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ABSTRACT

There are two industrial sources of zirconia: zircon and baddeleyite [1-5]. The baddeleyite
reserves in Phalaborwa (the world’s major baddeleyite source) are expected to be depleted by the
year 2 005 [1-3]. This leaves the Russian Baddeleyite (Kola Peninsula) and zircon as the only

industrial sources of zirconia.

The major drawback to zircon use is the large amounts of impurities it is found concentrated with,
especially radioactive impurities (Uranium and Thorium) [2-3]. Acid leaching of zircon does not
remove these impurities [4-5]. The impurities are usually included in the zircon lattice. The
tetragonal structure of zircon with the high coordinated bisdisphenoids ZrOg and low coordinated

tetrahedra SiO, create a safe (inaccessible and stable) habitat for these impurities [7].

Processes for the recovery of zirconia and zirconium chemicals rely heavily on precipitation or
crystallisation techniques for purification [8-16]. Precipitation techniques need to be repeated to
obtain the required purity. The purity of products from such methods is still suspect, as there still
remains a high radioactivity content after purification [2]. The long process time is another
disadvantage of these precipitation processes. These factors together are the reason for the high

cost of zirconia and zirconium chemicals.

Zirconium and its compounds are regarded to be of low toxicity [1-6]. This implies that they have
a great potential of replacing numerous high toxic chemicals. Prominent examples are seen in
leather tanning and paints. In leather tanning chromium chemicals can be replaced. In paints lead

driers and chromium chemicals for corrosion resistance can be replaced.

The objective of this study was to characterise and optimise the De Wet's zirconium extraction
processes for the beneficiation of zircon sand into high purity zirconia and zirconium chemicals.
However, at each process step some factors were varied e.g. fusion temperature, reactant mole
ratios and composition of leach solutions. Attention was also paid to reducing the total number of
process steps. The products produced at each step were analysed. Particular attention was given to

the fate of the radioactive impurities.
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ABSTRACT

Characterisation of the decomposition step, showed that within the zircon tetragonal structure, the
SiO; tetrahedra linkages are less stable than the ZrOg bisdisphenoids linkages. This was shown by

the preference of sodium for the SiOy tetrahedra.

Fusion for 336 hours with periodic intermediate milling proved the preference of sodium for
attacking the SiO, tetrahedra linkages. This selectivity was clearly demonstrated when
decomposing zircon in sodium poor (< 4 moles NaOH per mol of zircon) and low temperature
(e.g. 650°C) reaction conditions. The advantage of fusing at 650°C with a mole (or even two
moles) of sodium hydroxide is that it leads to minimal (< 5% m/m Na,O) sodium in the insoluble
solids after the removal of soluble silicates. This is a solution to alkali fusion processes, as high
amounts of water are usually required to wash out the neutralised sodium salt e.g. 50g of NaCl
usually requires a litre of distilled water to reach levels below 600 ppm Na,O. This reaction
condition can be employed when synthesising products where low amounts of sodium are

required in the final products e.g. when synthesising zirconia for the ceramic industry.

When fusing for two hours without the intermediate milling step the following results were
observed. The reaction at 850°C when fusing a mole of zircon with two moles of sodium
hydroxide, was the most efficient in consuming sodium hydroxide. Near complete zircon
decomposition was at 850°C when fusing a mole of zircon with six moles of sodium hydroxide.
Characterisation with XRD, Raman and IR spectroscopy was misleading as complex spectra were
measured, indicating many different phases present. The inconsistency was partly attributed to

non-homogeneity in the samples due to NaOH migration.

When fusing for 336 hours with the intermediate milling step the following results were
observed. The reaction at 850°C when fusing a mole of zircon with a mole of sodium hydroxide
was the most efficient in consuming sodium hydroxide. This reaction condition was able to
liberate 0.58 moles of zirconia per mole of sodium hydroxide. The highly improved efficiency
was attributed to the formation of phases Na,ZrSiOs, NasZr;Si3O0;, and ZrOs. The process is
pseudo-catalytic as it liberates zirconium while showing minimal sodium consumption.
Decomposition at 650°C also showed improved efficiency but not as efficient as the 850°C sub-
stoichiometric fusion. The improved decomposition was attributed to the polymerisation of the

orthosilicate monomers NasSiO, to the metasilicate chains Na,SiOs.
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ABSTRACT

Complete decomposition of zircon was observed at 850°C when fusing a mole of zircon with four
moles of sodium hydroxide. The improved efficiency of this reaction condition was attributed to
the formation of the phases Na,ZrSiOs, Na,ZrO; and Na,SiO;. The phase Na,ZrSiOs minimises

sodium consumption.

The intermediate milling step was not introduced in these processes. It was moved from milling
after to milling during fusion. Besides the improved zircon decomposition, there is no need for

further milling after fusion as the powder has a small particle size ready for water dissolution.

Washing in-situ ZBS (ZBS that was prepared from in-situ hydrous zirconia with stoichiometric
amounts of sulphuric acid) once with 0.5M HCI was necessary to remove radioactive impurities

to levels below parts per million.

Washing Ref. ZBS (ZBS that was prepared by precipitation from a zirconyl chloride solution
with stoichiometric amounts of sulphuric acid) leads to negligible zirconia losses (< 2% m/m
ZrO, when digesting with IM HCI). This method offers a solution to the zirconia losses
associated with washing in-situ ZBS with mineral acids. The zirconia and zirconium chemicals
synthesised here are the purest obtained to date, when compared to other zirconium recovery
processes. The processes used are far too rapid (in terms of time and number of steps) when
compared to precipitation, crystallisation or ion-exchange techniques. The purity is attributed to
the digestion of impurities in a mineral acid (e.g. HCI or HNO;) environment. In this environment

the ZBS remains insoluble.

The high amounts of silica concentrated in the unreacted zircon can be separated by physical
means from the undecomposed zircon due to the large density difference between the two. This

allows re-circulation of unreacted zircon.

The alkali silicate by-product contains radioactive impurities below parts per million. This is an
indication that the radioactivity impurities remained insoluble during water leaching. The

radioactive impurities can be collected by precipitation or crystallisation and disposed of safely.
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