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CHAPTER 3 


The Frequency Response Function Method 
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28 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

3.1 THEORY 

Preamble 

The intent of this section is twofold: Firstly, we will formulate the relevant theory 

relating to the frequency response function method as applied to the force 

identification process. We will start with the more familiar inverse of a square matrix 
and progress to the pseudo-inverse of a rectangular matrix. The second objective is 

concerned with the calculation of the pseudo-inverse itself There are currently a 

number of different matrix decomposition methods that are used in the calculation of 
the pseudo-inverse. It is not the intention to present a detailed mathematical 

explanation ofthe derivation ofthe pseudo-inverse, but rather to highlight some of the 
important issues. This is explained on the basis of the frequency response function 
method, but is also relevant to other force identification procedures, among others the 

modal coordinate transformation method which also features in this work. 

3.1.1 Direct Inverse 

By assuming that the number of forces to be identified and the number of responses 

are equal (m = n), the frequency response matrix becomes a square matrix and thus an 

ordinary inversion routine can be applied, as follows: 

{F(O) }= [H(O) ]-1 {X(O) } (3.l) 

The above equation suppresses many of the responses for computational purposes, 
since the number of forces is usually only a few even if the structure is very complex 
or many responses are available. 

3.1.2 Moore-Penrose Pseudo-Inverse 

Accordingly, it is proposed to use a method of least-squares regression analysis, 

which allows the use of more equations than unknowns, whence the name over­

determined. The advantage of being able to use redundant information minimises the 
consequence of errors in measured signals due to noise, which are always present. 

Adopting the least-squares method the following set of inconsistent linear equations 
are formulated: 

{X(O)}= [H(O) ]{F(O)} (3.2) 

where 


{X(w) } is the (n x 1) response vector, 


[H(O)] is the (n x m) frequency response function matrix, 


----------- .. ­- ----------~ 
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29 CHAPTER 3. FREQUENCY RESPONSE FUNCTIONMETHOD 

{F(m)} is the (mxl) force vector. 

The difference between the above equation and equation (3.1) is that here m 

unknowns (forces) are to be estimated from n equations (responses), with n 2. m . The 

least-squares solution ofequation (3.2) is given by: 

{hm) }=[H(m)]+ {X(m)} (3.3.a) 

where 

(3.3.b) 

which is known as the Moore-Penrose pseudo-inverse of the rectangular matrix 

[H(m) ]. Since the force and response vectors are always functions of the frequency, 

the functional notation (m) will be dropped in further equations. 

The least-squares solution {fr} is thus given by: 

(3.4) 


where 

[ . J' is the complex conjugate transpose ofthe indicated matrix and (.) -I is the 

inverse of a square matrix. 

Now, we would like to investigate the conditions under which the pseudo-inverse, as 

stated in equation (3.4), are valid. For this reason, we first need to consider what is 

meant by the rank ofa matrix. 

a) The Rank ofa Matrix 

The rank ofa matrix can be defined as the number of linearly independent rows or 

columns of the matrix. A square matrix is of full rank if all the rows are linearly 

independent and rank deficient if one or more rows of the matrix are a linear 

combination ofthe other rows. Rank deficiency implies that the matrix is singular, 

i.e. its determinant equals zero and its inverse cannot be calculated. An nxm 

rectangular matrix with n 2. m is said to be 'full rank' if its rank equals m, but rank 

deficient if its rank is less than m. (Maia, 1991) 

b) Limitation Regarding the Moore-Penrose Pseudo-Inverse 

It should be noted that equation (3.4) is only unique when [H] is offull column 

rank (rank([ H ])= m; m number of forces), i.e. the equations in (3.2) are linearly 

independent. Or in other words, the inverse of ([H(m)]"[H(m)])-lin equation (3.4) is 
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30 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

only feasible if all the columns and at least m rows of the (n x m) rectangular 

matrix [H] are linearly independent. 

If [H] is rank deficient (rank ([ H ]) < m ), the matrix to be inverted will be singular 

and the pseudo-inverse cannot be computed. This, however, does not mean that 

the pseudo-inverse does not exist, but merely that another method needs to be 

employed for its determination. 

