
ASSESSMENT OF FREQUENCY DOMAIN FORCE 
IDENTIFICATION PROCEDURES 

by 

THOMAS EDWIN SLAUGHTER KRIEL 

Submitted in partial fulfillment of 
the requirements for the degree 
Masters in Engineering in the 

Faculty of Engineering 
University of Pretoria 

Pretoria 

February 2000 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 
 
 



ASSESSMENT OF FREQUENCY DOMAIN FORCE 

IDENTIFICATION PROCEDURES 


by 

Thomas Edwin Slaughter Kriel 

Supervisor Prof. P. S. Heyns 
Department Mechanical and Aeronautical Engineering 
Degree Masters ofEngineering 

ABSTRACT 

The location and magnitude of self-generated or input forces on a structure may prove to be 

very important for the proper evaluation at the design and modification phases, as well as in 
the case of control and fatigue life predictions. The identification of the input forces has also 
attracted a great deal of interest in machine health monitoring and troubleshooting. 

Instead of being able to directly measure the force inputs, some other quantity is usually 
measured, e.g. the response, from which the forces can be determined indirectly. In essence 
the structure becomes the force transducer. Theoretically, it is possible to determine the 

forces by simply reversing the process of calculating the responses of a system subjected to 
known forces, but this procedure was shown to be ill-posed and sensitive to noise, and might 

contribute to meaningless results. Various matrix decomposition and regularisation methods 
were presented in dealing with the inverse problem. 

Two frequency domain force identification procedures were evaluated in this work, i.e. the 
frequency response function and the modal coordinate transformation method. Both 

numerical and experimental studies have been presented to assess the advantages and 

disadvantages associated with each method. 

The ultimate objective of this research was to implement these methods in an experimental 
investigation on a simple well-behaved structure, given the lack of experimental work 

pertaining to especially the modal coordinate transformation method. A single harmonic force 
was determined on an aluminium beam subjected to different boundary conditions. The work 
was then extended to predict two point sinusoidal forces from measured acceleration signals. 

Strain measurements have also been employed and the results noted. 

Based on the results presented it was concluded that the frequency response function method 

was superior to the modal coordinate transformation method for the structure used in the 
investigations. 
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EVALUASIE VAN FREKWENSIEDOMEIN KRAGTE­

IDENTIFIKASIE PROSEDURES 


deur 

Thomas Edwin Slaughter Kriel 

Studieleier Prof P. S. Heyns 
Departement Meganiese en Lugvaartkundige Ingenieurswese 
Graad Magister in Ingenieurswese 

SAMEV ATTING 

Die posisie en grootte van self-gegenereerde of eksteme insette wat op 'n struktuur inwerk, 
blyk 'n belangrike aspek van die ontwerp- en modifllcasiefases te wees. Die indirekte kragte 
identifllcasie wek ook belang steling in beheerstelsels, die voorspelling van 
vermoeidheidleeftyd en die veld van toestandsmonitering. 

In plaas daarvan om die kraginsette direk te meet word byvoorbeeld die responsie gemeet, 

waardeur die kragte indirek bepaal kan word. In essensie word die struktuur die kragomsetter. 
Dit is teoreties moontlik om die proses vir die bepaling van die responsie van 'n struktuur wat 
onderhewig is aan bekende kragte, slegs om te keer; hierdie proses is egter numeries sleg­
geaard en sensitief vir geraas. Dit kan nuttelose resultate oplewer. Verskillende matriks­
ontbindings strategie word voorgestel om inverse probleme aan te spreek. 

Die frekwensie responsie funksie metode en modal koordinaattransformasie metode word 

beskou in hierdie werk. Numeriese en eksperimentele studies word ondersoek om die voor­
en nadele van elke metode te bepaal. 

Die doelwit van hierdie ondersoek was om bogenoemde metodes eksperimenteel te 
ondersoek aan die hand van 'n eenvoudige struktuur, gegewe die gebrek aan eksperimentele 

werk met spesiale verwysing na die modale koordinaattransformasie metode. 'n Aluminium 
balk is onderwerp aan verskillende randvoorwaardes, terwyl 'n enkele harmoniese krag 
gerdentifiseer is. Die studie is uitgebrei na die bepaling van twee sinusvormige kragte vanuit 

gemete versnelling- en vervormingseine. 

Gebaseer op die eksperimentele ondersoeke wat geloods is skyn die frekwensie responsie 

funksie metode beter kwantifisering van die kragte op te lewer as die modale koordinaat­
transformasie metode. 
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"Most inverse problems of mathematical physics are 


ill-posed under the three conditions ofHadamard. 


In a humorous vein Stakgold pointed out that there 


would likely be a sharp drop in the employment of 


mathematicians ifthis were not the case" 


(Sarkar et ai., 1981) 
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NOMENCLATURE 


[A(m) ] 

[b] 
[c] 
[c] 
lc J 
{e(m) } 
E(m) 
[E] 
{f(t) } 

Fj(m) 

[F] 
{F(m) } 

{F(m) } 
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Gxy 

[h(t) ] 

Hi; (())) 

[H(m) ] 

[H(m)Y 
[I] 
j,k 

" [L] 

[K] 
lK J 

n 

i -th measured acceleration time signal 

Inertance frequency response function for excitation at point j and the 

response measured at i 
Inertance frequency response function matrix 

Input shape matrix 

Output shape matrix 

Damping matrix 

Modal damping matrix 

Fourier transform ofthe strain response vector. 
Absolute error 

High frequency residual 

Force vector as a function of time 

Fourier transform of force input at point j 

Low frequency residual 

Actual force vector 

Estimated force vector 

Modal force vector 

Auto spectrum ofthe time function x(t) 

Cross spectrum of the time functions x(t) and y(t) 

Impulse response function matrix 

Frequency response function for excitation at point j 

measured at i 
Frequency response function matrix 

Pseudo-inverse of the rectangular matrix [H (m )] 

Identity matrix 
Integer 

Linear operator in Tikhonov Regularisation 

Stiffness matrix 

Modal stiffness matrix 
Number of forces 
i -th equivalent mass 

Mass matrix 

Modal mass matrix 
Number of response locations 
Number ofacceleration measurements 

Number ofaverages used in the measurements 

Degrees of freedom / number of modes 
Fourier transform of the noise contaminating the response 

and the response 
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p 

{P} 
(P(w) } 

Qr 

[Q] 
[R] 

s - iw 

[Tl 
{u} 
[U] 

[V] 
{y} 
{x(t) } 

{x(t)} 
{x(t)} 
x(k) 

X(n) 

{X(w) } 

{X(w) } 
[yew)] 

[a(w) ] 

[p] 
Oij 

cI(w) 

{¢lr 

{q3 } 

[CD ] 
y2 

Number ofparticipating modes 


PrincipaVmodal coordinates as a function oftime 


Modal coordinates as a function of frequency 


Modal scaling factor ofthe r-th mode 


(n x m) orthogonal matrix 


(m x m) upper triangular matrix with the diagonal elements in descending 


order 

Laplace variable 


Residue matrix of the r-th mode 


Input vector to the system 


(nxn) matrix, columns comprise the normalized eigenvectors of [H][Hf 


(m x m) matrix, columns are composed ofthe eigenvectors of [H]T [H] 


Output vector ofthe system 


Acceleration vector as a function oftime 


Velocity vector as a function of time 


Displacement vector as a function of time 


Discrete series of a sampled time function x(t) 


Fourier series coefficients 


Fourier transform ofthe physical displacement vector 


Fourier transform of the physical acceleration vector 


Strain frequency response function matrix 


Receptance frequency response function for excitation at point j and the 


response measured at i 

Receptance frequency response function 


Mass-normalised modal damping matrix 


Kronecker delta function 


Force error norm 


r-th independent eigenvector (normal modes)lmode shape corresponding to the 


measurement point 


r-th independent eigenvector (normal modes)/mode shape corresponding to the 


excitation point 

Modal matrix 


Coherence function 


Condition number 


r -th complex eigenvalue 


Diagonal modal stiffness matrix (normal mode frequencies squared) 


Lagrange multiplier 


Singular values in the matrix [L] 
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vii 

[E] 


DFT 

DOF 

FEA 

FEM 

FEN 

FFT 

IDFT 

IRF 
MIMO 
MM1F 
RBM 
RMV 
SFRF 
SVD 

(':-) 
[.y 
[. ] * 

[. ] ~1 

(n X m) matrix with singular values of [H] on its leading diagonal 

Natural circular frequencies ofr-th mode~ad / s] 
r-th independent eigenvalues (natural frequencies squared) 

Reciprocal modal vector, corresponding to the r-th mode 

Modal damping factor for r-th mode 

Discrete Fourier Transform 
Degrees-Of-Freedom 
Finite Element Analysis 
Finite Element Model 
Force Error Norm 
Fast Fourier Transform 
Inverse Discrete Fourier Transform 
Impulse Response Function 
Multiple Input Multiple Output 
Multivariable Mode Indicator Function 
Rigid Body Modes 
Reciprocal Modal Vector 
Strain Frequency Response Function 
Singular Value Decomposition 

Denotes contaminated values 

Transpose of the indicated matrix 

Complex conjugate (Hermitian) transpose ofthe indicated matrix 

Inverse of a square matrix 

Vector 2-norm 
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2 CHAPTER 1. INTRODUCTION 

1. INTRODUCTION 

1.1 PREAMBLE 

The location and magnitude of self-generated or input forces on a structure, or for that 

matter any piece of equipment, may prove to be very important for the proper 

evaluation at the design and modification phases, as well as in the case of control and 

fatigue life predictions. The identification of the input forces has also attracted a great 

deal of interest in machine health monitoring and troubleshooting (Shih et al., 1989). 

The location of the excitation forces can reveal the possible causes ofvibration, while 

the force amplitude determines the severity of the vibration condition. 

In cases where the direct measurement of these forces is possible, it is usually 
accompanied by structural changes to accommodate the attachment of force sensing 

equipment, and may as a result change the dynamic characteristics ofthe system. 

However, there are many situations where the direct measurement of the excitation 

forces is not possible or feasible. For example: 

).> Shock/impact loads on ship hulls (Dubowski and Dobson, 1985). 


).> Engine torque pulses and shaking forces are difficult to measure, since these 


forces are distributed throughout the engine (Starkey and Merrill, 1989). 

).> Forces transmitted from machinery, such as compressors, to the foundations. 

).> Stress analysis on a finite element model of a structure can be performed by 

applying prescribed displacements. In the case of structural modifications, the 

stress analysis would require knowledge ofthe excitation forces. 

).> Propellor-induced pressure fluctuations on a ship hull (Stevens, 1987). 

).> Determining of acoustic loads where the environment does not permit the use 

of microphones to measure the acoustic field (Elliott et al., 1988). 

).> Explosive loading or force input within hostile environments (Dubow ski and 

Dobson, 1985) 

).> The indirect computation of the flow-induced forces in a piping system or 

petrochemical reactor. 

Instead ofbeing able to measure the force inputs directly, some other quantity, e.g. the 

response, is usually measured from which the forces can be determined indirectly. 

The aim of the present work is to show that it is possible to estimate dynamic forces 

by measuring the responses, be they acceleration, displacement or strain, of a linear 

structure subjected to those forces. In essence the structure becomes the force 
transducer. 

-- ..... ~~----------------------~------
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3 CHAPTE.'R 1. INTRODUCTION 

Theoretically, it is possible to determine the forces by simply reversing the process of 
calculating the responses of a system subjected to known forces, but this procedure is 

known to be ill-posed and sensitive to noise, and may contribute to meaningless 

results. 

1.2 FORMULATION OF DIRECT AND INVERSE PROBLEM 

In this section the classification ofthe force identification as an inverse process and an 

ill-posed problem is motivated and the principal difficulties in such a procedure are 

discussed. 

The direct problem (also referred to as the forward problem) is to find the response of 
the structure from knowledge of the excitation force through the use of a transfer 
function, which gives the relationship between the measured response and the 
excitation forces: 

{F(m)}::::> {X(m)} (1.1) 

Conversely, the force identification problem is to accurately infer the excitation force 
from knowledge ofthe vibration responses via some transfer function: 

{X(m)}::::> {F(m)} (1.2) 

The latter problem involves the recovery of the force ( cause) given the incomplete 
and noise-contaminated response (effect) and system matrix, whence the name 
inverse problem. 

Two important observations regarding the differences between the direct and inverse 
problem can be made (Karlsson, 1996): 

Firstly, the excitation force in the direct problem is known all over the structure. 

These forces are usually concentrated on limited portions of the structure, while the 
rest of the structure can be regarded as non-loaded. This is typically the procedure 
followed in the finite element analysis of a structure in order to obtain its dynamic 

response as a result of the applied forces/loads. 

However, in the inverse problem, a non-zero vibration response is in most cases 

present all over the structure. Furthermore, the responses can usually be measured 
only at a finite number of discrete points, and there is no information available 

regarding the responses between these points. Thus, the entire response can be solved 

for the direct problem, whereas the full excitation forces cannot be determined in the 
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4 CHAPTER 1. INTRODUCTION 

inverse problem. As a result, the solution to the direct problem is straightforward 

while the inverse problem is left without a unique solution. 

The second observation to note is that even if the responses could be measured at 

closely spaced positions, the force identification problem is ill-posed and iU­

conditioned. A well-posed problem can be stated as a problem that satisfies the three 
conditions of Hadamard. These are the existence, uniqueness and stability of the 
solution (Hashemi and Hammond, 1996). If any of these conditions are violated, the 
problem is said to be ill-posed. On the other hand, ill-conditioning refers to the 

phenomena where small measurement errors (noise) are mapped onto unboundedly 
large errors in the force estimates. For an in-depth discussion of ill-posed problems, as 
well as ways to regularise these problems to be well-behaved, refer to Sarkar et al. 

(1981). 

As a result it is impossible to calculate the entire force distribution on a structure, 
simply from response measurements. To make the force identification solvable, 
additional information regarding the force distribution is needed a priori. The force 
identification problem can be regularised to a well-posed problem by limiting the 

excitation forces to a finite number of discrete points on the structure. An 

(nxm) frequency response function, [H], is deduced consisting of both response and 

force identification points. With this a priori information the force identification 
problem is reduced to the determination of only the unknown force amplitudes at the 
discrete points. 

This approach can be justified, since in many applications the exact forcing locations 
are known, for instance at an engine mount or bearing support. In the case of, for 
example, distributed acoustic loads the vicinity of the excitation forces needs to be 
known, since the force identification procedure will determine the pseudo- or 
equivalent forces that will result in the same response of the structure, but with quite a 
different spatial distribution than the actual applied forces. 
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5 CHAPTER 1. INIRODUCTION 

1.3 LITERATURE SURVEY 

Three commonly used 'domains' are employed in the indirect force identification 

process, i.e. the frequency, time and modal domains. The frequency domain models 

utilise the frequency response function, which gives the linear relationship between 

the measured response and the excitation force. As for the time domain models, these 

methods produce force estimates as a function of time. The modal models are defined 

as a set of natural frequencies with corresponding mode shapes and modal damping 

factors and can be used for either frequency or time domain models. 

Stevens (1987) has given an overview of the general problems involved in the force 
identification process, while Dobson and Rider, (1990) reviewed some of the different 
techniques and applications reported in the literature. 

1.3.1 Frequency Response Function Method 

The frequency response function can be defined as the linear relationship between the 
measured response and the excitation forces and gives rise to a set of linear equations 
normally formulated in the frequency domain as 

{X(w) }=[H(w) HF(w)} (1.3) 

where 


{X(w)} is the (nxl) response vector, 


[H(w)] is the (nxn) frequency response function matrix, and 


{ F(w) } is the (n x 1) force vector. 


The frequency response function matrix can be measured experimentally, 
reconstructed from an experimental modal analysis, or obtained from a finite element 
modeL 

The unknown forces can be reconstituted by taking the inverse of equation (1.3) as 

follows 

{F(w)}= [H(w) ]-1 {X(w)} (1.4) 

However, the frequency response function matrix proves to be singular and ill­
conditioned at frequencies close to and at resonance (Desanghere, 1983). 

In an attempt to improve the condition of the inverse problem, the formulation of an 
over-determined problem is proposed, which allows the use of more equations than 

unknowns. The advantage of using redundant information minimises the 
consequences of measurement errors (Hillary, 1983). If the number of responses, n, 
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6 CHAPTER 1. INTRODUCTION 

exceeds the number of force estimates, m, the frequency response function becomes 

rectangular. Adopting a least-squares solution of the force estimates are given by: 

{F(OJ)}= [H(OJ)] + {X(OJ)} (1.5) 

where 

[H(OJ)]+ is known as the pseudo-inverse of the (nxm)rectangular matrix 

[H(m) ]. 

The added effect of noise, as encountered in experimental measurements, will further 

degrade the inversion process. Hillary (1983) and Okubo et al. (1985) both 

investigated the influence of noise contaminating the response and frequency response 
functions on the accuracy ofthe force identification. The results show that noise in the 
frequency response function, and more specifically in the modal matrix, lead to gross 

errors in the force estimates. The noise contaminating the frequency response function 
matrix also reduces the number of significant figures in the matrix and, consequently 
reduces the rank: of the matrix (Fregolent and Sestieri, 1990). This in tum reduces the 

number of forces that can be correctly estimated (Fabunmi, 1986). The quality of the 
frequency response function matrix can be improved by measuring the frequency 

response functions by means of a shaker excitation, rather than with an impact 
hammer (Hendricx, 1994). Even when taking great care hitting the test object in a 
perpendicular way, the impact hammer may exert in-plane forces. This in tum results 
in unreliable pseudo-driving point frequency response functions, which are 

detrimental to force estimates. 

Mas et al. (1994) published an excellent article in which other causes for unreliable 
force estimates are explored, other than the poor conditioning of the frequency 
response function matrix usually associated with indirect force identification. It is 

shown that the error propagation in the inversion process is proportional to the 

condition number of the frequency response function matrix to be inverted. Over­
determination can improve the condition number and as a result reduce the errors of 
the force estimates. The damping in the system can have an influence on the force 
identification, since the condition number varies with damping. Starkey and Merrill 
(1989) have suggested that the condition number of the frequency response function 
matrix should be used as an 'indication' of the expected accuracy of indirectly 

measured force amplitudes at a given frequency. 

Hillary and Ewins (1984) have employed both accelerometers and strain gauges to 
determine two simultaneous sinusoidal forces on a uniform cantilever beam. The 
strain responses gave more accurate force estimates than the accelerations. This is 

because the strain responses are influenced more by the higher modes at low 
frequencies, and therefore the frequency response functions are more complex in 
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7 CHAPTER 1. INTRODUCTION 

shape and hence obtain better force predictions. Han and Wicks (1990) also studied 

the application of displacement, slope and strain measurements. From both these 

studies it is evident that proper selection of the measurement type can improve the 

condition ofthe frequency response function matrix. 

Another paper by O'Callahan and Piergentili (1996) have noted that regardless of the 

number of response locations chosen, the force prediction result is excellent if the 

response locations coincide with actual force locations. For the case where the actual 

force locations are excluded from the response locations the forces are distributed to 

all response locations in the set. The amount ofdistribution to each of the surrounding 

response locations depends on the direction and distance of that particular response 

from the actual force location. Again it is emphasised that the response locations 

should be concentrated within the vicinity of the force locations. The analysis was 

conducted on a finite element model of a plate and as a result did not include 

experimental verification or the effect ofmeasurement noise. 

Following the argument ofFabunmi, it is not possible to determine more than a single 

force for a lightly-damped structure in the vicinity of the resonant frequencies. This 

may prove to be highly undesirable, since the energy flows are usually a maximum in 

these regions. Lewit (1993) suggested the calculation of an equivalent force or forces, 

which will result in the same vibration output as the original force inputs. The total 

input power into the structure can then be calculated from the equivalent forces at the 

resonant frequencies. 

Different matrix decomposition methods are used when dealing with ill-conditioned 

problems. Some ofthese include: 

~ The Moore-Penrose pseudo-inverse (Brandon, 1988; Hillary, 1983), 

~ QR decomposition (Fregolent and Sestieri, 1990), 

~ Singular Value Decomposition (Maia, 1991; Brandon, 1988), 

~ Second Order Epsilon Decomposition (Ojalvo and Zhang, 1993) and many 

more. 

