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2 CHAPTER 1. INTRODUCTION 

1. INTRODUCTION 

1.1 PREAMBLE 

The location and magnitude of self-generated or input forces on a structure, or for that 

matter any piece of equipment, may prove to be very important for the proper 

evaluation at the design and modification phases, as well as in the case of control and 

fatigue life predictions. The identification of the input forces has also attracted a great 

deal of interest in machine health monitoring and troubleshooting (Shih et al., 1989). 

The location of the excitation forces can reveal the possible causes ofvibration, while 

the force amplitude determines the severity of the vibration condition. 

In cases where the direct measurement of these forces is possible, it is usually 
accompanied by structural changes to accommodate the attachment of force sensing 

equipment, and may as a result change the dynamic characteristics ofthe system. 

However, there are many situations where the direct measurement of the excitation 

forces is not possible or feasible. For example: 

).> Shock/impact loads on ship hulls (Dubowski and Dobson, 1985). 


).> Engine torque pulses and shaking forces are difficult to measure, since these 


forces are distributed throughout the engine (Starkey and Merrill, 1989). 

).> Forces transmitted from machinery, such as compressors, to the foundations. 

).> Stress analysis on a finite element model of a structure can be performed by 

applying prescribed displacements. In the case of structural modifications, the 

stress analysis would require knowledge ofthe excitation forces. 

).> Propellor-induced pressure fluctuations on a ship hull (Stevens, 1987). 

).> Determining of acoustic loads where the environment does not permit the use 

of microphones to measure the acoustic field (Elliott et al., 1988). 

).> Explosive loading or force input within hostile environments (Dubow ski and 

Dobson, 1985) 

).> The indirect computation of the flow-induced forces in a piping system or 

petrochemical reactor. 

Instead ofbeing able to measure the force inputs directly, some other quantity, e.g. the 

response, is usually measured from which the forces can be determined indirectly. 

The aim of the present work is to show that it is possible to estimate dynamic forces 

by measuring the responses, be they acceleration, displacement or strain, of a linear 

structure subjected to those forces. In essence the structure becomes the force 
transducer. 

-- ..... ~~----------------------~------
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3 CHAPTE.'R 1. INTRODUCTION 

Theoretically, it is possible to determine the forces by simply reversing the process of 
calculating the responses of a system subjected to known forces, but this procedure is 

known to be ill-posed and sensitive to noise, and may contribute to meaningless 

results. 

1.2 FORMULATION OF DIRECT AND INVERSE PROBLEM 

In this section the classification ofthe force identification as an inverse process and an 

ill-posed problem is motivated and the principal difficulties in such a procedure are 

discussed. 

The direct problem (also referred to as the forward problem) is to find the response of 
the structure from knowledge of the excitation force through the use of a transfer 
function, which gives the relationship between the measured response and the 
excitation forces: 

{F(m)}::::> {X(m)} (1.1) 

Conversely, the force identification problem is to accurately infer the excitation force 
from knowledge ofthe vibration responses via some transfer function: 

{X(m)}::::> {F(m)} (1.2) 

The latter problem involves the recovery of the force ( cause) given the incomplete 
and noise-contaminated response (effect) and system matrix, whence the name 
inverse problem. 

Two important observations regarding the differences between the direct and inverse 
problem can be made (Karlsson, 1996): 

Firstly, the excitation force in the direct problem is known all over the structure. 

These forces are usually concentrated on limited portions of the structure, while the 
rest of the structure can be regarded as non-loaded. This is typically the procedure 
followed in the finite element analysis of a structure in order to obtain its dynamic 

response as a result of the applied forces/loads. 

However, in the inverse problem, a non-zero vibration response is in most cases 

present all over the structure. Furthermore, the responses can usually be measured 
only at a finite number of discrete points, and there is no information available 

regarding the responses between these points. Thus, the entire response can be solved 

for the direct problem, whereas the full excitation forces cannot be determined in the 
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4 CHAPTER 1. INTRODUCTION 

inverse problem. As a result, the solution to the direct problem is straightforward 

while the inverse problem is left without a unique solution. 

The second observation to note is that even if the responses could be measured at 

closely spaced positions, the force identification problem is ill-posed and iU­

conditioned. A well-posed problem can be stated as a problem that satisfies the three 
conditions of Hadamard. These are the existence, uniqueness and stability of the 
solution (Hashemi and Hammond, 1996). If any of these conditions are violated, the 
problem is said to be ill-posed. On the other hand, ill-conditioning refers to the 

phenomena where small measurement errors (noise) are mapped onto unboundedly 
large errors in the force estimates. For an in-depth discussion of ill-posed problems, as 
well as ways to regularise these problems to be well-behaved, refer to Sarkar et al. 

