
Appendix A 

Element operators 

A.I Membrane element operators 

In (2.71), the operators Bi and G'l/Ji are given as 

z 1,2,3,4 (A. 1) 

with N i , i = 1,2,3,4, the Lagrangian interpolation functions. The strain operator associated 
with the drilling rotation is defined by 

1 
- (A.2)
8 

where ljk represent the lengths of sides jk and, using a FORTRAN pseudo language, 

i = 1,2,3,4; rn i + 4; l = rn - 1 + 4 int(1/i); 

k mod(rn,4) + 1; j = l 4 (A.3) 

The functions Nil i = 5,6,7,8 are serendipity mid-side interpolation functions. 

The operators associated with the penalty stiffness (r/ne)heheT and p~ are 

1 1 

2Ni,2 2Ni,1 >; i = 1,2,3,4 (A.4) 


and 

(A.5) 
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with indices j, k, l, m again defined by (A.3). In (2.69), a FORTRAN-like definition of 
adjacent corner nodes is also employed: 

J = ~ 4; k = mod( i, 4) + 1 (A.6) 

A.2 Plate element operators 

In (4.40) the element curvature-displacement matrix is given by [38] 

(A.7) 

and in (4.42) the element shear strain-displacement matrix is given by [38] 

(A.8) 

 
 
 



Appendix B 

Classification of stress modes 

After Feng et al., the following constant and linear stress modes are defined 

i.e. {O"d {I 0 O}T, etc. Four alternative stress modes are defined as 

[ ~ 
1 0 

~< 1 [{ 0"1O}{ O"ll}{ 0"12}{ 0"13} 1 -1 -T] 

0 C, 

while the higher order terms are here defined as 

[e 0 0 'ry' 0 0 c,T] 0 0 r;2 

e 1 [{ 0"14}{ 0"15}{ 0"16} ... {0"24} 1 o e 0 0 T]2 0 0 (T} 0 _T]2 

o 0 e 0 0 T]2 0 0 c,T] 0 0 

For the 513 family, modes 20 through 24 belong to the zero-energy stress mode. For the 
8f3(M), 8f3(D), 9f3(M) and 9f3(D) families however, these modes contribute energy. 
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Appendix C 

Constraining the assumed stress field 

The transformation operators To, T and Q are given below: 

(C.1) 


with the parameters ai and bi defined by 

(C.2) 

Also, 
Ji1 2J1I[ Jfl J'I 1

T = Ji2 Ji2 2J1Z J22 (C.3) 
J11 J12 J21 J22 J11 hz + J1Z Jz1 

with oxi 

t kJki (i, k 1,2) (C.4)
O~k 

Finally, 

1 [P 
0 J221 + J222 (C.5)Q lip p= 

Jf1 + Jf21JT~ 0 ~ 1 

104 


 
 
 



Appendix D 

Red need integration 

D.I Derivation of numerical integration schemes[l] 

Consider the area integral given by 

(D.l) 

where F(~, TJ) is any polynomial function of ~ and TJ. Any polynomial expression of two 
variables can be expressed in the form 

F(~, TJ) L Aij~ir/ (D.2) 
i,j 

No limits are placed on the summation indices i and j as any arbitrary polynomial is being 
considered. 

Let any N-point rule be written as 

N 

1* L WnF(~, TJ) (D.3) 
n=l 

where I* represents the numerical approximation to I. Integration point n is given by (~n' TJn) 
and the associated weight is given as vVn . 

Each term of (D.2) may be trivially integrated as follows 

i, j both even 

otherwise 
(DA) 

Application of the quadrature rule of (D.3) to the function F(~, TJ) in the form of (D.2) gives 
the following result which is expressed in terms of the coefficients Aij as 
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N N N N 

1* = Aoo L Wn + AlO L Wn~n + AOl L Wn1]n + A20 L Wn~~ + ... (D.5) 
n=l n=l n=l n=l 

Two points are to be noted: 

• Symmetry of the rule in each coordinate implies that the coefficients corresponding to 
all odd powers will vanish in (D.5). This of course corresponds to the vanishing of the 
integral of odd powers over this region. 