Singular Value Decomposition (SVD) of the frequency response function matrix can 

be used to improve the conditioning ofthe pseudo-inverse matrix. Powell and Seering 

(1984) calculated a threshold value from the coherence function corresponding to the 

measured frequency response functions. The singular values smaller than the 

threshold were truncated from the pseudo-inversion. Although the truncation reduced 

the resolution ofthe inputs, it prevented the prediction of large spurious forces. 
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8 CHAPTER 1. INTRODUCTION 

Numerous regularisation methods are also available, which give a stable approximate 

solution to an ill-conditioned problem, e.g. Tikhonov regularisation (Sarkar et al., 

1981; Hashemi and Hammond, 1996). 

Most of the successful applications that deal with the problem of multiple excitation 

forces have been for the least-squares method. These include work done by Flannely 
and Bartlett (1979), which produced results that can be compared to directly­

measured harmonic forces acting on the hub of a laboratory model of a helicopter. 

The forces were accurately determined for combinations of two orthogonal forces 
from measurements of fourteen responses at three different frequencies. 

In a similar case, Okubo et al. (1985) applied the least-squares technique to a number 
of applications. These include the identification of the cutting forces of a machine 
tool, the generated forces on mounts of an automobile engine and the transmitted 
forces to the piping system of an air conditioner. The frequency response functions 
were measured in advance at a stationary state, while the responses of the structure 

were measured under operating conditions. Although the frequency response 
functions often admittedly differ from those at operating conditions, this approach is 
more desirable since the frequency response function is usually very noisy under 
operating conditions. 

When dealing with random forces, equation (1.3) can be defined in terms of the 
spectral density functions as 

[G,Aw)]= [H(w)]( G.tf(w)][ H(w) r (1.6) 

where 

[G;a(w)] is the (nxn) response matrix, 

lG.tf(w) J is the (mxm) spectral matrix of the forces, 

[H(w)] is the (nxm) rectangular frequency response function matrix, and [. r 
denotes the complex conjugate transpose of [H (w) ] . 

The pseudo-inverse ofequation (1.6) results in 

(1.7) 


It is generally accepted that in the case of statistically uncorrelated forces, the cross­
spectral density terms (off-diagonal terms) become equal to zero and the above 

equation reduces to: 

(1.8) 


----.------------------------------------------------------------ ­
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9 CHAPTER 1. INIRODUC710N 

where 

{Gff(OJ)} and {G.u (OJ)} are column vectors of the diagonal terms of the force 

and response spectral density matrices, respectively. 

Conversely, it has been shown that this assumption is inadequate when solving the 

inverse problem for random forces. The cross-spectral densities of the response 

should be included with the real valued auto-spectral densities, since the former 

carries the phase information that in tum, establishes the correlation requirements 

among time variables (Varoto and McConnell, 1997). 

Elliott et al. (1988) employed the SVD technique to predict acoustic forces on a thin 
panel. Force estimates were calculated from a strain frequency response function 
(SFRF) matrix and the corresponding strain response matrix. The measured strain 
response matrix was heavily influenced by noise. The measurement noise increased 
the rank of the strain responses, which in tum circumvented the force predictions. By 
applying singular value decomposition the noise contaminating the input measured 
strain can be reduced, but not completely rejected. It is shown that improvement in the 
force predictions was obtained by truncating singular values so that the rank of the 
measured strain response matrix resembles its true rank, without the effect ofnoise. 

1.3.2 Modal Coordinate Transformation Method 

The modal coordinate transformation method (also referred to as the modal model 
method) is based on the modal transformation theory. The system is expressed in 
terms of its modal parameters [i.e. the natural frequencies, modal damping factors and 
modal (eigen)vectors], which can be obtained from various experimental modal 
parameter estimation methods, widely used by the modal analysis community. The 
orthogonality criterion of the mass-normalised modal vectors is used to establish the 

transformation basis, and can be expressed as: 

(1.9) 


where 

[M L [K] and [c] are the mass, stiffness and damping matrices, respectively; 

[ <I> ] is the modal matrix; 

[I] is the identity matrix; 

[A] is the diagonal modal stiffness matrix with AT = OJ;, and OJ r the natural 

circular frequency of the r -th mode; 
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10 CHAPTER I. INTRODUCnON 

Assuming some type of proportional damping it follows that [p] is the diagonal 

modal damping matrix, and Pr 2(r COr with (r the modal damping factor ofthe r -th 

mode. 

Utilising the orthogonality criterion results in a set ofuncoupled equations of motions 

and the response can be written in the frequency domain as follows: 

(1.10) 

The physical forces acting on the system are determined by an inverse coordinate 

transformation: 

{F(CO) }= [<l> T]+ [_co 2[I ]+iCO [p ]+[A]][ <l> ] + {X(co)} (1.11) 

In the equation above, the forces are computed by transforming the operating 
response to the modal response. The modal forces are determined and then 

transformed back to the forces acting on physical coordinates of the system by an 
inverse coordinate transformation (Desanghere and Snoeys, 1985). 

The modal coordinate transformation technique might just as well be implemented in 
the time domain (Genaro and Rade, 1998). 

(1.12a) 

with 

{p(t) }= [ <l> ] + {x(t) } 

(1.12b) 

{p(t)}= [<l> ]+ {x(t) } 

where 

{p(t)}, {p(t)} and {p(t)} are the modal (generalised) acceleration, velocity 

and displacement vectors. 

The frequency response function method previously considered has two major 

drawbacks (Desanghere and Snoeys, 1985): 

);- The first is the ill-conditioned behaviour of the force estimates near and at the 
system's resonances. 

);- Secondly, the frequency response function matrix needs to be inverted at each 
frequency line and thus, increase the computational time required. 
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11 CHAPTER 1. INTRODUCTION 

Both these limitations may be avoided by using the modal coordinate transformation 

method. The singularity problems are eliminated and the modal matrix needs to be 

inverted only twice. 

Kim and Kim (1997) studied the effect of error propagation in the modal parameters 

on the force predictions. They concluded that, as was the case with the frequency 
response function technique, errors in the modal vectors are considered as the main 

source of error in the identified forces. A methodology is also proposed to recalculate 
the force estimates for inaccessible input locations. 

Despite the advantages associated with the use of the modal coordinate transformation 
technique, Okubo et al. (1985) preferred to use the frequency response function 
technique, since the former requires the extraction of the modal parameters from the 

measured frequency response function. They argued that the modal parameters might 
be in error as a result ofdifficulties experienced by curve fitting algorithms, especially 
at resonances and anti-resonances. These modal parameters may in tum be 
detrimental to force identification. Recent advances in modal parameter extraction 
methods enables one to extract the modal parameters with greater accuracy, which 
makes the modal coordinate transformation technique more attractive. 

Conversely, Desanghere and Snoeys (1985) found the method rather insensitive to 
measurement and curve-fitting perturbations. They successfully applied the modal 

coordinate transformation technique to identify the forces in a turbo compressor and a 
car-frame. 

Hansen and Strakey (1990) extended the work of Starkey and Merrill (1989) by 
considering the condition number of this method. The findings revealed that the 
condition number, of the pseudo-inversion of the modal matrix can be ameliorated 

through proper selection of the sensor locations and the modes included in the 

analysis. 

Most of the work done on modal coordinate transformation has been for the case 
where the locations of the input forces were known. The objective was then simply to 
resolve the amplitude and frequency content of these forces. Shih et al. (1989) 

proposed a method based on the modal coordinate transformation technique, where 
the number of forces, as well as the locations, is treated as unknowns. The modal 
response transformation (equation L 10) is performed through a modal filter, 
calculated from frequency response function measurements and the modal parameters, 
rather than the pseudo-inverse of the modal matrix. The rank analysis of the modal 

force matrix (equation 1.11) can be evaluated to determine the number of incoherent 

force inputs to the structure. Once the number of excitation forces is known, their 
locations can be determined by various projection methods. 
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12 CHAPTER 1. INTRODUCTION 

Genaro and Rade (1998) applied this technique on a simple numerically simulated 

structure and successfully identified harmonic and impact forces in the time domain. 

Another application consisted of a longitudinal beam of a car-frame where three 

random forces were accurately inferred (Desanghere and Snoeys, 1985). This method 

has also been demonstrated on a circular plate (Shih et aI., 1989; Zhang et al., 1990). 

Though the proposed method shows some success, the number of publications are 

limited. Accordingly it seems that further research is needed to clarify some of the 

difficulties to make the method more suitable for real-world applications. 

1.3.3 Time Domain Methods 

Since the focus of this work is primarily concerned with the assessment of force 
identification methods in the frequency domain, only some of the recent advances in 
the time domain methods will be summarised below. The time domain methods have 
the ability of exploring the transient behaviour of impulsive loads. 

a) Sum of Weighted Accelerations Technique (SWA1) 

This time domain method is the most widely known process in indirect force 

identification. As the name states, this method uses a sum of the weighted 

acceleration signals to experimentally predict the external forces, which excite the 

system. 

(1.13) 


where 

f(t) is the externally applied forces, 

Mi is the i -th equivalent mass, 

Ai (t) is the i -th measured acceleration, and 

no is the number ofacceleration measurements. 

The implementation of this method is confined to the computation of the sum of 

the external forces and moments about the center of mass of structures presenting 

free boundary conditions. The Rigid Body Modes (RBM) are explored in the 

preliminary tests to determine the optimal distribution of the weighting factors 

associated with an equivalent mass at each of the sensor locations. The weighting 

factors can be determined either from inverting the modal matrix or from the free­

decay response of the structure (Came et al., 1992). Recently, the Max-Flat 

procedure was validated as an alternative for determining the weighting factors 

from frequency response functions and avoids possible errors resulting from mode 

shape estimation (Came et al., 1998). SWAT yielded excellent results in 

experiments conducted by Gregory et al. (1986) on a mass-loaded, free-free beam. 
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13 CHAPTER 1. INTRODUC110N 

Kreitinger and Wang (1988) successfully applied this method to structures that 

exhibit non-linear behaviour. Other applications comprise of the impact force 

identification on nuclear shipping casks and energy absorbing noses (Bateman et 

aI, 1991 and Bateman et al., 1992). 

b) Inverse William's Method 

Ory et al. (1985 and 1986) analysed the reconstruction of transient loads from 

measured response-time histories on a beam. The use of an 'Inverse William's 

Method' improved the reconstructed force estimates. In the William's method, the 

response consists of a quasi-static component, which is superimposed on the 

dynamic component. The forcing functions were computed with a time-integration 
scheme. Providing that the stiffness matrix is known with sufficient accuracy, this 
matrix is combined with the measured displacements to produce the quasi-static 
forces. By extracting the quasi-static forces, the dynamic forces, which are the 

pure inertial forces pertaining to the significant modes, were reconstructed. 

c) Central Difference Method 

Among the applications is the work of Dubowski and Dobson (1985) where a 
central difference approach was applied to a cantilever structure suffering an 
impact load. The method yielded acceptable predictions of the excitation forces. 
However, in the post-shock period the method proved unstable as the force 

predictions continued to oscillate and diverged. 

d) Time Domain Deconvolution Method 

The convolution integral equation, which states the time domain relationship 
between the response of the structure and the applied forces, is given by Da Silva 
and Rade (1999) as: 

I 

{x(t)}= Hh(t-T) ]{f(t) }dT (1.14) 

where 

{ x (I) } is the (n x1) time response vector, 

{f(t)} is the (mx 1) time force vector, and 

[ h (I)] is the corresponding (n xm) Impulse Response Function (IRF) matrix. 

Deconvolution of equation (1.14) produces an estimate of the force inputs from 
the vibration response. Unfortunately, this procedure is known to be ill­
conditioned and requires the implementation of regularisation schemes to stabilise 
computations. The problem can be regularised by employing Tikhonov 
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14 CHAPTER 1. INTRODUCTION 

regularisation (Fasana and Piombo, 1996), calculation of the inverse Markov 
parameters (Kammer, 1996) or application of the conjugate gradient method (Da 

Silva and Rade, 1999). 

1.3.4 Continuous Systems 

In the case of continuous systems one needs to solve partial differential equations 

from which solutions are available for every point on the structure. However, this 

limits the applications to relatively simple structures with well-defined boundary 

conditions. Some of the applications include a Timoshenko transformation technique, 

which was used to derive remote impact force-time histories from accelerations 
measured at remote locations (Whitson, 1984 and Jordan and Whitson, 1984). In 
another case, the impulse response functions for Euler-Bernouli and Timoshenko 
beams, subjected to transverse impact forces were also investigated (park and Park, 
1994). The impulse response functions, which state the relationship between the force 
and strain, were obtained by using the wave propagation approach in the time domain. 

1.4 OUTLINE AND SCOPE OF THIS WORK 

The force identification in this work will be performed in the frequency domain. The 
advantages of using the frequency domain and the theory relating to the frequency 
response function's formulation, measurement and modal parameter extraction are 
presented in Chapter 2. 

The work presented in this dissertation can be roughly divided into three sections: 

? Formulation of the frequency response function method as applied to the force 

identification process, 
? Formulation of the modal coordinate transformation method, and 
? An experimental study performed on a beam with different boundary 

conditions to assess the performance of the above mentioned methods. 

Each section is dealt with in a separate chapter. 

Chapter 3 presents the derivation of the frequency response function method. The 
limitations regarding the use of this method is highlighted as well as presenting some 
of the regularisation methods in dealing with the inverse problem. The results of a 
numerical study of a two degree-of-freedom system and Finite Element Analysis 
(FEA) of a beam are presented. The significance of the condition number on the force 

estimates is discussed. 
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15 CHAPTER 1. LVTRODUCTION 

Chapter 4 is entirely devoted to the modal coordinate transformation method. The 

numerical studies investigate the application of the method on a two degree-of­

freedom system and the factors influencing the condition number ofthe modal matrix. 

This chapter also describes applying the modal filter to force reconstruction, which is 

validated by a numerical simulation. 

The ultimate objective of this research is to implement these methods in an 

experimental investigation on a simple well-behaved structure, given the lack of 

experimental work pertaining to especially the modal coordinate transformation 

method. The aim is to determine a single harmonic force on an aluminium beam 

subjected to different boundary conditions. The work is then extended to predict two 
point sinusoidal forces from measured acceleration signals. Strain measurements have 

also been employed and the results noted. 

In the work presented we will only focus on harmonic force inputs applied at discrete 

locations while reference is made to random forces, distributed loading and unknown 
forcing locations. 

Assumptions: 

~ The frequency response functions measured at stationary state are the same as 

those at operating conditions. 
~ Discrete force inputs at known locations. 

~ An existing structure or representative scale model is already available for the 

acquisition ofthe frequency response functions and response measurement. 
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16 CHAPTER 2. FREQUENCY DOMAIN ANALYSIS 

CHAPTER 2 


Frequency Domain Analysis 
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17 CHAPTE,R 2. FREQUENCY DOMAINANALYSIS 

2. FREQUENCY DOMAIN ANALYSIS 


The force identification techniques will be performed in the frequency domain. This 

section motivates the use of the frequency domain and highlights the related theory 

used in Fourier Transforms, as well the frequency response function's formulation, 

measurement and modal parameter extraction. 

2.1 ADVANTAGE OF USING FREQUENCY DOMAIN 

The frequency response function is one of the functions used to describe the input­
output relation in a linear system, in the frequency domain. Equation (1.3) is repeated 
as an example: 

{X(w) }= [H(w)]{F(w) } (2.1) 

where 


{X(w) } is the (n x 1) response vector, 


[H(w)] is the (nxn) frequency response function matrix, 


{F(w) } is the (n x 1) force vector. 


One important benefit, which is evident from the equation above, is that the Fourier 

Transform, transforms a convolution in the time domain, into a multiplication in the 

frequency domain (Randall, 1977). The equivalent convolution in the time domain is 
evidently a much more complicated procedure. This is one of the reasons for the great 

success of the Fourier Transform technique in signal processing. 

Dealing with stationary random excitations also benign the use of the frequency 

domain. As examples we can mention flow-induced vibration in a piping system and 

the fluctuating pressure gusts on the wing of an airplane in flight. These systems can 

only be formulated in terms of their statistical properties and can be completely 

defined by the spectral density functions. 

It may also be justifiable to mention some of the disadvantages associated with the 

frequency domain. Windowing functions need to be enforced on the time signals to 

suppress the affect of 'leakage'. Furthermore, the Auto Spectral Density (ASD) 

functions contain no phase information and are unable to capture transient phenomena 

of systems. 
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18 CHAPTER 2. FREQUENCY DOM4INANALYSIS 

2.2 DISCRETE FOURIER TRANSFORM 

The Discrete Fourier Transform (DFT) technique will be employed to transform any 

time function, x(t) into the frequency domain by use of the following equation (Broch, 

1990): 

1 N-J 

X(n) = - Lx(k) e N (2.2) 
N k~O 

where 

x(k) is a discrete series of a sampled time function x(t) , 

N is the number of sampled points, 

X(n) is the Fourier series coefficients, 

for j = 0, 1,2, ... , N ]; k = 0, 1, 2, ... , N -1 . 

Conversely, a discrete time series may be calculated from knowledge of the Fourier 

series coefficients: 
N-J 

x(k) = LX(n)e (2.3) 
j~O 

which is the Inverse of the Discrete Fourier Transform (IDFT). The DFT and IDFT 

equations are implemented in Matlab®, which uses efficient Fast Fourier Transform 

(FFT) algorithms. 

Thus, the use of DFT permits any time response to be transformed into the frequency 

domain. The force identification technique will yield the estimated forces. These 

forces may be transformed back into discrete time series, using the IDFT. The 

flowchart for this procedure is as follows: 

Measured 

Measured 

Reconstructed OR 

FIgure 2.1 - Flowchart ofa typical force identification procedure 
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19 CHAPTER 2. FREQUENCY DOMAINANALYSIS 

For more-detailed information on the discrete Fourier transform, the FFT algorithms 

or implementation of Fourier analysis in the Matlab® environment the interested 

reader is referred to the original references (Randall, 1977; Broch, 1990; McConnell, 

1992 and Matlab®, Version 5.3). 

2.3 FREQUENCY RESPONSE FUNCTION MODELLING 

The Structural Dynamics Toolbox® (Balmes, 1997) provides a framework for the 

modelling of the input/output response of a linear system. Many engineering 

structures may be considered as lightly-damped structures. That is structures for 

which the damping is small so that the low frequency response is characterised mostly 

by the mass and stiffness contributions. Consequently, a normal mode model is used. 

The eigenvalue problem ofthe normal modes may be defined as follows: 

(2.4) 


where 

[ M] and [K] are the (N x N) mass and stiffness matrices, respectively. 


{rp}, denotes (Nx1)independent eigenvectors (normal modes), 


OJ; is N independent eigenvalues (eigenfrequencies squared), and r = 1, ... , N 


where N is the number ofdegrees-of-freedom in the system. 


The solutions of the eigenvalue problem of equation (2.4) yield the following mass­

normalised modal matrix orthogonality properties: 

(2.5) 


The state space formulation of the normal mode model for the damped system, as 

expressed in terms of the principal coordinates, is as follows: 

(2.6a) 

(2.6b) 

where 

S =iOJ is the Laplace variable, 

[A] is the diagonal modal stiffness matrix (eigenfrequency squared), 

[p] is the modal damping matrix, and[p]== [<D y[c][ <D], 


[ <D Y[b ]) is the modal input matrix, 


[b] is the input shape matrix, which is time invariant and characterises the 

spatial properties of the applied forces, 
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20 CHAPTER 2. FREQUENCY DOMAINANALYSIS 

[[ c ][ cD]] is the modal output matrix, 

[c ]is the output shape matrix, which is time invariant and characterises the 

spatial properties of the sensors, 

{u }is the input vector to the system, 

{y } is the output vector ofthe system, 


{p lis the principal/modal coordinates. 


Assuming a unity modal mass matrix, the first-order state space model takes the form 

{p }} = [ [0] [1 ll{{p }} + [ [0]l{u} (2.7a){{p} - [A] - [p ~ {p} [cD nb ~ 

(2.7b) 

In the case of proportional damping, the diagonal modal damping matrix, [p], may 

be expressed in terms ofthe damping ratios p, = 2SJiJ, . 

