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Appendix A

Element operators

A.1 Membrane element operators

In (2.71), the operators B, and G, are given as

Ny 0O
0 Nig | ;i=1,23,4 (A.1)
Nis Ny

B; =

with N;, i = 1, 2,3, 4, the Lagrangian interpolation functions. The strain operator associated
with the drilling rotation is defined by

(Zij COS Ofile,l —_— li}c CO8 GfikNm’l)
1 (lij sin ;5 f\‘rg’g - lik sin Qe I\rm,g)
G¢i = é‘ { lij COs aileQ - likz COS Oé,jk‘.Nm,g (AQ)
_+_
lij sin Gﬁij[\/rg,l - lzk sin aikNm,l

where L;; represent the lengths of sides 7k and, using a FORTRAN pseudo language,
i=1,234 m=i+4, l=m-1+4int(1/7);
k=mod(m,4)+1; j=1-4 (A.3)

The functions V;, ¢ = 5,6, 7,8 are serendipity mid-side interpolation functions.
The operators associated with the penalty stiffness (v/Q¢)h¢h’ and P: are

1 1
bi = < —51\7@’2 -Q-Ni,l > p= 1,2,334 (A¢1)
and
1 H
g - -l—é(lij CO8 Gfijj\/g,g — lik cos OfilcNm@)
1
+—1—6UU sin Oéiij - lik sin aik»fv—m,l) - Ng D= 1, 2, 3, 4 (A5)
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with indices j, k,l,m again defined by (A.3). In (2.69), a FORTRAN-like definition of
adjacent corner nodes is also employed:

j =i—-4; k =mod(,4) + 1 (A.6)

A.2 Plate element operators

In (4.40) the element curvature-displacement matrix is given by [38]

0 Ny, O
B,=|0 0 /i 2 (A7)
0 Np N
and in (4.42) the element shear strain-displacement matrix is given by [38]
*Ni,l —f\fi 0
BSé o { Nio 0 -IVZ' } (AS)
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Appendix B

Classification of stress modes

After Feng et al., the following constant and linear stress modes are defined

fmelibane Y
o v O

0
0
§

o 03

= o0
IO |

o3 O

1 00
HoiHazH{osHoaHosHosHos Hor oo} = {0 10
0 0 1

ie. {o1} = {100}, etc. Four alternative stress modes are defined as

1 1 0 =—¢
HowHonu Mo o} = { 1 -1 -n 0 }
0 0 &

while the higher order terms are here defined as

£ 0 0 72 0 0 & 0 0 o g
{owuH oo} - {out]=] 0 & 0 2 , .

0 7 0
0 0 & 0 0 7 0 0 & 0 0

For the 578 family, modes 20 through 24 belong to the zero-energy stress mode. For the
83(M}, 88(D), 98(M) and 95(D) families however, these modes contribute energy.

103



UNIVERSITY OF PRETORIA

=

&

W UNIVERSITEIT VAN PRETORIA
St

YUNIBESITHI YA PRETORIA

Appendix C

Constraining the assumed stress field

The transformation operators Ty, T' and Q are given below:

al  ai
To=| ¥ 1
aj b; as bg

with the parameters a; and b; defined by

[£5] bl 1 —1 1
(23] bg — 2 1 -1
a3 bg -1 -1

Also,
ho Jh
T = J122 J222
Jidie  Jarday
with B
ol &
Jii 5eF =t
Finally,
1 p 0 0
Q=10 1/p 0
ilo 0 1
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Appendix D

Reduced integration

D.1 Derivation of numerical integration schemes|1]

Consider the area integral given by

r= [ [ Fen dean (0.1)

where F'(¢,n) is any polynomial function of £ and 7. Any polynomial expression of two
variables can be expressed in the form

&) =3 Ayt (D2)
2y

No limits are placed on the summation indices ¢ and j as any arbitrary polynomial is being
considered.

Let any N-point rule be written as

N

where I* represents the numerical approximation to /. Integration point n is given by (&, 7,)
and the associated weight is given as W,,.

