design can be generated by taking the cost function as constant and simply satisfying
the constraints for a random starting point using LFOPC. This will give a feasible design that is
not optimized under the criterion of any cost function. Table 3-1 gives arbitrary designs for a
design with three design variables and for tool path A. Table 3-2 gives arbitrary designs with

five design variables and also for tool path A.

Table 3-1: Cost function values for feasible designs (three design variables, x;, i=1, 2, 3, tool

path A).

Feasible design, x* Foox | F,(x)
(0.435, 0.758, -1.086)" 5.163 -0.273
(0.314,0.297, -0.893)" 6.194 -0.188
(0.323, 0.576 -0.858)" 5.590 -0.253

Tabte 3-2: Cost function values for feasible designs (five design variables, x;, /~1, 2, ..., 5,

tool path A).

Feasible design, X Fovp (x# ) FQ-:’ (x #)
O osss,0d00y | 20st | 0047
Cessomy | sae | 02

Clearly the F, ., cost function values for arbitrary designs with three design variables, are
significantly larger than the #,, , cost function values for the optimum designs, x, ;. ,,, which

is around 3.5.

The cost function values for arbitrary designs with five design variables, emphasize the

importance of design optimization. The optimum designs with five design variables, X0
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have F,,., cost function values of around 1.5, compared to 5.4 and higher for the arbitrary

feasible designs.

Table 3-3 gives the optimum designs for five variables, x,, =1, 2, ..., 5, with no too! force and
with 90% of the tool force applied to the platform respectively. These resufts shows how
important it is to model the applied tool force fairly accurately. The optimum design with no
applied tool force, x*, is a very poor design for when the tool force is applied. The optimum
design with 90% of the tool force applied, gives a similar cost function value to that obtained

when the total tool force is applied.

Table 3-3: Cost functions for optimum designs with no applied tooi force.

ox 7 ( *,,) With tool force:
x - (x -
A Fopp(x )

e (0.711, 0.310, -0.921,
No tool force: x 0287, O.IOO)T 1.167 6.138
. (0.750, 0.832, -0.978, S
0 .
90% of tool force: x 1121, O.IOI)T 1.424 1.634
, w (0.750, 0.833, -0.961, -
Total tool force: x 1148, 0.101)7 1.525 1.525
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Chapter 4: Optimization using the approximation method:
Dynamic-Q

The previous chapter discusses the optimum designs for three and for five design variables. The

ot

computational time for finding the optimum design with five design variables using the £, ,

cost function, 1s around one hour, depending on the initial design. The reason for the long
computational time is that for n design variables, nt1 cost function evaluations are required to
determine all the components of the cost function gradient at each design point along the
LFOPC optimization trajectory. With around 700 iteration steps required to find the optimum

design the computational process becomes very expensive.

4.1 The Dynamic-Q approach

For larger numbers of design variables an alternative way of finding the optimum design is
clearly required that would demand much less iterations. One solution is to use an
approximation optimization algorithm, such as Dyrnamic-(). Appendix F gives the basic
Dynamic-Q) algorithm, which is an approximation method, where a computational expensive
function 15 approximated by a spherical quadratic function. Figure 3.8 shows that the cost
function may not only be non-differentiable, but also non-quadratic, which make the
optimization problem ill-suited for Dyramic-Q), as Dynamic-(J 1s based on the assumption that
near the optimum, the cost function can be approximated by a spherical quadric function. In
spite of this, the results show that Dyramic-Q does remarkably well when applied to the current

problems. .
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Dynamic-Q is used here only for the designs that are optimized with the F,.,, cost function,

and which have five- or six design variables. These design problems justify the use of

approximations due to excessive computational times required when direct methods are used.

4.2 Discussion of results

The results obtained using Dyramic-(Q) are also listed in Appendix G. For all the design
problems, the move limits are set to (A47=0.2 i=1, 2, ..., 5). The optimum designs obtained using
Dynamic-Q are similar to the ones obtained using LFOPC. For example, an optimum design for
tool path A, using Dynamic-Q is x =(0.737, 0.737, -0.916, -1.049, 0.100)" after 31 iterations

with FA‘F_D(x*) =1.564, compared to an optimum design using LFOPC, x'=(0.750, 0.833,
20.961, -1.148, 0.101)" after 727 iterations with &, ,(x") =1.525 . This shows that Dynamic-Q

can successfully and economically be applied to these design problems, and in particularly so

for design problems with five or six design variables.

The cost function convergence histories for the LEOPC and Dynamic-Q algorithms for the five
design variable problem are shown in Figure 4.1 and Figure 4.2 for two different initial designs.
They show that the Dynamic-Q) algorithm gives very good and acceptable designs after

considerably fewer iterations than that required by LIOPC.

Figure 4.2 show the cost function convergence histories of the respective algorithms, with an
injtial design for which the platform passes through a singular configuration. For this design
problem, Dynamic-Q gives a good design much faster than LFOPC. Indeed an acceptable and
teasible design with low cost function value is reached within less than 20 iterations. This is

because the relative large specified move limits of the Dynamic-Q algorithm, allow the design,
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x, to move quickly away from the region of the design space for which the platform moves near

a singular configuration.

Dvnamic-()

FA.F.D 4

/ LFOPC

i H L i 1

0 5 10 15 20 25 30 a5 40 45
Iteration number

Figure 4.1: Convergence history for LFOPC and Dynamic-@), with

x0=(0.4, 0.6, -0.6, -0.8, 0.7)1‘. Fmec{x*)ml.SZS after 727 iterations and F;)_,,n,_Q(x*}ml.Sﬁal after

31 iterations.
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Figure 4.2; Convergence histories of LFOPC and Dynamic-Q, with

x"=(0.5, 0.8, -0.6, -0.6, 0.5)". Frrppc{x)=1.552 after 442 iterations and Fj,, (x)=1.590 after

22 iteratioms.

