
Chapter 4 

Documentation in the software engineering process and the 
processes it involves 

1 . Introduction 

Software engineering, like all other forms of problem solving, 

involves information processing to a great extent. Analysing, 

defining, internalising information to become knowledge, 

communicating, documenting and coding are all information 

processing activities that take place during the software 

engineering process . Whereas the previous chapter focused on the 

characteristics in general, this chapter and the next will focus 

on the functional aspects of software engineering in more depth. 

This chapter will emphasise documentation and the information 

processing behind it as a vital part of the software engineering 

process. The following aspects will be covered: 

• 	 Fundamentals of human information processing and 

communication; 

• 	 What must be done in the software engineering process; 

• 	 Why documentation is needed; 

• 	 Problems in the software engineering process; 

• 	 What is needed in the software engineering process . 

2. 	 Fundamentals of human information processing and 

communication 

Documentation is a product of human information processing. To 

understand the impact and effectiveness of documentation in the 

software engineering process , one has to realise that software 

engineering involves information processing by humans and 

65 

 
 
 



machines. Again the human factor plays a pivotal and critical 

role (Pressman, 1997, p. 59). Because human involvement is so 

important and has such a great impact on software engineering, it 

is important to understand how humans process information in 

order to see how this process relates to the nature of 

documentation. 

Humans constantly process information. Information is a product 

of observation. Information processing, for humans, takes place 

between a human brain or mind and an external environment when 

humans make observations about that environment. It also takes 

place between minds during the communication process. In the case 

of the software engineering process, the external environment or 

what is observed includes the people involved, the domain and the 

user requirements. 

Information processing, however, has some complications to it. 

These complications are related to the fundamentals of the 

process itself and also because of human limitations 

(Loucopoulos, 1995, p. 66). Humans do not process information 

mechanically, but thinking and communicating involve ideas and 

emotions (Capra, 1997, p. 70). Our perceptions are not objective, 

predetermined representations of reality, but is dependent on the 

process of cognition. According to empiricist philosophers like 

George Berkeley (whose work has been reviewed in recent years) 

the mind and what is observed, is intimately connected (Flew, 

1979, pp. 41 - 44). This view is to a great extent also supported 

by the quantum theory, which had a profound impact on our 

perceptions of reality in the last hundred years. Information 

processing, according to the quantum theory, is dependent on the 

influence that the act of observing has on what is observed. The 

quantum theory also has an established credibility with 

successful connections to the so-called hard sciences and 

philosophy, thereby connecting the empirical "objective world" 

with the subjective, "mind-orientated world". This connectedness 

66 


 
 
 



is also supported by some of the most respected theoretical 

physicists in the world. Roger Penrose in (Freedman, 1994) 

proposed the great possibility that there might be quantum 

activity in the brain. The implication of this proposal is that 

the reason for influencing a system while observing it, might be 

that observing or thinking involves the mind as part of the 

system being observed (Capra, 1997, pp. 263, 264). This has great 

implications for systems where people are extensively involved, 

like in the software engineering process. When people interact 

with a certain environment, they respond creatively and do not 

merely adapt to the surroundings (Matthews, 1999, p. 27). This is 

also supported by the chaos theory, which stipulates that 

everything is connected to and influences everything else. 

Information processing is therefore a fuzzy process. 

This might seem trivial at first. However, it is well known that 

there are countless unpredictable uncertainties in every software 

system that cause changes with any possible influence on the 

system (Boehm, 2000, p. 27). In this, people also play an 

indispensable role in software systems. These uncertainties and 

the results thereof are therefore incorporated as part of the 

information being processed. Many of these inherent problems and 

difficulties, however, can be rectified through proper 

communication. 

Information being processed ultimately becomes knowledge and is 

integrated into a knowledge base. Humans think by way of 

association. We store the knowledge we gather from our learning 

experiences in an associative network, thereby developing a frame 

of reference for every individual. While learning, people start 

to rely heavlly on experience, connecting concrete actions in the 

physical world, thereby learning new concepts. These concepts are 

then abstracted and integrated into the learner's knowledge base 

or frame of reference. This inductive process a l lows a deve l oper 

to get a much more ho l istic picture of the problem space, which 

67 


 
 
 



is very useful, because this is how the user experiences his or 

her environment (Neill, 1992, p. 31). By gaining knowledge in 

this way and the deductive ly process interactive ly, the 

functioning of the left and the right brain is integrated. This 

integration has a synergistic effect in that the whole is greater 

than the sum of its parts. Cooperation of the left and the right 

brain complements each other and also stimulates creativity. "The 

two hemispheres establish t wo different essential views of the 

same task" (Sodan, 1998, p. lOS). 

There is, however, no view or information that describes reality 

completely. Because of this inherent shortcoming, we have to 

interpret and complete the information individually to create a 

comprehensible model o f reality (Burgoon, 1994, p. 103). This 

makes every indiv idual's frame of reference unique. From this 

unique frame of reference ideas are formed. These ideas are then 

represented using symbols to describe our understanding of the 

interaction between our minds and our environment. In the process 

patterns are formed which result in the development of structures 

that form the basis for communication between different people's 

minds (Burgoon, 1994, p. 101). Every individual will create 

different pictures or ideas in his or her mind from the same 

external information because of that person's historical 

background. A person's historical background is influenced and 

even entirely made up of: 

• The language(s) that person speaks; 

• The culture and societal sub-cultures that person lives in; 

• po litical and socio-economical factors; 

• Knowledge base and frame of reference; 

• Experiences that are uniquely perceived by each person. 

Apart from the influence of historical background and other 

factors previously mentioned, perceptions are sensitive to 

initial conditions. This phenomenon is described by the chaos 

68 


 
 
 



theory and suggests that everything can influence everything 

else. It also means that in every situation there is potential 

unknown important information or information not taken into 

account that might have a very important effect on the rest of 

the information at hand. This also has an effect on an 

individual's perception through time. "Common sense suggests and 

experiment confirms that a person does not always make the same 

choice when faced with the same options, even when the 

circumstances of choice seem in all relevant respects to be the 

same" (Neill, 1992, p . 15) . 

Information and knowledge are products of society. Society and 

the knowledge produced by it are essentially oral in nature. 

Knowledge also has a deep-experienced nature, something a person 

has to "feel". Knowledge is therefore a multi-dimensional 

phenomenon. Communicating this information and knowledge is thus 

a social event . According to the communications theory, a pe r son 

only communicates successfully if the receiver of a message 

interprets the message in the way that it is supposed to be 

interpreted. Adding to that, communication only takes place 

successfully in relation to a common context (Neill, 199 2 , p . 

11). This common context will be promoted if: 

• 	 Everyone were to form the same perception and observation from 

the same experience; 

• 	 Everyone were to describe their perceptions in exactly the 

same way. 

Interpretations, however, differ because of background factors. 

In other words, the factors and processes behind what is 

communicated greatly influences what is communicated . The 

communication process is also not linear in structure, but 

typically follows the complex patterns of non-linear orientated 

systems (Van Schoor, 1986, pp. 4 - 10). 

69 


 
 
 



2.1 Language 

Natural language is the most common communication structure and 

is used for general communication or is the vehicle by which 

messages are exchanged between people. However, even between 

people with the same cultural background and the same language, 

there can be and very often are many misunderstandings. This is 

because language has ambiguity as one of its attributes and 

people in their individuality and different backgrounds might 

interpret different meanings to the same message (Burgoon, 1994, 

p. 101). A message also becomes more abstract and ambiguous the 

further the communicator's knowledge is removed from the daily 

experience of what is communicated. These problems are even 

greater between people who speak different languages and have to 

adapt to speak a language that all parties involved can 

understand (Van Schoor, 1986, p. 142). 

There are also other communication structures available, apart 

from natural language. Formalised languages like mathematics and 

computer languages are examples of such communication structures. 

An important difference between general language and formalised 

language, is that general language involves a lot of ambiguity 

and also includes non-verbal factors such as culture and emotion 

(Burgoon, 1994, pp. 103, 106). Information transfer through 

natural language therefore has a richer content that is based in 

the world of experience. Formalised languages on the other hand 

have a much more precise nature. Formalised languages have no 

ambiguities and are universal and independent of historical 

background and emotion, but are less flexible and have a narrower 

scope of use than general language (Pressman , 1997, pp. 45, 682). 

However, both language structures are of invaluable necessity in 

the software engineering process. Formalised languages, based on 

mathematics, play an important role as the fundamental technical 

base of the computer science field and thus in the design of 

70 


 
 
 



modeling systems and computer languages. Models and computer 

languages are the vehicles for communicating or translating human 

understandable messages into machine understandable format. As 

for natural language, communication between humans is a very 

important pa rt of developing software systems. Requirements are 

translated into natural language, which is then translated into a 

formalised language or model a nd eventually into a programming 

language. 

Although formalised communication structures are of great 

importance, it is not favourable to all communication-related 

aspects of the software engineering process. This is true 

especially for communication or transfer of knowledge. The 

problem with this specific process i s th a t knowledge has such a 

rich unique nature . In other words, the knowledge to be 

communicated is interpreted and then transferred in this format 

to its recipients. This gives knowledge transfer a subjective 

nature and therefore makes effective f orma lisation difficult 

(Pressman, 1997, pp. 45, 682). 

There are some problems in integrating these t wo different 

communication structures. The fundamental reason for this is that 

human thinking and communication has a non-deterministic nature, 

whereas computers are largely deterministic systems. 

In considering all these background factors, sharing knowledge 

seems to be extremely difficult. But knowledge can be and is 

commonly understood and shared by people all the time. This i s 

done by extensive communication where information flow has an 

iterative, non-linear s truc ture invo l v ing feedba c k. Feedback 

continuously strengthens the common understanding between the 

communicators, thereby synchronising their knowledge 

(Communication, n.d.). Therefo re, when someone is making 

observations or gaining knowledge about an environment, thi s 

knowledge has to be tested and corrected through proper 

71 

 
 
 



communication. This again emphasises the utmost importance of 

good communication in the software e ngineering process . 

3. What must be done in the software engineering process 

In addition to the fact that the software engineering process is 

acknowledged a s a complex activity, a developer also needs to 

have expert knowledge of the problem domain (Glass, 1995, p . 

190). This knowledge combined with the developer's technical 

knowledge, is a prerequisite for developing a successful system. 

A system i s s uccessful when it is technically sound and sati sfies 

the user and bus iness requirements, thereby enhanci ng the 

business processes in the domain environment. 

The whole software engineering process must be coordinated by 

managing dependencies between goals , resource allocation, 

information availability, activities and actions to achieve these 

goals . A system to be developed must provide a solution to a 

problem in a specific domain. Every domain has a certain set of 

functions, problems, a specific terminology and a set of 

strategies from which solutions to probl ems must be derived 

(Zave, 1997, p. 2). 

In the process of developing a software system, a massive amount 

of descriptive, qualitative, interrelated information on complex 

real world settings has to be captured, processed and presented. 

This information grows exponentially with the increase in project 

si se and therefore complexity (Roth , 1994, p. 164). 

3.1. Information that must be captured, processed and documented 

Developers col l ect development information from requirement 

specifications, documentation about the problem domain and from 

72 


 
 
 



the users themselves. This information includes operational 

information, management information, business rules and 

processes. All this information is then used for further analysis 

of the problem. When developing a software application to meet a 

user's requirements, the developer has to know exactly what the 

user needs. The developer needs to hav e the knowledge that the 

user gained through experience (Cucchiarelli, 1998 , p. 53). 

To gain this domain knowledge, it is important that the developer 

has to learn the rules - business or otherwise. It is, however, 

also important but very much neglected to have situational know­

how that is gained by experience alo ne. As was mentioned before, 

the process of gaining knowledge first involves experience. By 

experimenting one gains the knowledge that is needed to establish 

a theory. This theory c an then be tested, fine-tuned and can then 

be abstracted for further use (Zav e, 1997, p. 2 ) . 

Throughout the software engineering process, information 

generated from the following activ ities and phases are captured, 

processed and documented: 

• Brainstorming sessions; 

• Problem exploration; 

• Planning; 

• Decision making; 

• Analysing; 

• Designing; 

• Coding. 

Although the software engineering proc ess is a non-linear 

process, the information is presented here linearly in sequential 

phases because this is the way it is traditionally documented and 

ma naged. 

Strategic phase 
• Requirement specification; 

73 

 
 
 



• The feasibility of the project; 

• Objectives; 

• Priorities; 

• Constraints; 

• Critical success factors; 

• Scope of the project; 

• Proof of concept; 

• Technology candidates t h at might be used; 

• The methodology to be used; 

• 	 Organisational, technological 

• 	 Resources needed; 

• 	 Delivery and acceptance plan; 

• 	 Training plan; 

• 	 Financial plan; 

• 	 Installation plan; 

• 	 Corporate entity model; 

• 	 Schedule to be followed. 

Development phase 

• 	 Analysis 

• 	 Process layout; 

• 	 Prototypes; 

or other issues; 

• 	 Entity relationship diagram; 

• 	 Function diagrams; 

• 	 Function/Entity matrix or diagram; 

• 	 Models for data-flow, function 

transition; 

• 	 Initial transition strategy; 

• 	 Audit and recovery procedures; 

• 	 Outline of manual procedures; 

• 	 User acceptance criteria; 

• 	 Constraints; 

• 	 Design approach. 

