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2. FREQUENCY DOMAIN ANALYSIS 


The force identification techniques will be performed in the frequency domain. This 

section motivates the use of the frequency domain and highlights the related theory 

used in Fourier Transforms, as well the frequency response function's formulation, 

measurement and modal parameter extraction. 

2.1 ADVANTAGE OF USING FREQUENCY DOMAIN 

The frequency response function is one of the functions used to describe the input­
output relation in a linear system, in the frequency domain. Equation (1.3) is repeated 
as an example: 

{X(w) }= [H(w)]{F(w) } (2.1) 

where 


{X(w) } is the (n x 1) response vector, 


[H(w)] is the (nxn) frequency response function matrix, 


{F(w) } is the (n x 1) force vector. 


One important benefit, which is evident from the equation above, is that the Fourier 

Transform, transforms a convolution in the time domain, into a multiplication in the 

frequency domain (Randall, 1977). The equivalent convolution in the time domain is 
evidently a much more complicated procedure. This is one of the reasons for the great 

success of the Fourier Transform technique in signal processing. 

Dealing with stationary random excitations also benign the use of the frequency 

domain. As examples we can mention flow-induced vibration in a piping system and 

the fluctuating pressure gusts on the wing of an airplane in flight. These systems can 

only be formulated in terms of their statistical properties and can be completely 

defined by the spectral density functions. 

It may also be justifiable to mention some of the disadvantages associated with the 

frequency domain. Windowing functions need to be enforced on the time signals to 

suppress the affect of 'leakage'. Furthermore, the Auto Spectral Density (ASD) 

functions contain no phase information and are unable to capture transient phenomena 

of systems. 
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18 CHAPTER 2. FREQUENCY DOM4INANALYSIS 

2.2 DISCRETE FOURIER TRANSFORM 

The Discrete Fourier Transform (DFT) technique will be employed to transform any 

time function, x(t) into the frequency domain by use of the following equation (Broch, 

1990): 

1 N-J 

X(n) = - Lx(k) e N (2.2) 
N k~O 

where 

x(k) is a discrete series of a sampled time function x(t) , 

N is the number of sampled points, 

X(n) is the Fourier series coefficients, 

for j = 0, 1,2, ... , N ]; k = 0, 1, 2, ... , N -1 . 

Conversely, a discrete time series may be calculated from knowledge of the Fourier 

series coefficients: 
N-J 

x(k) = LX(n)e (2.3) 
j~O 

which is the Inverse of the Discrete Fourier Transform (IDFT). The DFT and IDFT 

equations are implemented in Matlab®, which uses efficient Fast Fourier Transform 

(FFT) algorithms. 

Thus, the use of DFT permits any time response to be transformed into the frequency 

domain. The force identification technique will yield the estimated forces. These 

forces may be transformed back into discrete time series, using the IDFT. The 

flowchart for this procedure is as follows: 

Measured 

Measured 

Reconstructed OR 

FIgure 2.1 - Flowchart ofa typical force identification procedure 

ASS~'SSlvIENTOF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES 

 
 
 



19 CHAPTER 2. FREQUENCY DOMAINANALYSIS 

For more-detailed information on the discrete Fourier transform, the FFT algorithms 

or implementation of Fourier analysis in the Matlab® environment the interested 

reader is referred to the original references (Randall, 1977; Broch, 1990; McConnell, 

1992 and Matlab®, Version 5.3). 

2.3 FREQUENCY RESPONSE FUNCTION MODELLING 

The Structural Dynamics Toolbox® (Balmes, 1997) provides a framework for the 

modelling of the input/output response of a linear system. Many engineering 

structures may be considered as lightly-damped structures. That is structures for 

which the damping is small so that the low frequency response is characterised mostly 

by the mass and stiffness contributions. Consequently, a normal mode model is used. 

The eigenvalue problem ofthe normal modes may be defined as follows: 

(2.4) 


where 

[ M] and [K] are the (N x N) mass and stiffness matrices, respectively. 


{rp}, denotes (Nx1)independent eigenvectors (normal modes), 


OJ; is N independent eigenvalues (eigenfrequencies squared), and r = 1, ... , N 


where N is the number ofdegrees-of-freedom in the system. 