Based on the above-mentioned requirement Brandon (1988) refers to the Moore­

Penrose pseudo-inverse as the 'restricted' pseudo-inverse. He investigated the use 

of the restricted pseudo-inverse method in modal analysis and only his 
conclusions will be represented here. 

}i> 	 "The most common representation of pseudo-inverse, in modal analysis is 

the full rank restricted form. This will fail if the data is rank deficient, due 
to the singularity of the product matrices. In cases where the data is full 
rank, but is poorly conditioned (common in identification problems), the 

common formulation of the restricted pseudo-inverse will worsen the 
condition unnecessarily. 

}i> 	 In applications where the rank of the data matrix is uncertain, the singular 
value decomposition gives a reliable numerical procedure, which includes 
an explicit measure ofthe rank." 

It is to be hoped that the reader will be convinced in view of the above that certain 
restrictions exist regarding the use of the Moore-Penrose pseudo-inverse. The 

Singular Value Decomposition will prove to be an alternative for calculating the 
pseudo-inverse of a matrix. 

c) 	 Further Limitation.~ Regarding the Least-Square Solution 

Up to now, it may seem possible to apply the least-squares solution to the force 

identification problem, simply by ensuring that the columns of [H] are all linearly 

independent. But this in itself introduces further complications. The number of 

significantly participating modes, as introduced by Fabunmi (1986), plays an 

important role in the linear dependency of the columns of the frequency response 
function matrix. 

The components of the forces acting on a structure are usually independent. 
Conversely, the different responses caused by each one of the forces may have 

quite similar spatial distributions. As a result, the columns of the frequency 
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31 CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

response function matrix are "almost" linearly dependent, resulting in a rank 

deficient matrix. This can be circumvented by taking more measurements, or by 

moving the measurement positions along the structure. However, situations exist 

where the above action will have little effect. 

As is generally known, the response at a particular frequency will be dominated 

only by a number of significantly participating modes, p. This is particularly true 

at or near resonance. In such a situation only a limited number of columns of the 

frequency response function matrix are linearly independent, while some can be 

written as linear combinations of the dominated modes. The linear dependency 

may be disguised by measurement errors. This leads to ill-conditioning of the 

matrix, which can be prone to significant errors when inverted. 

In order to successfully implement the least-squares technique, Fabunmi (1986) 

suggests that the number of forces one attempts to predict should be less or equal 

to the significantly participating modes at some frequency (m S p). This will 

ensure that all the columns and at least m rows will be linearly independent. 

To conclude: 

~ The number of response coordinates must be at least as many as the 

number of forces. In the least-squares estimation, the response coordinates 

should considerably outnumber the estimated forces (n ~ m ). 

~ Furthermore, the selection of the response coordinates must be such as to 

ensure that at least m rows of the frequency response function matrix are 

linearly independent. If there are fewer than m independent rows, the 

estimated forces will be in error, irrespective of how many rows there are 

altogether (p ~ m). 

3.1.3 Singular Value Decomposition (SVD) 

In the force identification the number of modes that contribute to the data is not 

always precisely known. As a result the order of the data matrix may not match the 

number of modes represented in the data. Another method must then be employed to 

calculate the pseudo-inverse, for instance Singular Value Decomposition (SVD). 

It is not the intent to present a detailed mathematical explanation of the derivation of 

the SVD technique, but rather to highlight some of the important issues. The reader is 

referred to the original references for specific details (Menke, 1984; Maia, 1991; 

Brandon, 1988). 
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The SVD of an nx m matrix [H J is defined by: 

[H] [U] [2:][V]T (3.5) 

where 

[ U] is the (n x n) matrix, the columns comprise the normalised eigenvectors of 

[HHHf, 

[V] is the (mxm) matrix and the columns are composed of the eigenvectors of 

[Hf[H] , and 

[2:] is the (nxm) matrix with the singular values of [H] on its leading 

diagonal (off-diagonal elements are all zero). 