The results for the design problem with six design variables (see Appendix GG) show that for the
optimum design, the sixth design variable, xg, is at either of its constraint limits, i.e. there is a
local optimum at each of the bounds on the sixth variable. This means that a planar Stewart
platform of the type considered here, need not have mechanical allowance for the sixth design

variable. However, it is important to check which local optimum, corresponding to x¢=0 or

xe=x respectively, gives the best design.
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4.2.1 More general moving platform

The moving platform can also have a more general form than the one used in this study by

adding an additional design variable, x7 as shown in Figure 4.3.

Figure 4.3: A more general moving platform.

The results for the design problem with seven design variables are not listed here, but they show
that x7=0 in the optimum designs. This means that for a practical platform, nothing is gained by

adding a feature that will allow for point B to lie away from point A.
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Chapter 5: Concluding discussion

This study shows that the optimization methodology presented here, can successfully be applied
to the optimal design of a planar Stewart platform required to perform a prescribed task. The
mathematical optimization approach yields a good platform design based on the proposed
design criteria, whilst at the same time satisfying stipulated design constraints. In particular this
method solves the following problems that are inherent to the design of paralle] platforms:

1. it finds a design, x, for which the given tool path lies inside the workspace,

2. it solves the optimum placement problem of the platform relative to the tool, and

3. it gives a platform design, which has the property that the platform will not assume a near

singular configuration as the platform executes its task.

The design methodology described in this study has the important potential application that it
can form an integral part of a design software package for planar Stewart platforms to be used
in machining operations. This methodology may also be extended to be applicable to the

optimal design of spatial Stewart platforms.

5.1 Implications of some specific solutions to the design problems

The solutions to the optimum design problems show that the consideration of the five design
variables, x;, i=1, 2, ..., 3, as defined in this study (see Figure 2.2), are sufficient in determining
the optimum design of a practical planar Stewart platform. The sixth design variable (and the
seventh as defined in Section 4.2.1) does not affect any further reduction in the cost function,
and can be neglected. It is however important to check which of the two extreme designs,

corresponding to x=0 and x¢=x, respectively gives the better design.
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Another important implication of the results is that the actuator force cost function, based on the

static analysis, F, . ;. gives almost the same results as the computationally more expensive cost
function, F, . ,, which is based on dynamic simulation. The cost function, F, . ,, can therefore
be used in place of F, ., when a platform is to be designed under the criterion of minimization

of maximal actuator forces.

This study accentuates the importance of design optimization for planar parallel platforms.
Arbitrary feasible designs fare much worse than designs obtained by mathematical
programming, when comparing the cost functions of the respective designs. The study also
points to the fact that mathematical optimization is probably also very important and a feasible
option in the design of other more complicated dynamical systems. It should therefore be

applied more commontly in practice as a design tool for engineers.

5.2 Future work

This study serves as a building block in establishing a comprehensive Stewart pla’f‘[form design
package. Future work following on this study should be directed at extending the current
capabilities of the design software that was developed in this study. The final platform design
package should allow the user the choice of other design criteria (such as for example
maximizing the manipulator stiffness) and additional design constraints (such as for example

maximum actuator velocities and/or accelerations).

The Department of Mechanical Engineering of the University of Pretoria is currently
developing such a complete Stewart platform design package. It is envisaged that the software

will interface with current existing CAD-software packages in which the tool path is given. The
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program will be required to find the optimum platform design that satisfies the criteria specified
by the user. Having this information available the operator will be able to make the necessary
design settings after which the software system will also control the platform in performing its

task.
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Appendix A: Tool force

This appendix describes how the tool force is determined for a specific machining operation. It

also describes how the tool force is implemented in the dynamic analysis.

A.1 Tool force for machining operation

In this study the only machining operation that is considered is form-milling (Figure A.1) with a

ball-nose cutter [25] (Figure A.2).

Figure A.2: Ball-nose culter,

Figure A.3 shows a model for the tool forces on the workpiece [9]. The tool is moving in the
x-direction relative to the workpiece. The machining forces on the workpiece, due to one tool
tooth can be resolved into an active force, F,, in the work plane and a passive force, F),
perpendicular to the work plane. The active force, 7, can be resolved into a force parallel to the
movement of the tool tooth, ., and a force perpendicular to 7, which is Foy. F. and F.y are
forces working in on the workpiece. F, and #.» are independent of the angle through which the

tool has rotated, and is given by Kienzle’s machining force equation [9]:

F. =b-kh™™ wherei=c,cN,p (A-1)
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with » the undeformed chip width [mm], %, the specific cutting force [N.mm™] for an
undeformed chip thickness in the range of [0.lmm, 1.0mm], # the undeformed chip

thickness [mm] and m; the incremental value for the workpiece-cutting material pair.

Figure A.3: Model of tool forces.

The k; and m; values are empirical, and depend on the workpiece material and tool type. These
values are available from tables in reference [9]. The undeformed chip width and chip

thickness can be calculated from the feed speed, tool geometry and the tool rotation speed.

The machining forces may vary with time as the tool rotates on the workpiece. For this study
however the maximum tool force in any given direction at any time is calculated, and is taken as

a constant tool force.

The machining operation considered is to form-mill an aluminium workpiece with a two teeth
ball-nose cutter having a shaft diameter, D, of %2 inch. The tool speed is 2000rpm, the feed speed
is 0.25mm/rev, and the depth of the cut is 6.35mm (D/2). The tool forces on the workpiece are
then calculated as £;=1600N, £=400N and f=1800N, with the directions as shown in Figure

A4
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As is described in Appendix B, the tool velocity is not constant over the tool path, therefore the

feed speed also varies over the tool path. But for the sake of simplicity, the feed speed is taken

as being constant at 0.25mm/rev, which correspond to the maximum tool velocity that is
reached over the tool path.

Direction of feed

s
)
J/

Workpiece

Figure A.4: The machining forces acting in on the workpiece.

A.2 Implementation of tool force for dynamic analysis

The tool forces act in on the workpiece at the contact point between the tool tip and the

workpiece (Figure A.5). The tool force components f; and f» do not vary with time, and their

points of action are fixed at the origin of the global coordinate system OXY, which is chosen to
coincide with the tool tip.