The frequency response function is, by definition, the Fourier Transform of the 

system's response divided by the Fourier Transform of the applied force. The 

frequency response function for the linear system, which corresponds to the partial 

fraction expansion, can be written as: 

(2.8) 

where 

OJ, is the natural circular/normal mode frequencies for each mode, 

S, is the modal damping factor for each mode, and 

[ T ], is the residue matrix, which is equal to the product of the normal mode 

[ [ c ]{ ¢ }J and [{ ¢ } ~ [b ]]. 

Equation (2.8) is generally referred to as the receptance, since it gives the relation 

between the displacement and force. Usually, an alternative formulation known as 

inertance is used, which is the ratio of the acceleration to the force. This formulation 

is desired, since piezoelectric accelerometers are used for the measurement of the 

frequency response functions and responses. The inertance can be obtained simply by 

multiplying the receptance by - OJ2 , as follows: 

(2.9) 


ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



CHAPTER 2. FREQUENCY DOMAIN ANALYSIS 21 

In practice, one can measure only a limited number of modes, N , within the 

frequency range of interest. However, the contribution of the modes outside this 

frequency range is evident in the measured frequency response function, and needs to 

be accounted for when one desires to reconstruct measured frequency response 

functions. Equation (2.8) is rewritten to include the high- and low-frequency 

corrections or generally referred to as residuals. 

where 

[E] denotes the high-frequency residual, and 

[F] is the low-frequency residual. 

(2.10) 

Figure 2.2 shows a typical reconstructed frequency response function with and 

without the residual terms included. 
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Figure 2.2 - Contribution of the residual terms for a typical system 
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22 CHAPTER 2. FREQUENCY DOMAIN ANALYSIS 

2.4 	 MULTIPLE INPUT MULTIPLE OUTPUT EXCITATION 

In the case of a single input excitation, the structure is excited sequentially at each of 

the desired locations, while measuring the responses, from which columns of the 

frequency response function are obtained successively. 

Alternatively, Multiple Input Multiple Output (MIMO) excitation IS used in an 

attempt to obtain the information from several rows or columns of the frequency 

response function matrix simultaneously during a single excitation run. This does not 

only reduce the test time required, but also contributes to better estimates of the 

natural frequencies, modal damping factors and modal vectors in the case of closely 

spaced modes. A more detailed mathematical treatment of the MIMO excitation can 

be found in Maia and Silva (1997) and Zaveri (1984). 

f(t) = Input 	 x(t) = Output 

~ 

f2(t) MIMO 

Figure 2.3 - Multiple-input multiple-output model 

Consider the above MIMO system, which is excited at m input locations and whose 

response is measured at n points. The frequency response function matrix for this 

system can be written as: 

(2.11) 


where 	 Hu (w) is the frequency response function for excitation at point .i and the 

response measured at point i. 

The structure may be excited with two or more exciters simultaneously. For the sake 

of simplicity we will consider a dual-input, single-output system as shown in Figure 

2.4. 
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23 CHAPTER 2. FREQUENCY DOMAIN ANALYSIS 

[I (t) Bxl(ro ) I~2: x t) 

[2(t) 1~(ro) ~ 
Figure 2.4 - Dual-input, single-output system 

The Fourier Transform of the response X(<») is given by 

(2.12) 

where 

1';(<») and F2 (<» ) are the Fourier Transform of the inputs at points 1 and 2, 

respectively, 

N(<» ) is the noise contaminating the response . 

Assuming that averaging is employed it can be shown that 

(2 . 13 a) 

(2 .13b) 

where 

* denotes the complex conjugate. 

These equations can be expressed in terms of the auto- and cross-spectrums as: 

(2. 14a) 

(2.14b) 

Equation (2.14) can be solved for Hxl and Hx2 , i.e. 

(2 .1Sa) 
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(2.l5b) 

providing that the coherence function, r ~2 between the inputs 1'; (w) and F2 (w) is not 

equal to unity, i.e. 

When Gu =G ;1 0, r;2 0, equation (2.15) reduces to the single-input expressions 

(2. 16a) 

(2. 16b) 

As long as the inputs are uncorrelated, equation (2.15) can be used to obtain the 
frequency response functions when two inputs are acting simultaneously. The above 
analysis can be extended to apply to any arbitrary number of inputs and outputs. 

MIMO Applied To Experimental Setup: 

Despite the advantages referred to earlier, associated with the MIMO excitation the 
use of this type of excitation was motivated by the exciter-structure interaction. The 
exciter-structure interaction inherently creates difficulties, since the dynamic 
characteristics of the exciter becomes combined with those of the structure (the 
exciter adds some of its own mass, stiffness and damping to that of the structure). 
From experiments conducted on a beam-like structure Han (1998) confirmed that the 
exciter-structure interaction distorted the natural frequencies and damping values of 
the structure. In the experimental studies that follow in Chapter 5 two exciters were 
attached to the beam, in some instances. The distortion of the natural frequencies of 

the beam due to the two exciters were so severe that the frequency response functions 
obtained from single-input excitation could not be reconciled with the frequency 

response functions measured with both exciters attached. 
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2.5 EXPERIMENTAL MODAL ANALYSIS 

The aim of Experimental Modal Analysis is to construct a mathematical model of the 

structure, which will resemble the characteristics ofthe experimentally measured data. 

In the case of measured frequency response functions, one needs to curve-fit an 

expression to the measured data and thereby finding the appropriate modal parameters 

(i.e. natural frequencies, damping ratios and mode shapes). 

Reducing the frequency response function to terms involving only the modal 
parameters as in equation (2.10) leads to considerable reduction in the amount of data 

to be handled. The frequency response function may now be reconstructed for any 
frequency, simply from use of the modal parameters. Another advantage is that the 
regenerated frequency response curve is smoother than the experimentally measured 
data, which always contains noise. 

The author made extensive use of the Structural Dynamic Toolbox® (Balmes, 1997 
(1)) to identifY the modal parameters and reconstruct the frequency response 
functions. 

It is not the intention of this work to include a detailed discussion regarding the 
experimental modal analysis technique. However, the author has spent a considerable 
amount of time and effort mastering this Toolbox and gaining insight into the 
technique proposed by Balmes. Only the methodology that has been followed in the 
analysis will be discussed briefly. 

Experimental Modal Analysis Methodology: 

Step 1: 	 The measured frequency response function data is imported into the 
Toolbox, in the desired format. 

Step 2: 	 At this stage, the user needs to specifY the appropriate type of model 
that will be used in the identification. The type of model may be either 
a complex mode model or a normal mode model. An experimentally 
identified model will have complex eigenvectors. The normal mode 

model can then be obtained through the use of a transformation 
procedure, which allows the identification of the normal mode model 
(i.e. real modes) from the complex mode identification result (Balmes, 
1997 (2)). 

Step 3: 	 Next, one iteratively computes an approximation of the measured 

response. This is done in three separate procedures: 
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26 CHAP1ER2 FREQUENCYDOMMINANALYSIS 

a) 	 First, finding initial complex pole estimates. The Toolbox obtains 

estimates of the poles by searching for the minima of the 

Multivariable Mode Indicator Function (MMIF) within a frequency 

region specified by the user. Additional poles may be added or 

removed to obtain the best fit to the data. 

b) 	 Once the user is satisfied with the set of complex poles, the 

Toolbox continues to estimate the residues and residual terms for 

the given set of poles. 

c) 	 These complex poles and residues are then optimised using a broad 
or narrow band update algorithm. 

Step 4: 	 The poles, damping ratios and complex mode shapes at the sensor 

locations are extracted from the mathematical model. If the user 
requires the normal mode model the above-mentioned transformation 

will be performed and will produce the modal parameters 

corresponding to the normal mode model. 

Step 5: 	 Lastly the frequency response functions may be reconstructed from use 

of the modal parameters. 

The above procedure is depicted in Figure 2.5. 

Measured Modal Analysis Toolbox 

Raw data 

Reconstructed Extraction 

parameters 

Figure 2.5 - Flowchart ofa typical modal analysis and 

frequency response function reconstruction procedure 
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CHAPTER 3 


The Frequency Response Function Method 

ASSESSJlfElVTOF FREQUENCY DOMAIN FDRCE IDENTIFICATION PROCEDURES 

 
 
 



28 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

3.1 THEORY 

Preamble 

The intent of this section is twofold: Firstly, we will formulate the relevant theory 

relating to the frequency response function method as applied to the force 

identification process. We will start with the more familiar inverse of a square matrix 
and progress to the pseudo-inverse of a rectangular matrix. The second objective is 

concerned with the calculation of the pseudo-inverse itself There are currently a 

number of different matrix decomposition methods that are used in the calculation of 
the pseudo-inverse. It is not the intention to present a detailed mathematical 

explanation ofthe derivation ofthe pseudo-inverse, but rather to highlight some of the 
important issues. This is explained on the basis of the frequency response function 
method, but is also relevant to other force identification procedures, among others the 

modal coordinate transformation method which also features in this work. 

3.1.1 Direct Inverse 

By assuming that the number of forces to be identified and the number of responses 

are equal (m = n), the frequency response matrix becomes a square matrix and thus an 

ordinary inversion routine can be applied, as follows: 

{F(O) }= [H(O) ]-1 {X(O) } (3.l) 

The above equation suppresses many of the responses for computational purposes, 
since the number of forces is usually only a few even if the structure is very complex 
or many responses are available. 

3.1.2 Moore-Penrose Pseudo-Inverse 

Accordingly, it is proposed to use a method of least-squares regression analysis, 

which allows the use of more equations than unknowns, whence the name over­

determined. The advantage of being able to use redundant information minimises the 
consequence of errors in measured signals due to noise, which are always present. 

Adopting the least-squares method the following set of inconsistent linear equations 
are formulated: 

{X(O)}= [H(O) ]{F(O)} (3.2) 

where 


{X(w) } is the (n x 1) response vector, 


[H(O)] is the (n x m) frequency response function matrix, 


----------- .. ­- ----------~ 
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29 CHAPTER 3. FREQUENCY RESPONSE FUNCTIONMETHOD 

{F(m)} is the (mxl) force vector. 

The difference between the above equation and equation (3.1) is that here m 

unknowns (forces) are to be estimated from n equations (responses), with n 2. m . The 

least-squares solution ofequation (3.2) is given by: 

{hm) }=[H(m)]+ {X(m)} (3.3.a) 

where 

(3.3.b) 

which is known as the Moore-Penrose pseudo-inverse of the rectangular matrix 

[H(m) ]. Since the force and response vectors are always functions of the frequency, 

the functional notation (m) will be dropped in further equations. 

The least-squares solution {fr} is thus given by: 

(3.4) 


where 

[ . J' is the complex conjugate transpose ofthe indicated matrix and (.) -I is the 

inverse of a square matrix. 

Now, we would like to investigate the conditions under which the pseudo-inverse, as 

stated in equation (3.4), are valid. For this reason, we first need to consider what is 

meant by the rank ofa matrix. 

a) The Rank ofa Matrix 

The rank ofa matrix can be defined as the number of linearly independent rows or 

columns of the matrix. A square matrix is of full rank if all the rows are linearly 

independent and rank deficient if one or more rows of the matrix are a linear 

combination ofthe other rows. Rank deficiency implies that the matrix is singular, 

i.e. its determinant equals zero and its inverse cannot be calculated. An nxm 

rectangular matrix with n 2. m is said to be 'full rank' if its rank equals m, but rank 

deficient if its rank is less than m. (Maia, 1991) 

b) Limitation Regarding the Moore-Penrose Pseudo-Inverse 

It should be noted that equation (3.4) is only unique when [H] is offull column 

rank (rank([ H ])= m; m number of forces), i.e. the equations in (3.2) are linearly 

independent. Or in other words, the inverse of ([H(m)]"[H(m)])-lin equation (3.4) is 
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30 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

only feasible if all the columns and at least m rows of the (n x m) rectangular 

matrix [H] are linearly independent. 

If [H] is rank deficient (rank ([ H ]) < m ), the matrix to be inverted will be singular 

and the pseudo-inverse cannot be computed. This, however, does not mean that 

the pseudo-inverse does not exist, but merely that another method needs to be 

employed for its determination. 

Based on the above-mentioned requirement Brandon (1988) refers to the Moore­

Penrose pseudo-inverse as the 'restricted' pseudo-inverse. He investigated the use 

of the restricted pseudo-inverse method in modal analysis and only his 
conclusions will be represented here. 

}i> 	 "The most common representation of pseudo-inverse, in modal analysis is 

the full rank restricted form. This will fail if the data is rank deficient, due 
to the singularity of the product matrices. In cases where the data is full 
rank, but is poorly conditioned (common in identification problems), the 

common formulation of the restricted pseudo-inverse will worsen the 
condition unnecessarily. 

}i> 	 In applications where the rank of the data matrix is uncertain, the singular 
value decomposition gives a reliable numerical procedure, which includes 
an explicit measure ofthe rank." 

It is to be hoped that the reader will be convinced in view of the above that certain 
restrictions exist regarding the use of the Moore-Penrose pseudo-inverse. The 

Singular Value Decomposition will prove to be an alternative for calculating the 
pseudo-inverse of a matrix. 

c) 	 Further Limitation.~ Regarding the Least-Square Solution 

Up to now, it may seem possible to apply the least-squares solution to the force 

identification problem, simply by ensuring that the columns of [H] are all linearly 

independent. But this in itself introduces further complications. The number of 

significantly participating modes, as introduced by Fabunmi (1986), plays an 

important role in the linear dependency of the columns of the frequency response 
function matrix. 

The components of the forces acting on a structure are usually independent. 
Conversely, the different responses caused by each one of the forces may have 

quite similar spatial distributions. As a result, the columns of the frequency 
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31 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

response function matrix are "almost" linearly dependent, resulting in a rank 

deficient matrix. This can be circumvented by taking more measurements, or by 

moving the measurement positions along the structure. However, situations exist 

where the above action will have little effect. 

As is generally known, the response at a particular frequency will be dominated 

only by a number of significantly participating modes, p. This is particularly true 

at or near resonance. In such a situation only a limited number of columns of the 

frequency response function matrix are linearly independent, while some can be 

written as linear combinations of the dominated modes. The linear dependency 

may be disguised by measurement errors. This leads to ill-conditioning of the 

matrix, which can be prone to significant errors when inverted. 

In order to successfully implement the least-squares technique, Fabunmi (1986) 

suggests that the number of forces one attempts to predict should be less or equal 

to the significantly participating modes at some frequency (m S p). This will 

ensure that all the columns and at least m rows will be linearly independent. 

To conclude: 

~ The number of response coordinates must be at least as many as the 

number of forces. In the least-squares estimation, the response coordinates 

should considerably outnumber the estimated forces (n ~ m ). 

~ Furthermore, the selection of the response coordinates must be such as to 

ensure that at least m rows of the frequency response function matrix are 

linearly independent. If there are fewer than m independent rows, the 

estimated forces will be in error, irrespective of how many rows there are 

altogether (p ~ m). 

3.1.3 Singular Value Decomposition (SVD) 

In the force identification the number of modes that contribute to the data is not 

always precisely known. As a result the order of the data matrix may not match the 

number of modes represented in the data. Another method must then be employed to 

calculate the pseudo-inverse, for instance Singular Value Decomposition (SVD). 

It is not the intent to present a detailed mathematical explanation of the derivation of 

the SVD technique, but rather to highlight some of the important issues. The reader is 

referred to the original references for specific details (Menke, 1984; Maia, 1991; 

Brandon, 1988). 
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The SVD of an nx m matrix [H J is defined by: 

[H] [U] [2:][V]T (3.5) 

where 

[ U] is the (n x n) matrix, the columns comprise the normalised eigenvectors of 

[HHHf, 

[V] is the (mxm) matrix and the columns are composed of the eigenvectors of 

[Hf[H] , and 

[2:] is the (nxm) matrix with the singular values of [H] on its leading 

diagonal (off-diagonal elements are all zero). 

The following mathematical properties follow from the SVD: 

a) The Rank ofa Matrix 

The singular values in the matrix [2:] are arranged m decreasing order 

(0"1 > 0"2 > ... > 0"",). Thus, 

0"1 0 '\ 

[2:] 

0"2 }m n (3.6) 

0 0"", 

0 

m 

Some of these singular values may be zero. The number of non-zero singular 

values defines the rank of a matrix [2:]. However, some singular values may not 

be zero because of experimental measurements, but instead are very small 

compared to the other singular values. The significance of a particular singular 

value can be determined by expressing it as the ratio of the largest singular value 

to that particular singular value. This gives rise to the condition number. 

b) Condition Number ofMatrix 

After decomposition, the condition number,1C2 ([H]), of a matrix can be expressed 

as the ratio ofthe largest to the smaJIest singular value. 

(3.7) 
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--.. --------- --------------------- ­

If this ratio is so large that the smaller one might as well be considered zero, the 

matrix [H] is 'almost singular' and has a large condition number. This reflects an 

ill-conditioned matrix. We can establish a criterion whereby any singular value 

smaller than a tolerance value will be set to zero. This will avoid numerical 

problems, as the inverse of a small number is very large and would, falsely, 

dominate the pseudo-inverse if not excluded. By setting the singular value equal 

to zero, the rank of the matrix [H] will in turn be reduced, and in effect the 

number of force predictions allowed, as referred to in Section 3.1.2.c. 

c) Pseudo-Inverse 

Since the matrices [U] and [V] are orthogonal matrices, i.e., 

(3.8a) 

and 

(3.8b)and 

the pseudo-inverse is related to the least-squares problem, as the value of {fr } 

that minimises II [H ]{ fr} {X} 112 and can be expressed as: 

(3.9) 

Therefore, 

(3.10) 

where 

[ H] + is an (m x n) pseudo-inverse ofthe frequency response matrix, 

[V] is an (m x m) matrix containing the eigenvectors of [H ][ H ] T , 


[U]T is an (nxn) unitary matrix comprising the eigenvectors of [H]T[H], 


[L] + is an (m x n) real diagonal matrix, constituted by the inverse values of the 


non-zero singular values. 


The force estimates can then be obtained as follows: 

(3.11) 
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3.1.4 QR Decomposition 

The QR Decomposition (Dongarra et al, 1979) provides another means of 

determining the pseudo-inverse of a matrix. This method is used when the matrix is 

ill-conditioned, but not singular. 

The QR Decomposition of the (n x m) matrix [H] is given as: 

(3.12) 


where 

[Q ] is the (n x m) orthogonal matrix, and 

[R] is the (mxm) upper triangular matrix with the diagonal elements in 

descending order. 

The least-squares solution follows from the fact that 

[H]T [H]= [R ]T [Q ]T [Q][R ] (3.13) 

and taking the inverse of the triangular and well-conditioned matrix [R] it follows 

that 

(3.14) 


3.1.5 Tikhonov Regularisation 

As described earlier, the SVD deals with the inversion of an iII-conditioned matrix by 

setting the very small singular values to zero and thus, averting their contribution to 
the pseudo-inverse. In some instances the removal of the small singular values will 

still result in undesirable solutions. The Tikhonov Regularisation (Sarkar et al.? 1981; 

Hashemi and Hammond, 1996) differs from the previously mentioned procedures in 

the sense that it is not a matrix decomposition method, but rather a stable approximate 

solution to an ill-conditioned problem, and whence the name regularisation methods. 
The basic idea behind regularisation methods is to replace the unconstrained least­

squares solution by a constrained optimisation problem which would force the 

inversion problem to have a unique solution. 

The optimisation problem can be stated as the minimising of II[HkF}-{x}112 
subjected to the constraint lI[iHF}1I2 , where [I] is a suitably chosen linear operator. 
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It has been shown that this problem is equivalent to the following one 

(3.15) 


where 

p plays the role ofthe Lagrange multiplier. 

The following matrix equation is equivalent to equation (3.14): 

([ H ]* [H ]+ p2 [i J*[i]) {F} = [H]*{x} (3.16) 

leading to 

(3.17) 


3.2 TWO DEGREE-OF-FREEDOM SYSTEM 

Noise, as encountered in experimental measurements, consists of correlated and 
uncorrelated noise. The former includes. errors due to signal conditioning, 
transduction, signal processing and the interaction of the measurement system with 
the structure. The latter comprises errors arising from thermal noise in electronic 
circuits, as well as external disturbances. (Ziaei-Rad and Imregun, 1995) 

The added effect ofnoise, as encountered in experimental measurements, may further 
degrade the inversion process. This is especially true for a system with a high 
condition number, indicating an ill-conditioned matrix. As was stated previously, the 
inverse of a small number is very large and would, falsely, dominate the pseudo­
Inverse. 

