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CHAPTER 4 


The Modal Coordinate Transformation Method 
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4.1 THEORY 

Preamble 

This chapter is devoted entirely to the modal coordinate transformation method (Kim 

and Kim, 1997; Desangehere and Snoeys, 1985). A detailed derivation of the modal 

coordinate transformation method is presented. The numerical studies investigate the 

application of the method on a two degree-of-freedom system and the factors 

influencing the condition number of the modal matrix. This chapter also describes 

applying the modal filter to force reconstruction, which is validated by a numerical 
simulation. 

For a proportionally damped multi-degree-of-freedom system, with N degrees of 
freedom, the governing equations of motion can be written in matrix form as: 

[M ](x(t)}+ [c ](x(t)}+ [K ](x(t)} = {f(t)} (4.1) 

where 

[M], [K] and [c] are the (N x N) mass, stiffness and damping matrices, 

respectively, 

{x(t) }, {x(t)} and {x(t)} are the (N x 1) acceleration, velocity and displacement 

vectors, respectively, and 

{f(t)} is the (Nxl) applied force vector. 

The eigenvalue problem for the conservative (undamped) structure is written as: 

[ K ][ ~ ] = [ M ][ <I> ][A ] (4.2) 

where 

[<I> ]= [{; 1,{;}2 , ... , {; }NY is the modal matrix, consisting of N modal vectors, 

[A]= diag{~ ,~, ... ,Aw} is the modal stiffness matrix and Ar =w; for r I,N 

Substitute the following coordinate transformation into equation (4.1) 

{x(t) } = [ <I> ]{p(t) } (4.3) 

and pre-multiplying the resulting equation by [<I> Y yields 

(4.4) 


where 

[M], [if] and [c] are the modal mass, stiffness and damping matrices, 

respectively. 
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For a mass-normalised modal matrix it follows that 

(4.5) 

[<I> y[C][<I> ]=[p] 

where 

[p]= diag{PI ,P2 "",PN } is the modal damping matrix and Pr 2t;rcor' 

t;r is the modal damping factor for the r -th mode. 

It will be assumed that the following relation holds: 

(4.6) 

Satisfying this condition, the damped system will possess the same mode shapes as its 

undamped counterpart. Thus, the eigenvectors will be real and equation (4.4) will 

contain N uncoupled system equations. 

Transforming equation (4.4) to the frequency domain and using equation (4.5), it 

follows for steady state conditions that 

(4.7) 

where 

{p(co)} denotes the Fourier Transform of the modal coordinates ( {p } refers to 

the modal coordinates as a function of time), 

Rearranging equation (4.7) it follows 

{P(co) }= [_co2[I ]+ico[p ]+ [A ]]-1 [<I> ]T {F(co) } (4.8) 

Introducing equation (4.8) back into equation (4.3) in the frequency domain results in: 

(4.9) 

Equation (4.9) can be represented in a more familiar form, as the frequency response 

function 

(4.10) 


where 

{¢ L is the (N x 1) modal vector corresponding to the measurement points, 
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{~ }, is the (N x 1) modal vector corresponding to the excitation points. 

In real-world applications the mode shapes are usually identified at n (n < N) sensor 

locations while only p (p < N) of all possible modes are included. If the number of 

forces, m and positions are known a priori, equation (4.10) reduces to 

(4.11) 


where 

{; t is the (n x 1) modal vector corresponding to the measurement points, 

{J}, is the (m x 1) modal vector corresponding to the excitation points. 

Emp loying matrix notation, equation (4.11) can be rewritten as 

{X(m)}= [<l> ] [S(m)] lq, Jr {F(m)} (4.12) 

where 

[S(m)] is an (px p) diagonal matrix having the following terms on the 

diagonal: 

1 

+i21;,m,m 

4.1.1 The Modal Coordinate Transformation Methodology: 

The modal coordinate transformation method uses equation (4.12) to identify the 

input forces. This method comprises the following steps (Desanghere and Snoeys, 
1985): 

Step 1: Computation of the modal responses. 

Successive integration of the measured acceleration signals to obtain 

the displacements. The displacements at the physical coordinates are 
transformed to the modal coordinates by multiplying the displacements 

with the pseudo-inverse of the modal matrix. 