Tooltip . %

Direction of movement
for workpiece

Figure A.5: The tool force components acting in on the worlkpicce at the toot tip.
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For each time instant #, =1, 2, ..., n,, the tool force components are implemented in the
dynamical mode] as a moment, m;, and forces, f; and £, acting at position s; in the local
coordinate system (Jp&r. The moment m; is simply found by the cross-product between the
vector §;, which is the vector from the platform origin Op to the tool tip O, and the tool force

represented by components f; and f,:

m, =5, % % (A-2)
LA
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Appendix B: Determination of actuator leg length drivers for a
prescribed tool task path

A paralle} platform is designed for the task it should perform. In this study, only machining
tasks are considered. The machining task is completely specitied by:

1. the too! path that the tool should cut out of the workpiece,

2. the relative angle between the tool axis QY and the tool path, and

3. the tool velocity, i.e. the velocity with which uncut material is fed to the tool.

The tool path needs to be transformed to drivers for the actuators, as these drivers drive the
platform to carry out its task. (An actuator driver is a curve specifying the actuator length as a
function of time. Each actuator has a unique driver, also sometimes referred to as actuator leg

length trajectories).

The actuator drivers for a tool path can be determined by transforming the tool path to a
platform path. The platform path is the path that the platform origin traces out as the platform
executes its task. The actuator drivers are calculated from the platform path by using the
kinematic equations of the platform. The following sections describe how the tool path is

specified and how the actuator drivers are calculated from this tool path.

B.1 Machining task

B.1.1 The tool path
The discretised tool is specified by the sequence of vectors s;, i=1,2,...n4, in the local

coordinate system, (Op&r, which is fixed to the platform, as shown in Figure B.l. A
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cubic-spline, 7=1",(£), may be constructed from discretised points, giving the -coordinate of
the tool path as a continuous function of the &-coordinate. 7=1",(4) is created using the ny,

points specified, as well as the slope of the tool path at the start and end points of the tool path.

{ f}
S,‘ pu
77;'

. :
Toolpath O, 4

Figure B.1: Tool path in local coordinate system Opcn.

The actuator drivers are approximated by computing (by means of an appropriate
transformation of the local tool path to the global system), the ieg lengths that correspond to the
n, discrete points on the local path (1, may be different from the n,, used in constructing the tool

path cubic-spline above).

B.1.2 Relative angle between tool axis OY and tool path

Here the global OX axis (see Figure 2.1) 1s chosen to be tangential to the tool path at all times,
i.e. the tool axis QY is perpendicular to the path. In more general applications of course, the
relative angle between the tool axis OY and the tool path may be specified as a function of the

tool tip position s.

B.1.3 Tool velocity

The specification of the platform task is completed by giving the tool velocity. This is the
velocity with which uncut material is fed to the tool. It is tangential to the tool path, and is a
function of time. In machining applications the maximum tool velocity is usually specified, as

well as the maximum magnitude of any acceleration of the workpiece tangential the tool path.

o
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In this study the maximum tool velocity and maximum magnitude of acceleration is
Vimar=0.01 m.s" and @ye=0.005 m.s” respectively. For the machining task to be compieted as

quickly as possible, the tool velocity should have a profile as shown in Figure B.2.

v
X

Figure B.2: Velocity profile of tool relative to workpiece.

The time to complete the task, #;, is calculated using the known relationship:

L
§s=ul+—at’ (B-1
5 )

where s is the distance traveled in time ¢, u is the initial velocity and « is the constant

acceleration.

If the length of the tool path is J,.u, the time to complete the task, ¢, is calculated as follows

(refer to Figure B.2):

v
. Umax
f] T e
Do
. 2 2
Iprrlh - Eamaxr} + vmaxtz + (vmaxri . a:nnxll ) (B-2)

=1,
=1+, +t
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Lo 18 approximated by the Riemann-sum of the line integral, where the tool path is discretised

for this purpose by #pam pointsi

path -

lparh. = ZA‘S; = de
J= path (B'3 )

with ASJ,- == \/(fﬁ_[ - é:j‘)z + (W,;‘H - n,f‘)z

With the time # known, a cubic-spline of the velocity profile, v=I",(f), is generated. This cubic-
spline is integrated to give a cubic-spline, s=I',(r), giving the travel of the tool along the tool
path. The abscissa of the cubic-spline s=1y(?), are interchanged to give a cubic-spline =I"(s)
from which the time, ¢, it takes the platform to cover a distance, s, along the tool path from the

starting point, may be determined as a function of s.

The time instant, ¢, at which the tool moves through point i, is calculated by determining the
distance, s, the tool has traveled from the starting point to point i. The time, ¢, is simply found

by evaluating 1=I"(s).

If S denote the set of points on the tool path, such that s,€8, i=1, 2, ..., np, and if £2 denote the set
of time instances associated with the points s;, such that t,e (2, =1, 2, ..., np, then ¢ is the time at
which the platform passes through point s,. The set of points, S, and the set of associated time
instants £2, completely describes the manipulator task. The set of points §'is transformed to give

the platform path, which in turn is transformed to give the actuator drivers.

For the two tool paths shown in Figure 2.3 the tool path length, /,.;, and time to complete the

task, #;, are the same, namely /,.,,=0.01m and #;/=12s (¢,=2s and £,=8s).
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B.2 Platform path

The platform path is the path that the platform origin, Op, traces in the global coordinate system
O.X7Y, as the platform executes its task. It is calculated for each point / by a transformation of the

point §; on the tool path.

Tool tip

Figure B.3: Tool path with global (OX¥) and local (0p&7) coordinate systems shown.

The vector s, (Figure B.3) is a vector from the platform origin Op to the tool tip (situated at the
origin ). The vector -s; gives the coordinates of the platform (Xz, Yp); in the global coordinate

system. Vector s, , ., given in the local coordinate system Opln can be transformed to the

global coordinate system OXY by the transformation:

S opr =4S Open

] cosq, —sing, (B-4)

with 4, = |
sin@, cose,

The orientation of the platform at point 7 is ¢y which is found using the fact that the tool axis OX

is always tangential to the tool path. The cubic-spline giving the slope of the tool path in the

local coordinate system, is given by the derivative of the tool path cubic-spline, 7=1"5,(&), with

respect to &, i.e.

o, (&
gie) =T, (&). The platform orientation ¢; 1s then simply found by:

@, = —atan{ﬂm,m (ai—)} (B-5)
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The actuator drivers are calculated using the points on the platform path, (Xp ¥p), and the

platform orientation, & for i=1, 2, ..., n,.