• 	 Design 

74 

dependency, and state 

 
 
 



I 

• 	 Logical design; 


Pseudo code , data flow and other diagrams; 


• 	 Database and file design; 

• 	 Specifications of manual procedures; 

• 	 Draft user manual; 

• 	 Test plan; 

• 	 Documentation of the application system architecture 

• 	 Menu structures; 

• 	 Batch procedures; 

• 	 Manual procedures; 

• 	 User interface and style for screens, repor t s and f orms; 

• 	 Func tion definition; 

• 	 Error correc tion cycles, batch control; 

• 	 Procedure exceptions. 

• 	 Code 

• 	 Physical program design; 

• 	 Unit, integration , system and acceptance testing 

• 	 Code d ocumentation. 

Implementation phase 
• 	 Training and educational material; 

• 	 Completed systems documentation; 

• 	 Us e r documentation; 

• 	 System help. 

Maintenance phase 

• 	 Changes and enhancements; 

• 	 Software and document configurations (Barker, 1990; Pressman, 

1 9 9 7, pp. 24 - 4 8) . 

4. Why documentation is needed 

75 


 
 
 



Although the ultimate product of developing a software system is 

the coded product that processes information and thereby 

satisfies the user's requirement(s), there are also secondary 

products that are of equal importance. These secondary products 

can be grouped together as documentation. While working together 

and while developing a system together, people accumulate 

knowledge. Documentation communicates this knowledge to all 

parties involved in all phases of development. The documented 

information range from strategically related information through 

to program source code. It involves role-players like top­

management, project managers, business analysts, system analysts, 

designers, coders, maintenance people and most important of all, 

the end-users whose requirements have to be met. "Productivity 

and quality of software development and maintenance, particularly 

in large and long-term projects, is related to software 

readability. The most important is documentation that provides 

the big picture and ties smaller pieces together" (Haneef, 1998, 

p. 75). 

Apart from accommodating the communication of information to the 

role-players involved, documentation is also useful for tracing 

system requirements (Booch, 1994, p. 281). Documentation is also 

used for making formal and informal reviews and is also used to 

manage development projects. Documentation is generally the only 

view, except for the project plan, that management has on a 

project (Ves c oukis, n.d.). "Despite the fact that documentation 

can/t erase the "complexity", the "conformity" obligations and 

the changeability of software, it is an indispensable resource to 

master these elements" (Blanqui, 1997, p. 59). Documentation 

strings everyone and everything in the software engineering 

process together, thereby integrating the whole process. 

5. Documentation problems in the software engineering process 

76 


 
 
 



5.1. Problems with communication 

Although the ideal model for effective communication in software 

engineering is f o r everyone to be able to speak to everyone else 

whenever they need to and for as long as needed, it is simply not 

always feasible. Not only are people not always readily available 

to talk to because of work and also because of geographical 

limitations, but the number of communication paths also increase 

exponentially with the increase in the number of people involved. 

In practice, communication is r o uted through formal 

documentation, which streamlines the coordination of 

communication (McConnell 1997, p. 28). In doing so, most 

communication is done via text. The text that is compiled is the 

compiler's interpretation of whatever info rmation is to be 

communicated to the receiver of such a text document. 

The communication process between a user with a certain 

requirement, and the systems analyst forms the basis for the 

development of a system. It must of course be understood that 

because of their different v iews and knowledge references, the 

user and the analyst can be seen as speaking two different 

languages as far as the problem is concerned. The user speaks 

about the problem from the domain context. The analyst speaks 

from a technical background and unfortunately and erroneously 

often places the emphasis for the solution there (Loucopoulos , 

1995, p. 66). 

A huge problem in the software engineering process is that all to 

often the person that communicates requirements to the compiler 

of a text document is interpreting the real user's requirements. 

Usually the communicator of requirements is a manager and the 

compiler is a project manager or systems analyst that will be 

involved in the development of the system. The project manager or 

systems analyst t hen communicates, via the compiled text, the 

77 


 
 
 



requirements to the rest o f the development team. The person that 

communicates the requirements to the project manager or systems 

analyst is already interpreting parts of the requirements 

(Burgoon, 1994, p. 101). The reason for thi s i s that he or s he is 

not just summarising the requirements of all those involved in 

the problem domain, but is likely to favour a management or 

operation-driven view, depending o n what his o r her invo lvement 

is. Putting this information in text f ormat is t wo further levels 

of interpretation removed from the user's original requirements, 

because the project manager or systems analyst first has to 

interpret what the user i s saying and then has to translate it 

into a text-based medium. The developer has to develop a system 

based on a document that contains information that is at least 

three levels o f interpretation removed from the actual 

requirement information. With all this, it ha s to be taken into 

account that the real user often has difficulty in formulating 

his or her own requirements accurately. To make things even 

worse, development is of t en d one s o lely according to the content 

of this document. This method of proceeding, more o ften than not, 

result s in an application that the users feel does not meet their 

requirements. 

Another important factor that gives rise to misunderstanding in 

the communication of requirements, is that there is a wea lth of 

information in the problem domain that d oes not get communicated 

in the initial formulation o f the requirements. 

5.2. Problems with text based documentation 

In using conventional methods o f setting up development 

documentation, the information is arranged in a typically rigid, 

precompiled format that has a linear structure and is printed on 

paper. This arrangement has advantages in that the information is 

78 


 
 
 



packaged compactly, is easy to use and to measure the system by. 

However, these advantages are also its biggest drawback. The 

reason for this is that the information in these documents is 

already interpreted by at least one person. These interpretations 

are then formalised into a standard development document format. 

These one-dimensional representations, being formalised and 

standardised, omit much of the original information and concepts 

being communicated, especially as far as domain information, 

knowledge and requirement specifications are concerned. The 

format, in which representations of requirement information is 

made, is also not effective enough. "Abstract representations, 

such as written descriptions, flow charts, object class 

hierarchies etc. cannot provide a grounded understanding of the 

customer's requirements" (Winograd, 1995, p. 69). 

In using text as a mode of communication, all non-verbal 

communication like body language is absent. Real-time feedback 

and making adjustments while communicating is also absent. The 

mode of communication changes because communication moves from a 

rich communicating environment to a much poorer one. In other 

words, the communication bandwidth is reduced considerably. It is 

also important to remember when working with knowledge and 

information in document format, that by documenting it, this 

multi-dimensional, experience-based and non-linear phenomenon is 

represented in a one-dimensional, linear structure (Neill, 1992, 

p. 152). The result is that knowledge in this format is weakly 

conceptualised. 

To further complicate matters, as was mentioned before, people 

interact with an environment by responding creatively to it. This 

is in accordance with the work of Gadamer, the great philosopher 

of Hermeneutics. According to him, when a person reads a text, 

understanding that text means recreating the author's original 

intention of the information. This must be understood against the 

background that a software document, like a user requirement 

79 


 
 
 



specification, is already the compiler of the document's 

interpretation of the user's requirements. In reading the text, 

understanding it moves beyond its original psychological and 

historical context. This happens because throughout the process, 

the reader or interpreter transcends his or her own horizon, 

while pulling the information in the text beyond its original 

meaning. The meaning of a piece of text is therefore not fixed, 

but changes according to different people's interpretations. 

According to Gadamer, understanding then is to understand 

differently from what the author intended (Gadamer's 

philosophical hermeneutic. 1986). 

Also, conventional documentation structure is entirely linear and 

therefore reflects a top-down structure. Doing development using 

a strictly top-down structure is not practical. A conventional 

software development life-cycle methodology, like the Waterfall 

model (which is a hardware engineering process model slightly 

adapted to software engineering), follows this structure and is 

therefore linear (Glass, 1995, p. 168). Developers on the other 

hand, follow a combination of top-down and bottom-up approaches 

in a non-linear way. 

It must also be taken into account and remembered that a software 

system is dynamic. Changes are made to the system because of new 

insights or enhancements needed. In practice, after the system is 

implemented, these changes are very often not reflected in the 

documentation. Documentation, therefore, becomes outdated and 

worthless (Glass, 1995, p. 27). 

5.3. Problems with managing software systems 

Another problem with developing a software system is managing it 

in a conventional way. This implies sequential phases of 

development where the next phase only starts after completion of 

80 


 
 
 



the previous, thereby building on the results of the previous. 

Management wants to measure this sequential progress and the way 

it is measured, is with conventional linear text-based documents. 

This works fine for a conventional software development life­

cycle like the waterfall model (Glass, 1995, p. 168). However, 

software project development very seldom, if ever, follows a 

linear, sequential development path. With the pace at which 

software development technology advances, managers also generally 

tend to lag behind in their technical knowledge. This makes them 

even more reliant on documentation, which, with documentation in 

its current state, results in escalating communication problems. 

6. What is needed in the software engineering process 

Because of the problems associated with processing and 

communicating information, a medium is needed that accommodates 

the most effective information processing and communication. 

Information must make a strong but correct impression. The needed 

information must not be buried under mountains of information, 

but must be visible, readily available and useful. When using 

information for some task, it needs to be the right information, 

at the right time, to the right person and in the right format. 

"Information is power if and only if you have the knowledge to 

know what it means, the will to use it, the ability to apply it 

and access to a channel of communication" (Neill, 1992, p. 39). 

Since knowledge has quite a rich and experience-based nature, the 

developer cannot simply be distant to the user and his or her 

problem environment. The whole problem context has to be studied. 

This is a learning process for the developer. 

What is needed is information about the problem to be solved that 

does not oversimplify the issues involved (Spiro, n.d.). Special 

efforts must be made to highlight complexities, exceptions and 

81 


 
 
 



contradictions. Imprecise, unformalisable data is important. Some 

even go so far as to say "requirements specifications are 

considered harmful because they tend to make rigid something that 

must remain inherently flexible" (Glass, 1995, p. 92). 

6.1. Representing information 

Such rich information should also not just be represented in mere 

conventional ways. Instead of having a single representation of 

the issues involved, the information should be represented in 

multiple ways and on different levels, illustrating the logic, 

analogies and relationships between them. There can potentially 

be many different approaches or views to a system or an 

application that will satisfy a certain set of requirements. A 

developer needs to be able to accommodate such flexibility 

efficiently (Feijs, 1998, p. 73). "The greater the number of 

fundamental ways of thinking that are superimposed on texts and 

interlocked with each other, the greater the fullness of coverage 

of material that inevitably is oversimplified in traditional 

approaches" (Jones, 1992, p. 147). Powerful solutions require the 

integration of all views and aspects involved. This conforms to 

the views that artificial intelligence expert from MIT, Marvin 

Minsky, calls for. That is, the "integration of logical and 

analogical methods in intelligent software" (Sodan, 1998, p. 

1 1 1 ) . 

6.2. Managing information 

In order to manage the software engineering process effectively, 

a tool is needed that enables the integration, organisation, 

coordination, maintenance, distribution and communication of the 

whole range of development component~ on all levels and from all 

82 


 
 
 



perspectives. Examples of these are ideas, specifications, 

models, designs and code (Marovac, 1997, p. 68, 70). 

To manage this amount and diversity of information, tools and 

techniques are needed for examining and integrating not only 

information regarding the interaction with machines, but also 

information about the social systems that are involved in the 

domain environment. This rich data must be integrated into the 

design of the system. To integrate all of this information 

requires tools that support structures that range from being very 

informal like notes to very formAl, fnr py~mpl~ the rigid 

automated structures of CASE tools (Norbert, 1995, p. 70). 

6.3. Documentation 

Because of its nature and volume, development information needs 

to be integrated as a whole. Although the knowledge that 

individuals generate when working together is valuable, a shared. 

understanding of this knowledge is much more valuable for it 

creates a synergistic effect. The whole of this knowledge base is 

greater than the sum of its parts (Capra, 1997, p. 27). This 

knowledge is mutually defined and is constantly evolving. All 

persons involved in the process of development must have access 

in the form of in-depth drill-downs into development information 

or be able to access any piece of information from every possible 

angle. Persons involved must also be able to contribute to this 

information and reflect on it. Working through the knowledge 

base, an individual must be able to interpret the information 

presented. This means that relationships have to be created that 

link development objects to information at meta-level through the 

whole spectrum to information at operations level. From this, 

knowledge abstractions can be created, thereby reflecting the 

person's own understanding of the material and therefore the 

problem. This externalising process also communicates a person's 

83 


 
 
 



understanding of the problem to o thers (Marshall, 1995, p. 93). 

Relationships or links can also be made between specific people 

and particul a r sections o f information . In thi s way , rich 

info rmat ion can be shared and communicated by the 

multidisciplinary group of people invol ved . 

Kn owledge about the domain environment i s much more impor tant 

than i s generally acknowledged. Domain knowledge supports the 

refinement o f requirement spec ificat ions (Zave, 1997, p. 2). The 

so ft ware engineering process has actually much more to do with 

application domain problem solving than with just programming 

(Vescoukis, n.d.). Systems must be developed with the whole 

problem doma in environment constantly in mind t o see the big 

picture. To develop a sys tem is t o develop it as part o f an 

env ironmen t and not as an i solated application. An application 

should not just be developed t o satisfy a set of user 

requirements, but also to improve the overall process o f which 

the so ftware sys t em will be a part. Domain knowledge is therefore 

very impor t ant . 