The following mathematical properties follow from the SVD: 

a) The Rank ofa Matrix 

The singular values in the matrix [2:] are arranged m decreasing order 

(0"1 > 0"2 > ... > 0"",). Thus, 

0"1 0 '\ 

[2:] 

0"2 }m n (3.6) 

0 0"", 

0 

m 

Some of these singular values may be zero. The number of non-zero singular 

values defines the rank of a matrix [2:]. However, some singular values may not 

be zero because of experimental measurements, but instead are very small 

compared to the other singular values. The significance of a particular singular 

value can be determined by expressing it as the ratio of the largest singular value 

to that particular singular value. This gives rise to the condition number. 

b) Condition Number ofMatrix 

After decomposition, the condition number,1C2 ([H]), of a matrix can be expressed 

as the ratio ofthe largest to the smaJIest singular value. 

(3.7) 
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--.. --------- --------------------- ­

If this ratio is so large that the smaller one might as well be considered zero, the 

matrix [H] is 'almost singular' and has a large condition number. This reflects an 

ill-conditioned matrix. We can establish a criterion whereby any singular value 

smaller than a tolerance value will be set to zero. This will avoid numerical 

problems, as the inverse of a small number is very large and would, falsely, 

dominate the pseudo-inverse if not excluded. By setting the singular value equal 

to zero, the rank of the matrix [H] will in turn be reduced, and in effect the 

number of force predictions allowed, as referred to in Section 3.1.2.c. 

c) Pseudo-Inverse 

Since the matrices [U] and [V] are orthogonal matrices, i.e., 

(3.8a) 

and 

(3.8b)and 

the pseudo-inverse is related to the least-squares problem, as the value of {fr } 

that minimises II [H ]{ fr} {X} 112 and can be expressed as: 

(3.9) 

Therefore, 

(3.10) 

where 

[ H] + is an (m x n) pseudo-inverse ofthe frequency response matrix, 

[V] is an (m x m) matrix containing the eigenvectors of [H ][ H ] T , 


[U]T is an (nxn) unitary matrix comprising the eigenvectors of [H]T[H], 


[L] + is an (m x n) real diagonal matrix, constituted by the inverse values of the 


non-zero singular values. 


The force estimates can then be obtained as follows: 

(3.11) 
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3.1.4 QR Decomposition 

The QR Decomposition (Dongarra et al, 1979) provides another means of 

determining the pseudo-inverse of a matrix. This method is used when the matrix is 

ill-conditioned, but not singular. 

The QR Decomposition of the (n x m) matrix [H] is given as: 

(3.12) 


where 

[Q ] is the (n x m) orthogonal matrix, and 

[R] is the (mxm) upper triangular matrix with the diagonal elements in 

descending order. 

The least-squares solution follows from the fact that 

[H]T [H]= [R ]T [Q ]T [Q][R ] (3.13) 

and taking the inverse of the triangular and well-conditioned matrix [R] it follows 

that 

(3.14) 


3.1.5 Tikhonov Regularisation 

As described earlier, the SVD deals with the inversion of an iII-conditioned matrix by 

setting the very small singular values to zero and thus, averting their contribution to 
the pseudo-inverse. In some instances the removal of the small singular values will 

still result in undesirable solutions. The Tikhonov Regularisation (Sarkar et al.? 1981; 

Hashemi and Hammond, 1996) differs from the previously mentioned procedures in 

the sense that it is not a matrix decomposition method, but rather a stable approximate 

solution to an ill-conditioned problem, and whence the name regularisation methods. 
The basic idea behind regularisation methods is to replace the unconstrained least­

squares solution by a constrained optimisation problem which would force the 

inversion problem to have a unique solution. 

The optimisation problem can be stated as the minimising of II[HkF}-{x}112 
subjected to the constraint lI[iHF}1I2 , where [I] is a suitably chosen linear operator. 
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It has been shown that this problem is equivalent to the following one 

(3.15) 


where 

p plays the role ofthe Lagrange multiplier. 

The following matrix equation is equivalent to equation (3.14): 

([ H ]* [H ]+ p2 [i J*[i]) {F} = [H]*{x} (3.16) 

leading to 

(3.17) 


3.2 TWO DEGREE-OF-FREEDOM SYSTEM 

Noise, as encountered in experimental measurements, consists of correlated and 
uncorrelated noise. The former includes. errors due to signal conditioning, 
transduction, signal processing and the interaction of the measurement system with 
the structure. The latter comprises errors arising from thermal noise in electronic 
circuits, as well as external disturbances. (Ziaei-Rad and Imregun, 1995) 

The added effect ofnoise, as encountered in experimental measurements, may further 
degrade the inversion process. This is especially true for a system with a high 
condition number, indicating an ill-conditioned matrix. As was stated previously, the 
inverse of a small number is very large and would, falsely, dominate the pseudo­
Inverse. 