B.3 Actuator drivers

Here follows a derivation of expressions for the respective lengths /;, /5, and /3, in terms of the
global position of the platform origin, (Xp, Yp), the orientation of the platform « and the design

variables x;, =1, 2, ..., 0. £

2 xj

Figure B.4: Design variables of manipulator.
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With reference to Figure B.4 the folowing relationships may be derived:

x
X, =—"tcosa+ X,
2

X, .
Y, =-"tsina+7Y,
2

X, =X, +x,cos(x)

Y, =Y, +x,sin{r)
. x
X, :—2'~cosa+X,,

X, .
Y. ="tsina+¥,
2

- 1t
I, = _(XA "'““Xn)z +(Y,e: “Yn)z_z

I, = _(X,’:? ”“XE)Z +(YH WYIE)z_

13 = _(X(? ”""“Xﬁ)z +(Y(f ""Y/f)z_

Xy =x,
X=X, +x,=x,+x,

' (B-6)
X=X, +x,=x, +x, + x4

Yo=Y, =Y. =x,

T2 [ e

(B-7)

B [

The actuator drivers are found by finding /;;, /=1, 2, 3, for each point 7, i=1, 2, ..., n,, on the

platform path. Each point (X, ¥p);, on the platform path is associated with a time instant ¢, from

the set 2, at which the origin of the platform moves through that point. The combination of /;;

and f; gives the actuator drivers.




Appendix C: The Jacobian matrix and the quality index

The Jacobian matrix, or simply the Jacobian, plays an important role in the kinematic and
dynamic analysis of a mechanical system. This matrix appears in the velocity and acceleration

equations of a system. The following sub-section describes exactly what the Jacobian is.

The quality index, to be dealt with later, is a dimensionless ratio that measures the “closeness”™
of a manipulator to a so-called singular configuration. It can be used as a design criterion for

manipulators. In the last sub-section the quality index is defined and its use discussed.

C.1Jacobian

Any set of variables that uniquely describes the position and orientation of all bodies in a

system, is called a set of generalized coordinates. A set of generalized coordinates may be
represented by the column vector g = [ql, Grr coer e ]j‘ , where ne 1s the number of generalized
coordinates used to describe the system. The vector of planar Cartesian generalized coordinates
for body i is, ¢, = [x,y,¢]ir , where x and y gives the position of the origin of body i in the global

coordinate system, and ¢ gives its orientation. For a planar system with nb bodies, there are

nc =3-nb planar Cartesian generalized coordinates, and the vector of generalized coordinates

is then q=|:q;'9 ‘I;, rees q:}]]ﬁ“

There are kinematic constraints that apply to a system, such as, for example, a planar revolute
joint, which constrains two points on two separate bodies to have common global coordinates x
and y. A kinematic constraint on a system can be written in the form of ®*/(g) = 0. Note that

the kinematic constraints are not explicit functions of time. All the kinematic constraints on the
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bodies in a system can be combined by writing them in vector form as

®(K)(q):[®§K)(q), oM, ..., @E{K’(q)]Y.:(], where k& is the number of kinematic

constraints.

There may also be driving constraints which apply fo a system. An example of a driving

constraint is a planar actuator, which specify the distance between two points on two separate
bodies as a function of time. A driving constraint can be written in the form of ®"”(g,t)=0.

Combining all the driving constraints they can also be written in vector form as
q)w)(qu)=[cbfi))(q,f), O (g,0), .., C'Df-j“)(q,t)}T =( where ¢ is the number of driving

constraints.

The kinematic and driving constraints on a system such as a manipulator can be combined to

give:

@K
@ } =0 (C-1)

D(q.f) = { O (g1

Differentiating (C-1) by means of the chain rule gives:

® =0 g+0,=0
cI)qq:m(Df
50 (C-2)
where((l)q),.jm—é—-"—, i=1 2, .., k+d;j=1 2, .., nc
§ 7,

and k +d =nce
The relationship in (C-2) is used to solve for g at discrete instants of time, if @  is

nonsingular.
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The @, matrix is called the Jacobian. If its determinant is zero, 1. if ,(D J =0, itis singular

and the associated manipulator is in a singular.configuration.

C.1.1 Actuator forces

The actuator forces for a planar parallel platform to be keld in a fixed position can be calculated

by means of the Jacobian as follows [18]:

w=0 f
I A (©3)

wherew = f & and f = f, _ ;
m, 5

where the force applied by the platform is given by w, and the actuator forces by f. Here f, />
and f; are the actuator forces in actuator 1, 2 and 3 respectively and f; and f, are the global
components of the resultant force applied by the platform at a point of interest on the platform,

and m, is the resultant moment of the forces about the same point. It also follows that

-1
S=0,w.

C.2 Quality index

The quality index of a static manipulator configuration was originally defined by Keller and is

given in the article of Lee et. al. [18] as:

absiCDq‘
A= (C-4)
i(Dq max
where |(D ;| is the maximum determinant of the Jacobian that can be attained for a given
. : L+1,+L
manipulator. Lee, et. al. [18] show that for a planar parallel platform, |@,{ = ~J«---£2~——~i

where .1, I, and Lj are the lengths of the sides of the manipulator (Figure C.1}.



Appendix C: The Jacobian matrix and the quality index 60

Figure C.1: The lengths of the sides of planar paraliel manipulators.

The quality index has the following properties:

1. A has a minimum value of zero, which is attained in a singular configuration, and A is
therefore very small for near-singular configurations;

2. Ahas a maximum value of one;

3. if A is very small the actuator forces required to hold the manipulator in a static

configuration become very large.
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The Jacobian can be used to determine the actuator forces for a planar parallel platform, given
the external forces that act on the platform. This method gives the static forces in the actuators
for a particular platform position and orientation (see paragraph C.1.1 in Appendix C for the
calculation). This section describes how the external forces working in on the platform are

determined.