• Symmetry with respect to both coordinates is required to ensure invariance of the rule. 

Equating the coefficients of Aj between (DA) and (D.5) gives a series of equations in the 
weights Wn and the coordinates ~n and 1]n' Evidently the number of equations that are 
satisfied for a particular set of weights and coordinates indicate which polynomial terms are 
integrated exactly by that particular rule. Also, the degree to which each remaining equation 
is not satisfied gives the error in that polynomial term. Each equation has the form 

N 

L vVn~~rfn (D.6) 
n=l 

for the coefficient Aij . Clearly all equations containing odd values for either i or j are satisfied 
identically for symmetric rules. 

The maximum number of equations needed for (D.6) is determined by the order of the 
function F(~, 1]) which is to be integrated. If the maximum number of equations possible 
are satisfied for a particular configuration, then an optimal scheme for that configuration 
is obtained. However, if less than the maximum number are satisfied a less efficient rule 
is obtained, but freedom is available for arbitrary selection of some values of weights or 
coordinates. 

D.2 A 5-point integration scheme 

The first 5-point integration scheme presented by Dovey [1] is employed to selected problems. 
(See Figure D.1). 

Due to symmetry, the weights Wa are identical. The rule is indicated by 

1* = vVoF(O, 0) + WaF(±o:, ±o:) (D.7) 

The second term in (D.7) indicates four points when all combinations of positive and negative 
signs are taken. 

Employing (D.6) we obtain the first four equations for the appropriate terms Aij as 
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Figure D.l: 5-point integration scheme 

Aoo Wo+4Wa 4 
:!A20, A02 4vVa0 2 

(D.8)~ A22 4Wa04 2A40, A04 4vVa0
4 

5 

The last two of these equations are directly inconsistent and so the last is discarded. Also, 
however, the first three are inconsistent if the center point is retained. 

Solving (D.8) leads to 

1 
(D.9)

v'3 

which is the 2 x 2 Gaussian product rule. The leading error term is defined by the last of 
(D.8) and gives the error (1* - 1), corresponding to the fourth power terms e and 7]4 as 

(D.lO) 

However, the center point may be retained by selecting the value of vVo, computing vVa and 
0: from the first two relationships in (D.8). This implies an error in the A22 term. The 
scheme is now defined by 

(D.ll) 

(D.12) 
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The scheme only has physical meaning while 0 ~ Wo ~ 4. The error in the .422 term is 
minimized as Wo -+ O. In practice this implies that the 5-point scheme converges to the 
2 x 2 Gaussian scheme as vVo -+ o. 

D.3 An 8-point integration scheme 

The 8-point rule is depicted in Figure D.2. 
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Figure D.2: 8-point integration scheme 

This rule was previously employed for membrane elements with in-plane rotational degrees 
of freedom by Stander and \Vilson [62] in the QC9(8) element and also by Ibraimbegovic et 
al. [23] in their drilling degree of freedom membrane element. The rule is described by 

1* Wa:F(±a, ±a) + TVj3[F(±p, 0) + F(O, ±p)] (D.13) 

Due to symmetry, the weights TVa: are identical as are the weights vVj3. The governing 
equations are given by 

.400 4TVa: + 4Wj3 4 
4

.420 , .402 4Wa:a2 + 2Wj3p2 
(D.14)~ 

.422 4TVa:a4 
9 

.440 ,.404 4Wa:a4 + 2TVj3p4 4 
5 

All four equations may be satisfied and the solution is 
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f3 ~ 
40 
49 

(D.15) 

This rule gives the same order of accuracy as the 3 x 3 Gaussian rule. A scheme of lower 
accuracy is defined by 

liVa 1 - liVB 
1 

( 1 )4 a 
9IVe< 

(~ 
J 

f3 
2Wa(2) 4 

We 

The bounds for liVe are 0 < Wp < 1. In [23, 62] the typical choice of liVo 
employed. 

(D.16) 

(D.17) 

(D.18) 

0.01 was 

 
 
 