(4.13) 


where 

{P(m)} is a (pxl) vector and denotes the Fourier Transform of 

the modal coordinates ( {p } refers to the modal coordinates as a 

function oftime), 
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Step 2: 

Step 3: 

[ <l> ] + denotes the pseudo-inverse of the (n x p) modal matrix, 


and 


{X{m)} is the (n x 1) physical response vector at the sensor 


locations. 


Computation of the modal forces. 

{Fm(m)}= [S(m) ]-' {P(m)} (4.14) 

where 

{Fm (m)} is the (p x 1) modal force vector. 

Computation of the physical forces 

(4.15) 


where 

{F{m) } is the (m x 1) input force vector, and 

[ <l> T ] + indicates the pseudo-inverse of [<l> ] T • 

The least-squares estimation of the pseudo-inverse is used twice in the modal force 

identification. These pseudo-inverse matrices can be calculated using any of the 

methods previously described in Section 3.1. 

The above procedure can be summarised in a single equation as: 

{hm) }= [<l> T]+ [S(m) ]-' [<l> ]+ {X(m)} (4.16) 

4.1.2 Limitations Regarding the Modal Coordinate Transformation 

Since the over-determined case is the most common in engineering problems, the 

same approach will be followed in force identification. This means that the pseudo­

inverse is obtained by normal least -squares solutions while avoiding minimum norm 

solutions associated with the under-determined case. Consider the direct problem of 

equation (4.15) as 

The number of responses, n, generally exceeds the number of modes, p, resulting in 

a rectangular modal matrix. Thus, solving the forces at the physical coordinates from 

knowledge of the modal forces, equation (4.16) is under-determined (i.e. more 

unknowns than data). If the number and positions of the forces are known a priori, the 
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rows of [<I> ] which correspond to these forces are grouped into the (m x p) matrix [e], 
while eliminating the positions from the force vector, {F(w)}, at which forces will be 

constrained to act, making it an (m x1) vector. In this case, the solution for {F(w)} 

becomes over-determined (i.e. more data than unknowns). 

Thus, to obtain a least-squares solution, it is required that n 2: p 2: m be satisfied, i.e. 

the number of response measurements should exceed or be equal to the number of 
modes, which in tum should be greater than or equal to the number of forces 

estimated. 

4.2 TWO DEGREE-OF-FREEDOM SYSTEM 

In this section the modal coordinate transformation technique is implemented on a 
simple 2 DOF lumped-mass system. Once again the system's response and modal 
parameters will be subjected to perturbation in order to simulate experimental 
measurements. It will be shown that the modal coordinate transformation technique 
does not suffer from the ill-conditioning of the force estimates at the system's 
resonance due to the matrix inversion, as was encountered for the frequency response 
function technique. 

There are primarily two sources of error present in the modal coordinate 
transformation technique. These are the noise encountered in the structure's response 
measurements and the modal parameter extraction. Errors in the modal parameters 
will propagate to the identified forces through the double pseudo-inverse of the modal 
matrix. Kim and Kim (1997) studied the error propagation and found that for a lightly 
damped structure, errors in the damping values induce fewer error in the force 
identification than errors in the natural frequencies. Errors in the modal vectors were 
considered to have the most adverse effect on force predictions. Desanghere and 
Snoeys (1985) considered the modal coordinate transformation technique rather 
insensitive to measurement and curve-fitting perturbations. They claim that the 
precision of the identified forces were almost constant over the frequency range 
covered by the modes included in the analysis, regardless of the system's resonances. 
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Consider the following lumped-mass system. 

m l = 0.5 kg k J = 1.4212 X 105 N/m Sl = 0.001 

m2=1.0kg k2= 2k J N/m S2 = 0.001 

Figure 4.1 - 2 DOF lumped-mass system 

Once again, a harmonic forcing function is used to excite each of the masses. 

/ ; (t) =150 cos( 60 n- t) 12 (/) = IOOcos(60n-t) (4.17) 

The response for each degree-of-freedom was solved analytically. 


Perturbation of the natural frequencies, modal damping factors, mode-shapes and 


accelerations was conducted similar to that described in Section 3.2, for the frequency 


response function method. The same maximum error levels were used as before. 


The contaminated modal parameters and responses were used to solve the forces . 