This is more evident in the current work ing cu lture than before, 

because contracting developers generally k now less about the 

business environment than developers , being full-time employees, 

do. Because o f this s ituation, the role of accurate and good 

quality documentation becomes more and more important. "The 

domain knowl edge should represent a communi cation bridge between 

the user and the analyst, allowing to define the objects of the 

real wor ld and t he processes that allm" to transform obj ec ts. " 

(Cucchiarelli, 1998, p. 53) 

Conventional document a tio n is useful for certain aspect s of the 

development process, like viewing and measur ing a software 

project fr om a man agerial point of v i ew . Conventional 

documentatio n must therefore still be used, but must be 

complemented with non - c onventional, non-linear documentation to 

84 


 
 
 



reflect information of the development process as a whole. In 

other words, formal and informal documentation are both necessary 

and must be integrated. 

Documentation should not be seen as being static, isolated and 

created at one point in time, but as a network of dynamic 

collections of interacting information modules composed on demand 

(Huser, 1995, p. 49). Documentation must also be viewed as being 

part of the product being developed and must therefore evolve 

with the development of the project. 

To get an accurate picture of what the desired solution must be 

like, the different views of users and developers must be 

integrated (Cucchiarelli, 1998, p. 53). The emphasis must be 

placed on knowledge rather than just information. 

7. Conclusion 

In this chapter it is evident that the software engineering 

process is dependent on the processing of information and the 

communication thereof. Because people are involved, these 

processes are imprecise, uncertain, subjective and complex. The 

characteristics of information processing present problems in the 

transfer of information. It is also evident that documentation 

plays an indispensable role throughout the software engineering 

process. Conventional documentation is necessary for some 

purposes, but is inadequate for others. Software engineering 

documentation must be able to adapt to and accommodate these 

factors. 

This chapter aimed at showing that creating documentation is not 

a trivial process, but is very important. Creating documentation 

is in fact as much a part of software engineering as the software 

system or application itself. Whereas this chapter focussed on 

85 


 
 
 



the creation of documentation and the processes involved with it, 

the next chapter will focus on creating the application and the 

tools and techniques used to do it. 

86 


 
 
 



Chapter 5 

Methods, techniques and tools in the software engineering process 

1 . Introduction 

Software engineering operates in both the problem and solution 

domains. Whereas understanding the problem and documentation 

related issues usually centers on the problem domain, development 

centers on the solution domain with its technical and 

methodological aspects. The problem is that traditionally the 

emphasis in so ftware engineering was almost entirely placed on 

the solution domain. These two working areas must, however, be 

clos ely integrated. This is so because on the one side software 

problems are constantly demanding so lutions that are more complex 

and cover a greater diversity. On the other s ide, software 

engineering involves increasingly more than just programming . 

Other probl em solving aspects l ike creativit y , communication, 

understanding, idea generation, intuition and thinking in terms 

of analogies are becoming increasingly important (Jarzabek, 1998, 

p. 95). This calls for development strategies and tools that can 

accommodate complexity and diversity and can adapt to changes. 

Whereas chapter four focused on documentation, informati on 

processing, understanding and communication, this chapter wil l 

focu s mainly on development issues. 

2. Methods 

For development to be adaptable to complexity and change , 

development strategies need to include methods that fo cus on the 

system as a whole as wel l as on system component s and 

relationships between components. 

87 

 
 
 



The parts of a system can differ considerably from each other. 

For most effectiveness, each different part must be approached in 

a way that is best suited to it. This implies that different 

parts of a system might be approached in different ways. 

"Multiple strategy systems and holistic approaches are important 

for dealing with variations in application behaviour" (Sodan, 

1998, p. 110). The alternative is to force a single development 

approach on the system as a whole. Although this approach will 

certainly enforce uniformity across the whole system, using a 

development approach where it is not suitable might result in a 

less efficient system. It can also lead to the introduction of 

unnecessary complexity to an already complex system. It is 

important to use methods that are practical. If an approach does 

not work well enough, a different approach should be used 

(McConnell, 1993, p. 163). 

2.1. Methodologies 

In developing systems or applications, each system is largely 

unique. To begin with, the requirement specifications are unique 

in terms of what is requ~red, and in how it is formulated (Boehm, 

2000, p. 32). This situation is influenced by how well the people 

involved know the problem, what is required and the environment 

where the system will function. Secondly, the type of system that 

is to be developed is also important. The system is characterised 

by its size and complexity (ref. chapters 1, 3), as well as by 

the possible existence of a standardised way or well known 

pattern of developing such a system. 

The two areas of software engineering are known as the problem 

and the solution spaces. Knowledge about these two areas will 

determine the nature of the chosen methodology. A methodology is 

a formalised way of handling complexity in the software 

engineering process. Methodologies are fundamentally grouped, 

88 


 
 
 



with regards to the processes that are followed, into scientific 

methods (involving formulating hypotheses and testing them) and 

mathematically driven engineering methods (Glass, 1995, p. 79). 

These two approaches can also be defined as bottom-up or 

inductive and top-down or deductiv e approaches respectively. 

A system may have parts that have t o be approached in different 

ways (Sodan, 1998, p. 110). In the case of either the areas of a 

system o r part of a system be ing largely a grey area, the 

methodology must preferably have a research and development or 

bottom-up nature with the creation of knowledge and a product in 

mind. In case o f both areas being well known, an engineering o r 

top-down approach with ma inly the product in mind should be 

sufficient. However in a system o f significant size and 

c omplexity both these approaches are normally used 

interchangeably. Theor y and practice are used intertwined (Glass, 

1995, p. 138) 

Methodologies can further be b roken down according t o where the 

emphasis is placed on the components of a system. A software 

system consists of data components and functi ona l components that 

act on those data components. The emphasis in a methodology is 

placed either on the data o r the functional components o r both. 

There are mainly three different paradigms with regards to 

software engineering methodo logies . 

The fir s t is the functi ona l approach where the sys tem is 

primarily analysed and understood in terms of the functi onal 

aspects and only secondary with regards to data. A system 

according to this approach is a top-down hierarchical breakdown 

fr om high-level abstract functionality down t o progressi vely 

lower-leve l functions (Mazza, 1996, p. 52). 

With the second approach (which is called the info rmation 

engineering approach) the emphasis is primarily on the data 

89 


 
 
 



components and only secondary with regards to the functional 

aspects (Pressman , 19 97 , p. 237; Sebesta, 1993, p. 21). A system 

according to this approach is a bottom-up decomposition of data­

entities and the relationships between them. All entities are on 

the same level. 

The third approach is the object - o riented approach, which falls 

between the other two and is a combination o f both. Data 

components and the functi ons that act on them are encapsulated in 

modules or obj ect s . The emphasis here is on both data and 

functional comp onents and an integration of the two (Vessey, 

19 98 , p. 100) . A system according to this approach primarily has 

bottom-up decomposition of entities called ob jects and the 

relationships between them. Relationships between objects also 

include inheritance. This gives ob ject relationship also a 

hierarchical nature and top-down decomposition structure. The 

functionality of an object is decompo sed according to the 

functi onal app roach o r a t op -down hierarchical breakdown of 

functions. 

Software engineering has e vo l ved int o a s ystems approach (with 

its synergistic qualities, where the emphasis is on the 

relationships between components). The evolution is essentially 

fr om a mechanistic approach t o problem solving to systems 

thinking (Capra, 1997, p. 27) . "System's thinking involves a 

shift fr om ob ject ive to 'epistemic' science; to a framework in 

which epistemology - 'the method of questioning' - becomes a n 

integral p art of scientific theories" (Capra, 1997, p. 4 0) . 

This is combined with any of the three methodological approaches 

or a combination of them depending on the application or part 

thereo f. Howev er, the ob j ect-oriented approach is currently the 

method of choice. Analysis and design , which are recurring 

activ ities for knowing and manipulating the system as a whole and 

its components, is a combinati on o f t op -down and bottom-up 

90 

 
 
 



activities (Ghezzi , 199 1, p. 115). The r esult is a very flexi b le 

software engineering process that can be applied to a rigid 

development flow as well as t o a flexible evolving system. "There 

is growing recognition that software, like a ll complex sys tems , 

evolves over a period of time" (Pres s man, 1997 , p. 3 7) . 

The sys tem as a whole is visible and access i b le as well as each 

indiv idual component with its detail. The wh o le approach is 

holistic, making the who le greater th a n the sum o f it s parts. 

2.2. Systems development life-cycle 

A sys tems development life - c ycle (SDLC ) is in e ssence an 

impl ementation of a specific met h o do l ogy o r combination of 

methodolog ies. The systems development l i fe- cycle (SDLC ) is a 

succession o f steps t o be f o llowed whe n developing a sys tem. The 

SDLC or "deve l opment system model, is the co llect ion o f people, 

processes and t oo ls that implements the development sequ ence. If 

sys t ems development is a series o f transformat i ons f rom go al s to 

requi r e ment s to design to code, the development sys tem makes the 

t ransformation happen. The development sys tem is an informat i on 

system that manipulates different descriptions of the sys tem 

being bui lt" (Bullock , 1999, p. 119). Th is pattern or framework 

o f transformation dictates the life - cyc l e o f an appl ica t ion 

through t he v arious stages: 

• 	 Initial goals and r equ irement s ; 

• 	 Feasibilit y studies; 

• 	 strategic planning ; 

• 	 Init ial deve lopment; 

• 	 Testing and veri ficat ion; 

• 	 I mp lementation ; 

• 	 Extending or evolving the sys tem according to new and changing 

requir ement s ; 

91 

 
 
 



• 	 Maintenance and user support; 

• 	 Phaseout and closedown (Rajlich, 2000, p. 66). 

Although all models of the software development life-cycle 

generally have the same phases or stages, the process structure 

can vary between the following: 

• 	 Formal mathematical models (Pressman, 1997, pp. 45, 46, 681 ­

694) ; 

• 	 Linear sequential (like the Waterfall model where phases 

follow sequentially) (Glass, 1995, p. 168); 

• 	 Incremental models like the evolutionary model (where the 

system is further developed from and initial core) (Pressman, 

1997, pp. 37 - 39); 

• 	 Prototyping models (where a system gets developed further from 

a prototype that was initially developed as a system 

specification or used for analysis) (Pressman, 1997, pp. 32 ­

34) ; 

• 	 Iterative models (like the spiral model where risks are 

managed in each iteration involving extensive customer 

feedback) (Pressman, 1997, pp. 39 - 42); 

• 	 Models based on fourth generation development technology 

(where prototypes can be generated and overall development is 

done on a higher level than normal) (Dawson , 1995, pp. 80 , 

81 ) . 

To make the development process adaptable to varying project 

needs, development models can be combined into a non­

deterministic meta-model for developing in a different way in the 

same project when necessary (Dawson , 1995, pp . 80, 81). 

Backstage to actual development being done, the whole process 

must also be managed by setting objectives and coordinating 

people and work (Mazza, 1996, pp. 298, 299). This ranges fr om a 

laid back approach t o projects being highly managed (Glass, 1995, 

92 


 
 
 



pp. 8 - 10) . Strongly managed projects go hand in hand with a l ot 

of formalisation and standardisation. 

2.3. Techniques 

Apar t fr om f ollowing a methodo logy o r methodologies during 

development, there are a lso techniques that are used t o as si st in 

developing software. These techniques g ive the developer a better 

understanding of the system and help reduce comp lexity . 

2.3.1. Modeling 

When de s i g ning a model of a system , the developer first 

i dentifies the system component s and their relationships t o one 

another. A model is then con s truc t e d using this information. The 

component s can range fr om basic c ompo nent s like da ta and 

functional comp onents t o s yst ems wit hin the bigger system, 

cons i st ing of data and functional components themselves 

(Pres sman , 1997 , pp. 3 00 - 3 12) . Models can range fr om having 

very high l eve l abstract info r mation t o l ow implementation leve l 

models wi th detailed information . "Mode ling i s a cen tral par t of 

a ll of the activities that lead up to the dep l oyme nt o f good 

software . We build models t o commun i cate the desired structure 

and behaviou r of our sys t em . We bu ild models to visualise and 

control its architecture. We build models to better understand 

the system we are bu ilding, o f ten exposing oppor tunities for 

simplification and re-use. We build models t o manage risk" 

(Booch , 1998). 

2.3.2. Modularisation 

93 


 
 
 



An important concept of breaking up a system into smaller 

manageable components is called modularisation (Pressman, 1997, 

p. 349). As was mentioned above, system components can be systems 

themselves. Although a system functions as an integrated whole, 

there are sUb-systems of components that function together as 

units within the whole system. There can even be sUb-systems 

within sUb-systems. Everyone of these sUb-systems are modules 

and modularisation can even be applied down to pieces of code. 

These modules must preferably be loosely coupled and largely 

independent of other modules. This will reduce the complexity of 

the system as a whole (McConnell, 1993, p. 774). 

