
Chapter 2 

Assumed stress membranes with 
drilling d.o.f. 

2.1 Introduction 

2.1.1 Summary of recent research 

Both finite elements with drilling degrees of freedom and mixed/hybrid assumed stress for­
mulations are currently research topics of note. Drilling degrees of freedom are for obvious 
reasons highly desirable when modeling, for instance, folded plates and beam-shell (or mem­
brane) intersections [9]. 

Classical attempts to develop membrane elements with rotational degrees of freedom were 
unsuccessful [5]. Compilations of these early efforts are presented by Frey [10] and Bergan and 
Felippa [11]. The papers of Bergan and Felippa and Allman [12] presented fresh approaches 
to the formulation of membrane elements with rotational degrees of freedom [13]. The key 
to their success was the use of a quadratic displacement function for the normal component 
of displacement rather than the cubic functions employed in earlier works. 

Allman with his simple, but powerful formulation, introduced the term 'vertex rotation' 
[12]. In this formulation, the vertex rotations are related to the derivatives computed at the 
element nodes. The vertex rotations introduced by Allman in the constant strain triangle 
dramatically improved the in-plane behavior of his element. Cook presented a quadrilateral 
element with drilling degrees of freedom, derived from the Allman triangle [14]. A similar 
formulation was presented by Allman [15]. 

Since these attempts, many papers on the subject have appeared, notably those by Jetteur, 
Jaamei and Frey [10, 16, 17, 18] and by Taylor and Simo et al. [6, 19, 20]. However, these 
elements all suffered from the serious drawback that they are rank deficient. To address 
this deficiency, Hughes and Brezzi [5] presented a rigorous framework wherein elements with 
independently interpolated rotation fields could be formulated. Utilizing the formulation of 
Reissner [21], they argue that formulations employing 'convenient' displacement, rotation 
and stress interpolations are doomed to failure. Instead, they propose a modified variational 
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CHAPTER 2. ASSUMED STRESS MEMBRANES WITH DRILLING no.F. 5 

principle based on the Euler-Lagrange equations presented by Reissner. However, they 
improved the stability properties in the discrete approximations. 

Finite element interpolations employing the formulation of Hughes and Brezzi were finally 
presented by Hughes et at. [22] and Ibrahimbegovic et at. [23, 24]. Since then, the develop­
ments in membrane finite elements with drilling degrees of freedom has been numerous. 

Previously, Groenwold and Stander applied the 5-point quadrature presented by Dovey [1] 
to drilling degree of freedom membranes, which improved the element behavior through the 
introduction of a 'soft' higher order deformation mode [3, 25]. 

The developments in mixed/hybrid membrane finite elements has been equally important 
during recent years. Since the assumed stress hybrid finite element presented by Pian [26], 
numerous formulations have been proposed. A compilation is presented by Pian [27]. The 
biggest difficulty in deriving hybrid finite elements seems to be the lack of a rational method­
ology for deriving stress terms [8]. Many approaches were made to address this deficiency, 
e.g. see [28, 29]. 

I t is recognized that the number of stress modes m in the assumed stress field should satisfy 

m?:,n r (2.1) 

with n the total number of nodal displacements, and r the number of rigid body modes in an 
element. If (2.1) is not satisfied, rank deficiencies arise, viz. the element stiffness matrix rank 
is less than the total degree of deformation modes. Furthermore, the equality represented by 
(2.1) is optimal, since m > n-r increases the element stiffness [30]. Therefore, assumed stress 
formulations should not only satisfy the requirements of rank sufficiency and invariance, but 
preferably also the equality condition represented by (2.1). Feng et at. [8] present a brief 
compilation of studies dealing with criteria for stability and convergence. Amongst others, 
notable contributions are those by Brezzi [31] and Babuska [32]' who present necessary and 
sufficient conditions. Feng et al. propose a classification method which also proves that 
kinematic modes can exist even if m > n - r, and show that the m modes are to be chosen 
from m different stress groups. 