Results an d Discussion 

This technique was successfully implemented to identify the two harmonic forces 

applied to the 2 DOF lumped-mass system. 

It is evident from Figures 4.2, 4.3 and 4.4 that the modal coordinate transformation 

technique does not suffer from the ill-conditioning of the force estimates at the 

system 's resonance due to the inversion of the modal matrix. Figure 4.2 shows the 

force magnitudes as a function of the frequency. 

Although it is general practice to take acceleration measurements, the formulation of 

the modal coordinate transformation method, as expressed by equation (4.16), uses 

displacements . The successive integration of the accelerations to displacements will 

amplify the errors in the low frequency range. This type of behaviour is evident in 

Figures 4.3 and 4.4 where the small numerical errors from the perturbation and the 

DFT are amplified prior to the excitation frequency . 
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The Moore-Penrose pseudo-inverse method was used to determine the pseudo-inverse 

of the modal matrix, since the columns of the modal matrix represent the individual 

mode-shapes and are orthogonal with respect to each other. 

The FEN is depicted in Figure 4.5. The FEN is initially high in the low-frequency 

range, for the above-mentioned explanation, but decreases rapidly as it approaches the 

excitation frequency. At the excitation frequency the force estimates are in good 

agreement with the applied forces and the FEN reaches a minimum value. From here 

onward the FEN increases steadily, as the force estimates deviate from the applied 

forces. 
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Figure 4.2 - Applied and estimatedforce magnitudes for 

the 2 DOF lumped-mass system in the frequency domain 
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Figure 4.3 - Applied and estimatedforce no. 1 for the 2 DOF 

lumped-mass system in the frequency domain 
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Figure 4.4 - Applied and estimated force no. 2 for the 2 DOF 

lumped-mass system in thefrequency domain 
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Figure 4.5 - Force Error Norm (FEN) o/the estimated/orees, 


V indicates the 2 DOF systems' resonant frequencies 


In view of the above numerical simulation we would like to comment on some of the 

advantages and disadvantages regarding the use of the modal coordinate 

transformation technique in general. 

Advantages of Modal Coordinate Transformation 

This technique requires that the pseudo-inverse be calculated only twice, regardless of 

the number of discrete frequencies included in the analysis. This reduces the 

computational time required to analyse large systems (Kim and Kim, 1997). 

The points on a structure where the actual forces are applied may be inaccessible. 

Another point can then be artificially excited to extract the modal parameters while 

measuring the responses at the actual input locations. The force estimates at the 

inaccessible points can then be determined based on the reciprocity theorem (Kim and 

Kim, 1997). 

ASSESSlI1ENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



62 CHAPTER 4. MODAL COORDINATE TRANSFORMATION METHOD 

Disadvantages of Modal Coordinate Transformation 

The modal coordinate transformation technique requires a good set of modal 
parameters. This may prove hard to obtain for a complex structure. 

Another disadvantage is that the estimated forces are limited to the frequency range 

based on the modes selected for the modal transformation (Shih et al., 1989). 

4.3 SIGNIFICANCE OF THE CONDITION NUMBER 

As mentioned earlier, the definition of the condition number for a rectangular matrix 
can be stated as: 

(4.18) 


where 

a ([A]) is the singular value of the matrix [A]. 

From equations (4.13) and (4.15) it is apparent that the modal coordinate 

transformation method only requires the pseudo-inverse of the modal matrix, [c;J)] and 

[c;J) f . The condition number ofthis technique will, thus be bounded by the product of 

the condition number ofthe individual pseudo-inverses. 

(4.19) 


A large condition number will indicate an ill-conditioned system, i.e. a system that is 
prone to significant errors in the force estimates when inverted. The source of this ill­

conditioning lies in the pseudo-inverse of [c;J)] and [c;J)] T It is also important to note • 

from equation (4.19), that the condition number remains constant for the entire 

frequency range of interest. 

Hansen and Starkey (1990) extended the work of Starkey and Merrill (1989) by 

considering the condition of the modal coordinate transformation technique. They 
established a criterion for which some types of systems are ill-conditioned while 
others are not. Based on the fact that there is a close relationship between the singular 

values of a matrix [A] and the eigenvalues of ([A Y[A]), they concluded that the 

condition number of the pseudo-inverse will be a function of the set of sensor 

locations, as well as ofwhich modes are included. 
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The same FEM, as described in detail in Section 3.3, was used to investigate the 

factors that contribute to the condition number of the modal coordinate transformation 

technique. 