(1981). 

As a result it is impossible to calculate the entire force distribution on a structure, 
simply from response measurements. To make the force identification solvable, 
additional information regarding the force distribution is needed a priori. The force 
identification problem can be regularised to a well-posed problem by limiting the 

excitation forces to a finite number of discrete points on the structure. An 

(nxm) frequency response function, [H], is deduced consisting of both response and 

force identification points. With this a priori information the force identification 
problem is reduced to the determination of only the unknown force amplitudes at the 
discrete points. 

This approach can be justified, since in many applications the exact forcing locations 
are known, for instance at an engine mount or bearing support. In the case of, for 
example, distributed acoustic loads the vicinity of the excitation forces needs to be 
known, since the force identification procedure will determine the pseudo- or 
equivalent forces that will result in the same response of the structure, but with quite a 
different spatial distribution than the actual applied forces. 
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5 CHAPTER 1. INIRODUCTION 

1.3 LITERATURE SURVEY 

Three commonly used 'domains' are employed in the indirect force identification 

process, i.e. the frequency, time and modal domains. The frequency domain models 

utilise the frequency response function, which gives the linear relationship between 

the measured response and the excitation force. As for the time domain models, these 

methods produce force estimates as a function of time. The modal models are defined 

as a set of natural frequencies with corresponding mode shapes and modal damping 

factors and can be used for either frequency or time domain models. 

Stevens (1987) has given an overview of the general problems involved in the force 
identification process, while Dobson and Rider, (1990) reviewed some of the different 
techniques and applications reported in the literature. 

1.3.1 Frequency Response Function Method 

The frequency response function can be defined as the linear relationship between the 
measured response and the excitation forces and gives rise to a set of linear equations 
normally formulated in the frequency domain as 

{X(w) }=[H(w) HF(w)} (1.3) 

where 


{X(w)} is the (nxl) response vector, 


[H(w)] is the (nxn) frequency response function matrix, and 


{ F(w) } is the (n x 1) force vector. 


The frequency response function matrix can be measured experimentally, 
reconstructed from an experimental modal analysis, or obtained from a finite element 
modeL 

The unknown forces can be reconstituted by taking the inverse of equation (1.3) as 

follows 

{F(w)}= [H(w) ]-1 {X(w)} (1.4) 

However, the frequency response function matrix proves to be singular and ill­
conditioned at frequencies close to and at resonance (Desanghere, 1983). 

In an attempt to improve the condition of the inverse problem, the formulation of an 
over-determined problem is proposed, which allows the use of more equations than 

unknowns. The advantage of using redundant information minimises the 
consequences of measurement errors (Hillary, 1983). If the number of responses, n, 
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6 CHAPTER 1. INTRODUCTION 

exceeds the number of force estimates, m, the frequency response function becomes 

rectangular. Adopting a least-squares solution of the force estimates are given by: 

{F(OJ)}= [H(OJ)] + {X(OJ)} (1.5) 

where 

[H(OJ)]+ is known as the pseudo-inverse of the (nxm)rectangular matrix 

[H(m) ]. 

The added effect of noise, as encountered in experimental measurements, will further 

degrade the inversion process. Hillary (1983) and Okubo et al. (1985) both 

investigated the influence of noise contaminating the response and frequency response 
functions on the accuracy ofthe force identification. The results show that noise in the 
frequency response function, and more specifically in the modal matrix, lead to gross 

errors in the force estimates. The noise contaminating the frequency response function 
matrix also reduces the number of significant figures in the matrix and, consequently 
reduces the rank: of the matrix (Fregolent and Sestieri, 1990). This in tum reduces the 

number of forces that can be correctly estimated (Fabunmi, 1986). The quality of the 
frequency response function matrix can be improved by measuring the frequency 

response functions by means of a shaker excitation, rather than with an impact 
hammer (Hendricx, 1994). Even when taking great care hitting the test object in a 
perpendicular way, the impact hammer may exert in-plane forces. This in tum results 
in unreliable pseudo-driving point frequency response functions, which are 

detrimental to force estimates. 