The limiting principle of Fraeijs de Veubeke [33] states that a complete but unconstrained 
assumed stress field becomes identical to the corresponding assumed displacement element. 
This has lead to the introduction of additional incompatible displacements in numerous 
formulations. Di and Ramm [34] have chosen not to introduce incompatible modes, but 
present a rigorous unified formulation to propose stress interpolations. 

Previously, a mixed/hybrid assumed stress membrane finite element with drilling degrees of 
freedom has been presented by Aminpour [35, 36]. However, this element is rank deficient (by 
one). The framework presented by Hughes and Brezzi [5] can however be used to overcome 
this drawback. 

Sze and Ghali [37] presented a rank sufficient formulation using only 8 interpolating stress 
modes, denoted HQ8*, which is one less than the equality expressed in (2.1). They used 
four zero energy modes. One is the equal-rotations mode and the other three are the rigid­
body modes. The equal-rotations mode, known as an hourglass mode, is stabilized by a 
quadratic stress mode. This important contribution probably represents the first ranks 
sufficient assumed stress membrane finite element with drilling degrees of freedom. 
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The element presented by Sze and Ghali does not include a locking correction to overcome 
membrane locking when the element is used as the membrane component of a flat shell 
finite element. In addition, the interpolation field in the element is not necessarily optimally 
constrained. 

2.1.2 This study 

In this study, a variational basis for the formulation of two families of assumed stress mem­
brane finite elements with drilling degrees of freedom is presented, depending on the formu­
lation of Hughes and Brezzi. The families are derived using the unified formulation presented 
by Di and Ramm [34]. The recent stress mode classification method presented by Feng et 
al. [8J is used to derive the stress interpolation matrices. Both families, denoted 8,B(M) and 
8/i(D), are rank sufficient, invariant, and free of locking. The membrane locking correction 
suggested by Taylor [6] is used to ensure that the consistent nodal loads in both families are 
identical to those of a quadrilateral 4-node membrane finite element with two translational 
degrees of freedom per node. 

2.2 A framework for independently interpolated rota­
tion fields 

In this section, a rigorous framework for the formulation of independently interpolated ro­
tation fields is presented. The formulation of Hughes and Brezzi [5] is closely followed. The 
interpolation fields proposed by Ibrahimbegovic et al. are presented in Section 2.2.2. 

2.2.1 Variational formulation 

Let n c ]Rd be an open set with a piecewise smooth boundary. d:2:: 2 denotes the number 
of spatial dimensions. The stress tensor, (j (do not assume symmetry), the displacement 
vector, U, and the skew-symmetric rotational tensor, ,¢, are taken as dependent variables. 

The Dirichlet boundary value problem is the focus for this framework. More complicated 
boundary conditions provide no essential difficulties and may be handled by standard means 
(see, e.g., [38]). The Euclidean decomposition of a second-rank tensor is used, e.g., 

symm (j + skew (j 

where 

symm (j 

skew (j 

(2.2) 

(2.3) 

(2.4) 
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The boundary value problem 


Given f, the body force vector, find u, 1/J and 0', such that: 


For all x EO 


div 0' + f 
skew 0' 

1/J 
symm 0' 

0 

0 

skewVu 

C·symmVu 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and on the boundary r ao 
u 0 (2.9) 

where (2.5) through (2.9) are, respectively, the equilibrium equations, the symmetry condi­
tions for stress, the definition of rotation in terms of displacement gradients, the constitutive 
equations and the displacement boundary condition. 

The elastic moduli, C {Cijkl }, 1 ~ i, j, k, l ~ d, are assumed to satisfy the following 
conditions: 

Cijkl Ck1ij (2.10) 

Cijkl Cjikl = Cij1k (2.11) 

Cijkltijtkl > 0 V tij tji 0 (2.12) 

where (2.10) through (2.12) are referred to as, respectively, the major symmetry, the minor 
symmetries, and positive-definiteness. 

For an isotropic material and plane stress, the constitutive modulus tensor C = {Cijkl } has 
the form 

(2.13) 

where 

vE 
(2.14)

(1 - v2 ) 

E 
(2.15)

2(1+v) 

where E and v are Young's modulus and Poisson's ratio, respectively. A and It are the Lame 
parameters and Oij is the Kronecker delta. 