The solutions of the eigenvalue problem of equation (2.4) yield the following mass­

normalised modal matrix orthogonality properties: 

(2.5) 


The state space formulation of the normal mode model for the damped system, as 

expressed in terms of the principal coordinates, is as follows: 

(2.6a) 

(2.6b) 

where 

S =iOJ is the Laplace variable, 

[A] is the diagonal modal stiffness matrix (eigenfrequency squared), 

[p] is the modal damping matrix, and[p]== [<D y[c][ <D], 


[ <D Y[b ]) is the modal input matrix, 


[b] is the input shape matrix, which is time invariant and characterises the 

spatial properties of the applied forces, 
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20 CHAPTER 2. FREQUENCY DOMAINANALYSIS 

[[ c ][ cD]] is the modal output matrix, 

[c ]is the output shape matrix, which is time invariant and characterises the 

spatial properties of the sensors, 

{u }is the input vector to the system, 

{y } is the output vector ofthe system, 


{p lis the principal/modal coordinates. 


Assuming a unity modal mass matrix, the first-order state space model takes the form 

{p }} = [ [0] [1 ll{{p }} + [ [0]l{u} (2.7a){{p} - [A] - [p ~ {p} [cD nb ~ 

(2.7b) 

In the case of proportional damping, the diagonal modal damping matrix, [p], may 

be expressed in terms ofthe damping ratios p, = 2SJiJ, . 

The frequency response function is, by definition, the Fourier Transform of the 

system's response divided by the Fourier Transform of the applied force. The 

frequency response function for the linear system, which corresponds to the partial 

fraction expansion, can be written as: 

(2.8) 

where 

OJ, is the natural circular/normal mode frequencies for each mode, 

S, is the modal damping factor for each mode, and 

[ T ], is the residue matrix, which is equal to the product of the normal mode 

[ [ c ]{ ¢ }J and [{ ¢ } ~ [b ]]. 

Equation (2.8) is generally referred to as the receptance, since it gives the relation 

between the displacement and force. Usually, an alternative formulation known as 

inertance is used, which is the ratio of the acceleration to the force. This formulation 

is desired, since piezoelectric accelerometers are used for the measurement of the 

frequency response functions and responses. The inertance can be obtained simply by 

multiplying the receptance by - OJ2 , as follows: 

(2.9) 
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In practice, one can measure only a limited number of modes, N , within the 

frequency range of interest. However, the contribution of the modes outside this 

frequency range is evident in the measured frequency response function, and needs to 

be accounted for when one desires to reconstruct measured frequency response 

functions. Equation (2.8) is rewritten to include the high- and low-frequency 

corrections or generally referred to as residuals. 

where 

[E] denotes the high-frequency residual, and 

[F] is the low-frequency residual. 

(2.10) 

Figure 2.2 shows a typical reconstructed frequency response function with and 

without the residual terms included. 
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Figure 2.2 - Contribution of the residual terms for a typical system 
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2.4 	 MULTIPLE INPUT MULTIPLE OUTPUT EXCITATION 

In the case of a single input excitation, the structure is excited sequentially at each of 

the desired locations, while measuring the responses, from which columns of the 

frequency response function are obtained successively. 

Alternatively, Multiple Input Multiple Output (MIMO) excitation IS used in an 

attempt to obtain the information from several rows or columns of the frequency 

response function matrix simultaneously during a single excitation run. This does not 

only reduce the test time required, but also contributes to better estimates of the 

natural frequencies, modal damping factors and modal vectors in the case of closely 

spaced modes. A more detailed mathematical treatment of the MIMO excitation can 

be found in Maia and Silva (1997) and Zaveri (1984). 

f(t) = Input 	 x(t) = Output 

~ 

f2(t) MIMO 

Figure 2.3 - Multiple-input multiple-output model 

Consider the above MIMO system, which is excited at m input locations and whose 

response is measured at n points. The frequency response function matrix for this 

system can be written as: 

(2.11) 


where 	 Hu (w) is the frequency response function for excitation at point .i and the 

response measured at point i. 

The structure may be excited with two or more exciters simultaneously. For the sake 

of simplicity we will consider a dual-input, single-output system as shown in Figure 

2.4. 
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23 CHAPTER 2. FREQUENCY DOMAIN ANALYSIS 

[I (t) Bxl(ro ) I~2: x t) 

[2(t) 1~(ro) ~ 
Figure 2.4 - Dual-input, single-output system 

The Fourier Transform of the response X(<») is given by 

(2.12) 

where 

1';(<») and F2 (<» ) are the Fourier Transform of the inputs at points 1 and 2, 

respectively, 

N(<» ) is the noise contaminating the response . 

Assuming that averaging is employed it can be shown that 

(2 . 13 a) 

(2 .13b) 

where 

* denotes the complex conjugate. 