Nodes: 

2 3 4 S 6 7 8 9 10 11 

1 1 

I. . 1 
2m 

Cross-section: 

z 
12s.4mm 

I. .1 
SO.8mm 

Figure 4.6 - FEM C?f free-jree beam and response locations 

4.3.1 Effect of the Response Selection 

Firstly, we investigated how the different combinations of response locations 

influenced the condition number of the modal matrix. Three sets of response 

measurements were chosen, each consisting of four response locations. The first five 

bending modes were included in the analysis, while disregarding the rigid body 

modes. From the results in Table 4.1 we can conclude that the choice of response 

locations included in the modal matrix, can greatly affect the condition of the pseudo­
inverse and subsequently influence the force predictions. 

Table 4.1 - Effect of different response sets on the condition number 

Sets of response points Condition Number 

(8, 5, 6, 11) 3.05 

(1, 7,4, 10) 18.88 

(1,2,3,4) 23.00 

For a real-world structure involving a large number of sensors, selecting the 

appropriate response set that corresponds to the lowest condition number, from all 

possible sensor locations may prove to be a formidable task. In order to choose r 

sensor locations out of a possible n, we would need to evaluate 

n! 
(4.20) 

r! (n -r)! 
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combinations in search for the optimal modal matrix. Therefore, to choose 4 sensor 

locations out of a possible 11 for the above FEM example, 330 combinations must be 

evaluated, which is not practical. 

Kammer (1990) introduced the effective independent algorithm that measures how 

each sensor location contributes to the rank: of the modal matrix. Shelley et al. (1991) 

found this algorithm to be both effective and computationally efficient in selecting 

sensor locations in the application ofmodal filters. 

Kammer's algorithm is supported in the Structural Dynamics Toolbox®(Balmes, 1997) 

and is accessed using the fe sens function. This function sorts the selected sensor 

locations contained in the vector sdof, from most too least important. Applying this 

function to the FEM the following result was obtained: 

sdo f= [ 8; 5 ; 6; 11; 1; 7; 4; 10; 2; 3 ; 9] 

The first four digits in sdof correspond to the first response set in Table 4.1. It can be 

seen that this response set produced the lowest condition for the particular choice of 

modes. Important to note is that Krammer's algorithm is dependent on the modes 

included in the analysis. Reducing the number of modes to include only the first four 
bending modes will result in a different set ofsensor locations, as shown below: 

sdof=[l1; 7; 5; 1; 6; 4; 9; 3; 8; 2; 10] 

Similar to the frequency response function technique, the inclusion of more response 

measurements will reduce the condition number ofthe modal matrix. 

4.3.2 The Effect of the Number of Modes 

The effect of the number of modes included in the modal matrix was considered next. 

The same combinations of response measurements were considered as before, but 

with different ranges of modes included. Table 4.2 shows the condition number for 

each of these cases. 

Table 4.2 - Effect qfdifferent modes on the condition number 

Response points Modes 1-5 Modes 2-5 Modes 1-4 Modes 2-4 

(8,5,6,11) 

(1,7,4,10) 

(1,2,3,4) 

3.05 

18.88 

23.00 

4.85 

20.37 

46.79 

22.37 

20.09 

98.12 

3.49 

17.12 

14.49 
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The result shows that the modes included or excluded from the modal matrix can 

influence the condition number significantly. In general the condition number is 

smaller when more modes are included, than when fewer modes are used. 

These results confirm Hansen's findings. 

4.3.3 Conclusion 

The modal coordinate transformation technique is generally well-conditioned, as long 

as a convenient set of sensor locations is chosen. Care should be taken during the 

selection of the response measurements and number of modes included to ensure the 
lowest possible condition number for the calculation of the pseudo-inverse. 

4.4 MODAL FILTERS 

4.4.1 Preamble 

This section describes applying modal filters to the force identification process. First, 

modal filters are described and discussed. The modal filter is then applied to the 
modal coordinate transformation technique, which is validated by a numerical 
simulation. 