The idea behind identifying and creating modules is to 

encapsulate a single alone standing concept into each module 

(Mazza, 1996, p. 110). This organises the components or elements 

of a system or an abstract model thereof. "Concept clustering 

benefits abstraction to help users not forming deviant concept 

models" (Nielsen, 1995, p. 318). Modularisation, if implemented 

properly, helps to accommodate complexity in a system because the 

modules are largely independent of each other, therefore allowing 

the developer to concentrate on specialised portions one at a 

time. This has the advantage that the user can view the system or 

parts of the system from a high abstract level or zoom into the 

lowest detail. In both cases the rest of the system can largely 

be ignored, which shelters the developer from taking unnecessary 

information into account. 

2.3.3. Abstraction 

Abstractions are level-specific constructions of a system from 

high-level broadly defined components to low-level detailed 

components (Pressman, 1997, p. 347). This enables the developer 

to concentrate on a specific level at a time, ignoring the 

details and complexities of the system on other levels at this 

94 


 
 
 



stage (McConnell, 1993, p. 775) . A hierarchical breakdown, as in 

the functional approach, i s a form of abstraction. High-level 

functionality gives an abs tract v i ew of the combi ned functions at 

a lower level. Inheritance in the ob ject-oriented approach is 

also a form of abstraction. Inheritance is implemented via the 

use of templates called classes. Classes can inherit from, or 

incorporate other classes. Objects are creat ed from these classes 

(Gil , 1998, p. 118). To decompose a sys t em from high-level 

abstract components to low-level components is called step -wis e 

refinement. 

2.3.4. Patterns, frameworks and architectures 

A pattern is a "configuration of relationships" (Capra , 1997, pp . 

27, 81). When working in or experiencing our environment, we 

develop patterns and frameworks to help us understand it better, 

to deal with it easier and to reduce complexity (Olson, 1993, p . 

45). Alt hough every system is largely unique, there are 

s imilarities between systems of the same kind. These similarities 

can be grouped together into a framework or pattern. Such a 

framework or patt ern , formalised in computer terms, is known as a 

software architecture (Gil, 1998, 119). For instance, point-of­

sale sys tems have the same general architecture. The same is true 

for payroll systems, client /server systems and many others. 

Know l edge about such an architecture helps a developer to work 

within a known general structure . Where fitting and relevant, 

frameworks or patterns in certain areas can also be used in other 

related or even non-related areas as metaphors for better 

understanding or communication (McConnell, 1993 , p . 9). 

"Software architecture encompasses the set of significant 

decisions about the organization of a software system : the 

select ion of the structural elements and their interfaces by 

which a sys tem is composed, together with their behavior as 

specified in the collaborations among those elements , the 

95 


 
 
 



composition of these structural and behavioral elements into 

progressively larger subsystems, and the architectural style that 

guides this organization" (Booch, 1998). 

A design is a pattern of organisation (Capra, 1997, p. 155). 

Patterns are very important and powerful - "design patterns are 

effectively greater than the sum of their parts" (Gil, 1 998, p. 

1 1 9) . 

2.3.5. Re-use 

Re-use means making use of generic components. This results in 

smaller systems with more stability because tested, working 

components can be used instead of new, untested components. 

Generic does not just pertain to code, but also to other 

development components like knowledge, development information, 

designs, models, modules, data, interfaces, abstractions, 

frameworks and architectures (Pressman, 1997, pp. 728, 732, 733; 

Shaw, 1996, p. 153). In object-oriented development, classes are 

used to make many object instances of the same class. Classes can 

also be inherited from other classes, therefore incorporating 

further re-use. However, although re-use of generic components 

has many advantages, it also requires good documentation for 

effective use. 

Platform-independent generic code components, like binary 

components or components that run on virtual machines, are re­

usable code components that evolved from the object-oriented 

concept (Meyer, 1999, p. 144). These components are pieces of 

code that are independent of their development environments and 

the programming languages it was coded in. Such components can be 

used and developed in various development environments and 

programming languages. They can also be incorporated into various 

application architectures. The same component, for example, can 

96 


 
 
 



be used in conventional client/server, web and mainframe 

applications. A binary component can also be deployed to work on 

different operating systems. Apart from being independent of, and 

integrating environments, generic platform independent components 

can also be scalable as far as number of users is concerned. Like 

object-oriented components, these components are self-containing, 

encapsulated modules that can only be accessed through an 

interface. These components are therefore highly re-usable and 

for this reason good documentation on the working of a component 

is essential. Binary components can also be combined in 

development with code. Therefore certain functionality may be 

incorporated and do not have to be developed (Maurer, 2000, p. 

29) . 

The above-mentioned techniques can be used in all software 

engineering approaches and methodologies. 

3. Tools 

Development tools are used to assist in the development and 

implementation of a system that was identified as the solution to 

a problem. Development tools assist developers in analysing and 

designing systems. These tools can assist the developer on all 

levels of the software engineering process - from the strategic 

phase through the development of the working system and even with 

testing and maintenance. In software engineering, and in this 

case using software engineering tools, there is always a trade­

off between control, structure and standardisation on the one 

hand and flexibility, creativity and uniqueness on the other. The 

choice of tool to be used must be in accordance with the type of 

system to be developed, the knowledge of the problem and the 

choice of methodology to be used. 

97 


 
 
 



There are tools to accommodate every facet and phase of the 

software engineering process. Tools used in the strategic phase 

are mainly aimed at planning and other high-level coordinating 

activities. The components of this phase are all the available 

resources and the task at hand is to allocate and balance these 

resources efficiently in terms of what is to be achieved through 

the whole process. Tools used in the development phase are geared 

towards analysing, designing, testing and implementing a software 

system. Development tools can broadly be grouped into upper and 

lower range development tools. With upper range tools the 

emphasis is placed on logical design or modeling in problem or 

business specific terms. Lower range tools are used for physical 

design in technical terms and for the writing or generating of 

program code. There are also tools used for testing and 

implementation. Tools used in the maintenance phase are utilised 

for dio.gnosing p~· ob18111 dL ect::;, correcLing errors and making 

changes. 

3.1. Computer Aided Software Engineering (CASE) 

Tools are also used where the software engineering process is 

integrated. These tools are categorised as Computer Aided 

Software Engineering (CASE) tools (Pressman, 1997, p. 808). The 

philosophy behind CASE technology is to standardise the software 

engineering process. Development is done according to a pre­

defined methodology and working practices. The advantage of 

integration is that there are standardised models, documentation, 

code and that there is an integrated process flow between 

software engineering phases. This presents an ideal, seamless 

development framework that can also accommodate development 

information. All these factors should facilitate better 

coordination and communication by improving readability and 

keeping documentation up to date (Glass, 1995, p. 124). The 

disadvantage, however, is that in a non-linear, unpredictable 

98 


 
 
 



process, which characterises the software engineering process, a 

linear, rigid way of working can present problems. Although CASE 

technology has advanced much in terms of accommodating both 

flexibility and integration, a problem still exists with 

integrating tools and data from multiple vendors. This is needed 

to ensure technological flexibility as well as an integrated 

process (Blanqui, 1997, p. 60). CASE can therefore be defined as 

an implementation of the software engineering process. 

There are also other integrated development environments. These 

environments are not integrated so much by specific 

methodologies, but by architectures that link all developed 

components or systems. These developed components can be used 

while developing other components or systems, thereby using the 

functionality of pre-developed systems in others. Development in 

such an environment is methodology independent. The integrating 

platform is not so much on a development platform, but underneath 

on the operating platform. An example of this is client server 

development using Microsoft's COM architecture (Microsoft 

component services, 1998). 

3.2. Modeling tools 

A model of a design is usually associated with a graphical 

representation in the form of entity and flow diagrams, 

simulations or prototypes (Loucopoulos, 1995, pp. 131, 135) 

These models allow the developer to visualise the component 

relationships, workflow and processes involved in a system before 

it is developed (Pressman, 1997, p. 810). Apart from using visual 

and graphical modeling techniques and technology, modeling can 

also be done using design or modeling languages. One such a 

language is the "Program Design Language (PDL) , also called a 

pidgin language in that it uses the vocabulary of one language 

(i.e. English) and the overall syntax of another (i.e. a 

99 

 
 
 



structured programming language)" (Pressman, 1997, p. 411). The 

Unified Modeling Language (UML) is an object oriented modeling 

language that is a combined effort of several design and modeling 

strategies. The general goals with UML are: 

"To represent complete systems (instead of only the software 

portion) using object-oriented concepts; To establish an explicit 

coupling between concepts and executable code; To take into 

account the scaling factors that are inherent to complex and 

critical systems; To create a modelling language usable by both 

humans and machines" (Unification of methods, 1997) . 

Another such modeling language is the Specification and 

Description Language (SOL). This language is used to model event­

driven, distributed systems. UML and SOL is used for g raphical 

programming or visual software engineering (Bjorkander, 2000, p. 

30). The advantage of using modeling tools like UML and SDL is 

that analysts and programmers can understand each other better, 

bec ause they are using the same tool (Bjorkander, 2000, p. 35) . 

Mathematics can also be used as a modeling language for producing 

highly formalised designs o r models (Mazza, 19 96 , p. 15). 

3.3. Databases 

A database is a software product that is used to manage and 

retrieve data. Initially, with the emphasis on functionality 

according to the functional approach, databases had essentially 

flat structures. With the shift in emphasis from functional to 

data components, databases became more structured and able to 

handle more complex data structures. As database technology got 

more sophisticated, the processing emphasis shifted from the 

front-end part of the application to the back-end. 

100 


 
 
 



Database technology has evolved over the years into four basic 

models. 

3.3.1. Flat file database 

These databases include indexed databases (such as ISAM, 200 1 ) 

and provide indexed sequential access to data. This type of 

access is fast and can be sequential or random using an index 

key. Indexed databases can only be used for storing and 

retrieving data. The application using the database must handle 

the referential integrity and data validation (ISAM databases, 

n.d.) . 

3.3.2. Hierarchical database 

A hierarchical database organises data in a tree structure. Data 

structures are directly linked which results in very fast data 

access and built-in referential integrity - "No child is allowed 

to exist without its parent" (Date, 1990, p. 758). However, this 

type of database model does not handle complex relationships very 

well. 

3.3.3. Network database 

The structure of a network database is essentially an extension 

of the hierarchical data structure. "In a hierarchic structure, a 

child record has exactly one parent; in a network structure, a 

child record can have any number of parents" (Date, 1990, p. 

792) . 

3.3.4. Relational database 

Relational database technology is currently the de facto standard 

for database management technology. The relational model is very 

flexible and can handle complex relationships. The components in 

101 


 
 
 



the database structure are all on the same level. The low-level 

structure of pointers between records is transparent to the user. 

Relational database technology also has a very flexible and 

powerful interface in the form of SQL (Structured Query Language) 

to define, retrieve, maintain and manipulate data, relationships 

and integrity between data components (Date, 1990, p. 249). In 

addition to this powerful interface, most relational database 

products also have a procedural programming language that works 

together with SQL to add further power, flexibility and ease of 

use to database programming in the form of stored procedures 

(Leavitt, 2000, p. 16). 

3.3.5. Object-oriented databases 

Whereas relational databases are structured in terms of 

relationships, object-oriented databases (OODB) are structured in 

terms of objects. OODB is therefore a natural match for obJect­

oriented design and programming. The application and the database 

use the same object model. This is very useful for managing 

complex relationships among objects (Leavitt, 2000, p. 17). 

Databases can also be integrated to combine and integrate data in 

different data structures. For example, different databases can 

logically be treated as objects and integrated through object 

interfaces to form a uniform universal database, although the 

physical implementations of the data remain fundamentally 

different. By having integrated access to various kinds of 

information in an organisation, a repository of the 

organisation's information can be created. Repositories can be 

seen as "database applications that contain meta-data, or data 

about data and are also central to the power of CASE technology" 

(The repository renaissance, 1999). 

There are also interface technologies that can facilitate 

seamless access to different database technologies. Two examples 

102 


 
 
 



of these are Open Database Connectivity (ODBC) and Java Database 

Connectivity (JDBC). There are even technologies that give 

seamless access to both structured and unstructured information. 

An example of this is Microsoft's OLEDB that is a gateway to 

various types of data sources (Understanding ODBC and OLE, 1997) 

3.4. Programming languages 

Programming languages have evolved over the years, in accordance 

with the changes in development methodologies, from predominantly 

functionally orientated languages to languages where emphasis is 

placed on data components. Programming languages have evolved 

further into obJect-oriented languages. Programming languages and 

their specific strengths and characteristics are related to the 

types of applications that they are used for (Mazza, 1996, p. 

114). It is very important to choose the right language for a 

specific type of application (Vaughn, 1997). Apart from the 

influence of changes in methodologies and the type of application 

being developed, the changes in operating environments also 

determine the choice of programming language. The mainframe, the 

personal computer (especially the Windows environment) and the 

Internet are examples of this. 

