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6. DISCUSSION AND EVALUATION 

6.1 TEST PIECE 

An aluminium beam was invoked as the test piece throughout the study. It was 

deemed advisable to start with a relatively simple structure but unexpectedly gave rise 
to some difficulties. 

The fact that the test piece was a lightly-damped structure required special effort 
concerning the excitation function used in determining the frequency response 

functions. In the end a chirp-sine function was used, resulting in much sharper and 
well-defined peaks of the frequency response functions. The low damping was also 
mentioned as probable cause for difficulties experienced with the experimental modal 

analysis. 

Another factor that might have influenced the accuracy of the force estimates is that 

the modes for the beam were very well-separated, and at any given frequency, the 
response ofthe beam was dominated by the two nearest modes. 

In view of the above-mentioned it may be justifiable to consider a more complex 

structure with less well-separated modes and with higher damping. In a structure with 
higher damping the neighboring modes will have a larger contribution to the response 

of the structure at any given frequency and might not exhibit the same degree of ill­
conditioning noted with this test piece. 

6.2 APPLIED FORCES 

6.2.1 Unknown Forces Locations 

Throughout the experimental studies it was assumed that the exact forcing locations 

were known. In addition, only the columns associated with these input locations were 

included in the frequency response function matrix. Conversely, for the modal 
coordinate transformation method only the rows associated with the input locations 
were included in the reduced modal matrix of equation (4.16). Let's assume that the 
number of forces and the input locations were unknown. 

a) Frequency Response Function Method 

The maximum number of forces one can correctly predict will be equal to the 
rank of the frequency response function matrix, which in tum is equal to the 

number of significant participating modes (Fabunmi, 1986). For the case of 
the hinged-hinged beam, the analysis of the 'full' frequency response function 
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matrix would allow the estimation of maximum six forces, except at 
frequencies where the frequency response function matrix renders rank 

deficient. An important prerequisite is that the actual force inputs should be 
among the locations included in the frequency response function matrix. If 

not, the estimated forces will be erroneous pseudo-forces. The forces that 

produce a certain response can then be determined from the pseudo-inversion 

of the frequency response function matrix. The force amplitudes of the non­
forcing locations will be zero (Fregolent and Sestieri, 1990). 

b) Modal Coordinate Transformation Method 

The same argument can be followed in the case of the modal coordinate 
transformation method. The modal matrix is generally rectangular with the 
number of responses exceeding the number of modes within the analysis 
frequency band. In this case the number of force estimates should be smaller 
than or equal to the rank of the modal matrix (refer to Section 4.1.2). Proper 
choice ofthe set of response locations and orthogonal mode shapes will ensure 
that the modal matrix is well-conditioned and will not exhibit the ill­
conditioning at the resonant frequencies of the structure. Thus the number of 

force estimates remain constant for the entire frequency range considered. 
Once again the actual force locations should form part of the set of response 
locations of the reduced modal matrix, to infer the excitations accurately. 

6.2.2 Distributed Forces 

Both the frequency response function and modal coordinate transformation methods 
are discrete representations of continuous functions. The frequency response function, 
modal matrix and the responses can usually be measured only at a finite number of 

discrete points and as a result the force identification problem is restricted to the 
determination of forces at the discrete points. In the case of a distributed loading the 
responses are used to determine a number of equivalent discrete forces, which are 

intended to represent the original distributed load. As mentioned before, the number 
of modes in the frequency response function or modal matrix restrains the number of 
discrete dynamic forces. Unfortunately, these discrete forces will always be in error, 

even with a high number of modes and a high matrix dimension (Fregolent and 
Sestieri, 1990). 
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6.2.3 Random Forces 

Chapter 5 dealt with harmonic force determination only. An attempt to extend the 

force identification to determine random dual forces was unsuccessful due to 

shortcomings of the experimental setup. The force spectrums presented in Section 5.3 

and 5.4 exhibited some correlation despite the uncorrelated drive signals supplied to 

the shakers. The correlation was the result of the interaction of the excitation system 

with the structure and will tend to be greater at the beam's resonant frequencies . Two 

random forces were applied to the beam and the accelerations were measured. Figure 

6.1 presents the decomposition of the directly-measured random force spectral density 

function matrix obtained from the measurement procedure. The number of distinct 
non-zero eigenvalues, as well as the ratio between adjacent eigenvalues can be used to 
ascertain the degree of correlation of the inputs (Maia et al., 1997). It is worth noting 
that in the vicinity of the resonant frequencies of the beam the ratio between the 

eigenvalues was high, indicating only a single independent force. In the rest of the 

frequency range the eigenvalues were of similar magnitude. This shows that there 

were two independent forces. The reason for the results noted can be explained as 

follows . Two rather small electromagnetic exciters were used to excite the structurally 
stiff beam. For the case where a particular exciter was exciting the structure at or near 

one of the resonant frequencies the other exciter was 'pulled' in phase with the 

response of the resonant mode. The use of larger electromagnetic shakers, or for that 
matter even hydraulic shakers, might not exhibit the same behaviour. In addition a 

more flexible beam might be employed as test piece. 
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Figure 6.1 - Decomposition of force spectral density function matrix 
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Instead harmonic forces were applied to the beam, with forcing frequencies more or 

less in between the structural resonant frequencies. 

6.3 THE FREQUENCY RESPONSE FUNCTION METHOD 

The formulation ofthe frequency response function method was described in Chapter 
3. No modal parameter estimation is required, although an experimental modal 

analysis can be performed to 'filter' some of the measurement noise from the 
frequency response functions. 

The number of forces one can attempt to determine is limited by the number of 
significant participating modes at any given frequency line. 