Mas et al. (1994) published an excellent article in which other causes for unreliable 
force estimates are explored, other than the poor conditioning of the frequency 
response function matrix usually associated with indirect force identification. It is 

shown that the error propagation in the inversion process is proportional to the 

condition number of the frequency response function matrix to be inverted. Over­
determination can improve the condition number and as a result reduce the errors of 
the force estimates. The damping in the system can have an influence on the force 
identification, since the condition number varies with damping. Starkey and Merrill 
(1989) have suggested that the condition number of the frequency response function 
matrix should be used as an 'indication' of the expected accuracy of indirectly 

measured force amplitudes at a given frequency. 

Hillary and Ewins (1984) have employed both accelerometers and strain gauges to 
determine two simultaneous sinusoidal forces on a uniform cantilever beam. The 
strain responses gave more accurate force estimates than the accelerations. This is 

because the strain responses are influenced more by the higher modes at low 
frequencies, and therefore the frequency response functions are more complex in 
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7 CHAPTER 1. INTRODUCTION 

shape and hence obtain better force predictions. Han and Wicks (1990) also studied 

the application of displacement, slope and strain measurements. From both these 

studies it is evident that proper selection of the measurement type can improve the 

condition ofthe frequency response function matrix. 

Another paper by O'Callahan and Piergentili (1996) have noted that regardless of the 

number of response locations chosen, the force prediction result is excellent if the 

response locations coincide with actual force locations. For the case where the actual 

force locations are excluded from the response locations the forces are distributed to 

all response locations in the set. The amount ofdistribution to each of the surrounding 

response locations depends on the direction and distance of that particular response 

from the actual force location. Again it is emphasised that the response locations 

should be concentrated within the vicinity of the force locations. The analysis was 

conducted on a finite element model of a plate and as a result did not include 

experimental verification or the effect ofmeasurement noise. 

Following the argument ofFabunmi, it is not possible to determine more than a single 

force for a lightly-damped structure in the vicinity of the resonant frequencies. This 

may prove to be highly undesirable, since the energy flows are usually a maximum in 

these regions. Lewit (1993) suggested the calculation of an equivalent force or forces, 

which will result in the same vibration output as the original force inputs. The total 

input power into the structure can then be calculated from the equivalent forces at the 

resonant frequencies. 

Different matrix decomposition methods are used when dealing with ill-conditioned 

problems. Some ofthese include: 

~ The Moore-Penrose pseudo-inverse (Brandon, 1988; Hillary, 1983), 

~ QR decomposition (Fregolent and Sestieri, 1990), 

~ Singular Value Decomposition (Maia, 1991; Brandon, 1988), 

~ Second Order Epsilon Decomposition (Ojalvo and Zhang, 1993) and many 

more. 

Singular Value Decomposition (SVD) of the frequency response function matrix can 

be used to improve the conditioning ofthe pseudo-inverse matrix. Powell and Seering 

(1984) calculated a threshold value from the coherence function corresponding to the 

measured frequency response functions. The singular values smaller than the 

threshold were truncated from the pseudo-inversion. Although the truncation reduced 

the resolution ofthe inputs, it prevented the prediction of large spurious forces. 
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8 CHAPTER 1. INTRODUCTION 

Numerous regularisation methods are also available, which give a stable approximate 

solution to an ill-conditioned problem, e.g. Tikhonov regularisation (Sarkar et al., 

1981; Hashemi and Hammond, 1996). 

Most of the successful applications that deal with the problem of multiple excitation 

forces have been for the least-squares method. These include work done by Flannely 
and Bartlett (1979), which produced results that can be compared to directly­

measured harmonic forces acting on the hub of a laboratory model of a helicopter. 

The forces were accurately determined for combinations of two orthogonal forces 
from measurements of fourteen responses at three different frequencies. 

In a similar case, Okubo et al. (1985) applied the least-squares technique to a number 
of applications. These include the identification of the cutting forces of a machine 
tool, the generated forces on mounts of an automobile engine and the transmitted 
forces to the piping system of an air conditioner. The frequency response functions 
were measured in advance at a stationary state, while the responses of the structure 

were measured under operating conditions. Although the frequency response 
functions often admittedly differ from those at operating conditions, this approach is 
more desirable since the frequency response function is usually very noisy under 
operating conditions. 

When dealing with random forces, equation (1.3) can be defined in terms of the 
spectral density functions as 

[G,Aw)]= [H(w)]( G.tf(w)][ H(w) r (1.6) 

where 

[G;a(w)] is the (nxn) response matrix, 

lG.tf(w) J is the (mxm) spectral matrix of the forces, 

[H(w)] is the (nxm) rectangular frequency response function matrix, and [. r 
denotes the complex conjugate transpose of [H (w) ] . 