There are primarily two sources oferror in the force identification process. The first is 
the noise encountered in the structure's response measurements. Another source of 
errors arises from the measured frequency response functions and the modal 
parameter extraction. Bartlett and Flannelly (1979) indicated that noise contaminating 
the frequency response measurements could create instabilities in the inversion 
process. Hillary (1983) concluded that noise in both the structure's response 
measurement and the frequency response function can affect the force estimates. 
Elliott et al. (1988) showed that the measurement noise increased the rank of the 
strain response matrix, which circumvented the force predictions. 

The measured frequency response functions can be applied directly to the force 
identification process. As an alternative, the frequency response functions can also be 

reconstructed from the modal parameters, but this approach requires that an 
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CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

experimental modal analysis be done in advance. The latter has the advantage that it 

leads to a considerable reduction in the amount of data to be stored. The curve-fitted 

frequency response functions can be seen as a way of filtering some of the unwanted 

noise from the frequency response functions. However, the reconstruction of the 

frequency response functions from the identified eigensolutions might give rise to 

difficulties in taking into account the effect of out-of-band modes in the 

reconstruction. 

To illustrate the ill-conditioning of a system near and at the resonant frequencies, 

consider the following lumped-mass system: 

~. 0.001 

~2= 0.001 

1.4212 X 105 N/m 

.N/m 

Figure 3.1 2 DOF lumped mass ~ystem 

A harmonic forcing function is used to excite each of the masses. 

.f.. (t) = 150cos( 60Jr t) .h.{t) = 100cos{ 60 Jr t) (3.18) 

It can be shown that the natural frequencies and mass-normalised mode-shapes for the 

undamped system are: 

w\ =60 Hz 0.8165 ] [<l> ]= [1.1547 (3.19) 
=120 Hz 0.5773 -0.8165w2 

The forward problem was solved to obtain the response for each degree-of-freedom 

from 

{X(w) }EXACT = [A(w) bCT {F(w) }APPLIED (3.20) 

where 

{j\w)} is the (2x 1) acceleration vector, 

[A (w)] is the (2x 2) inertance matrix, 

{ F (w) } is the (2 x 1) force vector. 
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The frequency response function was recalculated for the perturbated modal 

parameters. The inverse problem was solved subsequently to obtain the force 

estimates 

(3.25) 

where 

('"7) denotes the contaminated values. 

The relative error is given by the Force Error Norm (FEN), cj(OJ), of the forces, 

evaluated at each frequency line, and is defined as 

where 

{F(OJ) } is the actual/applied force vector, 

{ft(OJ) } is the estimated force vector, 

II· "2 is the vector 2-norm. 

Results and Discussion 

(3.26) 

Figures 3.2 and 3.3 show the ill-conditioning of equation (3.25) in the vicinity of the 
modes, where the force estimates are in error. The FEN at the first mode (Figure 3.4) 

is considerably higher than at the second mode. Since the applied forces are not in the 
vicinity of the system's resonances, they are not affected by this ill-conditioned 
behaviour and are correctly determined. 

The modes of this system are well-separated, and near and at the resonant frequencies 

the response of the system is dominated by a single mode. As Fabunmi (1986) 

concluded, the response of which content is primarily that of one mode only cannot be 

used to determine more than one force. 

In another numerical simulation of the same system, the influence of the perturbation 
of the different modal parameter on the force identification was considered. The force 

estimates were calculated for the case where a single modal parameter was polluted to 

the prescribed error level. It was concluded that the perturbation of the mode-shapes 
had the most significant effect in producing large errors in the force estimates. This 

result confirmed findings of Hillary (1983) and Okubo et al. (1985). 
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Although the frequency response function matrix is a square matrix, it is still singular 

at the resonant frequencies. This implies that the pseudo-inverse of the frequency 

response function can only be obtained by the SVD. 

Since two forces were determined from two response measurements the least-square 

solution is of no use. In practice one would include as many response measurements 

as possible to utilise the least-squares solution for the over-determined case. 

The maximum error levels were considered as realistic of what one could expect 

during vibration testing. These values were gathered from similar perturbation 

analyses performed by Hillary (1983), Genaro and Rade (1998), and Han and Wicks 
(1990). No explanations or references were provided for the error levels adopted. A 

literature survey conducted by the author concerning this issue also failed to produce 
satisfactory information. These error values proved to produce very large errors in the 
identified forces, beyond the point where the estimated forces could be meaningful. 

To conclude, the aim of this section was to prove that small errors can have adverse 
effects on the force identification at the resonant frequencies of a system. 
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Figure 3.2 - Applied and estimatedforce no. ] for the 2 DOF 

lumped-mass system in the frequency domain 
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Figure 3.3 - Applied and estimatedforce no. 2 for the 2 DOF 

lumped-mass system in the frequency domain 
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3.3 SIGNIFICANCE OF THE CONDITION NUMBER 

In the previous section the effect of noise in the force identification was introduced. 

Consequently, errors will always be present in the measurements. In this section it is 

suggested that the condition number of the frequency response function matrix serves 

as a measure of the sensitivity of the pseudo-inverse. 

Again consider the 2 DOF lumped-mass system. This time the system was subjected 

to randomly generated forces with uniform distribution on the interval [-1, 1] . The 

responses were obtained utilising the forward problem. The contaminated frequency 

response function matrix was generated through the perturbation of the modal 
parameters, as previously described. Finally, the inverse problem was solved to obtain 

the force estimates. The above procedure was repeated 100 times. In each run new 

random variables were generated. Figure 3.5 represents the average FEN, F::f(OJ) for 

these 100 runs. 

r-, 
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Figure 3.5 - A verage Foree Error Norm of estimatedforees 

for the 2 DOF lumped-mass system 

Golub and Van Loan (1989) describe the error propagation using the condition 

number, of the matrix to be inverted, as an error boundary for perturbation of linear 

systems of equations. Referring to the above case where only the frequency response 

function matrix was perturbated, errors in the calculation of {F(OJ)} will be restricted 

by 
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where 

II { F (OJ) } - {fr (OJ) }112 < K ([ H ]) 2 II [ IiH (OJ) ] 11 2 
II {F(OJ)} II 2 - 2 II[H(OJ) ]11 2 

{F(OJ) } is the actual force vector, 

{hOJ)} is the estimated force vector, 

K 2([ H]) is the condition number of [H ], 

[oH(OJ)] is the difference between the actual and perturbated [H], 

11·11 2 is the vector 2-norm. 

42 

(3.27) 

Similar expressions could be obtained for perturbation of the response, {X (OJ)} . 

Unfortunately, these expressions are of little practical use, since the actual force and 
response are unknown. 

It was suggested that the condition number of the matrix to be inverted, should be 

used as a measure of the sensitivity of the pseudo-inverse (Starkey and Merrill, 1989). 

Although the exact magnitude of the error bound of the system at a particular 

frequency remains unknown, the condition number enables one to comment on the 
reliability of the force estimates within a given frequency range. A high condition 

number indicates that the columns of the frequency response function are linearly or 

"almost" linearly dependent, i.e. rank deficient. This can result in large errors in the 
identified forces . Conversely, a condition number close to unity indicates that the 

columns of the frequency response function are almost mutually perpendicular. One 

should not expect any large amplification of the measurement noise when inverting 

the frequency response function matrix. Figure 3.6 shows the condition number of the 

frequency response function matrix for the 2 DOF lumped-mass system. From this it 

is evident that the condition number follows the same trend as the relative error in the 

force estimates given in Figure 3.5. 
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In the next half of this section we would like to investigate the factors that have an 

iniluence on the value of the condition number. A more complex structure will be 

considered for this purpose. 

A Finite Element Model (FEM) of a freely supported beam was constructed. Ten 

equally spaced beam elements were used to simulate the 2 metres long beam. The 

model was restricted to two dimensions, since only the transverse bending modes 

were of interest, for which the natural frequencies and normal modes were obtained 
solving the eigenvalue problem. The first eight bending modes were used in the 

reconstruction of the frequency response function matrix of which, the first three 

modes were the rigid body modes of the beam. A uniform damping factor of 0.001 

was chosen. Each node point was considered as a possible sensor location. 

Nodes: 

2 3 4 5 6 7 8 9 10 11 

1 1 

I. ~ I 
2m 

Cross section: 

z 
125.4 mm 

I. ~ I 

50.8 mm 

Figure 3. 7 - FEM offree-free beam and response locations 
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3.3.1 Effect of the Number of Forces 

Eleven response 'measurements' were taken and four sets of excitation forces were 

applied to the beam. These sets consisted of 1,2, 3 and 4 forces, respectively and are 

shown in Figure 3.8. 

Nodes: 

1 2 3 4 5 6 7 8 9 10 11 

Figure 3.8 - FfM offree-free beam andforce locations 

Figure 3.9 shows the condition number of the frequency response function matrix for 

each of these sets. It is evident from the results that the condition number increases 

drastically as the number of force predictions increase. The condition number for a 

single force prediction is equal to unity over the entire frequency range. If an 

additional force is added, it implies that the column corresponding the force location 

be included in the frequency response function matrix, which in tum increases the 

condition number of the matrix. The number of force predictions is, however, limited 

by the number ofmodes included in the analysis (Fabunmi, 1986). 

3.3.2 Effect of the Damping 

The effect of the damping on the condition number was evaluated next. Only three 

forces were applied, while still measuring eleven responses. From Figure 3.10 one 

notices that the condition number varies for different modal damping factors. In fact, 

as the damping factors increase, the condition number decreases, especially at the 

beam's resonances. This can be attributed to higher modal overlap due to the higher 

damping. It was mentioned earlier that at a resonant frequency the system's response 

is dominated by that particular mode. In a system with higher damping the 

neighbouring modes have a larger contribution to the response of the system at that 

frequency. 

3.3.3 Effect of the Number of Response Measurements 

Figure 3.11 shows the condition number as a function of the number of response 

measurements across the frequency range of interest. The beam is once again 

subjected to three forces while considering 3 (locations 3, 7 and 11),6 (locations 2, 3, 
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5, 7, 9 and 11) and 9 (locations 2, 3,4,5, 7, 8, 9, 10 and 11) response measurements, 
respectively. 

The results show that there is a significant improvement in the condition number by 
increasing the number of response measurements. Since there is a direct relation 

between the condition number and force error, over-determination will improve the 

force estimates as well. Adding a response measurement implies that an additional 
row, and thus a new equation, is added to the frequency response function matrix. 

Mas et al. (1994) showed that the ratio of the number of response measurements to 

the number of force predictions should preferably be greater than or equal to 3 (i.e. 

n/m 23). 

3.3.4 EtTect of the Response Type 

Both accelerometers and strain gauges have been employed by Hillary and Ewins 
(1984) to determine sinusoidal forces on a uniform cantilever beam. The strain 

responses gave more accurate force estimates, since the strain responses are more 
influenced by the higher modes at low frequencies. Han and Wicks (1990) also 
studied the application of displacement, slope and strain measurements. From both 
these studies it is evident that proper selection of the measurement type can improve 

the condition of the frequency response function matrix and hence obtain better force 
predictions. 

3.3.5 Conclusion 

It is suggested that the condition number of the frequency response function matrix 
serves as a measure of the sensitivity of the pseudo-inverse. The frequency response 
function matrix needs to be inverted at each discrete frequency, and as a result the 
condition number varies with frequency. Large condition numbers exist near and at 

the system's resonances. 

The condition number of the pseudo-inverse is a function of the number of response 
points included. The number of force predictions, system's damping, as well as the 
selection ofthe response type also influence the condition number. 
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3.4 NUMERICAL STUDY OF A FREE-FREE BEAM 

This section examines the different matrix decomposition and regularisation methods 

employed for the calculation of the pseudo-inverse. For this purpose it was decided to 

continue using the FEM of the freely supported aluminium beam, as introduced in 

Section 3.3. 

The eigenvalue problem was solved to obtain the natural frequencies and mode 

shapes. In addition to the RBM, five bending modes were in the chosen frequency 

range of 0 to 500 Hz. The natural frequencies and mode shapes were taken as the 

'exact' values. A proportional damping model was assumed with values obtained 

from the experimental modal analysis performed on a similar beam. 

The beam was then subjected to two simultaneous harmonic forces applied at 
positions 5 and 11 with forcing frequencies of 220 Hz and 140 Hz, respectively. The 
frequency content of the force signals was not determined with an FFT algorithm, 

thus presenting zero amplitude values in the frequency range except at the discrete 

forcing frequencies. 

The 'exact' response at each of the eleven sensor locations was calculated from: 

{X(01) }E.UCT = [A(01) bCT {F(01) }APPLIED (3.28) 

where 


{x (01) } is the (11 xl) acceleration vector, 


[A(01)] is the (11 x 2) inertance matrix, 


{F(01)} is the (2 x 1) force vector. 


The [A(01)] matrix was constructed from the RBM and five bending modes, while 

omitting the residual terms. The response and modal parameters were perturbated, as 

described in Section 3.2, to resemble experimental data. Successively, the force 

identification problem was solved while including only six response locations 

(positions 1,3,5,6,9 and 11) in the analysis. 

(3.29) 


where 

(",:,) denotes the contaminated values. 

Figure 3 .12 shows the effect of the perturbation analysis on the reconstructed 

inertance matrix lA(01) j. 
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Each of the previously explained pseudo-inverse methods was employed to evaluate 
their ability to correctly determine the two harmonic forces. 

A major difficulty associated with the Tikhonov regularisation is the choice of the 

regularisation parameter f.i (Da Silva and Rade, 1999). The value of this parameter 

was obtained from using the L-curve (Hansen and O'Leary, 1991). The L-curve is a 

plot of the semi-norm II [i ]{fr }II, as a function of the residual norm II [H J{fr }- {x }II 
for various values of f.i . The comer of the L-curve is identified and the corresponding 

regularisation parameter f.i is returned. This procedure has to be performed at each 

discrete frequency line and a result is computationally very expensive. 

The results of the analysis are presented in Table 3.2. Only, the Tikhonov 
regularisation failed to predict the two forces correctly. This constraint optimisation 

algorithm identified the force applied at position 11 correctly, but calculated a 
significant force amplitude with the same frequency content as the force applied at 
node 11 at the other force location, position 5. Furthermore, it also under-estimated 

the force at node 5. Increasing the number of response locations had no improvement 
on the result. 

Table 3.2 - Force results o/the different matrix decomposition 

and regularisation methods 

1p;1[N] IFzl [N] 

Applied 
Force amplitudes 

10.000 
0 

0 
23.000 

Singular Value Decomposition 
QR Decomposition 
Moore-Penrose 

Tikhonov Regularisation 

9.338 
9.338 
9.338 

5.2139 

21.432 

21.432 
21.432 
19.512 

Next, the author evaluated the force identification process for the entire frequency 

range. In this case, the frequency content of the harmonic force time signals was 
determined with an FFT -algorithm, thus presenting non-zero values in the frequency 
range considered. Figure 3.13 illustrates the ill-conditioning of the force estimates at 

the resonant frequencies of the beam. The ill-conditioning in this particular case is a 
result of the perturbation analysis, the FEM approximations and the FFT -algorithms. 
Changing the excitation points on the beam produced the same trends. Once again the 

Tikhonov regularisation produced poorer results than the other methods. The Singular 
Value Decomposition, QR Decomposition and Moore-Penrose pseudo-inverse 
produced exactly the same results. 
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In view of the above-mentioned the author decided to use the SVD from here onwards 

for the calculation of the pseudo-inverse matrix. The motivation being the ease of the 

implementation of this algorithm in the Matlab @ environment. Another advantage of 

the SVD is the ability to ascertain the rank of a matrix and to truncate the singular 

values accordingly. 
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CHAPTER 4 


The Modal Coordinate Transformation Method 
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4.1 THEORY 

Preamble 

This chapter is devoted entirely to the modal coordinate transformation method (Kim 

and Kim, 1997; Desangehere and Snoeys, 1985). A detailed derivation of the modal 

coordinate transformation method is presented. The numerical studies investigate the 

application of the method on a two degree-of-freedom system and the factors 

influencing the condition number of the modal matrix. This chapter also describes 

applying the modal filter to force reconstruction, which is validated by a numerical 
simulation. 

For a proportionally damped multi-degree-of-freedom system, with N degrees of 
freedom, the governing equations of motion can be written in matrix form as: 

[M ](x(t)}+ [c ](x(t)}+ [K ](x(t)} = {f(t)} (4.1) 

where 

[M], [K] and [c] are the (N x N) mass, stiffness and damping matrices, 

respectively, 

{x(t) }, {x(t)} and {x(t)} are the (N x 1) acceleration, velocity and displacement 

vectors, respectively, and 

{f(t)} is the (Nxl) applied force vector. 

The eigenvalue problem for the conservative (undamped) structure is written as: 

[ K ][ ~ ] = [ M ][ <I> ][A ] (4.2) 

where 

[<I> ]= [{; 1,{;}2 , ... , {; }NY is the modal matrix, consisting of N modal vectors, 

[A]= diag{~ ,~, ... ,Aw} is the modal stiffness matrix and Ar =w; for r I,N 

Substitute the following coordinate transformation into equation (4.1) 

{x(t) } = [ <I> ]{p(t) } (4.3) 

and pre-multiplying the resulting equation by [<I> Y yields 

(4.4) 


where 

[M], [if] and [c] are the modal mass, stiffness and damping matrices, 

respectively. 
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For a mass-normalised modal matrix it follows that 

(4.5) 

[<I> y[C][<I> ]=[p] 

where 

[p]= diag{PI ,P2 "",PN } is the modal damping matrix and Pr 2t;rcor' 

t;r is the modal damping factor for the r -th mode. 

It will be assumed that the following relation holds: 

(4.6) 

Satisfying this condition, the damped system will possess the same mode shapes as its 

undamped counterpart. Thus, the eigenvectors will be real and equation (4.4) will 

contain N uncoupled system equations. 

Transforming equation (4.4) to the frequency domain and using equation (4.5), it 

follows for steady state conditions that 

(4.7) 

where 

{p(co)} denotes the Fourier Transform of the modal coordinates ( {p } refers to 

the modal coordinates as a function of time), 

Rearranging equation (4.7) it follows 

{P(co) }= [_co2[I ]+ico[p ]+ [A ]]-1 [<I> ]T {F(co) } (4.8) 

Introducing equation (4.8) back into equation (4.3) in the frequency domain results in: 

(4.9) 

Equation (4.9) can be represented in a more familiar form, as the frequency response 

function 

(4.10) 


where 

{¢ L is the (N x 1) modal vector corresponding to the measurement points, 
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{~ }, is the (N x 1) modal vector corresponding to the excitation points. 

In real-world applications the mode shapes are usually identified at n (n < N) sensor 

locations while only p (p < N) of all possible modes are included. If the number of 

forces, m and positions are known a priori, equation (4.10) reduces to 

(4.11) 


where 

{; t is the (n x 1) modal vector corresponding to the measurement points, 

{J}, is the (m x 1) modal vector corresponding to the excitation points. 

Emp loying matrix notation, equation (4.11) can be rewritten as 

{X(m)}= [<l> ] [S(m)] lq, Jr {F(m)} (4.12) 

where 

[S(m)] is an (px p) diagonal matrix having the following terms on the 

diagonal: 

1 

+i21;,m,m 

4.1.1 The Modal Coordinate Transformation Methodology: 

The modal coordinate transformation method uses equation (4.12) to identify the 

input forces. This method comprises the following steps (Desanghere and Snoeys, 
1985): 

Step 1: Computation of the modal responses. 

Successive integration of the measured acceleration signals to obtain 

the displacements. The displacements at the physical coordinates are 
transformed to the modal coordinates by multiplying the displacements 

with the pseudo-inverse of the modal matrix. 

(4.13) 


where 

{P(m)} is a (pxl) vector and denotes the Fourier Transform of 

the modal coordinates ( {p } refers to the modal coordinates as a 

function oftime), 
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Step 2: 

Step 3: 

[ <l> ] + denotes the pseudo-inverse of the (n x p) modal matrix, 


and 


{X{m)} is the (n x 1) physical response vector at the sensor 


locations. 