Variational form of the boundary value problem 

Let L2 (0) denote the space of square-integrable functions on 0, and let Hl(O) denote the 
space of functions in L2(0) with generalized derivatives also in L2(0). HJ(O) is the subset 
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of Hl(O) whose members satisfy zero boundary conditions. The spaces relevant to the 
boundary value problem are: 

v 
W 

T 

{vlv E (HJ(O) t} 
{wlw E (L2(O))d, symm w = o} 
{rlr E (L2(o))d} 

(2.16) 

(2.17) 

(2.18) 

where V is the space of trail displacements, lV of trail rotations, and T of trail stresses. 

Consider the following functional [21]: 

IT=VxWxT-+IR (2.19) 

IT(v,w,r) ~ i symm r· C- 1
, symm r dO + i rT. (Vv w) dO - i V· f dO (2.20) 

The stationary condition and integration-by-parts reveals that the Euler-Lagrange equations 
emanating from IT correspond to the equations of the boundary value problem (i.e. (2.5)­
(2.8)), viz. 

o 5IT(u,,,p, u)(v, w, r) 

-i symm r . C- 1 
• symm u dO + i rT . (Vu "p) dO 

+ r u T
. (Vv w) dO r V· f dO (2.21) in in 

i symm r· (C- 1
, symm u symmVu) dO 

- r skew r· (skewVu -"p) dO - r v' (div u + f) dO in in 
+ r W· skew u dO V {v, w, r} E V x W x T (2.22) in 

So that there is no confusion with the index-free notation, note that: 

(2.23) 

where 

(2.24) 

From (2.22) observe that w plays the role of a Lagrange multiplier that enforces the symmetry 
of the stress. 
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Mathematical theory of the continuous case 

Let U V x W. The following mapping needs to be introduced: 

a 

b 

f 
a(u, T) 

b(T, {v,w}) 

f({v,w}) 

TxT-+IR 

TxU-+IR 

U-+IR 

In symm u . C-1 
. symm T dO 

(TT, \7v - w) In TT . (\7v w) dO 

j~ v· f dO 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Note that (2.28) and (2.29) are bilinear forms. (2.28) is symmetric, and f is continuous. 

The variational form of the boundary value problem,(2.22), can now be rewritten as follows: 

Problem (M) 

Find {u, 1jJ} E U and u E T such that 

a( U, T) + b( T, {u, 1jJ} ) 0 V T E T 

b(u,{v,w})=f({v,w}) v {V,W}EU 

The discrete problem 

(2.31) 

(2.32) 

Let Vh, ~Vh and Th be finite dimensional subspaces of V, Wand T, respectively. The su­
perscript 'h' denotes dependence upon a mesh parameter. V h, W h and Th are typical finite 
element spaces involving piecewise polynomial interpolations. The standard way of develop­
ing a discrete approximation is to pose (2.31) and (2.32) in terms of the finite dimensional 
subspaces. 

Problem (Mt) 
Find {uh, 1jJh} E Uh = Vh X W h and u h E Th such that 

a(uh, Th) + b(Th, {u\ 1jJh}) 0 V Th E Th 

b( u h, { v\ wh}) = f ( { v\ wh} ) V { vh , wh} E Uh 
(2.33) 

(2.34) 

Problem (Mt) has a unique solution {uh, 1jJh} E Uh, u h E Th. A proof is presented by 
Hughes and Brezzi [5]. 
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A modified variational formulation 

The ellipticity of the continuous problem is not inherited by the discrete problem for conve­
nient finite element spaces. In order to improve upon the ellipticity of the standard mixed 
formulation, consider the following functional: 

II, : V x tV x T --t IR (2.35) 

II,(v, w, T) 2:, (IT ( v, w, T) ) 

II(v,w, T) ~ k Iskew TI2 dO (2.36) 

This functional gives rise to a system of variational equations formally equivalent to those 
of IT. This may be seen as follows: 

o 8IT(u,,,p, o-)(v, w, T) 

In symm T' (C- 1 
. symm 0- - symmVu) dO 

k skew T' (skewVu "p - "y-1skew 0-) dO - k v . (div 0- + f) dO 

+ In w . skew 0- dO V {v, w, T} E V x W x T (2.37) 

Observe that skew T = O. Thus the Euler-Lagrange equations of the continuous problem 
are unchanged. Nevertheless, the consequences of the additional term are significant in the 
context of approximate solutions. This may be seen more clearly by writing (2.37) in the 
standard format of a mixed problem. 

