
Chapter 6 

Orthotropic flat shell elements 

In this chapter, the constitutive relationship is extended to incorporate orthotropy. 


Layered or tho tropic materials are particularly demanding in terms of the kinematic require­

ments of finite elements, since the transverse shear flexibility could be significant. herefore, 

a shear flexible through-thickness formulation is called for. The Mindlin theory includes 

shear deformations, and CO continuity of the shape functions only is required. 


Hence, the 5/3 /SA, 8/3 / SA and 9/3/ SA elements developed in previous chapters are suitable 

candidates for orthotropic problems. 


6. 1 Constitutive relationship 

The linear elastic three-dimensional stress-strain relation defined by 

(6.1) 


is used as the basic building brick for laminated orthotropic materials. It is assumed in 
the plate theory of laminated orthotropic materials that the normal stress in each laminate 
vanishes, i.e . it is assumed that (6. 1) reduces to 
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where the stress-strain relations are written with respect to the reference coordinate system. 
The laminate staking convention is depicted in Figure 6.l. 

Since the orthotropic layers are generally rotated with respect to the reference coordinate 
axis (see Figure 6.2), Q ij relates the principal directions of the material orthotropy to the 
reference coordinate system. Qij is defined by 
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Figure 6.1: Laminat e staking convention 
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where c and s respectively ind icate cos e and sin e, while e indicates t he fi ber p ly angle in 
respect to the positive x l-axis (See Figure 6. 2). 

T 

F igure 6. 2: Local coordinate system for laminated structures 

For orthotropic layered laminates E i Jk l are obt ainab le as 
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where the subscripts L and T indicate the in-plane longitudinal and transverse directions 
of the fib ers, and 0 indicates the out-of-plane transverse direction. Ei denote the Young's 
moduli, Gij denote the shear moduli and Vij denote the Poisson's ratio 's. 

Integration of the shell stresses yields the shell resultants as 

h 

N ij J!h (Jij dz i ,j = 1, 2 
?, 

filLlJ · J2-h z(Ji j dz i,j = 1,2 (6 .5) 
~ 

Vij J!h (Jij dz i = 1,2 ; j = 3 
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For isotropic materials the relevant constitutive relationships are given in (2.13), (4.1 8) and 
(4 .24) respectively. For orthotropy the constitutive relationships are given by [59] 

I:~=l(Q ijh(hk+l - hk) i, j = 1,2,6 
~ I:~=l(Qijh(hk+l - hk) i,j=l,2,6 (6.6) 
I:~=l(Qijh(hk+l - hk) i , j = 4,5 

6.2 Compliance matrix 

Complementary to the general relationship between stress and strain, (6.1), one can define 
the inverse relationships as: 

(6.7) 

where Sijkl is the 'compliance tensor'. (6.1) and (6.7) can be rewritten in matrix form 

0' = EE (6.8) 

E = 8 0' (6.9) 

This means that 8 is the inverse of E. Therefore, Sijkl has the same symmetries as B ijkl . 

(6.7) now reduces to 
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Sij relates the principal directions of the material orthotropy to the reference coordinate 
system and are defined by 
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where c and s respectively indicate cos 0 and sin 0, while e indicates the fib er p ly angle in 
respect to the positive x l-axis (See Figure 6.2). 

For orthotropic layered laminates Sij kl are obtainable as 
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where the subscripts Land T indicate the in-plane longitudinal and transverse directions 
of the fib ers, and 0 indicates the out-of-plane transverse direction. Ei denote the Young's 
moduli, G ij denote the shear moduli and Vij denote the Poisson's ratio's. 

 
 
 