There are two types of external forces on the platform that have to be considered in a static
analysis. These are the tool force and the gravitational force. The tool force is discussed in
Appendix A, where it is shown that the tool force can be applied to the platform as a resultant
force and a resultant moment acting at the platform origin. The gravitational force can be

applied to the platform in the same manner.

Figure D.1 shows the center of gravity, with the gravitational force, f,, working through the

center of gravity. The gravitational force can be applied as an external force and a moment

acting at the platform origin, O)p. The gravitational force has a magmtude of, , and works in

Sy

the Y-direction of the global coordinate system OXYT. The external moment, m,, is found by the

0
cross-product, m, = gx .
L . .fg
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Figure D.1: The gravitation force, f,, working in on the platform.

D.1 Actuator forces

The resultant external forces that are applied to the platform, are given by f.. In order for the
platform to be in a static position and orientation, the resultant force applied by the platform, w,

should balance the resultant external forces acting in on to the platform, f., i.e.:

w=-f (D-1)
The resultant external forces, f., are applied to some point of interest on the platform (C-3). In
this case the point of interest is chosen to coincide with the platform origin, O,. The resultant

external forces, f,, are therefore given as:

_ ](:r)m’ O
fu e f;um’ + ](‘g (sz)
fool m
z g

and the resultant force applied by the platform are:

f Xmm’ O
W=— ffnol + fg (D-3)
m im}f m.

g

With w known it follows that the actuator forces f may be determined from Equation (C-3):

f=Dw (D-4)

¥
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Appendix E: LFOPC

The LFOPC (Leap-Frog Optimization Program for Constrained optimization) algorithm
applies a dynamic trajectory method for unconstrained optimization, originally proposed and
developed by Snyman [26, 27], to a penalty function formulation of the constrained probiem
[28, 32, 35]. The original dynamic trajectory method is based on the physical model of the
motion of a particle of unit mass in an »-dimensional conservative force field, where the
potential energy of the particle is given by the function to be minimized F (x). This method is a

proven reliable and robust method.

The LFOPC algorithm 1s highly suited for the type of optimization problems encountered in the

engineering field. Optimization difficulties encountered in engineering problems are typically

that:

1. the functions (which can be the cost function or the constraint functions) are expensive to
evaluate, such as when evaluated through CFD or FEM simulations,

2. there may be noise present in these functions, that originate from experimental data, or from
numerical inaccuracies,

3. the functions may be discontinuous or non-differentiable, as is the case with the actuator
force cost function used in this study,

4. the functions may have multiple local minima, as is again the case with the actuator force
cost function,

5. there may be regions in the design space where the functions are not defined, and

6. some design problems may have an extremely large number of design variables.
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These difficulties limit the application of traditional optimization algorithms to engineering
problems. LFOPC is a very robust algorithm that has been successfully applied to design
problems that possess some of the difficulties stated above [2, 30, 32, 35, 36, 401. The basics of

the leap-frog trajectory method are briefly discussed below.

E.1 Basic dynamic model

Assume a particle of unit mass in a n-dimensional conservative force field with potential energy

at x given by F(x), then at x the force on the particle is given by:

a=%=-VF(x) (E-1)

from which is follows that for the time interval [0,¢]:

O - SO = Fexo) - £
T({t)=-T(0)=F(0)~ F(£) (E-2)

or
F(t)+T(f) = constant

where F(¢) and 7(¢) is the potential energy and kinetic energy of the particle respectively, at

time 1.

Note that AF = ~AT', therefore as long as 7 increases, [ decreases. This is the basis of the

dynamic algorithm.
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E.2 Basic LFOP algorithm for unconstrained problems

Given F(x) and the starting point x(0)=x", compute the trajectory by solving the initial value

problem (IVP):

X(1)=-VF(x(1))
x(0)=0 (E-3)
x(0) = x°

i ) . 1 )
Monitor x(¢f) = v(r), for while 7(¢) = EHv(t)HZ increases, F(x(r}) decreases, and the solution x

is moving towards a minimum of F. When |[v(z)| decreases, the solution x is moving “uphill”.

In this case an interfering strategy is applied to extract energy from the particle, in order to

increase the lilelihood of descent.

In practice the numerical integration of the /VP in (E-3} is done by means of the leap-frog
method:

Compute for /=0, 1, ... and time step Af:

P o w0 0 Ay

& p ke (E-4)
y D = p® g gt A
where
a™ = —Vf(x(k})
1 (E-5)
v = a A
2
The typical interfering strategy referred to above is:
If “v“‘*”E ?.“v(“!g continue
sty 4 k) 1y (B (E-6)
AN Y x4+ x
elseset v =y W = T

4 2

s .
compute the new %! and continue.
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Three termination criteria are used;

1. Stopif llx“‘) mx("“”“ <

X
2. Stopif Ha(")g} <e,

3. Stop if the maximum number of iterations is exceeded.

Other heuristics are incorporated, such as specifying a maximum trajectory step size DELT, an
empirical formula for determining the initial value for A¢, and a scheme to magnify and reduce

At in order to minimize the number of iterations required for convergence.

E.3 Modification for constraints

Constraints are accommodated in the algorithm by means of a penalty function formulation.
This formulation solves the constrained minimization problem stated in (2-1), by the.

unconstrained minimization of a modified cost function, £(x,z):

in I

PO, )= F(x)+ iy [e,(0F u, (e )+ 1Y [ (0T ®)

J=l k=1

where

Dif ¢ (x)<0
u}(cj = : (E-8)

Lif ¢,(x)>0

and where z>>0 is the overall penalty parameter.
The solution to the minimization problem is done in three phases:
Phase 0

Given some x°, apply LFOP to P(x,q) with an overall penalty parameter of 1= 1=10% to give

x ().
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Phase 1
With x"= x"(w) and z=u=10%, apply LFOP to P(x,u) to give x (z). Identify the active
constraints i,=1, 2, ..., n, where ¢, (x" (1)) > 0.