Each term of (D.2) may be trivially integrated as follows

1 rl o 2* Ay ..
/ / Aijéz??z dédn = (1T +1) b b()t_h even (D4)
=11 0 otherwise

Application of the quadrature rule of (ID.3) to the function F'(£,7) in the form of (D.2) gives
the following result which is expressed in terms of the coefficients A;; as
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N N N N

I" = A > Wyt A Y Wabn + An Y Wan + Ao Y W&l + .. (D.5)
n=1 n=1 n=1 no=1

Two points are to be noted:

e Symmetry of the rule in each coordinate implies that the coefficients corresponding to
all odd powers will vanish in (D.5). This of course corresponds to the vanishing of the
integral of odd powers over this region.

e Symmetry with respect to both coordinates is required to ensure invariance of the rule.

Equating the coefficients of A;; between (D.4) and (D.5) gives a series of equations in the
weights W, and the coordinates &, and n,. Evidently the number of equations that are
satisfied for a particular set of weights and coordinates indicate which polynomial terms are
integrated exactly by that particular rule. Also, the degree to which each remaining equation
is not satisfied gives the error in that polynomial term. Each equation has the form

22

(i+1)(G+1) (D)

N
S Wabinl =
=1

for the coeflicient A;;. Clearly all equations containing odd values for either 4 or j are satisfied
identically for symmetric rules.

The maximum number of equations needed for (D.6) is determined by the order of the
function F'(&,n) which is to be integrated. If the maximum number of equations possible
are satisfied for a particular configuration, then an optimal scheme for that configuration
is obtained. However, if less than the maximum number are satisfied a less efficient rule
is obtained, but freedom is available for arbitrary selection of some values of weights or
coordinates.

D.2 A 5-point integration scheme

The first 5-point integration scheme presented by Dovey [1] is employed to selected problems.
(See Figure D.1).

Due to symmetry, the weights W, are identical. The rule is indicated by

I = WoF(0,0) + W F(za, ta) (D.7)

The second term in (D.7) indicates four points when all combinations of positive and negative
signs are taken.

Employing (D.6) we obtain the first four equations for the appropriate terms A;; as
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Figure D.1: 5-point integration scheme

AOO : W0+4W& = 4

Ao, Ay © AW,a? = & ,
A;z " Wea! = 1 (D8)
A40,A04 : 4[1/0(}4 = g

The last two of these equations are directly inconsistent and so the last is discarded. Also,
however, the first three are inconsistent if the center point is retained.

Solving (D.8) leads to

W() = 0
W, =1
1
o = —= (D.9)

which is the 2 x 2 Gaussian product rule. The leading error term is defined by the last of
(D.8) and gives the error (I* — I), corresponding to the fourth power terms £* and n* as

4 4
Fip = (4Waa4 . ”5) Ay = Fos = (4Wa@4 - -5> Aos (D.10)

However, the center point may be retained by selecting the value of Wy, computing W, and
a from the first two relationships in (D.8). This implies an error in the Ay term. The
scheme is now defined by

W, = 1- -2 (D.11)

“ = <3vlva)% (D-12)
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The scheme only has physical meaning while 0 < Wy < 4. The error in the Ay term is
minimized as Wy — 0. In practice this implies that the 5-point scheme converges to the
2 x 2 Gaussian scheme as Wy — 0.

D.3 An 8-point integration scheme

The 8-point rule is depicted in Figure D.2.
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Figure D.2: 8-point integration scheme

This rule was previously employed for membrane elements with in-plane rotational degrees
of freedom by Stander and Wilson [62] in the QC9(8) element and also by Ibraimbegovic et
al. [23] in their drilling degree of freedom membrane element. The rule is described by

I* = W, F(da, £a) + Ws[F(£8,0) + F(0, £8)] (D.13)

Due to symmetry, the weights W, are identical as are the weights Wj. The governing
equations are given by

Agg : 4I’Va + 4[’1”3 = 4
Aoo, Agy 1 AWo02 +2Ws82 = 4
A;z 02 : 41@’2.&4 _ % (D.14)
A40, ‘404 . 4VVQQK4 -+ 2”/&’34 == %

All four equations may be satisfied and the solution is

w, = —
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Wy = —

This rule gives the same order of accuracy as the 3 x 3 Gaussian rule
accuracy is defined by

W, = 1-W,

« = ()
\9W,

2 _ oW, i
B = (3 VV{;’ )
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(D.15)

. A scheme of lower

(D.16)

(D.17)

(D.18)

The bounds for Wy are 0 < Wy < 1. In [23, 62] the typical choice of Wy = 0.01 was

employed.