There are primarily two sources oferror in the force identification process. The first is 
the noise encountered in the structure's response measurements. Another source of 
errors arises from the measured frequency response functions and the modal 
parameter extraction. Bartlett and Flannelly (1979) indicated that noise contaminating 
the frequency response measurements could create instabilities in the inversion 
process. Hillary (1983) concluded that noise in both the structure's response 
measurement and the frequency response function can affect the force estimates. 
Elliott et al. (1988) showed that the measurement noise increased the rank of the 
strain response matrix, which circumvented the force predictions. 

The measured frequency response functions can be applied directly to the force 
identification process. As an alternative, the frequency response functions can also be 

reconstructed from the modal parameters, but this approach requires that an 
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CHAPTER 3. FREQUENCY RESPONSE FUNCTION METHOD 

experimental modal analysis be done in advance. The latter has the advantage that it 

leads to a considerable reduction in the amount of data to be stored. The curve-fitted 

frequency response functions can be seen as a way of filtering some of the unwanted 

noise from the frequency response functions. However, the reconstruction of the 

frequency response functions from the identified eigensolutions might give rise to 

difficulties in taking into account the effect of out-of-band modes in the 

reconstruction. 

To illustrate the ill-conditioning of a system near and at the resonant frequencies, 

consider the following lumped-mass system: 

~. 0.001 

~2= 0.001 

1.4212 X 105 N/m 

.N/m 

Figure 3.1 2 DOF lumped mass ~ystem 

A harmonic forcing function is used to excite each of the masses. 

.f.. (t) = 150cos( 60Jr t) .h.{t) = 100cos{ 60 Jr t) (3.18) 

It can be shown that the natural frequencies and mass-normalised mode-shapes for the 

undamped system are: 

w\ =60 Hz 0.8165 ] [<l> ]= [1.1547 (3.19) 
=120 Hz 0.5773 -0.8165w2 

The forward problem was solved to obtain the response for each degree-of-freedom 

from 

{X(w) }EXACT = [A(w) bCT {F(w) }APPLIED (3.20) 

where 

{j\w)} is the (2x 1) acceleration vector, 

[A (w)] is the (2x 2) inertance matrix, 

{ F (w) } is the (2 x 1) force vector. 
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The frequency response function was recalculated for the perturbated modal 

parameters. The inverse problem was solved subsequently to obtain the force 

estimates 

(3.25) 

where 

('"7) denotes the contaminated values. 

The relative error is given by the Force Error Norm (FEN), cj(OJ), of the forces, 

evaluated at each frequency line, and is defined as 

where 

{F(OJ) } is the actual/applied force vector, 

{ft(OJ) } is the estimated force vector, 

II· "2 is the vector 2-norm. 

Results and Discussion 

(3.26) 

Figures 3.2 and 3.3 show the ill-conditioning of equation (3.25) in the vicinity of the 
modes, where the force estimates are in error. The FEN at the first mode (Figure 3.4) 

is considerably higher than at the second mode. Since the applied forces are not in the 
vicinity of the system's resonances, they are not affected by this ill-conditioned 
behaviour and are correctly determined. 

The modes of this system are well-separated, and near and at the resonant frequencies 

the response of the system is dominated by a single mode. As Fabunmi (1986) 

concluded, the response of which content is primarily that of one mode only cannot be 

used to determine more than one force. 

In another numerical simulation of the same system, the influence of the perturbation 
of the different modal parameter on the force identification was considered. The force 

estimates were calculated for the case where a single modal parameter was polluted to 

the prescribed error level. It was concluded that the perturbation of the mode-shapes 
had the most significant effect in producing large errors in the force estimates. This 

result confirmed findings of Hillary (1983) and Okubo et al. (1985). 
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Although the frequency response function matrix is a square matrix, it is still singular 

at the resonant frequencies. This implies that the pseudo-inverse of the frequency 

response function can only be obtained by the SVD. 