Computation of the modal forces. 

{Fm(m)}= [S(m) ]-' {P(m)} (4.14) 

where 

{Fm (m)} is the (p x 1) modal force vector. 

Computation of the physical forces 

(4.15) 


where 

{F{m) } is the (m x 1) input force vector, and 

[ <l> T ] + indicates the pseudo-inverse of [<l> ] T • 

The least-squares estimation of the pseudo-inverse is used twice in the modal force 

identification. These pseudo-inverse matrices can be calculated using any of the 

methods previously described in Section 3.1. 

The above procedure can be summarised in a single equation as: 

{hm) }= [<l> T]+ [S(m) ]-' [<l> ]+ {X(m)} (4.16) 

4.1.2 Limitations Regarding the Modal Coordinate Transformation 

Since the over-determined case is the most common in engineering problems, the 

same approach will be followed in force identification. This means that the pseudo­

inverse is obtained by normal least -squares solutions while avoiding minimum norm 

solutions associated with the under-determined case. Consider the direct problem of 

equation (4.15) as 

The number of responses, n, generally exceeds the number of modes, p, resulting in 

a rectangular modal matrix. Thus, solving the forces at the physical coordinates from 

knowledge of the modal forces, equation (4.16) is under-determined (i.e. more 

unknowns than data). If the number and positions of the forces are known a priori, the 
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rows of [<I> ] which correspond to these forces are grouped into the (m x p) matrix [e], 
while eliminating the positions from the force vector, {F(w)}, at which forces will be 

constrained to act, making it an (m x1) vector. In this case, the solution for {F(w)} 

becomes over-determined (i.e. more data than unknowns). 

Thus, to obtain a least-squares solution, it is required that n 2: p 2: m be satisfied, i.e. 

the number of response measurements should exceed or be equal to the number of 
modes, which in tum should be greater than or equal to the number of forces 

estimated. 

4.2 TWO DEGREE-OF-FREEDOM SYSTEM 

In this section the modal coordinate transformation technique is implemented on a 
simple 2 DOF lumped-mass system. Once again the system's response and modal 
parameters will be subjected to perturbation in order to simulate experimental 
measurements. It will be shown that the modal coordinate transformation technique 
does not suffer from the ill-conditioning of the force estimates at the system's 
resonance due to the matrix inversion, as was encountered for the frequency response 
function technique. 

There are primarily two sources of error present in the modal coordinate 
transformation technique. These are the noise encountered in the structure's response 
measurements and the modal parameter extraction. Errors in the modal parameters 
will propagate to the identified forces through the double pseudo-inverse of the modal 
matrix. Kim and Kim (1997) studied the error propagation and found that for a lightly 
damped structure, errors in the damping values induce fewer error in the force 
identification than errors in the natural frequencies. Errors in the modal vectors were 
considered to have the most adverse effect on force predictions. Desanghere and 
Snoeys (1985) considered the modal coordinate transformation technique rather 
insensitive to measurement and curve-fitting perturbations. They claim that the 
precision of the identified forces were almost constant over the frequency range 
covered by the modes included in the analysis, regardless of the system's resonances. 
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Consider the following lumped-mass system. 

m l = 0.5 kg k J = 1.4212 X 105 N/m Sl = 0.001 

m2=1.0kg k2= 2k J N/m S2 = 0.001 

Figure 4.1 - 2 DOF lumped-mass system 

Once again, a harmonic forcing function is used to excite each of the masses. 

/ ; (t) =150 cos( 60 n- t) 12 (/) = IOOcos(60n-t) (4.17) 

The response for each degree-of-freedom was solved analytically. 


Perturbation of the natural frequencies, modal damping factors, mode-shapes and 


accelerations was conducted similar to that described in Section 3.2, for the frequency 


response function method. The same maximum error levels were used as before. 


The contaminated modal parameters and responses were used to solve the forces . 


Results an d Discussion 

This technique was successfully implemented to identify the two harmonic forces 

applied to the 2 DOF lumped-mass system. 

It is evident from Figures 4.2, 4.3 and 4.4 that the modal coordinate transformation 

technique does not suffer from the ill-conditioning of the force estimates at the 

system 's resonance due to the inversion of the modal matrix. Figure 4.2 shows the 

force magnitudes as a function of the frequency. 

Although it is general practice to take acceleration measurements, the formulation of 

the modal coordinate transformation method, as expressed by equation (4.16), uses 

displacements . The successive integration of the accelerations to displacements will 

amplify the errors in the low frequency range. This type of behaviour is evident in 

Figures 4.3 and 4.4 where the small numerical errors from the perturbation and the 

DFT are amplified prior to the excitation frequency . 
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The Moore-Penrose pseudo-inverse method was used to determine the pseudo-inverse 

of the modal matrix, since the columns of the modal matrix represent the individual 

mode-shapes and are orthogonal with respect to each other. 

The FEN is depicted in Figure 4.5. The FEN is initially high in the low-frequency 

range, for the above-mentioned explanation, but decreases rapidly as it approaches the 

excitation frequency. At the excitation frequency the force estimates are in good 

agreement with the applied forces and the FEN reaches a minimum value. From here 

onward the FEN increases steadily, as the force estimates deviate from the applied 

forces. 
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Figure 4.2 - Applied and estimatedforce magnitudes for 

the 2 DOF lumped-mass system in the frequency domain 
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Figure 4.5 - Force Error Norm (FEN) o/the estimated/orees, 


V indicates the 2 DOF systems' resonant frequencies 


In view of the above numerical simulation we would like to comment on some of the 

advantages and disadvantages regarding the use of the modal coordinate 

transformation technique in general. 

Advantages of Modal Coordinate Transformation 

This technique requires that the pseudo-inverse be calculated only twice, regardless of 

the number of discrete frequencies included in the analysis. This reduces the 

computational time required to analyse large systems (Kim and Kim, 1997). 

The points on a structure where the actual forces are applied may be inaccessible. 

Another point can then be artificially excited to extract the modal parameters while 

measuring the responses at the actual input locations. The force estimates at the 

inaccessible points can then be determined based on the reciprocity theorem (Kim and 

Kim, 1997). 
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Disadvantages of Modal Coordinate Transformation 

The modal coordinate transformation technique requires a good set of modal 
parameters. This may prove hard to obtain for a complex structure. 

Another disadvantage is that the estimated forces are limited to the frequency range 

based on the modes selected for the modal transformation (Shih et al., 1989). 

4.3 SIGNIFICANCE OF THE CONDITION NUMBER 

As mentioned earlier, the definition of the condition number for a rectangular matrix 
can be stated as: 

(4.18) 


where 

a ([A]) is the singular value of the matrix [A]. 

From equations (4.13) and (4.15) it is apparent that the modal coordinate 

transformation method only requires the pseudo-inverse of the modal matrix, [c;J)] and 

[c;J) f . The condition number ofthis technique will, thus be bounded by the product of 

the condition number ofthe individual pseudo-inverses. 

(4.19) 


A large condition number will indicate an ill-conditioned system, i.e. a system that is 
prone to significant errors in the force estimates when inverted. The source of this ill­

conditioning lies in the pseudo-inverse of [c;J)] and [c;J)] T It is also important to note • 

from equation (4.19), that the condition number remains constant for the entire 

frequency range of interest. 

Hansen and Starkey (1990) extended the work of Starkey and Merrill (1989) by 

considering the condition of the modal coordinate transformation technique. They 
established a criterion for which some types of systems are ill-conditioned while 
others are not. Based on the fact that there is a close relationship between the singular 

values of a matrix [A] and the eigenvalues of ([A Y[A]), they concluded that the 

condition number of the pseudo-inverse will be a function of the set of sensor 

locations, as well as ofwhich modes are included. 
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The same FEM, as described in detail in Section 3.3, was used to investigate the 

factors that contribute to the condition number of the modal coordinate transformation 

technique. 

Nodes: 

2 3 4 S 6 7 8 9 10 11 

1 1 

I. . 1 
2m 

Cross-section: 

z 
12s.4mm 

I. .1 
SO.8mm 

Figure 4.6 - FEM C?f free-jree beam and response locations 

4.3.1 Effect of the Response Selection 

Firstly, we investigated how the different combinations of response locations 

influenced the condition number of the modal matrix. Three sets of response 

measurements were chosen, each consisting of four response locations. The first five 

bending modes were included in the analysis, while disregarding the rigid body 

modes. From the results in Table 4.1 we can conclude that the choice of response 

locations included in the modal matrix, can greatly affect the condition of the pseudo­
inverse and subsequently influence the force predictions. 

Table 4.1 - Effect of different response sets on the condition number 

Sets of response points Condition Number 

(8, 5, 6, 11) 3.05 

(1, 7,4, 10) 18.88 

(1,2,3,4) 23.00 

For a real-world structure involving a large number of sensors, selecting the 

appropriate response set that corresponds to the lowest condition number, from all 

possible sensor locations may prove to be a formidable task. In order to choose r 

sensor locations out of a possible n, we would need to evaluate 

n! 
(4.20) 

r! (n -r)! 
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combinations in search for the optimal modal matrix. Therefore, to choose 4 sensor 

locations out of a possible 11 for the above FEM example, 330 combinations must be 

evaluated, which is not practical. 

Kammer (1990) introduced the effective independent algorithm that measures how 

each sensor location contributes to the rank: of the modal matrix. Shelley et al. (1991) 

found this algorithm to be both effective and computationally efficient in selecting 

sensor locations in the application ofmodal filters. 

Kammer's algorithm is supported in the Structural Dynamics Toolbox®(Balmes, 1997) 

and is accessed using the fe sens function. This function sorts the selected sensor 

locations contained in the vector sdof, from most too least important. Applying this 

function to the FEM the following result was obtained: 

sdo f= [ 8; 5 ; 6; 11; 1; 7; 4; 10; 2; 3 ; 9] 

The first four digits in sdof correspond to the first response set in Table 4.1. It can be 

seen that this response set produced the lowest condition for the particular choice of 

modes. Important to note is that Krammer's algorithm is dependent on the modes 

included in the analysis. Reducing the number of modes to include only the first four 
bending modes will result in a different set ofsensor locations, as shown below: 

sdof=[l1; 7; 5; 1; 6; 4; 9; 3; 8; 2; 10] 

Similar to the frequency response function technique, the inclusion of more response 

measurements will reduce the condition number ofthe modal matrix. 

4.3.2 The Effect of the Number of Modes 

The effect of the number of modes included in the modal matrix was considered next. 

The same combinations of response measurements were considered as before, but 

with different ranges of modes included. Table 4.2 shows the condition number for 

each of these cases. 

Table 4.2 - Effect qfdifferent modes on the condition number 

Response points Modes 1-5 Modes 2-5 Modes 1-4 Modes 2-4 

(8,5,6,11) 

(1,7,4,10) 

(1,2,3,4) 

3.05 

18.88 

23.00 

4.85 

20.37 

46.79 

22.37 

20.09 

98.12 

3.49 

17.12 

14.49 
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The result shows that the modes included or excluded from the modal matrix can 

influence the condition number significantly. In general the condition number is 

smaller when more modes are included, than when fewer modes are used. 

These results confirm Hansen's findings. 

4.3.3 Conclusion 

The modal coordinate transformation technique is generally well-conditioned, as long 

as a convenient set of sensor locations is chosen. Care should be taken during the 

selection of the response measurements and number of modes included to ensure the 
lowest possible condition number for the calculation of the pseudo-inverse. 

4.4 MODAL FILTERS 

4.4.1 Preamble 

This section describes applying modal filters to the force identification process. First, 

modal filters are described and discussed. The modal filter is then applied to the 
modal coordinate transformation technique, which is validated by a numerical 
simulation. 

The modal filter was originally introduced to deal with the spillover problem in the 
control of distributed-parameter systems (Meirovitch and Baron, 1983), but has 

recently been extended to include other applications in vibration analysis. These 
include active vibration control (Meirovitch and Baruh, 1985), correlation between 
analytical and experimental models, vibration force identification (Zhang et al., 1990) 

and on-line parameter estimation (Shelley et aI., 1992). 

A modal filter works on the basis that it transforms the physical response coordinates 
to the modal coordinates and may be performed in either the time or frequency 

domain. For instance, by multiplying the measured response vector, {x}, by the 

modal filter matrix, [VI Y, the physical response vector is uncoupled into a vector of 

the single-degree-of-freedom modal coordinates responses, {p}. 

{P}=[VlY{X} (4.21) 

The first step in the force identification by means of the modal coordinate 

transformation method requires the computation of the modal responses. This is done 

by multiplying the measured displacement vector with the pseudo-inverse of the 

modal matrix. 
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{P(w)}= [<lJ J+ {X(w)} (4.22) 

In equation (4.22) the pseudo-inverse of the modal matrix performs in essence the role 

of the modal filter as described in equation (4.21). A problem with this approach is 

that complete and accurate estimations of all the modal vectors in the frequency range 

of interest are required. Furthermore, it is assumed that for an undamped or 

proportionally damped system the modal vectors are orthogonal with respect to the 

physical mass matrix, which is analytically imposed but may be violated during the 

parameter extraction process. If a particular modal vector contains errors this will 

propagate to all of the modal vectors through calculation of the pseudo-inverse. 

The Reciprocal Modal Vector (RMV) can be employed as an alternative method for 
calculating the modal filter of a system. The reciprocal modal vectors are defined to 
be orthogonal to the modal vectors and are calculated from measured frequency 
response functions and modal parameters. The modal filter estimate for a given mode 

is not affected by errors associated with other modes. 

4.4.2 Formulation 

A brief description of the formulation of the reciprocal modal vector method follow 
(Zhang et aI., 1990). Specific details regarding the derivation of RMV and other 

modal filters can be found in Zhang et al. (1989); Shelley and Allemang (1992) and 
He and Irnregun (1995). 

The frequency response function was previously derived 10 terms of modal 
parameters as 

(4.23) 


In the above equation the orthogonality criterion of the modal vectors is used to 
perform the transformation from the physical to the modal coordinates. Thus, for 

mass-normalised modal vectors it follows that 

(4.24) 


where 

Oij is the Kronecker delta function, and oij is equal to zero for i"* j and is equal 

to 1 for i = j. 
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Since the physical mass matrix is usually not available in practice, this orthogonality 

criterion can be restated as: 

(4.25) 


where 

{I{/}~ is the reciprocal modal vector, corresponding to mode i . 

The reciprocal modal vector is defined as the product of the transposed modal vector 

and the mass matrix: 

(4.26) 


Zhang et at. (1990) constructed the reciprocal modal vector of a particular mode, 

using mode vectors, eigenvalues and frequency response functions. If the p -th 

column of the frequency response function matrix may be expressed as 

(4.27) 


where 

.l r and {~}r are the r -th complex eigenvalue and the associated modal vector, 

Q r is the modal scaling factor, and 

* denotes the complex conjugate. 

PremuItiplying the reciprocal modal vector and rearranging the expression Zhang 

produced the following results: 

(4.28) 


Equation (4.28) may be evaluated at a sufficient number of discrete frequencies to 

form an over-determined problem, which may be solved for {I{/} in a least-squares r 

manner. The resulting reciprocal modal vector will be orthogonal to the modal vectors 
within this frequency range. 

The minimum number of sensors required to calculate the modal filter should be 

equal to or greater than the number ofmodes in the frequency range of interest. 

The modal filter calculated from use of the reciprocal modal vector will replace the 

pseudo-inverse of the modal vector in the first step ofthe force identification process. 
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4.4.3 Seven Degree-or-Freedom System 

A numerical simulation involving a seven DOF system, with non-proportional 

damping, is employed to illustrate the effectiveness of the proposed method. Although 

the formulation of the modal coordinate transformation method was developed based 

on the hypothesis of proportional damping, this simulation shows that for lightly 

damped structures the non-proportional damping model does not lead to significant 

errors in the force estimates. 

k8 
f2 

k9 
m7 

C8 C9 
k7 

m6 

C7 
m5 

Cs 

Figure 4.7- 7 DOF lumped-mass system 

Table 4.3 Properties afthe 7 DOF lumped-mass system 

Mass Stiffness Modal damping Natural frequencies 

[kg] [N/m] factors [Hz] 

ml=3.0 kJ=5 .0 x 106 2.5 X 10-3 68.02 

m2=2.0 k2=2.0 X 106 1.0 X 10-3 135.56 

m3=1.0 k3=1.0 x 106 3.0 X 10-3 173.55 

m4=2.0 ~=2.0 x 106 2.0 X 10-3 212.86 

ms=1.5 ks=1.0 X 106 0.0 X 10-3 250.10 

m6=2.0 ~=1.5 x 106 5.0 X 10-3 316.76 

m7=1.0 k7=2.0 x 106 1.0 X 10-3 335.16 

- k8=2.0 x 106 - -

The system's natural frequencies and corresponding modal vectors were determined. 

The modal vectors were contaminated with uniformly distributed random errors with 

a maximum error level of 10 %, to simulate experimentally obtained data. This was 

done in accordance with the error model described in Section 3.2. These contaminated 

modal vectors will then be used to calculate the modal filter and the force estimates 

by means of the modal coordinate transformation method. 
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The modal filter was calculated as follows: 

Columns 2 and 6 of the frequency response function matrix were constructed at 15 

discrete frequencies, distributed equally throughout the frequency range and depicted 

as circles in Figure 4.8. These values, as well as the modal parameters of the mode of 

interest, were substituted into equation (4.28), from which the reciprocal modal vector 

was solved. This procedure was repeated for all seven modes. Each reciprocal modal 

vector represented a column of the modal filter matrix. 
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Figure 4.8- Receptance, a 12 (w ) and discrete frequency 

points used in modalftiter construction 

The validity of the modal filter can be checked based on the orthogonality criterion 

stated in equation (4.25). This equation can be rewritten in matrix notation as: 

(4.29) 

Substituting the previously obtained modal filter and modal matrix into the above 

equation, the following matrix was obtained: 
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0.999 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.994 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.977 0.001 0.0 0.0 0.0 

[<I>Y[V/]= 0.0 0.003 -0.004 0.989 0.0 0.0 0.0 

0.0 0.001 -0.002 0.003 l.0 0.0 0.0 

- 0.003 0.0 0.004 -0.002 0.0 0.988 0.0 

0.005 0.003 0.0 0.003 0.0 0.004 l.0 

This matrix differs from the expected identity matrix due to the contaminated modal 

vectors included in the calculation of the reciprocal modal vectors and the modal 

truncation errors caused by the limited frequency range. However, it can be seen that 

the dominant values are still situated on the diagonal and are very close to unity. 

The seven DOF-system was subjected to two harmonic forces with the same 

excitation frequency, acting on masses 1 and 6, respectively. The modal coordinate 

transformation method was used to calculate the force estimates, with the exception 

that the reciprocal modal vector was used for the modal coordinate transformation, 

rather than the pseudo-inverse of the modal matrix. 

As can be seen from Figures 4.9 and 4.10, the estimated forces correspond well with 

the actual forces . 

To conclude: 

The modal filter, calculated from use of the reciprocal modal vector, might replace the 

pseudo-inverse of the modal vector in the first step ofthe force identification process. 

Since the reciprocal modal vector method only requires the frequency response 

function matrix and modal parameters for only the mode of interest, the modal filter 

estimate for a given mode is not affected by errors associated with other modes. 
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Figure 4.9 - Applied and estimated forces in the frequency domain 
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Figure 4.10 - Applied and estimated forces in the time domain 
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CHAPTER 5. EXPERIMENTAL STUDIES 

CHAPTERS 

Experimental Studies 

"In many respects the practice of vibration 

testing is more of an art than a science." 
Maia et al. (1997) 
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5. EXPERIMENTAL STUDIES 

The majority of the effort will be devoted to the determination of harmonic forces, 

since all other forms of excitation, be they transient, periodic or random, may be 

represented as a Fourier series. The likelihood of being able to determine these forces 

will depend on the success obtained for the harmonic case. The first part of each 

section describes the experimental setup, which is followed by the issues relating to 

the measurement process and finally concludes with the results and conclusions 

drawn from the study. 

5.1 SINGLE HARMONIC FORCE: FREE-FREE BEAM 

This section presents the first attempt to apply the previously derived theory to 

determine a single harmonic force on a free-free beam. 