Phase 2

With x’= x"(z1) apply LFOP to:

P i
minimize P,(x, )= 4 ¥ 1 (x) +1, Y ¢l (x)
k=1

i, =1

to give x", where P,(x,/11) is a function of only the equality constraint hy, =1, 2, .., p, and the

active constraints c, =1, 2, ..., A
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Appendix F: Dynamic-Q

The Dynamic-Q algorithm was proposed and developed by Snyman et. al. {34], and further
developed by Craig et. al. [4, 5, 7]. In the field of engineering, the functions of an optimization
problem are often very expensive to evaluate. These optimization problems can be solved
economically by using approximation methods that require less function evaluations than

standard gradient based descent algorithms. Dynamic-Q is such a method.

F.1 Basic algorithm

Dynamic-() adopts a successive approximation approach to solve the minimization problem in
(2-1). It solves successive sub-problems constructed from the original problem (2-1). These
sub-problems are analytically simple and can easily and economically be solved by the dynamic

trajectory algorithm LFOPC.

F.1.1 Construction of successive sub-problems
A series of successive approximate quadratic sub-problems P[], £=1, 2, ..., can be constructed
as follows:
()

Suppose F(x™), ¢,(x*), VF(x“) and Ve (x") are known at the design point x'',

construct the approximate spherical quadratic function:

ﬁ(x) = F(x(k)) + er(x(.'c))(x_x(k)) +m]i(x_x(k))?'a(k)(x“x(k))
(F-1)

where P =diag(p®, pi, ... p{") = p1

i depends on the specific problem (typically specified as a small positive number or zero),

thereafter compute p* as follows:
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., Q{F(x(k-!))_F(x(k))_V?‘F(x(k))(x(knu_xm)}‘

‘ Hxﬁf.u_xwﬁz k=23 (F2)

3 e ann

b
Similarly, construct approximations to the constraint functions:

~ 1 . '
c.,.(x) = c_/(xm) +V! cj(x(“)(x—x(“)+~2~(x—x{“)] P}.“‘)(x—x(“); J=12 . .m

where P* =diag(p\”, p', ... p{"y=p'1

f

(F-3)
and p' selected and computed in a similar manner as p,*', i.e.:
. ot pr T Wy L R
" 2e, (x*)—c (x™) - Ve, (xT)(x /x®y .
pl = 3 Vhk=2,3, .. (F-4)
o

To avoid too high convexity or concavity, the values of p'* are limited to a range, to force
g y y ! ge

P to be small in absolute value.

To control convergence, move limits are also introduced:

x, —x* -4 <0

r

“ . (F-5)
-x;+x" -A<0;i=12,..,n

Typically A=A for all i.
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F.2 Formal Dynamic-Q procedure

The Dynamic-Q procedure 1s as follows:
1. Given x', start with i=1.

2. Solve sub-problem P[k] using LFOPC:

minimize F(x}with x ={x,.x,,....x, ] ;x, €N
E}. ()0, 7=12,..,m
such that <x, —x® ~ A, <0

(k) i =
—-x,+x,7 -4 <0;,1=12,..,n

where F (x) and E_,(x“‘)) are computed according to (F-1) and (F-3) to give the
sotution x'*7.
k) k)

3. Increment %, i.e. k=k+1, then set x*/' =x . Check whether the solution has

converged:
Stop if Hx(") wx““”“ <e,

Otherwise repeat step 2.
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Appendix G: Results

A summary of the results obtained for the design problems are given here. Firstly the results
obtained using the direct LFOPC algorithm are given, followed by the results computed by the
approximation method Dynamic-(J. Two different tool paths, A and B, corresponding to the two
paths given in Figure 2.3 are considered. Different initial designs, x”, are used and the number

of design variables are also varied as indicated below.

G.1 LFOPC

The parameter settings for the F, ., cost function throughout are =107, £=10" and the
maximum number of allowable steps per phase is 1000. The F, ¢ and F,, cost functions are

calculated more accurately than F,,.,, so the parameter settings of LFOPC when these

functions are used are throughout, gx:lO'S, &1 0”7 and the maximum number of allowable steps
per phase is 2000. For three design variables DELT=0.35 throughout and for five design

variables DELT=0.45 throughout.

G.1.1 Three design variables
Here only three design variables are used, the other design variables are fixed at the values

x4=-0.8, x5=0.7 and x¢=0.0. For the constraints on the variables (see (2-3)) the following limits

are set: 0.1<x, £0.75, 0.1<x, £0.8, x, 0.
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Table G-1: Violated constraints at x' for tool path A.
3 Violated
constraints
Ty min[/,[ 21,
(0.4, 0.6, -0.6) minfl. 121,
(0.7, 0.4, -1.0) none
(0.5, 0.8, -0.6)" min[l, ]2 {,
Table G-2: Tool path A, three design variables.
F(x) 0 0 . * Active No. of
used x Foe . ) constraints steps
: 0.123, 0.800 max[l, <1,
0.4,0.6,-0.6)" | 10.107 ( y ; 4.887 ! 182
( ) 0.995) ‘<08
r ] cayn | (0.750,0.604, minf/, | 2 [,
Foep 1 (07.04,-1.0Y | 5313 0.932)" 4,795 . £075 84
7 5 (0.469, 0.863, minf/,}z1,
(0.5, 0.8,-0.6)" |4.4-10 0.837)7 8.481 v 208 15
0.125, 0.800 max[l, ] <[,
4.06.-0.6)7 | 10104 | ¢ A 4.883 ! 2275
 (0.4,0.6,-0.6) -0.995)" x, £0.8
Foog T (0.750, 0.604, . | min{/,]=1,
Aks (07,04, -1.0)" | 5.308 0932 4.793 v 0,75 290
05,08, -0.6) | 117.16 (O7f% 405')7,38’ 4814 | x <075 | 1282
r (0.750, 0.513, minf/, |2 [, A
(0.4, 0.6, -0.6)" | -0.120 0.925) -0.327 v 075 436
infl, ]2
r LT (0.750,0.513, | . - | mini,12/,
v 1 (07,04, -1.0)7 | -0.287 09257 0.327 v <075 311
(05.0.8.-0.6) | -0.012 | (©750.0513. 1 5 4p | minlh ]2l oo
T ' -0.925)" | x, €075
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Table G-3: Violated constraints at x" for tool path B,

0
X

Violated
constraints

(0.4, 0.6, -0.6)"

minf/,] =1,
min[/, ]2/,

(0.7,0.4, -1.0)

none

(0.5,0.8, -0.6)"

min[l, |27,
minf[/, ]2/,

Table G-4: Tool path B, three design variables.