Problem (M,) 

Find {u,,,p} E U and 0- E T such that 

a,(o-,T)+b(T,{u,,,p})=O V TET 
b( 0-, { v, w} ) f ( { v, w}) V {v, w} E U 

where 

a,(o-,T) a(o-,T) - ,-1 (skew 0-, skew T) 

The finite dimensional counterpart of Problem (M,) is given by: 

Problem (M!;) 

Find {uh,,,ph} E Uh and o-h E Th such that 

(2.38) 

(2.39) 

(2.40) 
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a')'(u\ Th) + b(T\ {u\ -zPh}) = 0 V Th E Til, 

b( u\ { v\ wh} ) f ( { v h, wh} ) v { vII" wh} E Uh 

11 

(2.41) 

(2.42) 

Various special cases of the previous variational formulation can be developed by eliminating 
fields through the use of Euler-Lagrange equations. The symmetrical components of stress 
can be eliminated by way of the constitutive equation. Define the functional 7r ')' by 

7r I ( v, w, skew 1') ITI ( v, w, C . symm \7' v + skew 1') 

_ 1 f symm'Vv. C. symm'Vv drt 
2 in 
+ In skew TT. (skew\7'v w) dO 

-t,-111 Iskew 1'12 dO In v . f dO 

Displacement-type modified variational formulations 

(2.43) 

From the practical point of view, the most interesting formulation is one based entirely on 
kinematic variables, namely, displacement and rotation. To this end, the modified varia­
tional formulations permit the elimination of skew u by way of the following Euler-Lagrange 
equation 

(2.44) 

The following functional is derived by employing (2.44) in (2.43) 

:VxW-+IR (2.45) 

(v,w) 'lf1 (v,w,,(skew\7'v - w)) 

tin symm\7'v· C· symm\7'v dO 

+~, f Iskew\7'v wl 2 dO f V· f dO 
2 in in (2.46) 

Since this is the simplest formulation within this framework, it is the one most likely to be 
used by program developers [5]. Indeed, this formulation was used by Ibrahimbegovic et ai. 
in 1990 [23]. 

The variational equation emanating from (2.46) is 
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o bif(u,1/J)·(v,w) 

j~ symm\7v· C· symm\7u dn 

+ k (skew\7v wf· C'y(skew\7u 1/J)) dn k v . f dn 

-k v . div [C· symm\7u + ,(skew\7u 1/J) + fJ dn 

-k w T 
. ("y(skew\7u -1/J)) dn 

(2.47) 

(2.48) 

The last term in (2.48) asserts that the skew-symmetric stresses are zero, and the first term 
express equilibrium in terms of the symmetric stresses. In the corresponding discrete case, 
the skew-symmetric stresses will not be in general identically zero and thus will play a role 
in the equilibrium conditions. The mathematical formulation of the variational problem is 

Problem (D"() 

Find {u, 1/J} E U such that 

B,,((u,1/J;v,w}) J({v,w}) V {v,w} E U (2.49) 

where 

B)u,1/J; v,w}) - k symm\7v· C· symm\7u dn 

+ j~ (skew\7v - wf . b(skew\7u 1/J)) dn (2.50) 

is a symmetrical bilinear form. The corresponding discrete problem is: 

Problem (D':y) 

Find {u h
, 1/J h

} E Uh such that 

(2.51) 

Generalization 

Hu-Washizu variational formulations are frequently used as a basis for finite element dis­
cretizations. A Hu-vVashizu-type variational formulation accounting for rotations and non­
symmetric stress tensors derives from the following functional: 

H(v,w, skewT, symmT, E) ~ { E' C . E dn + { symm T . (symm \7 v - E) dn 
2 in in 
+ 1 { skewTT . (skew\7v w) dn { V· f dn (2.52) 

2 in in 

 
 
 



CHAPTER 2. ASSUA1ED STRESS NIE1'vIBRANES WITH DRILLING D.D.F. 13 

2.2.2 Finite element interpolations by Ibrahimbegovic et al. 

The rotational and translational interpolations of the formulation of Hughes and Brezzi [5] 
are addressed in detail in the papers of Hughes et ai. [22] and Ibrahimbegovic et ai. [23]. 
Here, the formulation of Ibrahimbegovic et ai. [23] is followed closely. 

