
Chapter 4 

Isotropic flat shell elements 

In this chapter, fiat shell elements are formulated through the assembly of membrane and 
plate elements. The exact solution of a shell approximated by fiat facets compared to the 
exact solution of a truly curved shell may reveal considerable differences in the distribution 
of bending moments, shearing forces , etc. However, for 'simple' elements the discretization 
error is approximately of the same order and excellent results can be obtained with the fiat 
shell approximation [39] . Apart from being easy to define geometrically, fiat shell elements 
will always converge to the correct deep shell solution in the limit of mesh refinement [46J. 

4.1 Plate formulation 

For the plate component of the fiat shell element the shear deformable formulation of Mindlin 
is employed. The final formulation is modified to include the assumed strain interpolation 
of Bathe and Dvorkin [47]. 1 

4.1.1 Mindlin plates: Bending theory and variational formulation 

In this section the treatments of Hinton and Huang [48] and Papadopoulos and Taylor [49] 
are followed closely, albeit with different notations. However, the same may be found in the 
standard works of, for instance Hughes [38], Zienkiewicz and Taylor [39] and Bathe [50]. 

The simplest plate formulation which accounts for the effect of shear deformation, is pre­
sented . The transverse shear is assumed constant throughout the thickness. T he assumptions 
of the first order Mindlin theory are 

(4.1) 

1From now on, the drilling degree of freedom 1/), introduced in Chapter 2, is denoted 1/)3 for reasons of 
clarity. 
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(4.2) 

where UI, U2 and 'lL3 are the displacements components in the X l ) X2 and .T3 directions 
respectively, U3 is the lateral displacement and 'l/J [ and 'l/J2 are the normal rotations in the 
Xl3 and X23 planes respectively (See Figure 4.1). The element is assumed to be fiat, with 
thickness t. Flatness of the plate is not a necessary assumption, but merely simplifies the 
required notation and implementation. The element area is denoted D. 
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Figure 4.1: Four-node shell element 

(4.1) is obviously inconsistent with three-dimensional elasticity. However , the transverse 
normal stress may be neglected for plates where the thickness is small compared with the 
other dimensions . Moreover, when a linear or constant through-the-thickness displacement 
assumption is made, as is customary in the shear-deformable plate theories, limited locking 
occurs due to the Poisson effect , when (J3 3 is restrained. (4.2) implies that straight normals 
to the reference surface, X3 = 0, remain straight, but do not necessarily remain normal to 
the plate after deformation (Figure 4.2). Also, the transverse displacement 'U3 is constant 
through the thickness . 

The displacement field assumed in (4.2) yields in-plane strains of the form 

X3'l/J2,2 

1'12 X3 ('l/JI,2 + 'l/J2,d (4.3) 

where 

(4.4) 
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Figure 4.2: Mindlin theory 

T he transverse shear strains are obtained as 

1 13 = 'U3 ,1 + 'lh 
123 = 'U3 ,2 + <iJ1 ( 4.5) 

For plane stress and linear isotropic elasticity the forgoing strain field defines the in-plane 
stresses as 

E 
CTll ------:-2 [Ell + VE22 ] (4 .6)

1 - v 

-1--
E 
- v- h 2 + VEn ] (4.7)

2 

CT21 = G,12 (4.8) 

where E is Young's modulus and v is Poisson's ratio. Similarly, the out-of-plane stresses are 
given by 

CT13 CT31 = (4.9)G ' 13 
(/23 CT32 = G ,'23 (4.10) 

where 

G = E (4.11)
2(1 + v) 
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Integrating the in-plane stresses , which vary linearly along the plate thickness , gives stress 
resultants of .the form 

t 

Mll l : O'U X 3 dX3 (4. 12) 
. 2 

t 

M2 2 1_21 0'22·1:3 dX3 (4. 13) 
2 

t 

M12 = M21 = / 2 0'12 X 3 dX3 (4 .14) 
t -2 

Introd ucing matrix notation , the forgoing are written as 

[ 
!vIll 1 

M= M22 
M12 

(4. 15) 

and the curvatures It as 

(4. 16) 