5.1.1 Details of the Experimental Set-up 

The test piece consisted of an aluminium beam with the same geometrical dimensions 

as the beam considered in the FEA. The beam was discretised with eleven equally 

spaced node points, each constituted a potential sensor location, as depicted in Figure 
5.1. 

Sensor locations: 

2 3 4 5 6 7 8 9 10 11 

1 1 1 

I. .1 
2m 

Cross-section: 

50.8mm 

Figure 5.1 - Free-free aluminum beam and response locations 

The beam was suspended on very soft elastic bands to approximate free-free boundary 

conditions. This type of suspension causes the theoretical 0 Hz Rigid Body Modes 

(RBM) to shift to slightly higher frequencies. Different lengths of elastic band and 

different points of attachment to the structure were considered to ensure that the 

suspension did not influence the beam's dynamic characteristics. The beam was 

excited in the y-direction through the use of an electromagnetic exciter/shaker. A 

stinger was used to connect the shaker to the force transducer that was mounted on the 
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beam. Piezoelectric accelerometers were attached at the sensor locations with 

beeswax. 

The layout of the measurement system is shown in Figure 5.2, the core of which is the 

DSPT ™ Siglab 24-40. This piece of equipment performs the role of a signal 

generator, as well as a data acquisition and processing mechanism and can easily be 

controlled with a mini-computer. Details of the other components of the measurement 

system and their calibration can be found in Appendix A. 

PC Siglab Power amplifier 

D 
DOD 

Accelerometer 
o [L] 

o /-4--+--Structure 
o 0 

Force transducer 

[L] 
Q) 

o 0 
o 0 

Conditioning 

amplifiers 
Exciter 

Figure 5.2 - Measurement system used for the ident!fication 

C?i a single harmonic force 

5.1.2 The Measurements 

The test was conducted to cover the chosen range of frequencies from 0 Hz to 500 Hz, 

which included the first five bending modes. The excitation was applied at position 

11, while measuring at 11 response locations with a single roving accelerometer. The 

excitation point was chosen since it is the only point that properly excites all the 

modes in the direction of excitation. The accelerometer was small enough so that its 
inertia loading on the beam was considered negligible. 

Inertance frequency response functions were measured for each of the response 
locations. A lot of time was spent to ensure proper definition of the resonance peaks 

and anti-resonances. This resulted in changing the excitation point and considering 

different stinger configurations. 
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Another factor that influenced the quality of the resonance peaks was the excitation 

function used in determining the frequency response functions . At first a true random 

signal was used to excite the structure. The true random excitation violates the 

periodicity requirement of the FFT process, since neither the force nor the response is 

periodic within the measurement time. This results in an error known as 'leakage'. 

The effect of leakage can be reduced by applying a 'window' (typically a Hanning 

window), but not completely eliminated. The frequency response function is 

computed by dividing the output spectrum by the input spectrum, and since each 

spectrum is different, the effect of the convolution (see Section 2.1) does not divide or 

ratio out. Especially, the peak values in the frequency response function 

measurements will be influenced by leakage most heavily, and may appear blunt and 
poorly defined. Furthermore, the coherence function is not unity at the resonances and 
anti-resonances. Hence, the structure will appear to be more damped than what is 

actually the case. This is particularly true for lightly damped structures. (Olsen, 1984 
and Avitabile, 1999) 

In view of the above-mentioned difficulties associated with the true random signal, 

the chirp-sine function, or swept sine burst, was used instead. This signal satisfies the 
periodicity requirement and will not experience the 'leakage' phenomenon. The peaks 

on the frequency response function were much sharper and better defined. There was 

also an improvement in the coherence function. 

The frequency response function is, by definition, the Fourier transform of the 
system's response divided by the Fourier Transform of the applied force. This relation 

is only valid if the system is assumed to behave linearly. A linear system will also 

obey Maxwell's reciprocity theorem, which will yield symmetric mass, stiffness, 
damping and frequency response function matrices. Since the frequency response 

function matrix is symmetric, it is theoretically at least possible to determine the 
entire matrix by simply considering one column (or row) of the frequency response 

function. To check the reliability of the frequency response function measurements, a 

second column of the inertance matrix was measured by exciting position seven. 
Figure 5.3 illustrates the reciprocity check for the beam structure and confirms that 

the beam behaves linearly. 
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Figure 5.3 - Reciprocity check o!frequency response functions 

for the aluminium beam 

The point inertance of the measured frequency response function is presented in 

Figure 5.4 (the entire set being represented in Appendix B) and exhibits the expected 

anti-resonance after each resonance. 

The beam was then excited with a harmonic forcing function of a 100 Hz. The applied 

force was measured directly with the force transducer for comparison with the force 
predictions. The Auto Spectral Densities (ASD) of the acceleration signals 

corresponding to each sensor location were also measured taking 30 frequency 

domain averages. 
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Figure 5.4 - Measured point inertance (position 11)/or the free-jree beam. 

5.1.3 Force Determination Results 

a) Frequency Response Function Method 

From the measured frequency response functions it is evident that the noise is 

particularly acute at the anti-resonances. In these regions the response signal 

tends to become very small and is susceptible to pollution and noise. It was 

decided to 'smooth' the frequency response functions by performing the 

experimental modal analysis given in Section 2.3. The RBM were excluded 

from the analysis, since they were not properly excited and were below the 

frequency range of the accelerometer and exciter used in the analysis. The 

point inertance of the measured frequency response function data and the 

reconstructed nonnal mode model (residual terms included) are presented in 

Figure 5.5 (the entire set and modal parameters being represented in Appendix 

B). 
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Figure 5.5 - Measured and reconstructed pOint inertance (position 11) 

for the free-free beam. 

Having measured the frequency response function matrix and the accelerations 

due to the applied force, the force could be determined from 

(5.1) 

Only four sensor locations were included in the calculations, these being 

positions 6, 8, 9 and 11. SVD was used to calculate the pseudo-inverse of the 

reconstructed frequency response function matrix. The force estimates are 

shown in Figure 5.6 where they may be compared with the directly measured 

force. Since we only measured the ASD of the force and responses the tenns 

in equation 5.1 are real, and as a result there is no phase information available. 

It is obvious from the results (Figure 5.6) that the frequency response function 

method accurately identified the single harmonic force acting on the free-free 

beam, with a FEN of only 0.141 per cent at the excitation frequency . 

Increasing the number of response measurements is likely to improve the 

quality of the force estimate by averaging the errors. 
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Figure 5.6 - Comparison of the measured and estimatedforce 

forfree-free beam corresponding to position 11 

b) Modal Coordinate Transformation Method 

The single harmonic force was calculated from equation (4.16), i.e. 

{hw) }= [<D T] + [S(w) ]-1 [<D ]+ {X(w) } (5.2) 

All five modes in the range of frequencies were included in the analysis. This 

method failed to predict the correct force amplitudes. The source of error may 

be attributed to poor modal identification, which can be explained as follows: 

The formulation of the two frequency domain methods, considered in this 

work, is essentially the same. Both use the frequency response function to 

express the relation between the applied force(s) and the associated response. 

The only difference being the calculation of the pseudo-inverse. In the case of 

the frequency response function method the pseudo-inverse of the whole 

frequency response matrix is calculated, while the modal coordinate 

transformation method considers only the pseudo-inverse of the modal matrix. 
Thus, while the former allows the incorporation of the residual terms 

corresponding to the truncated modes, there is no manner in which one can 

account for these terms in the latter. Figure 5.7 illustrates this point. Here the 

normal mode model for the free-free beam, with and without the residual 
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tenus, is compared to the originally measured frequency response function. It 

can be seen that the exclusion of the residual terms has a significant effect on 

the accuracy of the frequency response function, and subsequently on the 

success of the modal coordinate transformation method. 

10
5 

Position 9 

10° 

- With residuals 

10.5 - Without residuals 

50 100 L50 200 250 300 350 400 450 500 

Frequency [Hz] 

600 

400 

=- l l 11 
o 

L U l I l 
-200 

50 100 150 200 250 300 350 400 450 500 
Frequency [Hz] 

Figure 5.7 - Measured and reconstructed normal mode model 

of the frequency response function, A 9 II (OJ) forfree-free beam. 

A numerical simulation of the free-free beam revealed that the low frequency 

contribution, i.e. the RBM, had the most adverse affect on the accuracy of the 

frequency response functions at the excitation frequency (100 Hz). 

The implication this has is that the frequency range should consist of the entire 

modal space of the modeL This means that the residual contributions from 

modes outside the analysis frequency range, which are not represented in the 

modal matrix, must be smalL (Warwick and Gilheany, 1993). As a result one 

would need to include a larger frequency range in the experimental modal 

analysis, than the frequency range for which one would like to estimate the 

forces (Clark et aI., 1998). 

It is important to note that the frequency response function matrix may either 

be reconstructed with the residual terms included, as was the situation in the 

former subsection, or without the residual terms. From here onwards the term -
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reconstructed frequency response function - will refer to the case where 

residual terms are omitted. 

5.2 SINGLE HARMONIC FORCE: HINGED-HINGED BEAM 

The aim of this section is to ascertain a single harmonic force on a hinged-hinged 

beam. 

5.2.1 Details of the Experimental Set-up 

The aluminium beam was fixed at the ends to approximate a hinged-hinged beam 
(also referred to as a simply supported beam). In theory, at least, this type of 

constraint will only allow rotations at the supports, while restraining the beam from 

any translations. However, in practice, this constraint is much more difficult to 
implement, since the construction of the clamping often causes significant resonance 

frequency and mode shape differences. Figure 5.8 shows the construction of the 

supports. 

Section A-A 

A 

Angle-iron 

Iron rods 

Beam 

A 

Figure 5.8 - Construction o/the support/or the 

hinged-hinged beam 

The basic idea was to keep the contact area between the beam and the support as 

small as possible to allow the beam to rotate about a single point. In order to 

accomplish this the beam was fastened between two iron rods with a diameter of 
approximately 5 millimetres. An angle-iron section was placed on top and bolted to 

concrete-filled blocks. 

Although it was the initial intention to approximate a hinged-hinged beam, the 

dynamic characteristics of the beam may be quite different from those of the 

theoretical boundary condition. However, no attempt was made to confirm that the 

imposed boundary conditions satisfied the requirements of that of a hinged-hinged 

beam. It was assumed that the test boundary conditions matched that of the operating 

boundary conditions of a specific beam in practice. Having said this, the boundary 
conditions will still be referred to as hinged-hinged. 
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The same sensor locations were retained as before, the only difference being the 

exclusion of positions 1 and 11 from the measurements, since the response of these 

points were considered to be zero. The sensor locations are depicted in Figure 5.9. 

Sensor locations: 

2 3 4 5 678 9 10 II 

I. 
2m 

Figure 5.9 - Hinged-hinged aluminium beam and 

response locations 

A 
.1 

Since the beam was 'grounded' there are no RBMs contributing to the response of the 

beam. 

The measurement system remained unchanged and was used for measuring frequency 

response functions, accelerations and force levels. 

5.2.2 The Measurements 

The test was conducted to cover the chosen range of frequencies from 0 Hz to 500 Hz, 

which included the first six bending modes. The excitation was applied at position 8, 

while measuring at nine response locations (sensor location 2 to 10) with two roving 

accelerometers. The accelerometers were small enough so that their inertia loading on 
the beam were considered as negligible. 

Despite attempts to improve the quality of the frequency response functions through 

the use of a chirp-sine excitation, the author still experienced difticulties associated 
with the measured frequency response functions. Especially, when an experimental 

modal analysis had to be performed on the data to extract the necessary modal 

parameters the curve-fitting algorithm failed to produce satisfactory results. One of 

the likely reasons may be attributed to the fact that the beam can be considered as a 

lightly damped structure, which requires a very small frequency resolution to ensure 

proper definition of the resonance peaks. The Structural Dynamics Toolbox® (Balmes, 

1997) identifies the maximum value of the frequency response function plot within a 

specified frequency band as the natural frequency of that particular mode. Once the 

natural frequency has been obtained a curve is fitted to the frequency response 

function plot, originating from the maximum value, to estimate the damping of the 

mode in question. Failing to properly excite or measure the resonance will result not 

only in the wrong natural frequency, but also over-estimate the damping values. This 

is especially acute where the boundary conditions interfere with the resonances. A 
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thin rubber strip was glued to the one side of the aluminium beam to increase the 

damping values. This modification definitely improved the definition of the resonance 

peaks - nicely curved and not spiky (Figure 5.10). Another advantage of the increased 

damping is the decrease in the condition number due to higher modal overlap, which 

may prove to be beneficial to the force identification process. 

Position 8 
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-400 
190 200 210 220 230 240 250 260 270 280 290 300 
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}lgure 5. J 0 - Improvement in the resonance peaks of the point inertance 

(position 8) due to the attachment of a thin rubber strip. 

Inertance frequency response functions were measured for each of the nine sensor 

locations. Figure 5.11 shows the measured point inertance for the hinged-hinged beam 

(the entire set being represented in Appendix C). 

Successively, the beam was excited with a harmonic forcing function of a 250 Hz, 

while measuring 30 frequency domain averages of the applied force and acceleration 

signals. 
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Figure 5.11 - Measured point inertance (position 8) for the hinged-hinged beam. 

5.2.3 Force Determination Results 

a) Frequency Response Function Method 

The actual force may be reconstituted from 

(5.3) 

by considering only four sensor locations (positions 7, 8, 9 and 10). Unlike the 

case for the free-free beam the 'raw' frequency response function 

measurements were used in the force identification process. This resulted in a 

FEN of 4.202 per cent at 250 Hz and the forces are compared in Figure 5.12. 
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Figure 5.12 - Comparison of the measured and estimatedforces 

for hinged-hinged beam 

b) Modal Coordinate Transformation Method 

The force estimates were obtained from using equation (5.2). Five modes were 

included in the analysis. Once again the reconstructed frequency response 
functions deviated noticeably from the measured values at the excitation 

frequency. Based on the explanation given in the previous section, in practice 

one would have no other choice than to increase the frequency range to 

include more modes, thereby ensuring that the residual contributions from the 

modes outside the frequency range are small enough. Instead, it was decided 
to alter the forcing frequency and only repeat the force and response 

measurements, rather than the laborious frequency response function matrix. 

The excitation frequency was reduced to a 100 Hz. Six sensor locations 

(positions 6, 10, 4, 2, 8 and 3) were necessary to obtain acceptable force 

estimates. These sensor locations were selected from all possible sensor 

locations with Krammer's effective independent algorithm (refer to Section 

4.3.1) and are sorted from most to least important. The force results were 

presented in Figure 5.13. Interesting to note is that the actual and predicted 

forces have a much higher noise floor, as a result of a larger frequency 

resolution applied during the measurements. 
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Figure 5.13 - Comparison of the measured and estimated forces 

for the hinged-hinged beam. 

Application of the RMV, outlined in Section 4.4, produced similar results to 

the pseudo-inverse of the modal matrix, although the former required a lot 

more computational effort. 

The FEN for each case is listed in Table 5.1. 

Table 5.1 Force Error Norm ~fthe estimatedforce 

Modal matrix RMV 

[%] [%] 

5.014 5.048 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



CHAPTER 5. EXPERIMENTAL STUDIES 88 

5.3 TWO HARMONIC FORCES: FREE-FREE BEAM 

The previous applications were limited to the estimation of a single harmonic force. In 

this section the free-free beam was invoked once again to investigate the extension of 

the force identification methods in the frequency domain to determine two harmonic 

forces acting on the beam. 

5.3.1 Details of the Experimental Set-up 

The components of the measurement system are essentially the same as before, but 

have been extended to cater for two exciters and are shown in Figure 5.14. 

PC Siglab Power amplifiers 

0 D ~ DDD C) ®® 

D 

DDD C) ®® 

Conditioning LLJ LLJ LLJ LLJ 
(!) 

amplifiers 
(!) (!) (!) 

Accelerometers 

Structure 

Force transducers 

Exciters o 0 
f----------' 

Figure 5.14 - Measurement system usedfor the identification 

of two harmonic forces 

5.3.2 The Measurements 

Eleven acceleration signals were recorded with two roving accelerometers. The two 

harmonic forces, with frequency content 380 Hz and 250 Hz, were applied to the free­

free aluminium beam at two different positions (position 5 and 8 respectively), the 

inertance frequency response functions having already been determined with the 
MIMO excitation (refer to Section 2.4). As mentioned before, this was done to 
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account for the distortion of the natural frequencies of the beam due to the attachment 

of the two exciters. It can be seen from Figures 5.15 and 5.16 that the first five 

bending modes spanned the chosen frequency range from 0 Hz to 500 Hz. 
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Figure 5.15 - Measured point inertance for the free-free beam 

corresponding to reference position 5 
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Figure 5.16 - Measured point inertance for the free-free beam 

corresponding to reference position 8 
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Figure 5.17 shows the ASD of the actual input forces as measured directly with the 

force transducers. In the figure, Fa denotes the force measured at position 8, while F;, 

is the force measured at position 5. Even though the drive signals to the shakers were 

completely uncorrelated, the measured force signals exhibited some correlation due to 

the interaction of the excitation system with the structure (Maia et al., 1997). The 

correlation between the input forces was also evident in the Cross Spectral Densities 

(CSD) of the input forces, Fob' The correlation components were significant in 

magnitude so that it was deemed advisable to include their contribution in the force 

identification process. 
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Figure 5.17 - ASD (Fa and Fb) and CSD (Fab ) of the two 

harmonic forces applied to the free-free beam 

5.3.3 Force Determination Results 

Equation (5.1) can be defined in terms of the spectral density function as: 

(5.4) 

For the noise-free case, the rank of the measured acceleration matrix, [Gxx ], should be 

equal to the number of linearly independent forces exciting the beam. The rank of the 

response matrix can be evaluated by applying SVD to the matrix. However, if the 

forces are not independent, the rank will be less than the number of forces (Elliott et 

aI., 1988). 
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The measured acceleration matrix was of full rank. This can be attributed to the 

presence of the measurement noise that spuriously increased the rank of the response 

matrix. Figure 5.18 shows the singular values of [G.lJ and gives no clear indication of 

the 'true' rank because of the noise contaminating the response. 

The full rank matrix [G..,.] cannot be substituted into equation (5.4) since the small 

singular values can falsely dominate the pseudo-inversion and render inaccurate force 

estimates. Truncating the singular values to reflect the number of independent forces 

can ameliorate the force estimates. In practice the truncation point of the number of 

singular values is not always clear, especially when considerable measurement noise 

is present in the data (Elliott et aI., 1988). 

The forward problem was solved with the directly measured forces. 

[G..,.(cu)] = [H(cu)][ G jJ(cu)][ H(CU)]T (5.5) 

and the SVD of [G..,.] revealed that the rank of the acceleration matrix is indeed one, 

as depicted in Figure 5.19. The absolute values of the higher-order singular values 

were of the order 10-4 and below and can for all practical purposes be considered as 

negligible. 

Unfortunately, in a real-world application the direct forces will not be available and it 

may be difficult to determine the 'true' rank of the noise contaminated response 
matrix. 

The [G..,.] matrix was recalculated for the truncated singular values and the discrete 

forces were estimated from equation (5.4). It is apparent from the results in Figure 

5.20 that there is some difficulty in predicting the accurate forces at the forcing 

frequencies. This resulted in an elaborated investigation to find probable causes and 
explanations for the behaviour noted. The response matrix, as calculated from the 

forward problem, was substituted into the force identification algorithm and produced 

excellent force predictions. Next, the accuracy of the inertance matrix and measured 

accelerations were considered. The individual frequency response functions from the 

MIMO excitations were compared with previous frequency response functions 

obtained from single input excitations and found to be satisfactory. 
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Figure 5.19 - Singular values of the response matrix, [Gu ], 

determined from the forward problem 
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Figure 5.20 - Comparison ~fmeasured and estimatedforces 

for the free:free beam 

Comparison between the measured accelerations and accelerations computed 

from equation (5 .5) differed significantly (Figure 5.21). Although the presence 

of considerable noise may contaminate the measured accelerations, the 

deviation might not be attributed solely to the influence of measurement noise. 