The independent rotation field is interpolated as a standard bilinear field over each element. 
Accordingly 

4 

~)h L L Ni
e
((, T])~i (2.53) 

e i=l 

where (e.g., see [39]) 

(2.54) 

The in-plane displacement approximation is taken as an Allman-type interpolation field 

+ L N B~((, T])tiUg (2.55) 
e 

ljk and njk denote the length and the outward unit normal vector on the element side 
associated with the corner nodes j and k. 

(2.56) 

and 
(2.57) 

The indices in the above are explicitly given in Appendix A. 

In (2.55) the following Serendipity shape functions defined by Zienkiewicz and Taylor [39] 
are used. 

1 
NS1((, T]) 2(1 - e)(1 + T]iT]); i = 5,7 (2.58) 

NS1((, TJ) 
1 
2(1 + (i()(l - T]2); i = 6,8 (2.59) 

To reflect the superior performance of the 9-node Lagrangian element over that of the 8-node 
Serendipity element, a hierarchical bubble function interpolation is added in (2.55) where 

(2.60) 

The terms in the element stiffness matrix arising from this interpolation may be eliminated 
at the element level by static condensation [40]. 
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2.2.3 On the numerical value of ! 

For isotropic elasticity and Dirichlet boundary value problems, Ibrahimbegovic et al. take 
1 equal to the value of the shear modulus [23]. The choice of 1 = G was suggested by 
Hughes et ai. [22]. Numerical studies by Ibrahimbegovic et ai. [23] show that their element 
formulation is insensitive to the value of 1 used, at least for several orders of magnitude 
which bound the shear modulus. This was however shown for one particular problem only. 
Results by Groenwold and Stander [25] indicated that there may be a more pronounced 
sensitivity to the value of 1 for certain examples. For some problems, therefore, enforcement 
of the rotational field by sufficiently large values of 1 is crucial [25]. 
Notwithstanding the undesirability of having a problem dependent parameter in the formu­
lation, both the shear and extension patch tests (Figure 3.3) are passed for any positive value 
of l' As the patch test is a necessary and sufficient condition for convergence (see [41]), the 
numerical value of 1 becomes irrelevant in the limit of mesh refinement l

. 

2.3 	 Assumed stress membrane element with drilling 
degrees of freedom formulation 

2.3.1 Variational formulation 

In this study, the formulation presented by Hughes and Brezzi (see (2.43)) is extended 
through the addition of the term 

hsymm TT. (symmVv €) dO 	 (2.61) 

where represents a Lagrangian multiplier. The following Hu-\Vashizu like functional is 
obtained 

Problem (Me) 

III' (v, w, T) 1 r(symmVvf. C. symmVv dn + rsymm TT . (symmVv ­2in in €) dO 

+ rskew TT • (skewVv - w) dn ­in
hv T 

. f dO 

12 r[skew T]2 dOin 
(2.62) 

Substituting the constitutive relationship € = C- I 
. symm T, Problem (Me) can be rewritten 

to obtain 

hsymm TT. symmVv dO 1 rsymm TT. C- I . symm T dO
2in 

skew TT . (skewVv w) dn 1 I r[skew T]2 dO 
2 in 

IThe effect of I is extensively demonstrated in Chapters 3, 5, and 7 
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(2.63) 

The variational equation which results from variations on (2.63) is 

o = 5Il')' (v, w, r) = r symm u T . symmVv dfl + r symm rT . symmVu dfl Jn Jn 

r symm rT. a-I. symm u dfl + r skew rT . (skewVu -1/J) dfl 
k k 

+ k (skewVvT . skew u wT . skew u) dfl In skew rT . skew u dfl 

In u T 
. f dfl (2.64) 