Since two forces were determined from two response measurements the least-square 

solution is of no use. In practice one would include as many response measurements 

as possible to utilise the least-squares solution for the over-determined case. 

The maximum error levels were considered as realistic of what one could expect 

during vibration testing. These values were gathered from similar perturbation 

analyses performed by Hillary (1983), Genaro and Rade (1998), and Han and Wicks 
(1990). No explanations or references were provided for the error levels adopted. A 

literature survey conducted by the author concerning this issue also failed to produce 
satisfactory information. These error values proved to produce very large errors in the 
identified forces, beyond the point where the estimated forces could be meaningful. 

To conclude, the aim of this section was to prove that small errors can have adverse 
effects on the force identification at the resonant frequencies of a system. 
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Figure 3.2 - Applied and estimatedforce no. ] for the 2 DOF 

lumped-mass system in the frequency domain 
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Figure 3.3 - Applied and estimatedforce no. 2 for the 2 DOF 

lumped-mass system in the frequency domain 
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3.3 SIGNIFICANCE OF THE CONDITION NUMBER 

In the previous section the effect of noise in the force identification was introduced. 

Consequently, errors will always be present in the measurements. In this section it is 

suggested that the condition number of the frequency response function matrix serves 

as a measure of the sensitivity of the pseudo-inverse. 

Again consider the 2 DOF lumped-mass system. This time the system was subjected 

to randomly generated forces with uniform distribution on the interval [-1, 1] . The 

responses were obtained utilising the forward problem. The contaminated frequency 

response function matrix was generated through the perturbation of the modal 
parameters, as previously described. Finally, the inverse problem was solved to obtain 

the force estimates. The above procedure was repeated 100 times. In each run new 

random variables were generated. Figure 3.5 represents the average FEN, F::f(OJ) for 

these 100 runs. 

r-, 

~ 
'-' 

"l!.t. 

g 
OIl 
.£ 

4._----_,------~------._------._----_,------~ 

3.5 

3 

2.5 

2 

l L-----~-------L------~------L-----~------~ 

o 50 100 150 200 250 300 

Frequency [Hz] 

Figure 3.5 - A verage Foree Error Norm of estimatedforees 

for the 2 DOF lumped-mass system 

Golub and Van Loan (1989) describe the error propagation using the condition 

number, of the matrix to be inverted, as an error boundary for perturbation of linear 

systems of equations. Referring to the above case where only the frequency response 

function matrix was perturbated, errors in the calculation of {F(OJ)} will be restricted 

by 
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where 

II { F (OJ) } - {fr (OJ) }112 < K ([ H ]) 2 II [ IiH (OJ) ] 11 2 
II {F(OJ)} II 2 - 2 II[H(OJ) ]11 2 

{F(OJ) } is the actual force vector, 

{hOJ)} is the estimated force vector, 

K 2([ H]) is the condition number of [H ], 

[oH(OJ)] is the difference between the actual and perturbated [H], 

11·11 2 is the vector 2-norm. 

42 

(3.27) 

Similar expressions could be obtained for perturbation of the response, {X (OJ)} . 

Unfortunately, these expressions are of little practical use, since the actual force and 
response are unknown. 

It was suggested that the condition number of the matrix to be inverted, should be 

used as a measure of the sensitivity of the pseudo-inverse (Starkey and Merrill, 1989). 

Although the exact magnitude of the error bound of the system at a particular 

frequency remains unknown, the condition number enables one to comment on the 
reliability of the force estimates within a given frequency range. A high condition 

number indicates that the columns of the frequency response function are linearly or 

"almost" linearly dependent, i.e. rank deficient. This can result in large errors in the 
identified forces . Conversely, a condition number close to unity indicates that the 

columns of the frequency response function are almost mutually perpendicular. One 

should not expect any large amplification of the measurement noise when inverting 

the frequency response function matrix. Figure 3.6 shows the condition number of the 

frequency response function matrix for the 2 DOF lumped-mass system. From this it 

is evident that the condition number follows the same trend as the relative error in the 

force estimates given in Figure 3.5. 
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In the next half of this section we would like to investigate the factors that have an 

iniluence on the value of the condition number. A more complex structure will be 

considered for this purpose. 