The pseudo-inverse ofequation (1.6) results in 

(1.7) 


It is generally accepted that in the case of statistically uncorrelated forces, the cross­
spectral density terms (off-diagonal terms) become equal to zero and the above 

equation reduces to: 

(1.8) 


----.------------------------------------------------------------ ­
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9 CHAPTER 1. INIRODUC710N 

where 

{Gff(OJ)} and {G.u (OJ)} are column vectors of the diagonal terms of the force 

and response spectral density matrices, respectively. 

Conversely, it has been shown that this assumption is inadequate when solving the 

inverse problem for random forces. The cross-spectral densities of the response 

should be included with the real valued auto-spectral densities, since the former 

carries the phase information that in tum, establishes the correlation requirements 

among time variables (Varoto and McConnell, 1997). 

Elliott et al. (1988) employed the SVD technique to predict acoustic forces on a thin 
panel. Force estimates were calculated from a strain frequency response function 
(SFRF) matrix and the corresponding strain response matrix. The measured strain 
response matrix was heavily influenced by noise. The measurement noise increased 
the rank of the strain responses, which in tum circumvented the force predictions. By 
applying singular value decomposition the noise contaminating the input measured 
strain can be reduced, but not completely rejected. It is shown that improvement in the 
force predictions was obtained by truncating singular values so that the rank of the 
measured strain response matrix resembles its true rank, without the effect ofnoise. 

1.3.2 Modal Coordinate Transformation Method 

The modal coordinate transformation method (also referred to as the modal model 
method) is based on the modal transformation theory. The system is expressed in 
terms of its modal parameters [i.e. the natural frequencies, modal damping factors and 
modal (eigen)vectors], which can be obtained from various experimental modal 
parameter estimation methods, widely used by the modal analysis community. The 
orthogonality criterion of the mass-normalised modal vectors is used to establish the 

transformation basis, and can be expressed as: 

(1.9) 


where 

[M L [K] and [c] are the mass, stiffness and damping matrices, respectively; 

[ <I> ] is the modal matrix; 

[I] is the identity matrix; 

[A] is the diagonal modal stiffness matrix with AT = OJ;, and OJ r the natural 

circular frequency of the r -th mode; 
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10 CHAPTER I. INTRODUCnON 

Assuming some type of proportional damping it follows that [p] is the diagonal 

modal damping matrix, and Pr 2(r COr with (r the modal damping factor ofthe r -th 

mode. 

Utilising the orthogonality criterion results in a set ofuncoupled equations of motions 

and the response can be written in the frequency domain as follows: 

(1.10) 

The physical forces acting on the system are determined by an inverse coordinate 

transformation: 

{F(CO) }= [<l> T]+ [_co 2[I ]+iCO [p ]+[A]][ <l> ] + {X(co)} (1.11) 

In the equation above, the forces are computed by transforming the operating 
response to the modal response. The modal forces are determined and then 

transformed back to the forces acting on physical coordinates of the system by an 
inverse coordinate transformation (Desanghere and Snoeys, 1985). 

The modal coordinate transformation technique might just as well be implemented in 
the time domain (Genaro and Rade, 1998). 

(1.12a) 

with 

{p(t) }= [ <l> ] + {x(t) } 

(1.12b) 

{p(t)}= [<l> ]+ {x(t) } 

where 

{p(t)}, {p(t)} and {p(t)} are the modal (generalised) acceleration, velocity 

and displacement vectors. 

The frequency response function method previously considered has two major 

drawbacks (Desanghere and Snoeys, 1985): 

);- The first is the ill-conditioned behaviour of the force estimates near and at the 
system's resonances. 

);- Secondly, the frequency response function matrix needs to be inverted at each 
frequency line and thus, increase the computational time required. 
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11 CHAPTER 1. INTRODUCTION 

Both these limitations may be avoided by using the modal coordinate transformation 

method. The singularity problems are eliminated and the modal matrix needs to be 

inverted only twice. 

Kim and Kim (1997) studied the effect of error propagation in the modal parameters 

on the force predictions. They concluded that, as was the case with the frequency 
response function technique, errors in the modal vectors are considered as the main 

source of error in the identified forces. A methodology is also proposed to recalculate 
the force estimates for inaccessible input locations. 