Furthermore, it is possible to eliminate the skew-symmetric part of the stress tensor by 
substituting 

,-lskew u = skewVu 1/J (2.65) 

into Problem (Me) to obtain 

Problem (Dc) 

I1,(v,w, r) k symm rT . symmVv dfl - ~ k symm rT . a-I. symm r dfl 

+~, r [skewVv - W]2 dfl r vT
• f dfl (2.66) 

2 Jn Jn 

which is now similar to the generalization presented by Hughes and Brezzi (see [5]). The 
corresponding variational equation becomes 

o 5I1,( v, w, r) k symm u T 
. symm Vv dfl 

+ In symm rT . symm V u dfl - In symm rT . a-I . symm u dfl 

j~ (skewVv - W)T . (skewVu -1/J) dfl k u T 
. f dfl 

2.3.2 Finite element interpolation 

The discrete version of Problem (!vIc) is obtained as 

Problem (M~) 

o k" (symm Uh)T . symmVvh dfl + k" (symm rhf' . symmVuh dfl 

(2.67) 

- r (symm rh)T . a-I. symm u h dfl + r (skew rhf' . (skewVuh 1/Jh) dfl I n,, In,, 

+ k" ((skewVvh)T . skew u h 
- (whf . skew u h) dfl 

_,-I r (skew rhf . skew u h dfl - r (Uhf'. f dfl (2.68) 
Jnh Jnh 
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It is required that the three distinct independent interpolation fields arising from the transla­
tions, rotations, and the enhanced stresses are interpolated. The rotational and translational 
interpolations were addressed in detail in the paper ofIbrahimbegovic et al. [23] (see Section 
2.2.2). However, the newly introduced assumed stress field is presented in more detail in the 
following. 

The independent rotation field is interpolated as in Section 2.2.2. The in-plane displacement 
approximation is taken as an Allman-type interpolation field 

(2.69) 


with N Si the Serendipity shape functions. In accordance with the limiting principle of 
Fraeijs de Veubeke [33], the hierarchical bubble shape function is not included. lp; and njk 

denote the length and the outward unit normal vector on the element side associated with 
the corner nodes j and k (Figure 2.1). 

TJ 
2 5 1 

6 8 ( 

,., 
( 43 

3 


Figure 2.1: Membrane finite element 


The skew-symmetric stress field is chosen constant over the element, i.e. 


(2.70) 


Using matrix notation, symmVue and skewVue are respectively given by 

and 

(2.71) 


(2.72) 
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The operators arising from this interpolation are summarized in Appendix A. 

For the assumed stress field, the global stresses are directly interpolated by the stress pa-
rameters ,l.e. 

(2.73) 
e 

where pe is the interpolation matrix in terms of the local coordinates and f3e is the stress 
parameter vector. Equations (2.73) represent an unconstrained interpolation field, which is 
not necessarily optimal. Constraints may be enforced by a suitable transformation matrix 
A e, such that 

(2.74) 
e 

Various forms for A e were presented by Di and Ramm [34], and are applied to the new 
families of elements in sections to follow. 

The body force vector is given by 

(2.75) 

In matrix notation, the stationary conditions result in 

[0 G,T 

-~~:n' 1 [ :J [ ~ 1 
h eT 0 (2.76) 
G e _He 

with 

G e in peT. (Be Gel dO (2.77) 

He in peT. C-- 1 . pe dO (2.78) 

he 1 w, ge]T dO (2.79) 
n 

where C- I denotes the elastic compliance matrix, and where pe may be replaced by A e pe. 
The force-displacement relationship is defined by 

(2.80) 

with 
(2.81) 

Finally, stress recovery is obtained through 

(2.82) 

Similarly to the foregoing, the discrete version of Problem (Dc) yields 
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Problem (D~) 

o = r (symm uhf· symmVvh dO + r (symm -rhf . symmVuh dO .I o.h .I o.h 

- r (symm -rh)T . C-1 . symm u h dfl 
.lo.h 

+, r (skewVvh whf. (skewVuh 'ljJh) dfl r (uhf· f dO (2.83) 
.I~ .I~ 

which directly results in 
[Ke + p~] q r (2.84) 

with 

P~ = '.k { :: } [be gel dO (2.85) 

The parameter, in the foregoing formulations is problem dependent, since it is part of a 
penalty term. The effect of, is studied in Chapters 3, 5, and 7 to come. 