It follows that the moment-curvature relation may be expressed as 

( 4.17) 

where 

D - _ _ E_t
3

_ [~~ ~ 1 
b - 12(1 - 1/

2 ) 0 0 1;// 
(4.18) 

Similarly, the out-of-plane stresses, when integrated along the thickness, glve transverse 
shear forces 

which , using matrix notation, results in 

where 

t 

1_21 0'13 dX3 
"2 
t 

[ 21 0'23 dX3 
2 

Q= D si 

(4. 19) 

( 4.20) 

(4.21) 
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( 4.22) 

( 4.23) 

( 4. 24) 

Summation convention is implied over Xl, X2 and X3 for Latin indices and over Xl and X2 

for Greek indices, so that the local equilibrium equations may be appropriately integrated 
through the thickness to deduce the plate equilibrium equations 

SOt,Ot + P o (4.25) 

where p denotes the transverse surface loading. The first equation relates the bending mo­
ments to the shear forces, whereas the second is a statement of transverse force equ ilibrium. 

In the limiting case where t ----+ 0 the Kirchhoff hypothesis of zero transverse shear strains 
must hold . Therefore 

U31 + 1/;2 0 
o (4.26) 

(4.5) imply that the transverse shear strain remains constant through the element thickness. 
This is inconsistent with classical theory, where the corresponding transverse shear stress 
varies quadratically. Also , the transverse shear strain on the plate surface is required to be 
zero. Consequently, a temporary modification to the displacement field is made, namely 

(4.27) 

Imposing the constraint 

t 

1~2l (x~ + ,BX3)X3 dX3 = 0 
. 2 

( 4.28) 

and setting 113 = 0 on the plate faces results in 

[ 
5 ( 2 3t2) 1 1 13 = 1 - 3t2 3X3 - 20 (1/;2 + u3,d (4.29 ) 

Moreover, substituting (4.29) into (4.21) leads to 
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Therefore, for consistency reasons, a 'shear correction ' term is introduced as 

into (4,21), which now becomes 

where 

, 6 
k=-

5 

T he total plate energy, based on potential energy for bending and shear, is written as 

48 

(4 .30) 

(4,31) 

( 4.32) 

(4.33) 

( 4.34) 

where IIext is the potential energy of the applied loads. The thin plate Kirchhoff conditions 
of (4 .26) should be satisfied in the finite element interpolation . 

4.1.2 F inite element interpolation 

The displacement in the reference surface of the element is defined by 

w here Nt (~, TJ) are the isoparametric shape functions 

The sectional (normal) rotations are interpolated as 

Nn~, 17)1/Jl 
Nt (~, 17 )1/J~ 

(4 ,35 ) 

( 4.36) 

( 4.37) 

(4 .38) 
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and the transverse mid-surface displacements are interpolated as 

( 4.39) 

where U3, 'l/Jl and 'l/J~ are the nodal point values of the variables U3, 'l/J] and 'l/J2 respectively. 

The curvature-displacement relations are now written as 

4 

'" = L B bi qi ( 4.40) 
i=l 

The element curvature-displacement matrix is given in Appendix A. The unknowns at node 
z are 

(4.41) 

The shear strain-displacement relations are written as 

4 

1= L B siqi (4.42) 
i = l 

The element shear strain-displacement matrix is given in Appendix A. 

4.1.3 Assumed strain interpolations 

The stationary condition of (4.34) directly resul ts in the plate force-displacement relationship 

K eq = T ( 4.43) 

where 

K C = (K b + K s) ( 4.44) 

with 

K b In ",T D bI'\, dD (4.45) 

K s In IT D SI dD ( 4.46) 

Subscripts band s indicate bending and shear respectively. For elements with 4 nodes, the 
expression for K b is problem free, at least in terms of locking. The employed interpolation 
field of (4.36) in K S results in severe locking when full integration is used . 