F(x) N F(xm) . F(x*) Actw'e N?' of
used constraints steps
(0.4,0.6,-0.6)" | 4332 (O'ff%’l%f;roo’ 3392 mix[i‘ g P hl 503
r (0.606, 0.467, min(/, ]2/,
F,.p | 07,04, -1.0) | 4264 o864y 3839 | Loye s |1
. - <—
05,08, -06) | 5.117 (0'1%1%)890’ 3.392 ma"[";‘ 2)“8 N ESP:
=l xzmu.
(04,0.6,-0.6) | 4327 (0'3328%)379& 3384 | x,208 | 4027
- [l ]>1
P T (0.575, 0.472, min|/,] =1, y
s | 07,04, 1.0 | 4260 o850 383 | ey | 1198
r (0.190, 0.800, -
(05,08, 0.6 | 5.114 0ga 3389 | x, <08 | 4021
min[/, [z
04,06, -0.6) | -0321 (0'?3%43')6?3’ 0476 | [:3 | ot
. <0,
in[L]> 1
F,, 107,04, -1.07 | -0.306 (O'?g%ﬁ‘)@”’ -0.476 m;“[jg el B
| <0
(0.5,08,-0.6) | 0209 | ©750.0653, | 4 g6 | mnlaIZL 0
AR ‘ -0.944) ‘ x <0.75

Note: ” Optimization algorithm terminated on maximum number of steps atlowed.

G.1.2 Five design variables

Five design variables are considered here. For the constraints on the variables (see (2-3)) the

following limits are set: 0.1<x, <0.75, 0.1<x,, x, 50, 0.1<x,, x, +x; £1.5.




Appendix G: Results

Table G-5: Violated constraints at x’ for tool path A.

! Violated

constraints

(04, 0.6, -0.6, minfl,] 2/,
-0.8,0.7) minl/,] 2/,
(0.7, 0.4, -1.0, max[},] <1,
-1.1, 02) max|/,| <13
(0.5, 0.8, -0.6, min[/;] =1,
-0.6, 0.5)" min[/, ]/,

Table G-6: Tool path A, five design variabies.

F(x) 0 b * * Active No. of
used * Fx) o Flx) constraints steps
04,0605, (0.750, 0.833, max[l, ]/,

( o807 [10907 | 0.961,-1148, | 1525 | max(}sly | 727
0.101) x, £0.75
max[l,] </,
(0.750, 0.832, =3
oy | Q70410 5935 | 0061, -1, 147, | 1524 max{h] =k | o)
-1.1, 0. 2) 0. 100) X s 0.75
x, 2 0.1
05.0.8. 0.6 (0.750, 0.808, max[l] <
( '0’6'0’5_)7% {17378 | -0.966,-1.141, | 1.552 | max[l,]<ls | 442
R 0.126)" x, £0.75
(0.750, 0.745, 1<]
(0"(‘)’5%7‘%6’ 10104 | -0.952,-1.086, | 1.553 maxif‘oj ;5] 40247
S, L 0.115)" X =0
(0.750, 0.725, 1<}
Fars (071 10 g 2)1 O 1377 | 0.944, -1.064, | 1.544 ma’i-‘o] _“7‘"5 1 4048°
- 0.101) x =0.
(0.750, 0.730, 1<
©5.08,-06, | 15 30| 090 1075, | 1558 | MEBISE | L oge
(0.675, 1.165,
(0"(‘)’ 5.3,7—0%6, 0.120 | -0913,-1041, | 0740 | %201 | 4026
-0.8,0.7) 0.100)”
(0.641, 1.140, minf 15 1.
T ]O o 2)1 01 0086 | -0.902, 1,027, | 0736 | [;]0 R
- 0.100) s =1
(0.571, 1.088, minl 1> 7
(05.08,-06. % 4512 | -0.884, -0. 996, | -0.724 =L 4057
-0.6,0.5) 0.100)" x, 2 0.1

Note: * Optimization algorithm terminated on maximum number of steps allowed.
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Table G-7: Violated constraints at x" for tool path B.
N Violated
constraints
(0.4, 0.6, -0.6, min[/,]1217,
-0.8,0.7)" minf/, ] =/,
(0“71 1032)1 O, max[lﬁﬁf;
(0.5, 0.8, -0.6 minlh ] 24
"'096 .095)7: ’ min[lz] 2 {2
T min[/;] =/
Table G-8: Tool path B, five design variables.

F(x) 0 0 * v Active No. of
used * Fx’) * Fx) constraints steps
(04,06, 05 (0.750, 0.737, max[/,] </,

08,07 4332 | -1.02L,-1135, | 1812 | max|li]<ls | 711
0.337) x, £0.75
<0,
0.7.04,-1.0 (0.750, 0.737, maxl/, [ </
Fivp S04 L0 4191 | 21.021,-1.135, | 1812 | max[/,]<ls | 688
-1.1,02) 0347 8
337) x, £0.75
(05.08,056 (0.750, 0.736, max{} ] <1y
06, 0.5) 5317 | -1.021.-1134, | 1.812 | maxj]<ls | 678
0.336) x, <075
(0.750, 0.777, 1<
O sy S| 437 | 09501088, | 1652 | M <k e
0.138)’ x, £0.75
(0.750, 0.645, <]
B ©.7 log 21 D1 4103 | <0971, -1, 019, | 1.746 max{h <0l 4750
ALS ” ) 0. 221) X < 0. 75
(05.08,06. (0.750, 0.911, max(f ] <1y
06, 0.5 5310 | -0972,-1.191, | 1643 | max[L] </ 4079*
0.129) X 2075
(0.674, 1.111, .
et 7? 6 10321 | -0.884,-089, |-0800 | min[,]=7 | 2001"
0.149)"
] (0.592, 1.258,
Fy, | ©O0 D% 2)1T.0, 0071 | -0.913,-1.007, | 0814 | w201 | 4024"
o 0.100)"
) (0.586, 1.123, minll.1>1
(03.0.8,-06, 1 5509 | -0.866, -0. 888, | -0.803 2Lty oser
-0.6,0.5) 0,100y %, 20.1