3.4.1. Procedural languages 

With procedural languages the programmer specifies the order of 

execution using sequential statements, selection statements (IF, 

CASE), iteration (Loops), modules, functions and procedures 

(Mazza, 1996, p. 178). Procedural languages are further 

categorised in terms of use. For example: Fortran is 

traditionally used for scientific applications, COBOL for 

business applications and C for systems programming (Sebesta, 

103 


 
 
 



1993, pp . 6, 7) . There are also general-purpose languages like 

Pasca l and Basic. 

3.4 . 2. Object-oriented languages 

Object-oriented languages have all the structures of procedural 

languages . However , it also includes object-oriented constructs 

like inheritance and polymorphism (Mazza , 1996 , p . 178) . Object ­

oriented programming languages are divided into : 

• 	 Pure object-oriented l anguages like Smal ltalk and Java in 

which the use of object - oriented programming constructs is 

compulsory; 

• 	 Hybrid object - oriented languages like c++ where object­

oriented language constructs are part of the language , but the 

use of it is optional . 

Object-oriented programm i ng is also done in the Windows and 

Internet environments with languages like Visual Basic , Delphi, 

Visual c++ and Visual Java. 

3.4.3. Internet development languages 

With the development of app l ications on the I nternet came a new 

set of programming languages . The Standard Generalized Markup 

Language (SGML) is such a language . It is accepted as an Internet 

standard by the World Wide Web Consortium - ISO-8879 . The well ­

known Hypertext Markup Language (HTML) and the Extended Markup 

Language (XML) are sub-sets of SGML . These languages are used t o 

define the appearances of Web pages (HTML) and data (XML) and is 

interpreted by an Internet browser . There are also scripting 

languages that make web pages more dynamic and able to be 

manipulated. Scripting languages are object-oriented or 

procedural language constructs and are sometimes even sub-sets of 

104 


 
 
 



a 	 another language, like VBScr is from Visual Basic. Scr i 

so int a broHser , 1996). 

3.4.4. 	 Conventional versus query and 

declarative 

Procedural 	and ect oriented languages are nstream 

languages. far most is done in these 

languages. HOHever, there are also other types of that 

are used for specialis types f ications. The structure f 

such a language revolves around the charact ristics the 

ication be deve f these are 

functional languages ike LISP ng languages 

like Pro ,which are used for artific al intell 

(Sebesta, 199 , p. 6). Al the internal 

ion f these tHO of languages differs from each 

other, t share an essent al character tic in that 

t declarative structur reeans that the prograremer 

has to spec ~lhat s to be done and not how it is to be 

done, because the struc facilit es this (Ma za, 

1996, pp. 179, 180) Procedural and ect-oriented s 

differ ential from functional languages like LI 

language like and query languages like in 

that "the prograrrc is embedded in the sequence of 

ions, instead of in dat -model . the trees f Pro 

the lists of LISP and the tables of relational database 

systeres)" (Mazza, 1996, p. 1 8). 

4. Applications 

The me , tools and techn to be 

used must be chosen to match an ication/s characteristics. 

The Hay in which this is done, as ioned on 

105 


 
 
 



where the emphasis is placed with regards to the system 

components, wh ich are data and functions. This choice is also 

strongly influenced by changes in technology (Redmond-Pyle, 1996, 

p. 99) 

The functional approach applies mainly to function-orientated 

applications and much emphasis is placed on processes or 

algorithms. Most scientific and engineering applications fall 

within this category. The information engineering approach finds 

application In data-driven systems where data is more important 

than functions and also more stable, like record keeping of 

business data. The object-oriented approach applies mainly to 

systems that relate to real world objects where data and 

functions are closely related (McConnell, 1993, p. 160). Object­

oriented techniques also seem to be effective in accommodating 

complex, evolving systems (Meyer, 1999, p. 144). 

Although these approaches differ fundamentally, they can be 

combined. Currently relational models mapped to relational 

databases, combined with object-oriented and component driven 

programming, is dominant in business applications. Also, using 

object-orientation, applications developed according t o different 

development approaches can be integrated. Maps to different types 

of databases and multiple databases can also be handled by 

treating all of these different portions as objects with certain 

relationships between them (Shaw, 1996, p. 82). 

There are many types of applications that are developed according 

to different architectures. Business applications currently 

revolve around the client/server architecture. People are very 

much invo lved in these applications, which means that there is a 

l o t of interaction taking place and therefore the interface is 

important. Client/server applications need to be flexible, to 

adapt to change. These applications also need to be scalable to 

accommodate varying numbers of users. Client/server applications 

106 


 
 
 



are mainly data-driven and therefore the database is very 

important (Vaughn, 1997). Client/server applications have a 

specific architecture according to which applications are 

developed. Basically, a client/server application consists of a 

client component, requesting services from a server component. 

The server component then executes some services or queries 

according to the request and sends a reply or result back to the 

client. The server component consists further of business and 

data components. The business component contains the business 

rules of the application and therefore manages the application. 

The data component stores and manipulates the data of the 

application. It does this on command of the business component. 

The business component also communicates with the client 

component and regulates information to and from the client 

component. The client component is the interface to the user 

(Pressman, 1997, pp. 784 - 787). 

With client/server applications, there is always a balanced 

emphasis between the client and server components. This can have 

the following configurations: 

• 	 All the processing intelligence is done on the client 

component. The server component is just a file server. 

• 	 All the processing is done on the server component. 

• 	 The client component is just a screen emulation of the 

client processing on the server, much like the mainframe 

model (Dedo, 1997) or 

• 	 The client component executes script generated on the 


server component like it is done on the Internet. 


• 	 The client and server components share processing 

responsibilities. Client and server validation and processing 

is done at the respective components. 

107 


 
 
 



All these configurations can be implemented in a conventional 

client server environment as well as on the Internet (Vaughn, 

1997) . 

Apart from the general architecture, there are certain 

technological frameworks that accommodate client server 

applications. 

The first is Microsoft/s COM (Common Object Model). The COM model 

is implemented as ActiveX technology. The ActiveX technology 

framework integrates client, business and data components in both 

conventional client server and the Internet. An application can 

be designed to be distributed to many users or be used as a 

standalone application. Components can also be made to 

communicate while they are in different processes and even across 

a network (Maurer, 2000, p. 32). The second framework is Sun 

corporation/s Java technology. In many aspects the Java model has 

the same architecture as Microsoft's ActiveX technology, except 

for the fact that the underlying implementations differ and that 

Java's components are more platform independent (Dragan, 1997, p. 

38) 

5. Developers 

As in all other aspects of the software engineering process, 

people are also central to the actual development of a system or 

a solution. "For starters it's more about people working together 

than it is about defined processes" (Bach, 1999, p. 148). Because 

of this integrated process that involves people so much, a broad 

range of solid problem solving skills is necessary which involves 

much learning. "It's more about skill than it is about methods" 

(Bach, 1999, p. 149). When developers are too specialised, they 

might lack many of the broad range of engineering skills 

(Redmond-Pyle, 1996, p. 102). Because of the complexity of the 

108 


 
 
 



broad range of variables involved in the development of software 

and their interdependence, a whole range of problem solving 

skills is needed. In fact, a software engineer needs to have the 

skills of both a systems engineer and a programmer (Holmes, 2000, 

p. 159). The combination of skills has the effect that the whole 

is greater than the sum of its parts. Also, because technology 

evolves and changes so fast, specific skills can become outdated 

quickly. Broad base training will help a developer to adapt to 

changes quicker because a developer can use his or her knowledge 

of the whole process to incorporate new techniques and technology 

(Clark, 2000, p. 12). This broad base training will also amount 

to better communication and mutual understanding, which is 

crucial in software engineering. 

6. What is needed 

With the increase in system complexity, information needs to be 

structured and represented in a way that is closer to reality. 

This is needed to conquer complexity problems that otherwise 

result because of artificial design. To do this, what is needed 

is an environment that accommodates the development of flexible, 

adaptable applications. Representations that suit the information 

best need to be used. Development methods, techniques and tools 

will increasingly need to be able to deal with imperfect and 

incomplete data. Therefore data representations must change from 

being artificial, simple and rigid to a world of rich, flexible 

information that represents the real world of human information 

more closely (Korth, 1997, p. 141). To facilitate flexibility and 

power, a combination of the best-fit methods, techniques and 

tools to develop an application must be used. The advantages of 

doing this, however, can vanish if there is no proper 

coordination and communication. What is needed is a close 

integration of the processes, activities and information in the 

problem space with that of the solution space. What is further 

needed is a medium to facilitate and manage this integration. 

109 


 
 
 



This medium must be able to mimic and adapt to different 

development methodologies or paradigms and the variety of 

development tools, techniques and applications (Jetly, 1999) 

This medium must also accommodate top-down and bottom-up working 

approaches as well as the interaction between analysis and design 

activities. The medium must also facilitate the visibility, 

communication and understanding of knowledge concerning all these 

aspects (McConnell, 1993, p. 394). This is necessary, because 

people are pivotal to the development process. 

7. Conclusion 

This chapter examined the development of software in terms of the 

methods, techniques and tools that are involved. The application 

or product developed must satisfy the initial user requirements 

of either having a problem solved or enhancing an existing 

process. However, the borders of application sophistication and 

complexity are constantly expanding (Longstaff, 2000, p. 43). 

Equally, development sophistication has to adapt and keep up. 

Developers, who are pivotal to the whole process, need to develop 

the necessary skills. The methods, techniques and tools to their 

disposal need to assist and accommodate developers in improving 

their skills so that the whole of developers, methods, 

techniques, tools and application becomes greater than the sum of 

the individual parts. 

This chapter concentrated more on the technical aspects of 

software engineering and the information to be communicated is 

based on standard terminology. Communication, however, can go 

astray because people are still involved. They have a variety of 

skills and knowledge and communicate from their technical points 

of reference. The problem with communication in this case is less 

110 


 
 
 



severe because knowledge is more formalised, but it is still very 

real. 

111 


 
 
 



Chapter 6 


Hypermedia technology as a proposed solution 


1 . Introduction 

In chapters three t o five, the most important problems in the 

software engineering proces s were discussed. In these chapters 

the communication of development information and the use and 

limits of the documentation used are emphasised. This chapter 

proposes hypermedia technology as an extension of conventional 

documentation media and as a solution to its shortcomings. The 

proposed solution will be discussed in the context of the above­

mentioned chapters. 

In chapter three, the characteristics of software and software 

engineering, the problems surrounding it and what is needed to 

accommodate these problems were discussed. Software engineering 

is cha r acter i sed as a compl ex, uncertain, non-linear, multi­

disciplinary, human-orientated, communication-dr i ven process. 

In chapter f ou r, information process ing and the documentation in 

the software engineering process, the problems surrounding it and 

what i s needed to accommodate these problems were discussed. 

In chapter fi ve, the methods and tools in dev eloping software 

applicat i ons and what is needed t o integrate it with the rest of 

the software engineering resources were discussed . 

2. What is needed in general 

From the chapters mentioned ab ove, the following was identified 

in terms o f what is needed in general. 

112 

 
 
 



To accommodate the problematic issues identified in these 

chapters, a form of representation is necessary that is flexible 

and adaptable enough to enable a person to view a system as a 

whole, while working in detail on parts of the system. People 

involved in software engineering must be able to cope with large 

quantities of information and variables and the relationships 

between them. Needed information must be visible, readily 

available and useful. The proposed form of representation or 

medium must also accommodate change and integrate the variety of 

different disciplines involved in the software engineering 

process. Taking the human factor in software engineering into 

account, combined with peoples' different personalities and 

perspectives, this medium needs to facilitate effective 

communication, coordination, organisation, processing, 

integration and maintenance of structured, unstructured, complex, 

dynamic, incomplete and evolving information (ref. Chapter 3). 

Formal and informal information must be integrated. This must be 

done to enable those involved to reach a common understanding of 

the problem and its solution. The medium must also accommodate 

these people in the collaboration in problem solving activities 

and sharing of information. The information needs to be more 

visible in real world or problem specific terms. Information in 

the problem and solution spaces also needs to be integrated more 

closely (ref. Chapter 4). 

Apart from accommodating and adapting to different types of 

information, people and environments, the medium also needs to be 

adaptable to various problem solving methodologies and activities 

(ref. Chapter 5) . 

3. Hypermedia in general 

113 


 
 
 



Hypermedia is an integrating technology with its potential to 

unify diverse media, tasks, information structures, applications, 

software, hardware, users, technologies and geographic barriers 

(Je tly, 1999 ) . This unifying quality provides for a seamless 

multi-faceted environment with functi onality that persists 

between the above- mentioned components rather than being 

dependent on any o f them. This model provides the means to 

increase the quality o f heterogeneous information and to increase 

the ease with which it can be used (Woodhead , 1991, p.l0; 

Andersen, 1999). 

These charac teristics make hypermedia systems powerful tools for 

education, communication and cooperation. This will play an 

increasingly prominent role in the manipulati o n o f, and access to 

information . Hypermedia technology is flexible and dynamic enough 

to accommodate c hanges in the structure and content of a body of 

information (ref. chapter 2). 

Hypermedia technol ogy accommodates the problem solving process 

because it integrates act i v ities like analysing, interpreting and 

f orming conclusions. Hypermedia technology also accommodates 

creative problem solving. It is well suited for crea tive 

ac tivities like brainstorming, lateral thinking, idea processing 

and the use of analogies t o trigger new ideas (Nielsen , 1995, p. 

