Chapter 6

Orthotropic flat shell elements

In this chapter, the constitutive relationship is extended to incorporate orthotropy.

Layered orthotropic materials are particularly demanding in terms of the kinematic require-
ments of finite elements, since the transverse shear flexibility could be significant. Therefore,
a shear flexible through-thickness formulation is called for. The Mindlin theory includes
shear deformations, and C° continuity of the shape functions only is required.

Hence, the 55/SA, 83/SA and 95/SA elements developed in previous chapters are suitable
candidates for orthotropic problems.

6.1 Constitutive relationship

The linear elastic three-dimensional stress-strain relation defined by

045 = Lrjri€rl (6-1)

is used as the basic building brick for laminated orthotropic materials. It is assumed in
the plate theory of laminated orthotropic materials that the normal stress in each laminate
vanishes, i.e. it is assumed that (6.1) reduces to

Ozx Qll QIQ QIG 0 0 €xx
Uyy QZZ C226 0 0 €yy
Uzy = Qg@ 0 0 Ezy (62)
Oz Qi Qus €rz
Tyz Symm QSS €yz

where the stress-strain relations are written with respect to the reference coordinate system.
The laminate staking convention is depicted in Figure 6.1.

Since the orthotropic layers are generally rotated with respect to the reference coordinate
axis (see Figure 6.2), @Q,; relates the principal directions of the material orthotropy to the
reference coordinate system. @);; is defined by
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Figure 6.1: Laminate staking convention
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(6.3)

where ¢ and s respectively indicate cosf and sin @, while 6 indicates the fiber ply angle in

respect to the positive z;-axis (See Figure 6.2).
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Figure 6.2: Local coordinate system for laminated structures

For orthotropic layered laminates Fj;; are obtainable as
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Bam = (1 = vrrvrL)
virEr
Bz (1 — vprvrr)
Eyo19 = Gpp
Eins = Gro
FEos = Gro (6.4)

where the subscripts L and 7' indicate the in-plane longitudinal and transverse directions
of the fibers, and O indicates the out-of-plane transverse direction. FE; denote the Young’s
moduli, G;; denote the shear moduli and v;; denote the Poisson’s ratio’s.

Integration of the shell stresses yields the shell resultants as

h
Ni' = f:g_,lO'ij dz 'L,j:l,Q
i
A/L = fé 2044 dz l,j = 1,2 (65)
I3
V; = féai]- dz ’L':l,Q;j:3
2

For isotropic materials the relevant constitutive relationships are given in (2.13), (4.18) and
(4.24) respectively. For orthotropy the constitutive relationships are given by [59]

Cr = Zia(Qu)e(hrsr — h) t,7=1,2,6
Cl = 1R (@ue(R —h)  1,5=1,2,6 (6.6)
0157 = ZZ:l(Qz‘j)k(hk+1 — hk) ,j=4,5

6.2 Compliance matrix

Complementary to the general relationship between stress and strain, (6.1), one can define
the inverse relationships as:

€ij = DijklTkl (6.7)

where S,z is the ‘compliance tensor’. (6.1) and (6.7) can be rewritten in matrix form
o = FEe (6.8)
e=So (6.9)

This means that S is the inverse of E. Therefore, S;;;; has the same symmetries as E;jx.
(6.7) now reduces to
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Si; relates the principal directions of the material orthotropy to the reference coordinate
system and are defined by
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2C53S1111 + 2035‘51122 — 263351122 = 203552222 + SC(CZ - 32>51212
Ses = 4r520251111 - 832C25'L122 ~+ 4820252222 + (04 —25%c* + 54)51212

Say = Sia13 + 5" S0
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Sss = §°Si1s + ¢*Sagos (6.11)

where ¢ and s respectively indicate cos# and sin @, while @ indicates the fiber ply angle in
respect to the positive z,-axis (See Figure 6.2).

For orthotropic layered laminates S;;x; are obtainable as

1
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Sozo3 = —— 6.12
o = o (6.12)

where the subscripts L and T indicate the in-plane longitudinal and transverse directions
of the fibers, and O indicates the out-of-plane transverse direction. F; denote the Young’s
moduli, GG;; denote the shear moduli and v;; denote the Poisson’s ratio’s.