A Finite Element Model (FEM) of a freely supported beam was constructed. Ten 

equally spaced beam elements were used to simulate the 2 metres long beam. The 

model was restricted to two dimensions, since only the transverse bending modes 

were of interest, for which the natural frequencies and normal modes were obtained 
solving the eigenvalue problem. The first eight bending modes were used in the 

reconstruction of the frequency response function matrix of which, the first three 

modes were the rigid body modes of the beam. A uniform damping factor of 0.001 

was chosen. Each node point was considered as a possible sensor location. 

Nodes: 

2 3 4 5 6 7 8 9 10 11 

1 1 

I. ~ I 
2m 

Cross section: 

z 
125.4 mm 

I. ~ I 

50.8 mm 

Figure 3. 7 - FEM offree-free beam and response locations 
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3.3.1 Effect of the Number of Forces 

Eleven response 'measurements' were taken and four sets of excitation forces were 

applied to the beam. These sets consisted of 1,2, 3 and 4 forces, respectively and are 

shown in Figure 3.8. 

Nodes: 

1 2 3 4 5 6 7 8 9 10 11 

Figure 3.8 - FfM offree-free beam andforce locations 

Figure 3.9 shows the condition number of the frequency response function matrix for 

each of these sets. It is evident from the results that the condition number increases 

drastically as the number of force predictions increase. The condition number for a 

single force prediction is equal to unity over the entire frequency range. If an 

additional force is added, it implies that the column corresponding the force location 

be included in the frequency response function matrix, which in tum increases the 

condition number of the matrix. The number of force predictions is, however, limited 

by the number ofmodes included in the analysis (Fabunmi, 1986). 

3.3.2 Effect of the Damping 

The effect of the damping on the condition number was evaluated next. Only three 

forces were applied, while still measuring eleven responses. From Figure 3.10 one 

notices that the condition number varies for different modal damping factors. In fact, 

as the damping factors increase, the condition number decreases, especially at the 

beam's resonances. This can be attributed to higher modal overlap due to the higher 

damping. It was mentioned earlier that at a resonant frequency the system's response 

is dominated by that particular mode. In a system with higher damping the 

neighbouring modes have a larger contribution to the response of the system at that 

frequency. 

3.3.3 Effect of the Number of Response Measurements 

Figure 3.11 shows the condition number as a function of the number of response 

measurements across the frequency range of interest. The beam is once again 

subjected to three forces while considering 3 (locations 3, 7 and 11),6 (locations 2, 3, 
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5, 7, 9 and 11) and 9 (locations 2, 3,4,5, 7, 8, 9, 10 and 11) response measurements, 
respectively. 

The results show that there is a significant improvement in the condition number by 
increasing the number of response measurements. Since there is a direct relation 

between the condition number and force error, over-determination will improve the 

force estimates as well. Adding a response measurement implies that an additional 
row, and thus a new equation, is added to the frequency response function matrix. 

Mas et al. (1994) showed that the ratio of the number of response measurements to 

the number of force predictions should preferably be greater than or equal to 3 (i.e. 

n/m 23). 

3.3.4 EtTect of the Response Type 

Both accelerometers and strain gauges have been employed by Hillary and Ewins 
(1984) to determine sinusoidal forces on a uniform cantilever beam. The strain 

responses gave more accurate force estimates, since the strain responses are more 
influenced by the higher modes at low frequencies. Han and Wicks (1990) also 
studied the application of displacement, slope and strain measurements. From both 
these studies it is evident that proper selection of the measurement type can improve 

the condition of the frequency response function matrix and hence obtain better force 
predictions. 

3.3.5 Conclusion 

It is suggested that the condition number of the frequency response function matrix 
serves as a measure of the sensitivity of the pseudo-inverse. The frequency response 
function matrix needs to be inverted at each discrete frequency, and as a result the 
condition number varies with frequency. Large condition numbers exist near and at 

the system's resonances. 

The condition number of the pseudo-inverse is a function of the number of response 
points included. The number of force predictions, system's damping, as well as the 
selection ofthe response type also influence the condition number. 
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3.4 NUMERICAL STUDY OF A FREE-FREE BEAM 

This section examines the different matrix decomposition and regularisation methods 

employed for the calculation of the pseudo-inverse. For this purpose it was decided to 

continue using the FEM of the freely supported aluminium beam, as introduced in 

Section 3.3. 