105). Information can be i n terna lised in a constructive rather 

than a receptive way. Hypermedia technology also facilitates 

learning activities like remembering and conceptualisation 

because it " complements visual memory, which is a co mmonplace 

pr inciple o f human learning " (Chun, 1995, p. 97). Learning i s a 

very important part of problem solving and therefore also of 

s o ft ware engineering. 

4. Hypermedia technology in support of software engineering 

characteristics 

114 


 
 
 



4.1. Structure 

Hypermedia technology relates to software engineering 

structurally. Although hypermedia systems can be designed to 

accommodate any structure, hypermedia technology, like software 

engineering, inherently has a non-linear structure. This is in 

accordance with the fact that problem solving also has a non­

linear structure. "SofhTare engineering thus inherits its non­

linear characteristic from human nature. This complexity and the 

apparent chaotic organization of human activity is natural and 

relates to the richness of the creative process" (Nanard, 1995, 

p. 51). Hypermedia technology is also suited for this area of 

problem solving because of its potential to integrate information 

in both the problem and solution domains. 

Hypermedia systems are interactive systems. "Interactive systems 

are more powerful problem-solving engines than algorithms" 

(Wegner, 1997, p. 81). The reason for this is that algorithms 

cannot adapt interactively. Linear development models, like the 

Wat~rfall-model, are, in a sense, algorithmic in nature. This is 

contrary to non-linear, feedback models of development, which can 

be defined as being interactive and grounded in external reality 

with its incomplete information. Through this model physics and 

cognition can be modeled empirically (Wegner, 1997, p. 91). 

Knowledge acquisition is a process of design and is gained 

through the mechanism of evolutionary epistemology (Spiro, n.d.). 

Programming is re-defined as learning and experimenting based on 

software design. "Interactive models provide a unifying framework 

for understanding the evolution of computing technology, as well 

as interdisciplinary connections to physics and philosophy" 

(Wegner, 1997, p. 91). 

4.2. Complexity 

115 


 
 
 



Software engineering is complex mainly because of size and 

because people are involved. 

Hypermedia can accommodate problems associated with complexity to 

a great extent - uopen hypermedia systems have been used to 

address the complexity and heterogeneity of large-scale software 

development" (Andersen, 1999 ) . With hypermedia technology it is 

possible to manipulate the structure as well as the content of a 

system of information. The devel oper has a high level and 

simultaneously a detailed perspective of the system, therefore 

bridging the gap between different abstraction levels (Jetly, 

1999). Hypermedia technology also assists developers in coping 

with massive amounts of information by increasing the connection 

density of information items t o accommodate the mental capacity 

of the developer (Roth, 1994, p. 164). In cases of extreme 

complexity, people resort to heuristics and intuition in solving 

problems (Glass, 1995, pp. 46, 80). Hypermedia technology 

accommodates the use of intuition and heuristics. "With hypertext 

we connect things at the speed of a flash · of intuition. Hypertext 

reading and writing supports the intuitive leap over the 

traditional step-by-step logical chain" (Heim, 1993, pp. 31, 96). 

4.3. Multi-disciplinary nature 

Software engineering is multi-disciplinary in nature. It is both 

a science and an art form. "These two sides o f the software 

engineering process are not independent but part of the same 

development activity" (Nanard, 1995, p. 50). 

Hypermedia is a multi-disciplinary technology. Hypermedia systems 

are used f o r research and application in diverse areas that range 

from philosophical to technical. uWhereas the bulk of hypertext 

116 


 
 
 



literature continues to deal with the technical problems of 

design and implementation that were the focus of most of the 

early literature, authors are turning with increasing frequency 

to the epistemological, philosophical and sociological 

consequences of hypertext, and borrowing methods and terminology 

from disciplines far removed from computer science. It may be 

that hypertext studies have reached a kind of intellectual 

crossroads, where the technical problems have become sufficiently 

familiar that it is now possible to address the consequences of 

this new form of literature as a new literary form ff (Harpo ld, 

1 991 ) . 

Hypermedia techno logy is also techno logy independent and is 

strongly related to a who le range of computer-based technologies 

like: 

• 	 Knowledge-based systems; 

• 	 Frame-based systems; 

• 	 Rule-based systems; 

• 	 Project management; 

• 	 Systems development tools like CASE (Computer Aided Software 

Engineering) ; 

• 	 Natural language systems; 

• 	 Database technology, particularly relational and object 

oriented databases; 

• 	 Artificial intelligence technology like: 

• 	 Neural networks, 

• 	 Expert systems; 

• 	 Text retrieval systems; 

• 	 Computer graphics; 

• 	 Interactive media technology; 

• 	 Computer-based training; 

• 	 Distributed client / server network systems like the Internet; 

• 	 Component-based embedded software. 

117 


 
 
 



These components can be embedded like the different media in a 


hypermedia system is embedded in the structure, thereby extending 


a hypermedia system (Woodhead, 1991, p. 10; Jetly, 1999) 


Embedded components and hypermedia technology are also 


incorporated into operating systems like Windows and Macintosh, 


as well as in development tools for these operating systems. 


A hypermedia system can integrate diverse systems that are 


otherwise not easily integrated. It has the p o tential to do thi s 


by accommodating different information structures and media in 


one medium. Different systems can be tightly integrated or a 


meta-level of integration can be provided that ties these systems 


together. In the context of software engineering, the information 


of a system can therefore be integrated as an integral part of a 


developed system. But not only can different components of a 


system be integrated. Through a hypermedia system, all aspects of 


the software engineering process, including people and problem­


solving perspectives, can be integrated and accommodated (Jetly, 


1999). Even seemingly unrelated aspects like rigid, linear, 


formalised engineering procedures and creative, unstructured 


processes can be integrated. "The hypermedia paradigm is used 


also to smoothly integrate the formal (used by the machine) and 


informal (used by the human being) knowledge representations" 


(Schwabe, 2001). In the same manner, logical and analogical 


thinking processes can also be integrated. All this integration 


is done through integrating the information that results from 


these aspects. This accommodates flexible communication (Roth, 


1994, p. 151). Hypermedia technology also links human and machine 


created information and offers closer man-machine coupling (Bell, 


1997, p. 32 ) . 


4.4. Human orientated 

118 


 
 
 



Software engineering is a human orientated process. Hypermedia 

technology is a human orientated technology. "Hypermedia 

technology permits access to information in a manner similar in 

st ructure t o human thought processes" (Vatcharaporn, 1994, p. 

105 ) . "Hypermedia technology, is from a functional perspective 

similar to functional level models of neurology and the higher 

level cognitive models of human associative memory, which are 

also used in artificial intelligence technology" (Woodhead, 1991, 

p.136). 

Developers are also curious people by nature (McConnell, 1993, p. 

757). In hypermedia technology, the emphasi s in regard to 

information processing, is on discovering and forming new ideas. 

Therefore, hypermedia systems can be used to create documentation 

that enable people to learn and explore. 

A hypermedia system enables relatively easy use of and access to 

a body of information. "Hypermedia enables the autho r to create 

links and relationships between a large number of documents and 

the reader to locate and follow the links" (Drori, 1997, p. 35). 

For information to make an impression on someone in this sea of 

information , it must stand out and be colourfu l to make an 

impress ion on someone. To do this effectively, it should engage 

as many senses as possible. According to self-help expert Anthony 

Robbins, information must touch us emotionally to catch our 

attention. Hypermedia t echno logy, with its struc tural diversity 

and range of media, can accommodate this to a great extent. 

Different users' perspectives are also taken into account (Brun­

Cottan , 1995, p. 62). 

4.5. Communication 

Communication is an extremely important aspect of software 

engineering. "Communication coupled systems represent the most 

119 


 
 
 



flexible and ultimately the most powerful strategy for the 

coordination of multiple possibly heterogeneous, distributed 

sources of knowledge" (Cucchiarelli, 1998, p. 54). 

Hypermedia technology can assist people in communicating in spite 

of their differences in thinking, interpreting and problem­

solving. Like hypermedia technology, communication is also non­

linear in structure (Van Schoor, 1986, pp. 4 - 10). Not only can 

information be presented in different ways as to accommodate 

these differences, but information can also be presented 

uninterpreted, so that misinterpretations and individual 

perspectives do not hamper communication. uOne person's 

experience may not correspond to another's, and subjective 

judgement comes into playas to whose opinion is c orrect. Usually 

the person with greater authority wins. With the ability to 

quantify the effects through simulation, a much greater degree of 

insight and understanding can be brought to bear on the decision­

making process. Thus simulation can be a significant influence in 

communication and consensus building" (Christie, 1999). 

Hypermedia information also has an analogical link with the 

objects the information is about. This brings information as 

close to reality as possible. These representations can provide a 

valuable link between the problem, domain and possible solutions. 

Apart from structural flexibility, hypermedia technology further 

accommodates communication by extending the communication 

bandwidth through integrating a variety of media (text, sound, 

graphics, video, and animation) (Narayanan, 1997). Hypermedia 

technology facilitates communication-driven information. 

5. 	 Hypermedia technology in support of information processing 

and documentation 

5.1. 	 Information processing 

120 


 
 
 



Hypermedia technology makes it possible to record, document, 

manipulate and organise development information. Technical and 

abstract information can be manipulated to form meaningful 

patterns of richly structured, interconnected data. Information 

can be structured to convey and externalise the organisational 

structure of a domain or a subject. The information is further 

complemented because it is closer to reality and richer in detail 

than processed information with a conventional structure. With 

the multiple media involved, the developer can experience, 

observe and obtain feedback on what he or she is trying to 

understand (Brun - Cottan, 1995, p. 70) . 

The knowledge structure that a person's frame of reference 

consists of , being an associative network, can therefore be seen 

as a hypermedia system (Vatcharaporn, 1994, p. 105). The 

hyperstructure is a natural way in which information is processed 

and stored. Apart from processing and storing information very 

effectively, hypermedia technology is also regarded by 

professional communicators as a breakthrough in communication 

technology for the transfer of large amounts of knowledge . This 

is true especially for task-orientated and technical information 

that must be in a format that allows efficient access to it. 

Knowledge gained from processing information in this way , is 

designed and created rather than interpreted. The emphasis is on 

knowledge, rather than on information. Hypermedia technology 

accommodates the management of the interrelationships of the 

knowledge of an application . 

5.2. Collaboration and sharing 

Hypermedia technology supports the collaboration process (Jetly, 

1999). While gathering information, the reader discovers and 

121 


 
 
 



socially constructs a knowledge base that reflects his or her 

understanding of what is investigated. During the collaboration 

process, all individual interpretations are negotiated with the 

group (Rot h, 1994, pp. 154, 155). This interactive process 

results in a better collective knowledge. The whole of the 

process then becomes greater than the sum of its parts. 

Hypermedia technology enables the sharing of information 

irrespective of media, format or structure. A hypermedia system 

can connect and share information: 

• With different configurations; 

• Between different databases; 

• On different locations (Drori, 1997, p. 35). 

Hypermedia technology enables people to effectively share 

info rmation, because indiv idual preferences and differing 

perspectives can be accommodated. "People differ in how they 

approach learning of new ideas and concepts while solving 

problems" (Vatcharapo rn, 1994, p. 101). These differences are 

important for finding good solutions, but can be detrimental to 

communication and therefore to understanding, if they are not all 

part of an integrated whole. Hypermedia technology facilitate s 

the management of these issues by accommodating the individual 

and social aspects of problem-solving. "Hypermedia tec hnology 

makes the cognitive process common ground, which transforms 

collaborative work" (Jonassen, 1989, p. 16). "Hypermedia 

techno logy adapts to different cognitive styles fac ilitating 

social interaction, problem-solving and concept formation" (Chun, 

1995, p. 111 ) . By accommodating and facilitating the integration 

of these differences into one medium; brainstorming, generating 

ideas, argumentation, prob lem negotiation and co -operative design 

are stimulated (Jetly, 199 9). 

122 


 
 
 



Hypermedia technology enables people involved in the development 

process to report their interpretations o f the shared content 

throughout the process. This information can be made available t o 

people who are geographically removed fr om each o ther through 

networks like the World Wide Web in the Internet, Intrane t or 

Extranet environment (Jetly, 1999) . The structure of the 

information does not have to change because the World Wide Web is 

a hypermedia environment. 

5.3. Presentation of information 

The effective presentation of informatio n to a var iety of 

audiences is very important, because there are so many parties 

involved in deve l op ing a software system. With hypermedia 

technology, information can be presented in virtually any f ormat. 

This has the implication that information can be manipulated to 

fit the particular structure or purpose o f a presentation. 

(Schwabe, 2001). Information in a hypermedia system can also 

simulate the structure of the system being developed. This way 

the information can be presented as it is. Apart from 

presentation advan tages , reporting can also be very versatile. 

Hypermedia information can also be very v isible as far as 

understanding wha t is being portrayed is concerned. "Experience 

wi th the graphical presentation o f data has shown that it enables 

certain types of complex informati on to be assimilated much 

faster and more easily and that user environments become more 

convenient and enjoyable with the add ition of graphics" (Sodan, 

1998, p. 105). 