These equations can be expressed in terms of the auto- and cross-spectrums as: 

(2. 14a) 

(2.14b) 

Equation (2.14) can be solved for Hxl and Hx2 , i.e. 

(2 .1Sa) 
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(2.l5b) 

providing that the coherence function, r ~2 between the inputs 1'; (w) and F2 (w) is not 

equal to unity, i.e. 

When Gu =G ;1 0, r;2 0, equation (2.15) reduces to the single-input expressions 

(2. 16a) 

(2. 16b) 

As long as the inputs are uncorrelated, equation (2.15) can be used to obtain the 
frequency response functions when two inputs are acting simultaneously. The above 
analysis can be extended to apply to any arbitrary number of inputs and outputs. 

MIMO Applied To Experimental Setup: 

Despite the advantages referred to earlier, associated with the MIMO excitation the 
use of this type of excitation was motivated by the exciter-structure interaction. The 
exciter-structure interaction inherently creates difficulties, since the dynamic 
characteristics of the exciter becomes combined with those of the structure (the 
exciter adds some of its own mass, stiffness and damping to that of the structure). 
From experiments conducted on a beam-like structure Han (1998) confirmed that the 
exciter-structure interaction distorted the natural frequencies and damping values of 
the structure. In the experimental studies that follow in Chapter 5 two exciters were 
attached to the beam, in some instances. The distortion of the natural frequencies of 

the beam due to the two exciters were so severe that the frequency response functions 
obtained from single-input excitation could not be reconciled with the frequency 

response functions measured with both exciters attached. 
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2.5 EXPERIMENTAL MODAL ANALYSIS 

The aim of Experimental Modal Analysis is to construct a mathematical model of the 

structure, which will resemble the characteristics ofthe experimentally measured data. 

In the case of measured frequency response functions, one needs to curve-fit an 

expression to the measured data and thereby finding the appropriate modal parameters 

(i.e. natural frequencies, damping ratios and mode shapes). 

Reducing the frequency response function to terms involving only the modal 
parameters as in equation (2.10) leads to considerable reduction in the amount of data 

to be handled. The frequency response function may now be reconstructed for any 
frequency, simply from use of the modal parameters. Another advantage is that the 
regenerated frequency response curve is smoother than the experimentally measured 
data, which always contains noise. 

The author made extensive use of the Structural Dynamic Toolbox® (Balmes, 1997 
(1)) to identifY the modal parameters and reconstruct the frequency response 
functions. 

It is not the intention of this work to include a detailed discussion regarding the 
experimental modal analysis technique. However, the author has spent a considerable 
amount of time and effort mastering this Toolbox and gaining insight into the 
technique proposed by Balmes. Only the methodology that has been followed in the 
analysis will be discussed briefly. 

Experimental Modal Analysis Methodology: 

Step 1: 	 The measured frequency response function data is imported into the 
Toolbox, in the desired format. 

Step 2: 	 At this stage, the user needs to specifY the appropriate type of model 
that will be used in the identification. The type of model may be either 
a complex mode model or a normal mode model. An experimentally 
identified model will have complex eigenvectors. The normal mode 

model can then be obtained through the use of a transformation 
procedure, which allows the identification of the normal mode model 
(i.e. real modes) from the complex mode identification result (Balmes, 
1997 (2)). 

Step 3: 	 Next, one iteratively computes an approximation of the measured 

response. This is done in three separate procedures: 
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a) 	 First, finding initial complex pole estimates. The Toolbox obtains 

estimates of the poles by searching for the minima of the 

Multivariable Mode Indicator Function (MMIF) within a frequency 

region specified by the user. Additional poles may be added or 

removed to obtain the best fit to the data. 

b) 	 Once the user is satisfied with the set of complex poles, the 

Toolbox continues to estimate the residues and residual terms for 

the given set of poles. 

c) 	 These complex poles and residues are then optimised using a broad 
or narrow band update algorithm. 

Step 4: 	 The poles, damping ratios and complex mode shapes at the sensor 

locations are extracted from the mathematical model. If the user 
requires the normal mode model the above-mentioned transformation 

will be performed and will produce the modal parameters 

corresponding to the normal mode model. 

Step 5: 	 Lastly the frequency response functions may be reconstructed from use 

of the modal parameters. 

The above procedure is depicted in Figure 2.5. 

Measured Modal Analysis Toolbox 

Raw data 

Reconstructed Extraction 

parameters 

Figure 2.5 - Flowchart ofa typical modal analysis and 

frequency response function reconstruction procedure 
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