The eigenvalue problem was solved to obtain the natural frequencies and mode 

shapes. In addition to the RBM, five bending modes were in the chosen frequency 

range of 0 to 500 Hz. The natural frequencies and mode shapes were taken as the 

'exact' values. A proportional damping model was assumed with values obtained 

from the experimental modal analysis performed on a similar beam. 

The beam was then subjected to two simultaneous harmonic forces applied at 
positions 5 and 11 with forcing frequencies of 220 Hz and 140 Hz, respectively. The 
frequency content of the force signals was not determined with an FFT algorithm, 

thus presenting zero amplitude values in the frequency range except at the discrete 

forcing frequencies. 

The 'exact' response at each of the eleven sensor locations was calculated from: 

{X(01) }E.UCT = [A(01) bCT {F(01) }APPLIED (3.28) 

where 


{x (01) } is the (11 xl) acceleration vector, 


[A(01)] is the (11 x 2) inertance matrix, 


{F(01)} is the (2 x 1) force vector. 


The [A(01)] matrix was constructed from the RBM and five bending modes, while 

omitting the residual terms. The response and modal parameters were perturbated, as 

described in Section 3.2, to resemble experimental data. Successively, the force 

identification problem was solved while including only six response locations 

(positions 1,3,5,6,9 and 11) in the analysis. 

(3.29) 


where 

(",:,) denotes the contaminated values. 

Figure 3 .12 shows the effect of the perturbation analysis on the reconstructed 

inertance matrix lA(01) j. 
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Each of the previously explained pseudo-inverse methods was employed to evaluate 
their ability to correctly determine the two harmonic forces. 

A major difficulty associated with the Tikhonov regularisation is the choice of the 

regularisation parameter f.i (Da Silva and Rade, 1999). The value of this parameter 

was obtained from using the L-curve (Hansen and O'Leary, 1991). The L-curve is a 

plot of the semi-norm II [i ]{fr }II, as a function of the residual norm II [H J{fr }- {x }II 
for various values of f.i . The comer of the L-curve is identified and the corresponding 

regularisation parameter f.i is returned. This procedure has to be performed at each 

discrete frequency line and a result is computationally very expensive. 

The results of the analysis are presented in Table 3.2. Only, the Tikhonov 
regularisation failed to predict the two forces correctly. This constraint optimisation 

algorithm identified the force applied at position 11 correctly, but calculated a 
significant force amplitude with the same frequency content as the force applied at 
node 11 at the other force location, position 5. Furthermore, it also under-estimated 

the force at node 5. Increasing the number of response locations had no improvement 
on the result. 

Table 3.2 - Force results o/the different matrix decomposition 

and regularisation methods 

1p;1[N] IFzl [N] 

Applied 
Force amplitudes 

10.000 
0 

0 
23.000 

Singular Value Decomposition 
QR Decomposition 
Moore-Penrose 

Tikhonov Regularisation 

9.338 
9.338 
9.338 

5.2139 

21.432 

21.432 
21.432 
19.512 

Next, the author evaluated the force identification process for the entire frequency 

range. In this case, the frequency content of the harmonic force time signals was 
determined with an FFT -algorithm, thus presenting non-zero values in the frequency 
range considered. Figure 3.13 illustrates the ill-conditioning of the force estimates at 

the resonant frequencies of the beam. The ill-conditioning in this particular case is a 
result of the perturbation analysis, the FEM approximations and the FFT -algorithms. 
Changing the excitation points on the beam produced the same trends. Once again the 

Tikhonov regularisation produced poorer results than the other methods. The Singular 
Value Decomposition, QR Decomposition and Moore-Penrose pseudo-inverse 
produced exactly the same results. 
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In view of the above-mentioned the author decided to use the SVD from here onwards 

for the calculation of the pseudo-inverse matrix. The motivation being the ease of the 

implementation of this algorithm in the Matlab @ environment. Another advantage of 

the SVD is the ability to ascertain the rank of a matrix and to truncate the singular 

values accordingly. 
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