Hypermedia technology accommodates the representation of 

information on a number of dimensional levels. When presenting 

the model for a potential solution o n a two-dimensional plane, 

123 


 
 
 



some information is lost because multi-dimensional objects from 

the problem domain are reduced to a plane with less 

dimensionality. With a three-dimensional representation, the 

objects in the model are closer related to the real domain­

objects than with a two -dimensional representation. A three­

dimensional representation can also be more functional, for 

example, objects in the model can be rotated, zoomed int o , walked 

through and viewed fr om different angles (Feijs, 1998, pp. 74, 

75) 	. 

5.4. Documentation 

Hypermedia technology is ver y useful for packaging reference 

information because indiv idual divergent pieces of information 

can be linked in context. Different levels and types o f 

documentation can be seamlessly integrated as a whole (Jetly, 

1999) . 

Reference materials have the f o llowing general characteristics: 

• 	 Information is organ ised into fragments; 

• 	 The fragments relate to each other; 

• 	 They are organised int o discrete sections and contexts; 

• 	 The user needs only a small fraction at a time; 

• 	 They are organic in that they expand gradually during their 

life-cycles; 

• 	 They are not used in a linear fashion; 

• 	 They are difficult to manage. 

The above-mentioned characteristics make reference documents very 

good candidates for hypermedia technology (Woodhead, 1991, p. 

6 6) 	. 

124 


 
 
 



Hypermedia technology is ideal for gaining access to development 

documentation. The information in projects that have a very 

definite, fixed structure, as well as projects with an emerging, 

changing structure, can be accommodated by hypermedia technology 

with its structural flexibility, which can range from being 

highly structured to having no structure at all. Links and 

relationships can be created between documents and used to 

navigate through the knowl edge base (Drori, 199 7 , p. 35). Users 

and developers can also add to this knowledge base. This 

structural and functional diversity amounts to a documentation 

flexibility that cannot be met by conventional means. When a 

problem is not explicitly stated, hypermedia technology is also 

much more effective than linear text formats (Jo nes, 1992 p. 

146). This is very important because the real problem in software 

engineering is very often not stated explicitly. This means that 

developers have to spend a lot of time constructing knowledge, 

which makes hypermedia documents ideal for software engineering 

documentation. 

"Following the Hypermedia philosophy o f maximum access, allows 

developers to analyze system information to identify structural 

relationships that are not possible with conventional linear 

documentation media" (Bieber, 1995, p. 103). This can result in 

vo lumes of documentation that are difficult to handle. However, 

hypermedia techno logy is very useful in coping with large amounts 

of information (Roth, 1994, p. 164). Hypermedia technology 

follows a systems approach to information integration. "The 

systems approach to handling the information explos ion phenomenon 

is to enable a copy of the original document to be saved and 

permit access to it in different ways, as opposed to the 

alternative of distributing many copies of the same document" 

(Drori, 1997, p. 35). The result is a reduction in the total 

volume of documentation and better control and management of 

updated information. 

125 


 
 
 



The use of hypermedia technology, however, does not implicate 

that conventional documentation should not be used, but rather 

that it should be integrated into the hyperstructure of 

documents. 

Apart from information that is specific to the development of an 

application, hyperlinks can also be created to point to 

literature that can assist development in general (Jetly, 1999). 

6. Hypermedia technology in support of the development process 

6.1. Development approaches and methodologies 

Throughout the software engineering process, analysis and design 

activities continuously take place. As already mentioned, these 

two activities are interactive and are connected by a feedback 

loop . However, analysis and design must be understood in a 

software engineering context. In this context, the emphasis is on 

experimentation, discovery, exploration and synthesis, rather 

than on analysis and absorption of standard versions (Woodhead, 

1991, p. 68, Norman, 1994, p. 35). People do the same activities 

when using a hypermedia system. 

Hypermedia technology can accommodate development extensively, 

because development information can be organised to mimic the 

structure o f analysis and design activities. Information can be 

structured in a hierarchy to accommodate a deductive, top-down 

functional approach. Information can also be structured in a 

connectionist model of associative links and nodes t o accommodate 

an inductive, bottom-up objec t-oriented or data approach. A 

combination of both information structures can also be integrated 

to acc ommodate the use of t op -down and bottom-up approaches 

interactively (Mazza, 1996 , p. 209). This results in an iterative 

model, which is how the software engineering process is 

126 

 
 
 



structured . This interactive, iterative approach also 

accommodates user-centered and participatory development because 

it is similar to human interaction (Nanard, 1995, pp. 50, 51; 

Brun-Cottan, 1995, pp. 61, 62). 

Hypermedia technology also supports and complements any 

development methodology, paradigm and technique, but is 

especially close to the object-oriented approach and techniques. 

A hypermedia system of development information maps as naturally 

to the object oriented application as the application maps to the 

data in an object-oriented database. In light of this, hypermedia 

technology must be integrated into the design of an application 

and augment both interface and analytical activities (Bieber, 

1995, pp. 99, 10 0) . 

As was mentioned in chapter five, within the framework of a 

methodology, the developer aims to work with smaller, more 

manageable portions of the system . This can be an isolated module 

or a higher level of abstraction . 

A module is a self-contained unit that encapsulates a unique 

piece of information or design or code. Modules are equal to the 

nodes in hypermedia technology (Nielsen, 1995, pp. 50, 309) 

Hypermedia technology adds some useful functionality to 

development modules or nodes. Nodes can be linked to other nodes, 

providing continuity between them. Linking or referencing gives 

structure to an otherwise fragmented group of nodes. The 

advantage of being able to link nodes is that modules or nodes 

can be molded into different structures or frameworks. Another 

advantage is that when the content of a node is designed to 

represent a single idea, nodes will be modular, avoiding 

duplication and promoting re-use (Andersen, 1999). Therefore, 

using hypermedia technology, a group of modules can be moulded 

into an integrated system. 

127 

 
 
 



Like modular development, the use of abstraction is also 

invaluable in the development of software. Abstraction is as much 

an integral part of the hyper-structure as it is of software 

engineering. Abstraction allows users and developers to view the 

system in terms of its separate but related components on 

different leve ls of detail. The advantages of this are 

consistency and modularity (Nanard, 1995, p. 52). Hypermedia 

technology facilitates a seamless jumping or moving between 

different leve ls of abstraction. 

A common and very effective way of making the design of a system 

visible is to model it. In terms of modeling, hypermedia 

technology enables information to be structured and manipulated 

to create a model that is a better match of model and reality, 

than is the case with conventional models. A system's components 

can be modeled in terms of their relationships to each other and 

integrated with the process or work flow model of the same system 

(Bieber, 1995, p. 101). These models can be static or dynamic. 

From the models, there can be hyperlinks to information or other 

system and development components. Models are therefore 

integrated with other aspects of development. Using various media 

with this flexible structure enables the creation of powerful 

information-rich models. 

Using Virtual Reality and three-dimensio nal animation in 

coherence with hypermedia technology, this powerful modeling 

functionality can be extended even further (re f. Chapter 6 ­

5.3). Models or representations can be enriched by building 

realistic, interactive user-involved simulations of a problem 

domain, as well as different solutions and even solutions 

integrated into the problem domain (Feijs, 1998, p. 75 ). 

Interactive systems are powerful modeling tools. They are 

grounded in reality, are rich in behaviour, embraces 

incompleteness and are empirically driven models. "Interactive 

models provide a unifying framework for interdisciplinary 

128 

 
 
 



connections to physics and philosophy" (Wegner, 1997, p. 91). 

Hypermedia technology also accommodates any type of modeling 

whether it is language-based or graphically orientated, because 

of its flexibility and variety of structures and media. 

6.2. Systems development life-cycle 

6.2.1. Strategic phase 

The development of a software system starts with an initial 

requirement from the user for such a system. What is very 

important, is that this knowledge of the user's requirement must 

be viewed in the context of the user's working environment with 

its processes and variables, as well as the development 

environment with its variables, processes and resources. Proper 

planning must be done in this regard. Planning is done according 

to the availability of resources. All the variables and resources 

have to be integrated and synchronised (Boehm, 2000, pp. 114 ­

1 1 6) . 

Hypermedia technology accommodates the integration, coordination 

and management of all the information of a system on different 

levels. Hypermedia is also described as the ideal application 

manager because it can unify diverse systems seamlessly. 

Hypertext-based tools can also be used to manage requirements 

(Jetly, 1999). 

6.2.2. Development phase 

Analysis 

In the development phase, the developer has to refine his or her 

understanding of the requirements. In order for a system to be 

developed successfully, developers need to have a good solid 

129 


 
 
 



understanding of the user's problem in the context of the working 

environment or domain, as well as of the organisation and 

processes that define the domain. Although it is ideal, it is, 

however, not always possible for a developer to be in the user's 

domain whenever needed. Hypermedia technology can be of much 

value in such a situation as well. Apart from describing the 

domain in text and graphics, animation and video can also be used 

to communicate the environment clearly (Brun-Cottan, 1995, pp. 

61, 62). Using video is especially valuable because the 

information is not interpreted. "Using video-based hypermedia 

allows for studying real world practices while still being able 

to access and explore associated information" (Nonnecke, 1995, 

pp. 185, 186). Hypermedia technology can accommodate the feeling 

experience that is needed to properly understand a user's 

requirements. "Video personalizes the communication" (Pressman, 

1997, p. 830). A hypermedia system can also be used as a 

prototyping tool for analysing and clarifying user requirements 

(Roth, 1994, pp. 158, 161, 162). 

Design 

According to these analysis, there is an iterative cycle of 

further refined and detailed designs. These designs progress from 

being problem-specific to being solution-specific and from being 

high-level logical designs to being low-level physical designs. 

Hypermedia technology can be used to unite all the designs with 

all the analysis and other development information and artifacts. 

Hypermedia technology also accommodates development aspects such 

as: 

• Interface development (Roth, 1994, p. 156); 

• Co-development (Brun-Cottan, 1995, p. 65); 

• Program or process simulation (Mazza, 1996, p. 209). 

Code 

130 


 
 
 



Although system specifications are supposed to reflect the 

working of a system, it sadly is an ideal that does not usually 

realise in practice. This often leaves program code as the only 

view to the insides of a system. Viewing a system at code leve l, 

however, is not an easy task because the system is visible only 

on a detail-level and therefore the Ubig picture N is lost. Using 

code visualisation software and techniques, one can zoom in and 

out of different leve ls of code from a global overview to the 

lowest detail-level (Ball, 1996 , pp. 36, 37). This is done by 

using textual and graphical representations of code 

interactiv ely. Links can also be created t o re-usable code 

components (Andersen, 1999) . Hypermedia technology can also be 

used to link external information to code in o rder to integrate 

all development aspects (Jetly, 1999). This will make system 

information an integral part of a system and code an integral 

part of system documentation. 

Testing 

When doing testing and implementation, using hypermedia 

technology, errors, limitations and other issues that surface 

through testing can be documented and linked to other relevant 

deve lopment aspects (Jetly, 1999). 

6.2.3. Implementation phase 

To install a system, documentation is needed to guide the 

installation. Hypermedia technology can be very useful in 

reducing the complexity of an installation by guiding the 

installer through a simulation of the real installation 

(Narayanan, 1997). 

Because applications or systems are developed f or people to use, 

these people need to know how to use it. Hypermedia techno logy 

accommodates learning and is very often used for computer-based 

training (CBT ) . Tutorials and other training methods and 

131 

 
 
 



materials can be d esigned to train the users in getting to know 

the work ing of the system and how to use it. Context sensitive 

systems can also be designed by using hypermedia technology and 

therefore it makes technica l informa tion more accessible 

(Woodhead, 1991, p. 66 ; Chun, 1995, p. 10 7). 

6.2.4. Maintenance phase 

Because someone other than the person or persons that developed 

the system very often does maintenance on a system, the person 

that does the maintenance is extremely reliant on system 

documentation. If all the documentation is integrated in a 

hypermedia system, the maintainer can get a v iew or perspective 

of the system o n all levels thro ugh links between documents and 

between documents and code (Jetly, 1999). 

6.3. Tools 

6.3.1. Computer Aided Software Engineering (CASE) 

CASE (Computer Aided Software Engineering) tools are va luable 

tools in creating an integrated, process-driven software 

engineering environment. Hypermedia technology complements 

development techno logy such as CASE because the existing 

integrated body of information, constructs and programs within a 

CASE system can be extended to incorporate other aspects that is 

part o f development but not incorporated in a CASE system. A CASE 

system is a very controlled environment and hypermedia technology 

complements it by incorporating hard and soft software 

engineering techniques, thereby making it more flexible 

(Jonassen, 1989, p. 35) . Hypermedia technology can therefore be 

used to manage a CASE environment by drawing together different 

working environments and manag ing them (Drori, 1997, p. 35). 

132 


 
 
 



6.3.2. Databases 

Hypermedia technology accommodates a variety of database 

structures that range from text documents to highly structured 

databases, but is particularly c l ose to relational and objec t­

oriented databases. Either of thes e types of databases are 

frequently used as the back-end of a hypermedia system where the 

information is stored (Niel sen , 1995, p. 1 31 ) . A hypermedia 

system o f information can therefore use the same database as the 

application being developed, resulting in a c l os er integration 

between the application and the information surrounding it. 