Despite the advantages associated with the use of the modal coordinate transformation 
technique, Okubo et al. (1985) preferred to use the frequency response function 
technique, since the former requires the extraction of the modal parameters from the 

measured frequency response function. They argued that the modal parameters might 
be in error as a result ofdifficulties experienced by curve fitting algorithms, especially 
at resonances and anti-resonances. These modal parameters may in tum be 
detrimental to force identification. Recent advances in modal parameter extraction 
methods enables one to extract the modal parameters with greater accuracy, which 
makes the modal coordinate transformation technique more attractive. 

Conversely, Desanghere and Snoeys (1985) found the method rather insensitive to 
measurement and curve-fitting perturbations. They successfully applied the modal 

coordinate transformation technique to identify the forces in a turbo compressor and a 
car-frame. 

Hansen and Strakey (1990) extended the work of Starkey and Merrill (1989) by 
considering the condition number of this method. The findings revealed that the 
condition number, of the pseudo-inversion of the modal matrix can be ameliorated 

through proper selection of the sensor locations and the modes included in the 

analysis. 

Most of the work done on modal coordinate transformation has been for the case 
where the locations of the input forces were known. The objective was then simply to 
resolve the amplitude and frequency content of these forces. Shih et al. (1989) 

proposed a method based on the modal coordinate transformation technique, where 
the number of forces, as well as the locations, is treated as unknowns. The modal 
response transformation (equation L 10) is performed through a modal filter, 
calculated from frequency response function measurements and the modal parameters, 
rather than the pseudo-inverse of the modal matrix. The rank analysis of the modal 

force matrix (equation 1.11) can be evaluated to determine the number of incoherent 

force inputs to the structure. Once the number of excitation forces is known, their 
locations can be determined by various projection methods. 
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12 CHAPTER 1. INTRODUCTION 

Genaro and Rade (1998) applied this technique on a simple numerically simulated 

structure and successfully identified harmonic and impact forces in the time domain. 

Another application consisted of a longitudinal beam of a car-frame where three 

random forces were accurately inferred (Desanghere and Snoeys, 1985). This method 

has also been demonstrated on a circular plate (Shih et aI., 1989; Zhang et al., 1990). 

Though the proposed method shows some success, the number of publications are 

limited. Accordingly it seems that further research is needed to clarify some of the 

difficulties to make the method more suitable for real-world applications. 

1.3.3 Time Domain Methods 

Since the focus of this work is primarily concerned with the assessment of force 
identification methods in the frequency domain, only some of the recent advances in 
the time domain methods will be summarised below. The time domain methods have 
the ability of exploring the transient behaviour of impulsive loads. 

a) Sum of Weighted Accelerations Technique (SWA1) 

This time domain method is the most widely known process in indirect force 

identification. As the name states, this method uses a sum of the weighted 

acceleration signals to experimentally predict the external forces, which excite the 

system. 

(1.13) 


where 

f(t) is the externally applied forces, 

Mi is the i -th equivalent mass, 

Ai (t) is the i -th measured acceleration, and 

no is the number ofacceleration measurements. 

The implementation of this method is confined to the computation of the sum of 

the external forces and moments about the center of mass of structures presenting 

free boundary conditions. The Rigid Body Modes (RBM) are explored in the 

preliminary tests to determine the optimal distribution of the weighting factors 

associated with an equivalent mass at each of the sensor locations. The weighting 

factors can be determined either from inverting the modal matrix or from the free­

decay response of the structure (Came et al., 1992). Recently, the Max-Flat 

procedure was validated as an alternative for determining the weighting factors 

from frequency response functions and avoids possible errors resulting from mode 

shape estimation (Came et al., 1998). SWAT yielded excellent results in 

experiments conducted by Gregory et al. (1986) on a mass-loaded, free-free beam. 