The modal filter was originally introduced to deal with the spillover problem in the 
control of distributed-parameter systems (Meirovitch and Baron, 1983), but has 

recently been extended to include other applications in vibration analysis. These 
include active vibration control (Meirovitch and Baruh, 1985), correlation between 
analytical and experimental models, vibration force identification (Zhang et al., 1990) 

and on-line parameter estimation (Shelley et aI., 1992). 

A modal filter works on the basis that it transforms the physical response coordinates 
to the modal coordinates and may be performed in either the time or frequency 

domain. For instance, by multiplying the measured response vector, {x}, by the 

modal filter matrix, [VI Y, the physical response vector is uncoupled into a vector of 

the single-degree-of-freedom modal coordinates responses, {p}. 

{P}=[VlY{X} (4.21) 

The first step in the force identification by means of the modal coordinate 

transformation method requires the computation of the modal responses. This is done 

by multiplying the measured displacement vector with the pseudo-inverse of the 

modal matrix. 
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{P(w)}= [<lJ J+ {X(w)} (4.22) 

In equation (4.22) the pseudo-inverse of the modal matrix performs in essence the role 

of the modal filter as described in equation (4.21). A problem with this approach is 

that complete and accurate estimations of all the modal vectors in the frequency range 

of interest are required. Furthermore, it is assumed that for an undamped or 

proportionally damped system the modal vectors are orthogonal with respect to the 

physical mass matrix, which is analytically imposed but may be violated during the 

parameter extraction process. If a particular modal vector contains errors this will 

propagate to all of the modal vectors through calculation of the pseudo-inverse. 

The Reciprocal Modal Vector (RMV) can be employed as an alternative method for 
calculating the modal filter of a system. The reciprocal modal vectors are defined to 
be orthogonal to the modal vectors and are calculated from measured frequency 
response functions and modal parameters. The modal filter estimate for a given mode 

is not affected by errors associated with other modes. 

4.4.2 Formulation 

A brief description of the formulation of the reciprocal modal vector method follow 
(Zhang et aI., 1990). Specific details regarding the derivation of RMV and other 

modal filters can be found in Zhang et al. (1989); Shelley and Allemang (1992) and 
He and Irnregun (1995). 

The frequency response function was previously derived 10 terms of modal 
parameters as 

(4.23) 


In the above equation the orthogonality criterion of the modal vectors is used to 
perform the transformation from the physical to the modal coordinates. Thus, for 

mass-normalised modal vectors it follows that 

(4.24) 


where 

Oij is the Kronecker delta function, and oij is equal to zero for i"* j and is equal 

to 1 for i = j. 
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Since the physical mass matrix is usually not available in practice, this orthogonality 

criterion can be restated as: 

(4.25) 


where 

{I{/}~ is the reciprocal modal vector, corresponding to mode i . 

The reciprocal modal vector is defined as the product of the transposed modal vector 

and the mass matrix: 

(4.26) 


Zhang et at. (1990) constructed the reciprocal modal vector of a particular mode, 

using mode vectors, eigenvalues and frequency response functions. If the p -th 

column of the frequency response function matrix may be expressed as 

(4.27) 


where 

.l r and {~}r are the r -th complex eigenvalue and the associated modal vector, 

Q r is the modal scaling factor, and 

* denotes the complex conjugate. 

PremuItiplying the reciprocal modal vector and rearranging the expression Zhang 

produced the following results: 

(4.28) 


Equation (4.28) may be evaluated at a sufficient number of discrete frequencies to 

form an over-determined problem, which may be solved for {I{/} in a least-squares r 

manner. The resulting reciprocal modal vector will be orthogonal to the modal vectors 
within this frequency range. 

The minimum number of sensors required to calculate the modal filter should be 

equal to or greater than the number ofmodes in the frequency range of interest. 