At first the measured accelerations were thought to consist of the acceleration 

of the center of mass superimposed on the beam's response subjected to the 

force inputs. Further investigation revealed this to be an unlikely cause, since 

the strain measurements strange enough exhibited the same type of behaviour. 

The only probable explanation was found in a work published by Ojalvo and 

Zhang (1993 : pp. 171): 

"Since the ill-conditioning of algebraic equations is dependent upon the zero 

and near-zero eigenvalues of the coefficient matrix, it is possible to interpret 

the original equations as those associated with the forced response of a free­

free system, or one for which an otherwise structurally stiff system is 

suspended by very soft springs. In such cases, the zero (or near-zero) 

eigenvalues represent rigid (or near-rigid) body modes ... small errors in the 

right hand side may be viewed as static imbalance terms. These would have 

little effect if the system were restrained (i.e. no zero frequency) but are 

disastrous for unrestrained systems, and over time can produce large drifts in 

the system." 
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The above explanation was taken as the probable cause for the observed 

behaviour. In addition it was decided to refrain from continuing the force 

identification on this experimental setup and to progress to the assessment of a 

restrained system. 
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Figure 5.21 - Comparison of the measured and calculated accelerations 

for thefree-free beam 

5.4 TWO HARMONIC FORCES: HINGED-HINGED BEAM 

This section presents an attempt to apply the force identification process to infer two 

harmonic forces acting on a hinged-hinged beam. The effect of constraints on both 

frequency domain methods was investigated. 

5.4.1 Details of the Experimental Set-up 

The hinged-hinged beam was invoked once again to determine two harmonic forces 

applied at positions 5 and 8 on the beam. 

5.4.2 The Measurements 

The measurement procedure described in Section 5.3.2 was repeated, i.e. the inertance 

frequency response functions were measured first through the use of MIMO 

excitation. The beam was then subjected to two simultaneous harmonic forces applied 

at positions 5 and 8 with a frequency content of380 Hz and 250 Hz, respectively. The 

point inertance corresponding to reference position 5 is depicted in Figure 5.22, while 
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the point inertance of reference position 8 in shown in Figure 5.23 (the entire set 

being represented in Appendix D). 

Figure 5.24 shows the ASD of the actual input forces as measured directly with the 

force transducers. In the figure, Fa denotes the force measured at position 8, while F;, 

is the force measured at position 5. In contrast to the previous case, the correlation 

components were orders in magnitude smaller than the actual force components and 

were considered as negligible. Nine acceleration signals were measured 

corresponding to position 2 to 10. 
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Figure 5.22 - Measured point inertance for the hinged-hinged beam 

corresponding to reference position 5 
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Figure 5.23 - Measured point inertance for the hinged-hinged beam 
corresponding to reference position 8 
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Figure 5.24 - ASD (Fa and F;,) and CSD (Fob ) of the two harmonic 

forces applied to the hinged-hinged beam 
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5.4.3 Force Determination Results 

a) Frequency Response Function Method 

Once again the 'raw' frequency response functions were used in the analysis. 

The coherence function, y2 (w), associated with each frequency response 

function can be used to determine the random error in that measurement. The 

absolute error, E(w) , with a confidence limit of99.7 per cent of the frequency 

response function magnitude is given by (Powell and Seering, 1984) 

E(w)=3I H (w)1 l-y 2(W) 
[ 

2 ]1/2 

2 nd Y (w) 
(5.6) 

where 

nd is the number of averages used in the measurements. 

Calculating the absolute error for each frequency response function results in a 

matrix [E(w)], with dimensions equal to that of the frequency response 

function matrix. The norm, &(w) of the n x m absolute error matrix can serve 

as a threshold value whereby any singular value smaller than this value will be 

set to zero. This will improve the condition of the problem, as the inverse of a 

small number is very large and would, falsely, dominate the pseudo-inverse. 
The singular values of the frequency response function matrix and the error 
norm are shown in a logarithmic plot versus frequency in the upper part of 

Figure 5.25. The lower part of the figure shows the anticipated trend of the 

condition number of [H (w) ] . 
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Figure 5.25- Singular values, error norm and condition number C?f 

the frequency response matrix for the hinged-hinged beam 

The forces may be reconstituted from all nine sensor locations from: 

{fr(OJ)}= [A(OJ)] + {X (OJ)} (5.7) 

It is obvious from the results (Figure 5.26 and 527) that the frequency 

response function method accurately identified the two harmonic forces acting 

on the hinged-hinged beam. 

Improving the number of response measurements will likely Improve the 

quality of the force estimates. 

The FEN for each force estimate is listed in Table 5.2 

Table 5.2 - Force Error Norm C?fthe estimatedforces 

I Fa (OJ ) I IFb(OJ)1 

[%] [%] 

5.291 4.724 
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b) Modal Coordinate Transformation Method 

The modal coordinate transformation method failed to determine the force 

estimates correctly. 

As mentioned previously, the boundary conditions imposed on the beam were 

assumed to be representative of a system under operating conditions. An 

experimental modal analysis was performed on the measured frequency 

response function data in the chosen frequency range of 0-450 Hz, to extract 

the natural frequencies and modal damping factors corresponding to the first 

five bending modes. The reconstructed frequency response functions, without 

the contribution of the residual terms, were compared to the measured 

frequency response functions, prior to applying equation (4.13), from which 

one could determine the forces. This revealed that the residual terms had a 

significant effect on the accuracy of the frequency response functions in the 

vicinity of the forcing frequencies (250 and 380 Hz). At first, it was believed 

that extending the chosen frequency range to 1 kHz to include more modes 

could circumvent the residual contributions. Having repeated the 

measurements the reconstructed frequency response functions were compared 

with the originally measured data. The inclusion of additional modes did not 

improve the quality of the reconstructed frequency response functions around 

the fifth mode. 

It is obvious from the point inertance of reference position 5, shown in Figure 

5.22, that the boundary conditions influenced the proper excitation of the fifth 

mode (± 340 Hz). This may be attributed to a number of reasons: 

Even though the mass of the concrete-filled blocks was considerably higher 

than that of the test piece, the question may arise whether the blocks were 

sufficiently rigid to provide the necessary grounding to the structure, SInce 

they had not been fixed to the floor. 

Another factor that influenced the data was the supports used to constrain the 

beam. Tightening the bolts too much introduced spurious modes in the 

frequency range. Figure 5.28 illustrates the different construction methods of 

the supports, while Figure 5.29 demonstrates their influence on a typical 

frequency response function measurement. Construction method A was found 

to have the minimum effect on the data and was employed in the force 

identification process. Method B was considered not rigid enough, while C 

and D (attachment of G clamp) shows attempts to make the supports more 

rigid. 
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From the above, it is evident that the boundary conditions contributed to the 

frequency response functions of the beam. These frequency response functions 

were found to be too complex and could not be reconstructed from the modal 

parameters within the frequency range alone. Especially the frequency 

response functions corresponding to reference position 5 were most heavily 

influenced. 

From the above discussion, one might suspect that better force determination 

will result from excluding the sensor locations, for which the reconstructed 

frequency response functions deviated substantially from the measured values. 

However, by excluding these sensor locations it was found that the condition 
number of the modal matrix increased significantly and also rendered 
inaccurate force estimates. 

A 

B D 

c 
Figure 5.28 - Different constructions methods of the supports 

used for hinged-hinged beam 
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corresponding to reference position 8 

5.4.4 Strain Measurements 

102 

Still using the hinged-hinged beam as test piece, piezoelectric strain gauges were 

employed to measure frequency response functions for nine different positions along 

the length of the beam. 

Hillary and Ewins, (1984) indicated that the strain responses gave more accurate force 
estimates than the accelerations. The reason for this behaviour is that the strain 

responses are more influenced by the higher modes at low frequencies, and therefore 
the frequency response functions are more complex in shape and hence obtain better 

force predictions. Han and Wicks (1990) also studied the application of strain 

measurements. 

The piezoelectric strain gauges were calibrated based on the manufacturer's quoted 

sensitivities and the calibration values are listed in Appendix A. Only two strain 

gauges could be simultaneously mounted on the beam due to the restriction imposed 

by the available channels of the measurement system. 

The Strain Frequency Response Functions (SFRFs) were measured first by taking 200 

averages. Figure 5.30 and 5.31 show the SFRFs associated with each reference 
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position. The high level of averaging was to reduce the uncorrelated noise between 

the force and strain response. 
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Figure 5.30 - Measured SFRF for the hinged-hinged beam 

corresponding to reference position 5 
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Figure 5.31 - Measured SFRF for the hinged-hinged beam 

corresponding to reference position 8 
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Subsequently, the beam was subjected to two simultaneous harmonic forces at 

positions 5 and 8, and strain responses were measured. An alternative 

formulation of equation (5.1) was used to determine the two forces. 

where 

{hOJ)}= [Y(OJ)] + {e(OJ)} 

{fr(OJ)} is the (2 x 1) estimated force vector, 

[y(OJ)] is the (2 x 9) SFRF matrix, and 

{e(OJ) } is the (9 x 1) strain response vector. 

(5 .8) 

The results can be compared with the directly measured forces in Figures 5.32 

and 5.33. Contrary to the expectations, it is apparent in this particular case that 

the acceleration responses gave better force estimates than the strain responses 

(Table 5.3). 

Table 5.3 - Force Error Norm ~fthe estimated/orees 

I Fa (OJ ) I I F;,(OJ) I 
[%] [%] 

17.108 12.127 

Figure 5.32 - Comparison o/the measured and estimated/orees 

applied at position 8/or the hinged-hinged beam 
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Figure 5.33 - Comparison of the measured and estimatedforces 

applied at position 5 for the hinged-hinged beam. 

105 

As mentioned earlier, the strain response is more influenced by the higher 

modes at low frequencies. Conversely, the strain response is less influenced by 

the low modes at high frequencies. Thus, the higher the excitation frequencies 

the fewer modes participate in the strain response of the beam. 

Having said that, the main reason for the results noted can be attributed to the 

sensitivity of the piezoelectric strain gauges as compared to the sensitivity of 

the accelerometers. Figure 5.34 shows a logarithmic plot of the singular 
values, the error norm of equation (5.6) and the associated condition number 

of the SFRF matrix. The results indicated that the values of the error norm of 

the SFRF matrix were higher than the corresponding values of the inertance 

frequency response function matrix. This parameter is employed to ascertain 

the random errors in the SFRF measurements and represent the probable cause 

for the poorer force estimates obtained. The poor coherence functions in 

Figure 5.29 and 5.30 confirms this statement. 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



CHAPTER 5. EXPERIMENTAL STUDIES 106 

3 

~ 
- 0'1(00) 

0 2 - O'ioo) 
t::. 

'" - &(00) ., 
'" a! 
:> 
la 0 
"3 
OJ) 
c 

-1 Cii 

50 100 150 200 250 300 350 400 450 500 

2.5 

~ 
6 2 

.8 
1.5 § 

Z 
§ . ., 

'i3 
c 0.5 0 

C,) 

50 100 150 200 250 300 350 400 450 500 
Frequency [Hz] 

Figure 5.34 - Singular values, error norm and condition number 

of the SFRF matrix for the hinged-hinged beam 
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6. DISCUSSION AND EVALUATION 

6.1 TEST PIECE 

An aluminium beam was invoked as the test piece throughout the study. It was 

deemed advisable to start with a relatively simple structure but unexpectedly gave rise 
to some difficulties. 

The fact that the test piece was a lightly-damped structure required special effort 
concerning the excitation function used in determining the frequency response 

functions. In the end a chirp-sine function was used, resulting in much sharper and 
well-defined peaks of the frequency response functions. The low damping was also 
mentioned as probable cause for difficulties experienced with the experimental modal 

analysis. 

Another factor that might have influenced the accuracy of the force estimates is that 

the modes for the beam were very well-separated, and at any given frequency, the 
response ofthe beam was dominated by the two nearest modes. 

In view of the above-mentioned it may be justifiable to consider a more complex 

structure with less well-separated modes and with higher damping. In a structure with 
higher damping the neighboring modes will have a larger contribution to the response 

of the structure at any given frequency and might not exhibit the same degree of ill­
conditioning noted with this test piece. 

6.2 APPLIED FORCES 

6.2.1 Unknown Forces Locations 

Throughout the experimental studies it was assumed that the exact forcing locations 

were known. In addition, only the columns associated with these input locations were 

included in the frequency response function matrix. Conversely, for the modal 
coordinate transformation method only the rows associated with the input locations 
were included in the reduced modal matrix of equation (4.16). Let's assume that the 
number of forces and the input locations were unknown. 

a) Frequency Response Function Method 

The maximum number of forces one can correctly predict will be equal to the 
rank of the frequency response function matrix, which in tum is equal to the 

number of significant participating modes (Fabunmi, 1986). For the case of 
the hinged-hinged beam, the analysis of the 'full' frequency response function 
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matrix would allow the estimation of maximum six forces, except at 
frequencies where the frequency response function matrix renders rank 

deficient. An important prerequisite is that the actual force inputs should be 
among the locations included in the frequency response function matrix. If 

not, the estimated forces will be erroneous pseudo-forces. The forces that 

produce a certain response can then be determined from the pseudo-inversion 

of the frequency response function matrix. The force amplitudes of the non­
forcing locations will be zero (Fregolent and Sestieri, 1990). 

b) Modal Coordinate Transformation Method 

The same argument can be followed in the case of the modal coordinate 
transformation method. The modal matrix is generally rectangular with the 
number of responses exceeding the number of modes within the analysis 
frequency band. In this case the number of force estimates should be smaller 
than or equal to the rank of the modal matrix (refer to Section 4.1.2). Proper 
choice ofthe set of response locations and orthogonal mode shapes will ensure 
that the modal matrix is well-conditioned and will not exhibit the ill­
conditioning at the resonant frequencies of the structure. Thus the number of 

force estimates remain constant for the entire frequency range considered. 
Once again the actual force locations should form part of the set of response 
locations of the reduced modal matrix, to infer the excitations accurately. 

6.2.2 Distributed Forces 

Both the frequency response function and modal coordinate transformation methods 
are discrete representations of continuous functions. The frequency response function, 
modal matrix and the responses can usually be measured only at a finite number of 

discrete points and as a result the force identification problem is restricted to the 
determination of forces at the discrete points. In the case of a distributed loading the 
responses are used to determine a number of equivalent discrete forces, which are 

intended to represent the original distributed load. As mentioned before, the number 
of modes in the frequency response function or modal matrix restrains the number of 
discrete dynamic forces. Unfortunately, these discrete forces will always be in error, 

even with a high number of modes and a high matrix dimension (Fregolent and 
Sestieri, 1990). 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCE,lJURES 

 
 
 



CHAPTER 6. DISCUSSION AND EVALUATION 110 

6.2.3 Random Forces 

Chapter 5 dealt with harmonic force determination only. An attempt to extend the 

force identification to determine random dual forces was unsuccessful due to 

shortcomings of the experimental setup. The force spectrums presented in Section 5.3 

and 5.4 exhibited some correlation despite the uncorrelated drive signals supplied to 

the shakers. The correlation was the result of the interaction of the excitation system 

with the structure and will tend to be greater at the beam's resonant frequencies . Two 

random forces were applied to the beam and the accelerations were measured. Figure 

6.1 presents the decomposition of the directly-measured random force spectral density 

function matrix obtained from the measurement procedure. The number of distinct 
non-zero eigenvalues, as well as the ratio between adjacent eigenvalues can be used to 
ascertain the degree of correlation of the inputs (Maia et al., 1997). It is worth noting 
that in the vicinity of the resonant frequencies of the beam the ratio between the 

eigenvalues was high, indicating only a single independent force. In the rest of the 

frequency range the eigenvalues were of similar magnitude. This shows that there 

were two independent forces. The reason for the results noted can be explained as 

follows . Two rather small electromagnetic exciters were used to excite the structurally 
stiff beam. For the case where a particular exciter was exciting the structure at or near 

one of the resonant frequencies the other exciter was 'pulled' in phase with the 

response of the resonant mode. The use of larger electromagnetic shakers, or for that 
matter even hydraulic shakers, might not exhibit the same behaviour. In addition a 

more flexible beam might be employed as test piece. 
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Figure 6.1 - Decomposition of force spectral density function matrix 
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Instead harmonic forces were applied to the beam, with forcing frequencies more or 

less in between the structural resonant frequencies. 

6.3 THE FREQUENCY RESPONSE FUNCTION METHOD 

The formulation ofthe frequency response function method was described in Chapter 
3. No modal parameter estimation is required, although an experimental modal 

analysis can be performed to 'filter' some of the measurement noise from the 
frequency response functions. 

The number of forces one can attempt to determine is limited by the number of 
significant participating modes at any given frequency line. 

The ill-conditioning of the force predictions at the system's resonant frequencies was 
illustrated through the use of a numerical simulation. The various modal parameters 
and responses were perturbated with random errors to resemble experimental 
measurements. The results indicated that the perturbation of the mode shapes had the 
most significant affect on the accuracy of the forces. In addition, it was noted that the 
pseudo-inverse of the frequency response function matrix needs to be computed at 

each frequency line within the analysis frequency range. 

The force predictions might be ameliorated at the structural natural frequencies by 
truncating very small singular values of the frequency response function matrix from 
the pseudo-inversion, since the inclusion of these small values might lead to 

erroneous force estimates. 

The condition number of the frequency response function matrix furnishes as a tool to 
ascertain the expected ill-conditioning of the force predictions. A numerical study 
highlighted the factors influencing the value ofthis parameter. 

Chapter 5 evaluated the implementation of this method to infer the forces acting on an 
aluminium beam subjected to different boundary conditions. A single harmonic force 
was successfully identified on a free-free and hinged-hinged beam. The results of the 
dual force inputs applied to the free-free beam cannot be completely explained. 

However, a probable cause was mentioned. In the final experimental study, the 
frequency response function method was used to determine two harmonic forces on a 

hinged-hinged beam from both acceleration and strain measurements. Despite the 
influences of the boundary conditions on the frequency response functions noted, the 

method was sufficiently successful in determining the applied forces. One of the 

important issues resulting from the experimental studies was the contribution of the 

residual terms corresponding to the truncated modes, which affected the accuracy of 
the frequency response functions and consequently the force predictions. It was 
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shown that the method has the ability to incorporate the influence of the residual 

terms in the force identification process. The residual terms corresponding to a 
particular reference position cannot be synthesised from the modal parameters 
extracted from the measurement of a single column or row of the frequency response 

function matrix. As a result the frequency response functions must be measured at all 
the expected force input locations. 

6.4 THE MODAL COORDINATE TRANSFORMATION METHOD 

Chapter 4 was concerned with the modal coordinate transformation method. An 

experimental modal analysis was a prerequisite for implementation of this method. In 

order to utilise a least-squares estimation of the forces the method requires the number 
of response locations to exceed the number of linear independent modes in the 
analysis frequency range, which in tum should preferably be greater than the number 
of forces one attempts to reconstruct. The results of a numerical study showed that the 

modal coordinate transformation method did not suffer from the ill-conditioning of 
the force estimates at the structural natural frequencies due to the inversion of the 
modal matrix. The successive integration of the acceleration to displacement signals 

was shown to amplify the errors in the low frequencies and might affect the force 
results. 

This method was computationally much faster than the frequency response function 
method, since the pseudo-inverse of the modal matrix needed to be calculated only 
twice, regardless ofthe frequency resolution considered in the analysis. 

A separate numerical study on a free-free beam indicated that the condition number of 
the modal matrix is a function of the set of response locations chosen and the modes 
included in the modal matrix. 

The modal transformation is based on the assumption that the modal vectors are 
orthogonal and linearly independent functions. This assumption might be violated 
during the experimental modal analysis and a reciprocal modal vector was described 
as an alternative method ofperforming the modal transformation. 

This method has the advantage ofbeing able to identify forces at locations which may 

be inaccessible for frequency response function measurements. Based on the 

reciprocal theorem, another point on the structure can be artificially excited from 
which one can extract the modal parameters. Having measured only the response at 
the inaccessible force input location, the force estimate corresponding to this point 
can then be determined (Kim and Kim, 1997). The results of the experimental studies 
in Chapter 5 pointed out that this procedure is only valid when the values of the 
residual terms of the truncated modes outside the analysis frequency range are 
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negligible. Although the residual terms corresponding to the low and high modes can 

be obtained from the experimental modal analysis, these terms have to be omitted 

when executing the modal coordinate transformation method. The findings of Section 
5.1, where a free-free beam was used to predict a single harmonic force, indicated that 

the low frequency contribution, i.e. the RBM, had the most adverse affect on the 

accuracy of the reconstructed frequency response functions at the excitation 
frequency. 