The ill-conditioning of the force predictions at the system's resonant frequencies was 
illustrated through the use of a numerical simulation. The various modal parameters 
and responses were perturbated with random errors to resemble experimental 
measurements. The results indicated that the perturbation of the mode shapes had the 
most significant affect on the accuracy of the forces. In addition, it was noted that the 
pseudo-inverse of the frequency response function matrix needs to be computed at 

each frequency line within the analysis frequency range. 

The force predictions might be ameliorated at the structural natural frequencies by 
truncating very small singular values of the frequency response function matrix from 
the pseudo-inversion, since the inclusion of these small values might lead to 

erroneous force estimates. 

The condition number of the frequency response function matrix furnishes as a tool to 
ascertain the expected ill-conditioning of the force predictions. A numerical study 
highlighted the factors influencing the value ofthis parameter. 

Chapter 5 evaluated the implementation of this method to infer the forces acting on an 
aluminium beam subjected to different boundary conditions. A single harmonic force 
was successfully identified on a free-free and hinged-hinged beam. The results of the 
dual force inputs applied to the free-free beam cannot be completely explained. 

However, a probable cause was mentioned. In the final experimental study, the 
frequency response function method was used to determine two harmonic forces on a 

hinged-hinged beam from both acceleration and strain measurements. Despite the 
influences of the boundary conditions on the frequency response functions noted, the 

method was sufficiently successful in determining the applied forces. One of the 

important issues resulting from the experimental studies was the contribution of the 

residual terms corresponding to the truncated modes, which affected the accuracy of 
the frequency response functions and consequently the force predictions. It was 
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shown that the method has the ability to incorporate the influence of the residual 

terms in the force identification process. The residual terms corresponding to a 
particular reference position cannot be synthesised from the modal parameters 
extracted from the measurement of a single column or row of the frequency response 

function matrix. As a result the frequency response functions must be measured at all 
the expected force input locations. 

6.4 THE MODAL COORDINATE TRANSFORMATION METHOD 

Chapter 4 was concerned with the modal coordinate transformation method. An 

experimental modal analysis was a prerequisite for implementation of this method. In 

order to utilise a least-squares estimation of the forces the method requires the number 
of response locations to exceed the number of linear independent modes in the 
analysis frequency range, which in tum should preferably be greater than the number 
of forces one attempts to reconstruct. The results of a numerical study showed that the 

modal coordinate transformation method did not suffer from the ill-conditioning of 
the force estimates at the structural natural frequencies due to the inversion of the 
modal matrix. The successive integration of the acceleration to displacement signals 

was shown to amplify the errors in the low frequencies and might affect the force 
results. 

This method was computationally much faster than the frequency response function 
method, since the pseudo-inverse of the modal matrix needed to be calculated only 
twice, regardless ofthe frequency resolution considered in the analysis. 

A separate numerical study on a free-free beam indicated that the condition number of 
the modal matrix is a function of the set of response locations chosen and the modes 
included in the modal matrix. 

The modal transformation is based on the assumption that the modal vectors are 
orthogonal and linearly independent functions. This assumption might be violated 
during the experimental modal analysis and a reciprocal modal vector was described 
as an alternative method ofperforming the modal transformation. 

This method has the advantage ofbeing able to identify forces at locations which may 

be inaccessible for frequency response function measurements. Based on the 

reciprocal theorem, another point on the structure can be artificially excited from 
which one can extract the modal parameters. Having measured only the response at 
the inaccessible force input location, the force estimate corresponding to this point 
can then be determined (Kim and Kim, 1997). The results of the experimental studies 
in Chapter 5 pointed out that this procedure is only valid when the values of the 
residual terms of the truncated modes outside the analysis frequency range are 
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negligible. Although the residual terms corresponding to the low and high modes can 

be obtained from the experimental modal analysis, these terms have to be omitted 

when executing the modal coordinate transformation method. The findings of Section 
5.1, where a free-free beam was used to predict a single harmonic force, indicated that 

the low frequency contribution, i.e. the RBM, had the most adverse affect on the 

accuracy of the reconstructed frequency response functions at the excitation 
frequency. 

The frequency response function method for determining a single force resulted in a 
condition number ofunity (the ratio of a single singular value by itself). However, the 

modal coordinate transformation method required the inversion of the modal matrix, 
and since more than one mode was included in the modal matrix, the value of the 
condition number was greater than unity. 

In the second experimental study a hinged-hinged beam was investigated to exclude 

the effect of the RBM to the response of the beam. At first not enough modes were 
included in the analysis to infer the force estimate correctly at the excitation 
frequency. It was noted that more modes were required in the force identification 
process than the number of modes required in modeling of the response of the 
structure. This method also displays the truncation problem generally encountered in 
experimental modal analysis and are caused by the limited number of modes, limited 
number of measurement points and the lack of rotational degrees-of-freedom (Shih et 
aI., 1989). As jet, it is uncertain as to the number of modes, or the analysis frequency 
range required to guarantee success with the modal coordinate transformation method. 

This might prevent the method from becoming popular in cases where the vibration 
measurements are very expensive andlor labour intensive to perform and a second 
round ofmeasurements are just not viable. 

The final experimental evaluation was a hinged-hinged beam subjected to two 
simultaneous harmonic forces. Constraints imposed on the beam influenced the 

frequency response functions around the fifth mode. As a consequence, the frequency 
response functions were difficult to recreate from the modal parameters alone and 
spoiled the force identification. 

This method was applied under the assumption of proportional damping and would 
require a more elaborate calculation procedure if this assumption was not fulfilled 
(Desanghere and Snoeys, 1985). 
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6.5 CONCLUSION 

Two frequency domain force identification procedures were proposed in this work. In 

view of the above-mentioned advantages and disadvantages associated with each 

method it can be concluded that the frequency response function method is superior to 

the modal coordinate transformation method for the applications considered in this 

study. 
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