The modal filter calculated from use of the reciprocal modal vector will replace the 

pseudo-inverse of the modal vector in the first step ofthe force identification process. 
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4.4.3 Seven Degree-or-Freedom System 

A numerical simulation involving a seven DOF system, with non-proportional 

damping, is employed to illustrate the effectiveness of the proposed method. Although 

the formulation of the modal coordinate transformation method was developed based 

on the hypothesis of proportional damping, this simulation shows that for lightly 

damped structures the non-proportional damping model does not lead to significant 

errors in the force estimates. 

k8 
f2 

k9 
m7 

C8 C9 
k7 

m6 

C7 
m5 

Cs 

Figure 4.7- 7 DOF lumped-mass system 

Table 4.3 Properties afthe 7 DOF lumped-mass system 

Mass Stiffness Modal damping Natural frequencies 

[kg] [N/m] factors [Hz] 

ml=3.0 kJ=5 .0 x 106 2.5 X 10-3 68.02 

m2=2.0 k2=2.0 X 106 1.0 X 10-3 135.56 

m3=1.0 k3=1.0 x 106 3.0 X 10-3 173.55 

m4=2.0 ~=2.0 x 106 2.0 X 10-3 212.86 

ms=1.5 ks=1.0 X 106 0.0 X 10-3 250.10 

m6=2.0 ~=1.5 x 106 5.0 X 10-3 316.76 

m7=1.0 k7=2.0 x 106 1.0 X 10-3 335.16 

- k8=2.0 x 106 - -

The system's natural frequencies and corresponding modal vectors were determined. 

The modal vectors were contaminated with uniformly distributed random errors with 

a maximum error level of 10 %, to simulate experimentally obtained data. This was 

done in accordance with the error model described in Section 3.2. These contaminated 

modal vectors will then be used to calculate the modal filter and the force estimates 

by means of the modal coordinate transformation method. 
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The modal filter was calculated as follows: 

Columns 2 and 6 of the frequency response function matrix were constructed at 15 

discrete frequencies, distributed equally throughout the frequency range and depicted 

as circles in Figure 4.8. These values, as well as the modal parameters of the mode of 

interest, were substituted into equation (4.28), from which the reciprocal modal vector 

was solved. This procedure was repeated for all seven modes. Each reciprocal modal 

vector represented a column of the modal filter matrix. 
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Figure 4.8- Receptance, a 12 (w ) and discrete frequency 

points used in modalftiter construction 

The validity of the modal filter can be checked based on the orthogonality criterion 

stated in equation (4.25). This equation can be rewritten in matrix notation as: 

(4.29) 

Substituting the previously obtained modal filter and modal matrix into the above 

equation, the following matrix was obtained: 
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0.999 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.994 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.977 0.001 0.0 0.0 0.0 

[<I>Y[V/]= 0.0 0.003 -0.004 0.989 0.0 0.0 0.0 

0.0 0.001 -0.002 0.003 l.0 0.0 0.0 

- 0.003 0.0 0.004 -0.002 0.0 0.988 0.0 

0.005 0.003 0.0 0.003 0.0 0.004 l.0 

This matrix differs from the expected identity matrix due to the contaminated modal 

vectors included in the calculation of the reciprocal modal vectors and the modal 

truncation errors caused by the limited frequency range. However, it can be seen that 

the dominant values are still situated on the diagonal and are very close to unity. 

The seven DOF-system was subjected to two harmonic forces with the same 

excitation frequency, acting on masses 1 and 6, respectively. The modal coordinate 

transformation method was used to calculate the force estimates, with the exception 

that the reciprocal modal vector was used for the modal coordinate transformation, 

rather than the pseudo-inverse of the modal matrix. 

As can be seen from Figures 4.9 and 4.10, the estimated forces correspond well with 

the actual forces . 

To conclude: 

The modal filter, calculated from use of the reciprocal modal vector, might replace the 

pseudo-inverse of the modal vector in the first step ofthe force identification process. 

Since the reciprocal modal vector method only requires the frequency response 

function matrix and modal parameters for only the mode of interest, the modal filter 

estimate for a given mode is not affected by errors associated with other modes. 
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Figure 4.9 - Applied and estimated forces in the frequency domain 

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



CHAPTER 4. MODAL COORDINATE TRANSFORMATION METHOD 

-200 '--___ --'-__ .L...-_-'-_--'-__ .L...-_-'-____ -'--_-' 

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Time [sec] 

100,-----,--.--,---,--,--,-----,--~ 

-100 '--___ --'-__ .L...-_-'-_--'-__ -'--_-'-____ -'--_--' 

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Time [sec] 

Figure 4.10 - Applied and estimated forces in the time domain 
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