The frequency response function method for determining a single force resulted in a 
condition number ofunity (the ratio of a single singular value by itself). However, the 

modal coordinate transformation method required the inversion of the modal matrix, 
and since more than one mode was included in the modal matrix, the value of the 
condition number was greater than unity. 

In the second experimental study a hinged-hinged beam was investigated to exclude 

the effect of the RBM to the response of the beam. At first not enough modes were 
included in the analysis to infer the force estimate correctly at the excitation 
frequency. It was noted that more modes were required in the force identification 
process than the number of modes required in modeling of the response of the 
structure. This method also displays the truncation problem generally encountered in 
experimental modal analysis and are caused by the limited number of modes, limited 
number of measurement points and the lack of rotational degrees-of-freedom (Shih et 
aI., 1989). As jet, it is uncertain as to the number of modes, or the analysis frequency 
range required to guarantee success with the modal coordinate transformation method. 

This might prevent the method from becoming popular in cases where the vibration 
measurements are very expensive andlor labour intensive to perform and a second 
round ofmeasurements are just not viable. 

The final experimental evaluation was a hinged-hinged beam subjected to two 
simultaneous harmonic forces. Constraints imposed on the beam influenced the 

frequency response functions around the fifth mode. As a consequence, the frequency 
response functions were difficult to recreate from the modal parameters alone and 
spoiled the force identification. 

This method was applied under the assumption of proportional damping and would 
require a more elaborate calculation procedure if this assumption was not fulfilled 
(Desanghere and Snoeys, 1985). 
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6.5 CONCLUSION 

Two frequency domain force identification procedures were proposed in this work. In 

view of the above-mentioned advantages and disadvantages associated with each 

method it can be concluded that the frequency response function method is superior to 

the modal coordinate transformation method for the applications considered in this 

study. 
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7.1 CONCLUSION 

Two frequency domain force identification procedures were considered in this work, 

i. e. the frequency response function method and modal coordinate transformation 

method. Both numerical and experimental examples were used to assess the 

performance ofeach technique. 

The objective of this research was to implement these methods in an experimental 

investigation on a simple, well-behaved structure, given the lack of experimental 

work pertaining to especially the modal coordinate transformation method. A single 

harmonic force was determined on an aluminium beam subjected to different 
boundary conditions. The work was then extended to predict two sinusoidal forces 

from measured acceleration and strain signals. 

The frequency response function was sufficiently successful in identifying the forces 

for the majority ofexperimental studies, with the exception of the dual force inputs on 

the free-free beam, which certainly requires further attention. Some of the most 

important issues concerned with this method are: 

).> 	 Force predictions at the structural resonant frequencies are likely to behave ill­

conditioned due to errors in the measured response and frequency response 
functions. 

).> 	 The method has the ability to account for the residual terms, which might have 

a significant effect on the accuracy of the frequency response function and 

consequently the force estimates. 

).> 	 Frequency response functions must be measured at all the expected force input 

locations. 

In the modal coordinate transformation method the pseudo-inverse is generally well­

conditioned and the analysis is computationally much faster than the former method. 

The method also has the advantage of identifying forces at locations that are not 

included in the initial frequency response function measurements. Despite the 

advantages associated with the modal coordinate transformation method this method 

has shown rather limited success. The difficulties encountered were not as much due 

to the numerical formulation of the method as they were to the prerequisites required: 

).> This method requires a good set of modal parameters from which one should 


be able to reconstruct the originally measured frequency response functions. 


).> More modes are needed in the force identification process than the number of 


modes required in the modeling of the response of a structure. 

).> The contribution of residual terms of the truncated modes should be small in 

the analysis frequency range. 
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Based on the results presented it was concluded that the frequency response function 

method was superior to the modal coordinate transformation method for the 

experimental examples considered. 

7.2 FUTURE WORK 

Further experimental studies on more complex structures should be investigated to 

make the force identification methods more applicable to real engineering structures. 

The determination of distributed forces needs to be further developed. In particular, 

the number of equivalent discrete force estimates that one would require to 
approximate a particular continuous forcing function. 

The issue concerning the truncation problem, i.e. the number of modes required to 
successfully apply the modal coordinate transformation method also requires further 
research. 

It would also be interesting to examine the effect of measurement positions with 
respect to the excitation locations on the condition number and accuracy of the force 
estimates, considering three particular situations: a) fully collocated inputs and 
outputs; b) partially collocated inputs and outputs; and c) fully non-collocated inputs 
and outputs. This suggestion follows from the fact that for some time domain 
identification methods the relative position of the inputs and outputs has been found 
to have a significant influence on the stability ofthe inverse problem. 
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APPENDIX A - MEASUREMENT SYSTEM AND CALIBRATION 

1. MEASUREMENT SYSTEM 

Table A.I Measurement system for the identification qfa single harmonic force 

Equipment Description Serial Number 

Signal generator 

& analyser 

DSPT Siglab 

Model 20-42 

SN 11251 

Signal amplifiers Rotel stereo integrated 

amplifiers RA-970 BX 

SN 522 45811 

SN 434 75550 

Shakers Vibro Pet Model Pet-01 

IMVCorp. 

SN 40-381-2 

SN 40-376-2 

Condition amplifiers Model 480E09 ICP 

Power Unit 

SN 17185 

SN 3657 

SN 3435 

SN 17187 

Force transducers PCB208 B02 SN 12980 

SN 12742 

Shear accelerometers PCB U353 B65 

PCB U353 B66 

PCB B15 

SN 20520 

SN 44564 

SN 50276 

Piezoelectric strain gauges PCB 740B02 

PCB 740B02 

SN823 

SN857 

PC Pentium 100 MHz 

"Apollo" 

SN 0467570 
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2. CALmRA TION FACTORS 

2.1 AccelerometerlForce Transducer Pair 

Alternating voltage signals were measured from both the accelerometer and force 

transducers. These signals had to be multiplied by a calibration factor to obtain the 

correct magnitude of the frequency response functions. Since the frequency response 

function is simply the ratio of the response to the force, a straightforward technique 

can be applied to determine the calibration factor for each pair of accelerometer/force 

transducer. The force transducer and accelerometer are attached to the rigid body of 

known mass (m = 4.02 kg), as depicted in Figure AI. 

Figure A.I - Calibration measurement setup 

A time-varying force is applied to a rigid body for which the inertance is measured for 

the specified frequency range. The measured quantity has units of volt/volt and 

corresponds to: 

A(m) = x(t) = ~ 
f(t) m 

(A.I) 

from which the overall sensitivity for each pair of accelerometer/transducer can be 

calculated. Figure A2 illustrates a typical inertance and coherence measurement for 

one of the pairs of accelerometer/force transducer used in the experimental 

measurements. The overall sensitivities are listed in Table AI. 
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Table A. I - Calibration of accelerometerlforce transducer pair 

Accelerometer/ Overall Sensitivity 

force transducer pair [ V IV ] 
m.s-2 I N 

SN 44564 & SN 12742 1.1610 

SN 20520 & SN 12742 1.2746 

SN 44564 & SN 12980 1.1584 

SN 20520 & SN 12980 1.2933 

SN 50276 & SN 12980 9.9367 

Calibration: SN 44564/SN 12742 
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Figure A. 2 - Inertance and coherence plots for the calibration ~f 

an accelerometerlforce transducer pair 

2.2 Accelerometers 

127 

The accelerometers were calibrated separately with a hand-held calibrator. This 

calibration was done with the accelerometers still connected to the rest of the 

measurements system as used in experimental setup. The calibration factors for each 

of the accelerometers are listed in Table A.2. 
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Table A.2 Calibration ofaccelerometers 

Accelerometer 
I 

Calibration factor 

m.s­2 

Vrms 

SN 44564 154.841 

SN 20520 172.358 

SN 50276 1261.221 

2.3 Force Transducers 

Having determined the calibration factors for the accelerometers, the calibration 
factor for each of the force transducers was deduced from the overall sensitivity ratios 
given in Section 2.1 of this appendix. Two values were obtained for each force 

transducer, of which the average was used in the force identification process. These 

calibration values are given in Table A.3. 

Table A.3 Calibration offorce transducers 

Force transducer Calibration factor 

N 

Vrms 

SN 12742 134.297 

SN 12980 133.472 

2.4 Piezoelectric Strain Gauges 

The manufacturer's quoted sensitivities were used to determine the calibration factor 
for the piezoelectric strain gauges and are given in Table A.4. 

Table A.4 Calibration ofpiezoelectric strain gauges 

Piezoelectric Calibration factor 

Strain Gauges [:;J 
SN823 24.595 

SN857 28.3409 
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APPENDIX B - MODAL ANALYSIS OF FREE-FREE BEAM 

Number of averaged Procedures: 100 

The identified natural frequencies, modal damping factors and normal modes are 

listed in Tables B.l and B.2. 

Table B.l - Natural frequencies and modal dampingfactorsfor the free-free beam 

Natural frequencies Modal damping factors 
[Hz] x [10-4

] 

32.538 29.313 
88.471 7.6010 
172.76 17.404 
286.01 6.8997 
426.03 4.7836 

Table B,2 -ldent?fied normal modesfor the free-free beam 

Position Mode 1 
x [10-1

] 

Mode 2 
x [10-1

] 

Mode 3 
x [10-1

] 

Mode 4 
x [10-1

] 

Mode 5 
x [10-1

] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

7.1528 
4.0191 
0.7958 
-1.8826 
-3.7555 
-4.3651 
-3.7685 
-1.9486 
0.6817 
3.7753 
7.0687 

-7.1878 
-1.5927 
2.7162 
4.9710 
3.4185 
0.0434 
-3.1402 
-4.8481 
-2.6716 
1.3380 
6.8776 

7.2027 
-0.4212 
-5.0597 
-2.9900 
2.4462 
5.2002 
2.5276 
-2.8685 
-4.6202 
-0.5484 
6.4475 

-5.7285 
2.1804 
4.4827 
-1.6166 
-5.0856 
-0.0889 
4.9914 
1.7411 
-4.4145 
-2.2280 
6.4463 

4.7910 
-3.6031 
-2.1790 
4.8615 
0.8848 
-5.1665 
0.6129 
5.1903 
-2.0095 
-3.6572 
6.1806 

The following figures show the measured frequency response function data and the 
reconstructed normal mode model obtained after optimisation for the reference 
position 11. The truncated modes are accounted for by the inclusion of the residual 
terms in the normal mode model. It can be seen that the normal mode model 
corresponds fairly well to the experimentally measured data. At the high frequencies 
the normal mode model deviates slightly from the measured data due to the residuals 
of the truncated modes. 
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APPENDIX C - MODAL ANALYSIS OF HINGED-HINGED BEAM 

Number of averaged Procedures: 100 

The identified natural frequencies, modal damping factors and normal modes are 
listed in Tables C.l and C.2. 

Table C.l - Natural Frequencies and modal dampingfactors for the hinged-hinged 

beam 

Natural frequencies Modal damping factors 
x [10-4] 

17.130 81.206 
57.222 22.496 
129.81 41.237 
216.48 36.900 
342.64 7.6922 

Table C.2 Identified normal modes for the hinged-hinged beam 

Position Mode 1 
x [1001 

] 

Mode 2 
x [1001 

] 

Mode 3 
X [1001 

] 

Mode 4 
X [1001 

] 

Mode 5 

x [1001 
] 

2 
3 
4 
5 
6 
7 
8 
9 
10 

1.1956 
2.6710 
4.1645 
5.3259 
5.1190 
4.7935 
4.0780 
3.0438 
1.6110 

-2.7045 
-4.8463 
-5.0361 
-3.0588 
-0.0773 
2.8529 
4.8785 
4.8799 
2.8048 

3.9763 
5.1423 
1.9649 

-2.7845 
-5.1073 
-2.9713 
1.8480 
4.9294 
4.0255 

4.7034 
3.0304 
-2.8866 
-4.7733 
-0.1078 
4.7192 
2.9380 
-2.9332 
-4.6629 

-5.4634 
-0.4111 
5.2821 
0.1926 
-5.1595 
0.0530 
5.1217 
-0.2507 
-5.2576 

The following figures show the measured frequency response function data 
corresponding to reference position 8 and the reconstructed normal mode model 
without the contributions ofthe residual terms. 
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APPENDIX D - MODAL ANALYSIS OF HINGED-HINGED BEAM 

Number ofaveraged Procedures: 200 

The identified natural frequencies, modal damping factors and normal modes are 
listed in Tables D.1 and D.2. 

Table D. J - Natural frequencies and modal dampingfactors for the hinged-hinged 

beam with two harmonic force inputs 

Natural frequencies Modal damping factors 
[Hz] x [10.4] 

17.228 148.44 
57.303 42.140 
129.79 44.154 
216.31 56.103 
342.66 8.410 
494.19 11.672 
648.33 10.021 

Table D.2 - Identified normal modes for the hinged-hinged beam with two harmonic 

force inputs 

Position Mode 1 
x [10.1] 

Mode 2 
x [l0·1] 

Mode 3 
x [10.1] 

Mode 4 
X [l0'1] 

Mode 5 
X [l0·1] 

2 
3 
4 
5 
6 
7 
8 
9 
10 

-1.0774 
-2.4214 
-3.6565 
-4.3895 
-4.6137 
-4.2844 
-3.6914 
-2.6569 
-1.3283 

-2.7529 
-4.7255 
-4.9741 
-3.2095 
-0.1007 
2.9175 
4.7672 
4.7833 
2.9776 

4.0682 
5.1187 
2.0027 
-2.7771 
-4.8680 
-2.8460 
1.9263 
5.0503 
3.9585 

4.7618 
3.1239 
-2.8965 
-4.8207 
-0.0438 
4.7831 
3.0309 
-2.9069 
-4.6472 

-4.9274 
-0.4099 
4.6762 
0.1359 
-4.7837 
0.0314 
4.7526 
-0.2191 
-4.8786 

Position Mode 6 
x [10,1] 

Mode 7 
X [10.1] 

2 -4.8896 3.7760 
3 2.4546 4.2764 
4 3.0719 1.4962 
5 -4.5333 2.9315 
6 -0.0551 4.4332 
T 4.6077 2.7099 
8 -2.9897 1.6478 
9 -2.4897 4.2718 
10 4.8393 3.5324 

The following figures show the measured frequency response function data and the 
reconstructed normal mode model without the contributions of the residual terms. 

ASSESSME1VT OF FREQUENCY DOMAIN FORCE IDE1VTIFICATION PROCEDURES 

 
 
 



APPENDIX D. MODAL ANALYSIS OF HINGED-HINGED BEAM 

102 

~ 10° "'", 
~ 
1) 

!.a 

~ 
~ 

,.:; 

10"' 
100 

102 

~ 10° 
~ 
2-
0 

~ 
~ 

,.:; 

104 

100 

10
2 

~ 10° '" '" E.-
o 
<.) 

I 10-2 

,.:; 

10
4 

100 

102 

~ 10° '" ~ 
2-
0 
!.a 

j 
10"' 

100 

200 

200 

200 

200 

Position 2J Reference 5 

300 400 

Frequency [Hz] 

500 

Position 31 Reference 5 

300 400 

Frequency [Hz] 

500 

Position 4/ Reference 5 

300 400 

Frequency [Hz] 

500 

Position 5/ Reference 5 

300 400 

Frequency [Hz] 

500 

1- Data 
- Nor. model I 

600 700 

1- Data 
- Nor. model I 

600 700 

- Data 
- Nor. model I 

600 700 

I - Data I 
- Nor. model I 

600 700 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

138 

800 

800 

800 

800 

 
 
 



APPENDIX D. MODAL ANALYSIS OF HINGED-HINGED BEAM 

102 

~ 100 

~ 
.:. 
<> 
(J 

~ 
<> ..s 

10-4 
100 

102 

~ 100 

~ 
.:. 
<> 
(J 

J 
10-4 

100 

102 

~ 100 
'"I 
'" = .:. 
<> 
(J 

= 
~ -= 

10-4 
100 

102 

~ 100 
'"I 
~ 
.:. 
<> 

~ 
2 -= 

10-4 
100 

200 

200 

200 

200 

Position 61 Reference 5 

300 400 

Frequency [Hz] 

500 

Position 7/ Reference 5 

300 400 

Frequency [Hz] 

500 

Position 8/ Reference 5 

300 400 

Frequency [Hz] 

500 

Position 9/ Reference 5 

300 400 

Frequency [Hz] 

500 

1- Data I 
- Nor. model 

600 700 

600 700 

1- Data 
- Nor. model 

600 700 

1- Data 
- Nor. model 

600 700 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICA TION PROCEDURES 

139 

800 

800 

800 

800 

 
 
 



APPENDIX D. MODAL ANALYSIS OF HINGED-HINGED BEAM 

10
2 

~ 10° <"I 
~ 
.:. 

" Sol 

~ 
~ 

..::I 

10-4 
100 

10
5 

;f 
'" 
~ 10° 

~ 
t: 
~ 

..::I 

10-5 

100 

10
2 

;f 10° 
'" .§. 
8 

I 10-2 

10-4 
100 

10
4 

;f 10
2 

'" :: 
.:. 

" 

J 10° 

10-2 

100 

200 

200 

200 

200 

Position 10/ Reference 5 

300 400 

Frequency [Hz] 

500 

Position 2J Reference 8 

300 400 

Frequency [Hz] 

500 

Position 3/ Reference 8 

300 400 

Frequency [Hz] 

500 

Position 4/ Reference 8 

300 400 

Frequency [Hz] 

500 

1- Data 
- Nor. model 

600 700 

I- Data I 
- Nor. model 

600 700 

I-Data I 
- Nor. model I 

600 700 

800 

800 

800 

- Nor. model _ 

600 700 800 

ASSESS}VfENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

140 

 
 
 



APPENDIX D. MODAL ANALYSIS OF HINGED-HINGED BEAM 

102 

~ 10° 
'" E-
I) 

~ 
] 

10"' 
100 

lOS 

~ 
~ 
2. 10° 
I) 

~ 

j 
lO-s 

100 

102 

~ 10° 
~ 
2. 
I) 

~ 
10-2 

~ 
:2 

,.:::; 

10"' 
100 

lOS 

~ 
<"i 
'" a 10° 
" ~ 
~ 

,.:::; 

IO-S 

100 

200 

200 

200 

200 

Position 5/ Reference 8 

300 400 

Frequency [Hz] 

500 

Position 61 Reference 8 

300 400 

Frequency [Hz] 

500 

Position 7/ Reference 8 

300 400 

Frequency [Hz] 

500 

Position 81 Reference 8 

300 400 

Frequency [Hz] 

500 

1- Data 
- Nor. model 

600 700 

1- Data 
- Nor. model I 

600 700 

- Data 
- Nor. model 

600 700 

600 700 

ASSESSlvfENT OF FREQUENCY DOMAIN FORCE !DENTIFICA TION PROCEDURES 

141 

800 

800 

800 

800 

 
 
 



APPENDIX D. MODAL ANALYSIS OF HINGED-HINGED BEAM 

100 

lOS 

~ 
"I 

." 
::: 

10° .::. 
4) 

~ 
] 

10-5 

100 

200 

200 

Position 9/ Reference 8 

300 400 

Frequency [Hz] 

500 

Position 10/ Reference 8 

300 400 500 

Frequency [Hz] 

1- Data I 

- Nor. model I 
600 700 

600 700 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

142 

800 

800 

 
 
 



APPENDIX E. PHOTOS 

APPENDIX E - PHOTOS 

Figure E.1 - Suspension offree-free aliminium beam with 
rubber strip attached. 

Figure E.2 - Construction ~fthe support/or the hinged-hinged 
aliminium beam. 
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Figure E. 3 - Structure-exciter attachment with force transducer 
and accelerometer. 

Figure E. 4 - Structure-exciter attachment for free-jree beam. 
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Figure £.5 - Structure-exciter attachment Jar hinged-hinged beam. 

Figure £. 6 - Structure-exciter attachment with Jorce transducer 
and piezoelectric strain gauge 
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