Note:

" Optimization algorithm terminated on maximum number of steps allowed.
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G.2 Dynamic-Q}

The results obtained using the Dynamic-Q approximation method for the F, ., cost function

are given here. In the first sub-section, five design variables are used, and the last sub-section
gives the results for six design variables. A move limit of 4=0.2 is imposed on all design

variables. The convergence criteria prescribed throughout on Dyrnamic-() are:

Stop if Hx(") - x“‘””“ <1077,

The parameter settings for the LFOPC algorithm used by Dynamic-Q are throughout =107,
&~ 107 with the maximum number of allowable steps per phase, 1000. For five design variables

DELT=0.45 and for six design variables DELT=0.49 throughout.

(G.2.1 Five design variables

The design constraints are the same as used for LFOPC. The constraints on the variables are set

to: 0.1<x,£0.75, 0.1<x,, x, £0, 0.1<x,, x, +x; £1.5 The same imtial designs were used

as for LFOPC.
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Table G-9: Violated constraints at x” for tool path A.

4 Violated
constrai.nts

(04,06, 06, min[/, ] =

-0.8,0.7)" minf/,]=
(0.7, 04, -1.0, max[/,] < f
-1.1,02)" max[/, 1</
(0.5,0.8, -0.6, min[/;] 2/,
-0.6,0.5)" min[l,} =/,

Table G-10: Tool path A, five design variables.

- y . ; Active No. of
X Fx") X Firp(x) constraints steps i
(0.737, 0.737, min{/, ]
(O-é, ;J-%;Of’* 10.107 | -0.916, -1.049, 1.564 x[>0] o3
-0.8,0.7) 0.100)" o
(0.750, 0.822, %, £0.75
o7, 10‘(‘)2'1 O ams | 0924, -1 119, 1.526 o] 31
- ) 0.100) S
(0.695. 0.796, min/, ] >
©> 60 g 50 & 17378 -0.908,-1.079, 1.590 [30 | 22
- ) 0.100)” s

—
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Tahle G-11: Violated constraints at x” for tool path B.

! Violated
constraints
(0.4, 0.6, -0.6, min[l;] 2/,
0.8, 0.7)" min[l,]> 1,
0.7,0.4, -1.0, 7
( 1102y max[/, | < /s

min(f, ] >,
min[/,]2 /,
min[f, ]2 1,

(0.5,0.8, -0.6,
-0.6, 0.5)"

Table G-12: Too!l path B, five design variables.

o o B . Active No. of
X F(x7) X Fipplx) constraints steps

(0-3’5-3’7‘(’%6’ 4332 | -0.912, -1.041, 1.721 [ilo R
-0.8,0.7) 0.100)" s =

O 0% | 4101 | -0.909.-1.038, 1.741 [;]0 )
-1.1,02) 0.100)" s =0

(0.750, 0.820,

(02,08 50 1 5317 | -0934,-1.107. 1656 | x 075 59

0.6, 0.3) 0.126)"
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(3.2.2 Six design variables
The constraints on the design variables are the same as for five design: 0.1<x, <0.75,
0.1<x,, x, <0, 0.1<x,, x, +x; 1.5, but with the additional constraint on the sixth design

variable: 0 <x; <x,.

Table G-13: Violated constraints at x” for too} path A.

@ Violated
constraints
(0.4,0.6,-0.6, min|/,} =/,
-0.8, 0.7, 0.0y min[, ] =/,
max{l,] </,

0.7, 0.4, -1.0, -
_(1.1 0.2.0.7) max[/,]</z
max|/,]</s

(0.5, 0.8, -0.6, minf/, ] 2/,
-0.6,0.5,0.2) min[l,]1=1,

Table G-14; Tool path A, six design variables.

0 0 x . ; Active No. of
X Fx) X By ppn(x) constraints steps

(0.736, 0.653,

@800 (_)06(;% 10.107 | -0.884,-0.954, 1768 | minf,]121, | 18
8, U7, 9. 0.146, 0.049)"
(0.671, 0.342,

o702 (')15?% 25.870 | -1.055,-0.438, 2.043 none 20
4o Vs U 0.905, 0.661)’
(0.663, 0.517,

(82 82 (')OS% 173.82 | -1.027, -0.439, 2.096 none 1
0, V.2, U, 0.850, 0.655)"
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Table G-15: Violated constraints at x° for tool path B.

7 Violated

constraints

(0.4, 0.6, -0.6, minf/,] 2/,
-0.8,0.7,0.0)" minf/,]>1,
(0.7,0.4,-1.0, max{/,] </
-1.1,0.2, 0.7 max[, [ < /s
minf/ 12/,

0.5, 0.8, -0.6, :

—(0.6 0.5, 0.2y min{l; | =,
T min(/,] = I,

Table G-16: Tool path B, six design variables.

) ) . . . Active No. of
X Fx) X Farnlx) constraints | steps
min(/, {= 1,
04.06.-06. q (0.750, 0.831, <20 -
0807 00 | 4332 | -0.930,-1131, 1.721 x 5 0.75 58
6, U7, 0. 0.203, 0.001) x, 20
(0.744, 0.765,
(‘l)f 8'3’6}"'7())% 66323 | -0.911,-1.065, 1833 | min,1=f, | 33
~L Vs U 0.285, 0.022)"
min{/, ]2/,
05,0806, | (0.750, 0.873, ! <20 - #
06,05 02 23.44 | -0.936,-1.126, 1.665  =0.75 100
> 0.9, -0.100, 0.003) max[l,] <1

Note: * The optimization algorithm was manually terminated after 100 iterations. The design
with the lowest cost function out of the 100 iterations was chosen as the optimum design. This

design was reached after 32 iterations and is given in the table.
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