 
 
 



CHAPTER 4. ISOTROPIC FLAT SHELL ELEMENTS 50 

One solution that overcomes the locking phenomena, while ensuring that the final element 
formulation is rank sufficient, is to incorporate the substitute assumed strain interpolation 
field of Bathe and Dvorkin [7, 47]. 

3 

A 
f.~t 

~-+--f--J 

r; 

Figure 4.3: Interpolation functions for the transverse shear strains 

Depicted in Figure 4.3, the assumed interpolation field of Bathe and Dvorkin is written as 

(4.47) 

( 4.48) 

where the superscripts A through D designate the sampling points for calculating the co­
variant shear strains. The shear strain components in the Cartesian coordinate system, E13 

and E23, are obtained [51] using a transformation which in the case of a fiat plate element 
reduces to the standard (2 x 2) Jacobian, J 

{ ~~: } = l [~~ :~ ~~ :~ 1 { !:: } = ~J~s ( 4.49) 

Therefore, the substitute shear strains Es are expressed as 
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while the associated transverse stiffness-displacement relationship becomes 

k s = / B; DsBs dD .!n 
The element stiffness-displacement relationship now becomes 

51 

( 4.50) 

( 4.51) 

( 4.52) 

vvhich is the final element formulation. The assumed strain interpolation satisfies the Kir­
choff conditions of zero transverse shear strains in the thin plate limit, while locking is also 
adequately prevented. 

4 .2 Shell formulation 

4.2.1 Element formulation 

Flat shell elements are simpler than generally curved shell elements, both in terms of formu­
lation and computer implementation. As the element Jacobian matrix is constant through 
the thickness, analytical through-the-thickness integration is easily performed . 

The element force-displacement relationship of the 8,B(M) and 9,B(M) membrane families is 
defined by (2.80), and for the 8,B(D) and 9,B(D) membrane families by (2.84). These rela­
tionships are repeated here using a different notation to distinguish between the membrane 
and plate components. T he two different force-displacement relationships for the membrane 
families are rewritten in a universal form to clarify the notation 

K mqm = rm (4.53) 

where 

(4.54) 

for the mixed formulation, and 

K m= K + P, ( 4.55) 

for the displacement formulation. 

K m denotes the membrane stiffness matrix, q rn the element displacements and rm the ele­
ment body force vector. The unknown nodal displacements qm and the specified consistent 
nodal loads r m are defined by 
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Tm 

[u~ u; 1P;f 
[U{ U~ NI~lT 

where 1P; is the in-plane rotation and M~ the in-plane nodal moment. 
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(4.56) 

( 4.57) 

Similarly, the Mindlin plate force-displacement relationship (see (4.52)) is rewritten as 

( 4.58) 

The displacements qp ' and the specified consistent nodal loads T p, are resp ectively defined 
by 

['u1 1P~ 1P;f 
[U~ M{ M~f 

(4.59) 

( 4.60) 

T hrough assembly of the membrane and plate elements, the flat shell element stiffness matrix 
K e is obtained in a local element coordinate system as 

T he local shell force-displacement relationship is given by 

where the shell nodal displacements and loads for node i respectively are 

[u~ u~ u1 1P~ 1P; 1P~] T 
[U{ U~ U~ M{ M~ j\,{Jf 

4.2 .2 A general warped configuration 

( 4.61) 

( 4.62) 

( 4.63) 

( 4.64) 

The warp correction employed in this study is the so-called 'rigid link' correction suggested 
by Taylor [6], which is depicted in Figure 4.4. Simple kinematic nodal relationships are used 
to evaluate the warp effect. 

For elements with true rotational degrees of freedom the rotations about the local x3-axes 
in the warped and projected planes may be taken as equal. Assuming reasonably small 
warp , the effect of the drilling degree on the out-of-plane bending rotations is neglected. 
The strain-displacement modification presented by Taylor is therefore extended by addition 
of the final row and column as follows [52] 
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2 

Figure 4.4: Warped and projected quadrilateral shell element 
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where x~ defines the warp at each node and bared quantities (for example ul) act on the fiat 

projection. 


This correction is much simpler than for instance the correction presented by Robinson [53]. 


 
 
 