2.3.3 Developing and constraining the assumed stress field 

The stress field assumed in (2.73) may, without loss of generality, be expressed as 

symm u e P{3 symm u~ + symm u h [Ie Ph] { ~: } (2.86) 

where the superscript e is dropped on P Q for reasons of clarity. In (2.86), Ie allows for the 
accommodation of constant stress states. The higher order stress field is represented by 

symm u h = P h{3h = P h2{3h2 + P h3{3h3 

where P h2{3h2 and P h3{3h3 are introduced for reasons of clarity. Therefore, 

symm u e = P{3 = symm u~ + symm uft = [Ie P h2 P h3 ] { %:2 } 
{3h3 

Furthermore, the classification of Feng et al. [8] is now extended, and written as 

Ie{3e 

(2.87) 

(2.88) 

(2.89) 

with {O"d through {0"3} presented in Appendix B, and representing the constant stress 
capability of the formulation. Various possibilities exist for P h2 (e.g. see [8]), but the 
obvious choice is the linear capability, given for instance by 

(2.90) 
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with {ad and {a6} again given in Appendix B. (2.89) combined with (2.90) yields the usual 
formulation for a 5-parameter stress field, as is also for instance used by Di and Ramm [34], 
for their 5{3 elements. The additional terms required for the finite element with drilling 
degrees of freedom are chosen as 

Ph3f3h3 (2.91) 

viz. 

[ 

-~ 0 1]2] 
P h3 = 0 -1] -e 

1] ~ 0 
(2.92) 

This formulation is similar to the unconstrained field used by Sze and Chali [37]. A different, 
invariant possibility is 

P~3 [{ag}{aS}{a23}] (2.93) 

When using 9 interpolating stress modes, (i.e. m n - T 12 - 3 = 9), the stress modes 
may be selected as 

VIZ. 

o 1]2 0 1 o -1] 0 e 
1] ~ 0 0 

(2.94) 

(2.95) 

This formulation is similar to the formulation presented by Aminpour [35]. A different 
possibility is given by 

(2.96) 

(Here, it is chosen to retain P h2 unmodified, which is not a requirement.) P h3 is then used 
instead of P h3 . As stated previously, constraints may be enforced through a suitable trans­
formation matrix A, such that symm (J'e = A e 

pef3. Various forms for A e were presented 
by Di and Ramm [34], and are applied in Table 2.1 to the 8(3 and 9(3 families, while the 5(3 
family is also given for reasons of completeness. In the table, IJI indicates the determinant 
ofthe Jacobian J, and 9 the determinant of the metric tensor. The transformation operators 
T Ol T and Q are given in Appendix C. 

The following notation is used: 

• NC The stresses are associated with the strain derived from the displacements and 
are not subjected to any constraint. 

• EP - Pian and Sumihara [28] have developed a rational approach for the assumed 
stress element in which the equilibrium equations in a weak form related to the internal 
displacement field are used as a constraint condition; it serves as a pre-treatment for 
the initial assumed stress trial. \\lith this method, an appropriate perturbation of 
element geometry is often needed to obtain sufficient constraints. 
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• 	 OC The higher order stress is selected to be orthogonal to the constant part in a 
weak sense [42]. 

• 	 NT - The initial stress is decomposed into a constant and a higher order part, and then 
the higher order part is defined independently so that the constant part of the initial 
stress can be preserved. Following this approach the transformation for the higher 
order part of the initial stress defined in isoparametric space is normalized. 

• 	 PH - The physical components of the higher order stress part are first interpolated in 
isoparametric space and then converted to their contravariant components. Finally, 
the latter are transformed to the global system using the transformation matrix. 