ASSESSMENT OFFREQUENCY DOMAIN FORCE IDENTIFIC4TION PROCEDURES 

 
 
 



13 CHAPTER 1. INTRODUC110N 

Kreitinger and Wang (1988) successfully applied this method to structures that 

exhibit non-linear behaviour. Other applications comprise of the impact force 

identification on nuclear shipping casks and energy absorbing noses (Bateman et 

aI, 1991 and Bateman et al., 1992). 

b) Inverse William's Method 

Ory et al. (1985 and 1986) analysed the reconstruction of transient loads from 

measured response-time histories on a beam. The use of an 'Inverse William's 

Method' improved the reconstructed force estimates. In the William's method, the 

response consists of a quasi-static component, which is superimposed on the 

dynamic component. The forcing functions were computed with a time-integration 
scheme. Providing that the stiffness matrix is known with sufficient accuracy, this 
matrix is combined with the measured displacements to produce the quasi-static 
forces. By extracting the quasi-static forces, the dynamic forces, which are the 

pure inertial forces pertaining to the significant modes, were reconstructed. 

c) Central Difference Method 

Among the applications is the work of Dubowski and Dobson (1985) where a 
central difference approach was applied to a cantilever structure suffering an 
impact load. The method yielded acceptable predictions of the excitation forces. 
However, in the post-shock period the method proved unstable as the force 

predictions continued to oscillate and diverged. 

d) Time Domain Deconvolution Method 

The convolution integral equation, which states the time domain relationship 
between the response of the structure and the applied forces, is given by Da Silva 
and Rade (1999) as: 

I 

{x(t)}= Hh(t-T) ]{f(t) }dT (1.14) 

where 

{ x (I) } is the (n x1) time response vector, 

{f(t)} is the (mx 1) time force vector, and 

[ h (I)] is the corresponding (n xm) Impulse Response Function (IRF) matrix. 

Deconvolution of equation (1.14) produces an estimate of the force inputs from 
the vibration response. Unfortunately, this procedure is known to be ill­
conditioned and requires the implementation of regularisation schemes to stabilise 
computations. The problem can be regularised by employing Tikhonov 
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14 CHAPTER 1. INTRODUCTION 

regularisation (Fasana and Piombo, 1996), calculation of the inverse Markov 
parameters (Kammer, 1996) or application of the conjugate gradient method (Da 

Silva and Rade, 1999). 

1.3.4 Continuous Systems 

In the case of continuous systems one needs to solve partial differential equations 

from which solutions are available for every point on the structure. However, this 

limits the applications to relatively simple structures with well-defined boundary 

conditions. Some of the applications include a Timoshenko transformation technique, 

which was used to derive remote impact force-time histories from accelerations 
measured at remote locations (Whitson, 1984 and Jordan and Whitson, 1984). In 
another case, the impulse response functions for Euler-Bernouli and Timoshenko 
beams, subjected to transverse impact forces were also investigated (park and Park, 
1994). The impulse response functions, which state the relationship between the force 
and strain, were obtained by using the wave propagation approach in the time domain. 

1.4 OUTLINE AND SCOPE OF THIS WORK 

The force identification in this work will be performed in the frequency domain. The 
advantages of using the frequency domain and the theory relating to the frequency 
response function's formulation, measurement and modal parameter extraction are 
presented in Chapter 2. 

The work presented in this dissertation can be roughly divided into three sections: 

? Formulation of the frequency response function method as applied to the force 

identification process, 
? Formulation of the modal coordinate transformation method, and 
? An experimental study performed on a beam with different boundary 

conditions to assess the performance of the above mentioned methods. 

Each section is dealt with in a separate chapter. 

Chapter 3 presents the derivation of the frequency response function method. The 
limitations regarding the use of this method is highlighted as well as presenting some 
of the regularisation methods in dealing with the inverse problem. The results of a 
numerical study of a two degree-of-freedom system and Finite Element Analysis 
(FEA) of a beam are presented. The significance of the condition number on the force 

estimates is discussed. 
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Chapter 4 is entirely devoted to the modal coordinate transformation method. The 

numerical studies investigate the application of the method on a two degree-of­

freedom system and the factors influencing the condition number ofthe modal matrix. 

This chapter also describes applying the modal filter to force reconstruction, which is 

validated by a numerical simulation. 

The ultimate objective of this research is to implement these methods in an 

experimental investigation on a simple well-behaved structure, given the lack of 

experimental work pertaining to especially the modal coordinate transformation 

method. The aim is to determine a single harmonic force on an aluminium beam 

subjected to different boundary conditions. The work is then extended to predict two 
point sinusoidal forces from measured acceleration signals. Strain measurements have 

also been employed and the results noted. 

In the work presented we will only focus on harmonic force inputs applied at discrete 

locations while reference is made to random forces, distributed loading and unknown 
forcing locations. 

Assumptions: 

~ The frequency response functions measured at stationary state are the same as 

those at operating conditions. 
~ Discrete force inputs at known locations. 

~ An existing structure or representative scale model is already available for the 

acquisition ofthe frequency response functions and response measurement. 
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