No Element Higher order stress 
1 5p-NC Ph = P h2 
2 5p-EP Ph T OP h2 
3 5p-OC Ph i!T!TOP h2

I . 
4 5,B-NT Ph = gTPh2 
5 5p-PH Ph = TQPh2 
6 8p(M)-NC and 8p(D)-NC Ph = P h2 + P h3 
7 8p(M)-EP and 8p(D)-EP Ph T OP h2 + T OP h3 
8 8p(M)-OC and 8p(D)-OC Ph IJIToPh2 + JIToPh3 
9 8p(M)-NT and 8p(D)-NT Ph = gTPh2 + gTPh3 
10 8p(M)-PH and 8,B{D)-PH Ph = TQPh2 + TQPh3 
11 9p(M)-NC and 9p{D)-NC Ph = P h2 + PM 
12 9p(M)-EP and 9p(D)-EP Ph T oP h2 + TOPM 

13 9p(M)-OC and 9p(D)-OC Ph IJIToPh2 + IJI ToPM 

14 9p{M)-NT and 9p(D)-NT Ph = gTPh2 + gTPM 

15 9p(M)-PH and 9p(D)-PH Ph = TQPh2 + TQPM 

Table 2.1: Unified formulation for the 5,8, 8p and 9,B families 

2.4 Membrane locking correction 

Flat shell elements assembled from membrane elements with in plane drilling degrees of free­
dom suffer undesirable membrane-bending interactions associated with the drilling degrees 
of freedom [6]. 

Mechanistically, the locking phenomena may be described as follows [6]: Flat quadrilateral 
shell elements approximate curved shell geometries with the possibilities of kinks between 
adjacent elements. In these situations the continuity of the three rotation parameters for the 
shell result in a situation where non-zero drilling degrees of freedom in one element leads to 
non-zero bending degrees offreedom in the adjacent element (and 'vice-versa'). Accordingly, 
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the elements will exhibit a membrane-bending locking performance, unless the drilling degree 
of freedom part of the membrane strains may assume a zero value over the element. 

For the assumed displacement field of the 8;3(M), 8;3(D), 9;3(M) and 9;3(D) elements (see 
(2.69)) zero strains are not possible for non-zero rotations [6]. An exception is the special 
case of identical rotations at opposite nodes. One such case is for example, reflected in: 

(2.97) 

Taylor [6J presented a correction which alleviates the membrane-bending locking. The cor­
rection, which is based on a three field formulation (displacement, strain and stress), is 
repeated here, albeit with a slightly different notation. 

Using matrix notation, symmVue for the 8,8(M), 8;3(D), 9;3(M) and 9li(D) elements is given 
by 

symm Vue = B~Ui + G~itPi i = 1,2,3,4 (2.98) 

where Ui and tPi are nodal values of displacement and rotation respectively and summation 
is implied. 

In the following, the 8;3(M), 8;3(D), 9;3(M) and 9,8(D) elements with the interpolation given 
in (2.98) are now denoted 8;3(M)*, 8;3(D)*, 9;3(M)* and 9;3(D)*. Here, the asterisk (*) 
indicates that the membrane locking correction, (which is described in the following), is 
not performed. For the 8;3(M), 8;3(D), 9;3(M) and 9;3(D) elements, the modified strain 
relationship proposed by Taylor [6J is used. This relationship is given by 

symmVue B~Ui + G~itPi + symmVu~ (2.99) 

This modified strain relation is required to satisfy a requirement that the drilling parameter 
part can be inextensible. Accordingly, it is desired that 

(2.100) 

for rotational fields which are inextensible. Unless the drilling degrees of freedom are elimi­
nated completely it is only possible to satisfy (2.100) in a weak sense. A suitable weak form 
may be constructed by augmenting the usual potential energy of each element for a shell by 
the term 

he {rT (G~(,.pi + symmVu~) dne = 0 (2.101) 

where n e is the surface region of the shell. Both {rT and symm V U o are assumed constant 
over each element. Performing the variation with respect to {rT leads to 

symmVu~ - ~e he G~itPi dn
e 

and, therefore, the modified strain relationship 

(2.102) 

I \S'5<=b '2....0 2... 0 

\:, ,S~I 47'$c:r 
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symmVu
e 

= B~Ui + (G¢i A hz G¢i dn) tPi 

which is the final result presented by Taylor [6]. 

(2.103) 

 
 
 