Hypermedia technology also br idges the compatibility gap between 

different types of databases and manages the transfer of 

information between them . 

There is also an increasing need f or databases to represent more 

real data (data that is c l oser to reality) to conque r 

complexities and problems that are associated with artificial, 

simplified representations. Hypermedia technology, with its 

ability to integrate databases and represent informati on in a way 

that is cl ose to reality, can accommodate this need. 

6.3.3. Programming languages 

Programming languages like C++, Java, Smalltalk and others are 

used to extend hypermedia systems. This has the implication that 

hypermedia technology as a documentation and presentation medium 

can be extended indefinitely in terms of its flexibility and 

func tionality. This has the potential effect that programming 

us ed in presentation and document ati on can be used in the 

application, thereby facilitating to some degree a seamless 

133 


 
 
 



progression from development information to programming l anguage 

code for an application or system solution. 

6.4. Applications 

With problems to be solved becoming more demanding and complex, 

applications need to represent reality more closely to avoid 

problems associated with artificial , simplified solutions to 

complex real world problems. 

In terms of structure and content , hypermedia technology can 

adapt to applications and technologies of v astly different 

natures. Apart from accommodating different user preferences and 

differences in subject matter, hypermedia technology can also 

accommodate various types of different structures as far as 

applications are concerned. This includes well-structured 

applications with the following structures : 

• 	 Conceptual structures with pre-determined relations; 

• 	 Task related structures resembling the processes and 

activities of a task; 

• 	 Knowledge related structures that are based on an expert's 

knowledge; 

• 	 Problem and solution related structures that simulate problem-

solving or decision making; 

• 	 Chronological , sequential structures; 

• 	 Parts and whole structures; 

• 	 Cause and effect structures; 

• 	 Antecedent and consequent structures (Jonassen, 1989, pp. 48, 

53) 	. 

Hypermedia technology is also well suited to less or open 

structured applications. "Hypermedia technology is invaluable in 

134 


 
 
 



applications that explore alternative s tructures in which the 

domain structure is not well underst ood at the outset o r changes 

during the course o f a task. Many o f these applications invo lve 

the collection, c omprehension and interpretation o f div ers e 

ma terial s . These activities are information-intensive like 

analysis , de si gn or evaluation and are collaborative effo rts" 

(Marshall, 199 5, p. 88). These t ype s o f applications mentioned 

above are identical t o activities in the initial phases o f the 

softwa r e engineering life-cycle, like requirement an a lys is a nd 

prototyping. Hypermedia techno logy also has a st ro ng resemblance 

to so-called "sof t computing" applications , like neural network 

and fuzz y logic applications. 

In terms of development, hypermedia techno l o gy is strongly 

related t o distributed systems like Internet a nd Intranet 

applications . This is evident with http (hypertext transfer 

protocol) that forms the backbone o f the WWW (World Wide Web) and 

the use o f HTML (Hyper text Markup La ngu age) in Web applications. 

Of utmost impor t ance, however, is the c l ose relationship that 

h ype rmedia technology and hype rmedia sys tems have with 

client / server technology. The architecture o f hypermedia systems 

is espec ially close to the client/server architecture, and 

hypermedia techno l ogy i s also very similar to ob jec t- or iented and 

relational technologies. In general, hypermedia systems consist 

of three architectural levels or layers: 

• 	 A presentation lay er which i s also the c lient-interface and 

which is u sually a Graphical User Interface (GU I ) . 

• 	 The second laye r is called a Hyper text Abstract Machine (HAM ) 

layer , which manages the nodes and links and therefore the 

s tructure of the informati on . The heart o f a hypermedia 

system is the Hyper text Abstract Machine (HAM) (Andersen, 

1 999) . 

135 


 
 
 



• 	 The last layer or database layer is where the information is 

physically stored. The database layer can range from simple, 

flat text files to sophisticated structures like relational 

databases, for example SQL server or Oracle (Nielsen, 1995, p. 

1 31 ) . 

The operations of each layer are largely transparent to the other 

layers which makes layers modular and weakly coupled. The 

operations of the system as a whole are also transparent to the 

user. The result is a set of seamless interfaces between layers 

and between the system and the user. 

The architecture of hypermedia systems resembles the 3-tier 

client/server model to a great extent. The 3-tier client/server 

model also consists of three layers or levels or tiers. They are 

the presentation, the business and the database layers. The 

presentation layer interfaces with the user much like the 

presentation layer of a hypertext system. The business layer 

contains the business rules and the operations necessary for 

enforcing those rules and correlates with the Hypertext Abstract 

Machine (HAM) . The database layer also does very much the same 

for both client/server and hypermedia systems in storing and 

manipulating information. 

This has the implication that documentation, development and 

application can be integrated naturally. With the integration and 

management capabilities of hypermedia technologies, a hypermedia 

system can be the ideal application manager in a client/server 

deve l opment and application environment. The hypermedia structure 

also enables seamless integration between applications by 

treating these applications as nodes within a larger context 

(Andersen, 1999). 

136 


 
 
 



7. Conclusion 

Hypermedia technology is a human, as well as a system orientated 

technology with capabilities to accommodate human thinking, 

learning, communication, collaboration, problem-solving and the 

development of software. Hypermedia technology can accommodate 

the problems associated with the broad spectrum of 

characteristics and activities of software and the software 

engineering process. Because of its capabilities hypermedia 

technology can add value to software engineering as a problem­

solving process. 

137 


 
 
 



Chapter 7 

Conclusion 

1 . Introduction 

This is the conc luding chapt er . The hypothesis, as stated in 

chapter one, was evaluated in terms of the research results in 

chapters two to s i x . 

2. The problem 

The problem that was stated in chapter one is as follow: 


The problems surrounding the software engineering process can 


l arge ly be attributed to the lack of proper coordinati on and 


integration of information used for deve l opment. 


3. The hypothesis 

The hypothesis that was stated in chapter one is as follow: 

The character i stics o f hypermedia technology, as far as the 

coordination and integration of informat i on is concerned, seems 

to provide a solut i on to the problem of coordi nating and 

integrating the information used for development as encountered 

in the software engineering process. 

Th e coordi nation and integration of development information 

involve the transfer o f information. Because people are so 

vitally invo l ved , it can be defined as a communication problem. 

This strongly relates to the characteristics of software and 

software engineering and the processes and activitie s involved. 

138 


 
 
 



It 	is hypothesised that hypermedia technology can help to solve 

the communication problem mentioned above. 

This problem, viewed from a communications perspective, can be 

broken down into the following: 

• 	 Communication problems between the user and the developers; 

• 	 Communication problems between people in the development 

process; 

• 	 Communication problems between developers and development 

information; 

• 	 Communication problems between user and user documentation; 

4. The hypothesis as researched 

The communication problems mentioned in the hypothesis is further 

elaborated upon and placed in context of the software engineering 

process and activities in chapters three, four and five. From 

these chapters, the vital importance of effective communication 

is evident and the problems associated with it are emphasised. 

In chapter three, communication problems were described in terms 

of the inherent characteristics of software and software 

engineering. From this chapter the importance of effective 

communication in the software engineering process is evident. 

Communication is viewed as one of the core characteristics 

of the software engineering process. The communication process 

is, however, to a great extent hampered by problems that occur as 

a result of the other characteristics of software engineering 

that was mentioned in this chapter. 

Communication revolves around the involvement of people. To 

complement this, software engineering is, amongst others, also 

characterised as a human-orientated process (Wood, 1998). 

139 


 
 
 



Size, as an attribute of complexity, is the major caus e of 

communication problems because with an inc rease in the size of a 

project, more people are involved. With more people involved , the 

number of communication paths increases exponentially (McConnell, 

1996, p. 28). People also have different perspectives and the 

greater the number of people involved, the greater the 

communication risk. In light of this, communication problems are 

further increased because software engineering is a non-linear, 

unpredictable, interdependent, creative process invol v ing various 

different disc iplines, levels, phases, people and activities 

(Olson, 1993, pp. 35, 55). These aspects result in large 

quantities of complex informatio n that has to be communicated 

between the people involved. 

In addition t o the communication problems already mentioned , 

informatio n is very o ften communicated through formall y 

structured text-based documentation which is a poor communicatio n 

medium compared t o direct communication. 

Apart from the negative effects that the characteristics o f 

software engineering can have on communication, ineffec tive 

communicat ion can also have advers e effec ts on software systems 

being developed. Ineffective communication, t o begin with, can 

therefore result in a v icious cycle o f ineffec tive software 

engineering. 

In chapter four, communication problems were viewed from the 

perspective of processing information and documenting it. From 

thi s chapter it is evident that the problems in communicating 

information begins before the actual communication takes 

place. This has t o do with h ow people internalise information. 

Perceptions are not objective, predetermined repre sentations of 

realit y , but is dependent on cognitive processes. When people 

interac t with a certain environment, they respond creatively and 

140 


 
 
 



do not just merely adapt to their surroundings (Matthews , 1999, 

p. 27). When a person processes information, it becomes knowledge 

and is integrated into his or her frame of reference. This 

frame of reference or knowledge base is unique to everyone. 

Apart from this, a person's perception is also influenced by that 

person's historical and cultural background and personal 

experiences. 

All these factors give knowledge and perception a very subjective 

nature, with communication being tied to perception (Burgoon, 

1995, p. 109). The solution to this problem is effective 

communication. However, language, as the vehicle for 

communication, includes ambiguity as one of its characteristics. 

Therefore, the medium for transferring these subjective 

perceptions allows for different interpretations of the same 

message . Effective communication therefore requires to be a 

process that involves a lot of feedback, correcting and fine­

tuning to synchronise the perceptions of the communicators 

(Neill, 1992, p. 11). 

In light of these problems concerning communication, information 

is usually processed and transferred through several levels of 

interpretation, because problem and development information are 

communicated through different software engineering phases by 

different people. 

As was mentioned before, communication of information is 

mostly done through text-based documentation . This results in a 

further reduction of the richness of information or communication 

bandwidth (Neill, 1992, p. 152). 

Chapter five centered on the technical aspects of software 

engineering and the information to be communicated, is more 

formalised in nature. However, people are still involved. These 

people usually have a variety of highly specialised skills and 

141 


 
 
 



knowledge. This high specialisation, combined with the fact that 

designs cannot contain all available information, can pose 

challenges to effective communication (Winograd, 1995, p. 69) 

Chapters three, four and five highlighted what is needed to 

accommodate these problems associated with the communication, 

coordination and integration of information. The characteristics 

of hypermedia technology (chapter two) are of such a nature that 

hypermedia technology can make a powerful contribution to solving 

these problems. Hypermedia technology, by virtue of these 

characteristics facilitates information in regard to: 

• 	 visibility and comprehensibility (Sodan, 1998, p. 105); 

• 	 integration and management (Roth, 1994, p. 151; Mazza, 1996, 

p. 	 209); 

• 	 integration of and adaptability to differing perspectives 

(Brun-Cottan, 1995, p. 62; Chun, 1995, p. 111); 

• 	 structural flexibility and adaptability (Bieber, 1995, p. 

1 03) ; 

• 	 different levels of abstraction (Ball, 1996, pp. 36, 37); 

• 	 collaboration of processing activities (Roth, 1994, pp. 154, 

155, Jetly, 1999). 

Hypermedia technology provides a richer documentation medium with 

a greater communication bandwidth than conventional documentation 

media like text-based documents (Jones, 1992, p. 146). 

Hypermedia technology as a solution to the communication problems 

in the software engineering process, was discussed in chapter 

six. 

The research of the problem and the proposed solution will now be 

consolidated into a table. 

142 

 
 
 



Tabular representation of hypermedia technology in relation to 
solving the problems as a result of software engineering 
characteristics and related aspects 

Table 1 is a list of hypermedia characteristics. 
Table 2 contains: 
• the characteristics and related aspects of software engineering and software; 
• problems as a result of these characteristics and aspects; 
• what is needed to solve these problems; 
• proposed solutions as listed in Table 1 

Key to the tables 
H = Hypermedia 
SE = Software engineering 

Table 1 
Characteristics of hypermedia 
1 
2 

H information can be structured to adapt to different perspectives and subjects 
Different information types and structures can be int~rated in H 

3 H information can be reused 
4 H information has a higher bandwidth (associative structure and multi-media) than other 

media 
5 H information is intuitive 
6 H accommodates different levels of abstraction seamlessly 
7 H accommodates free exploration 
8 H accommodates manipulation and construction of information 
9 H accommodates integration of media, heterogeneous information, applications, people, 

technology, geography 
10 H support computing, communication, teaching , interaction, learnif}g, thinking 
11 H handles large volumes of information and reduces the cognitive overhead 
12 H stimulates argumentation 
13 H accommodates different views of same material 
14 H accommodates simulation 
15 H accommodates and stimulates analogy 
16 H information is close to real world 
17 H is technology independent 
18 H integrates diverse systems 
19 H stimulates creativity 
20 H is human orientated 
21 H supports collaboration, sharing 
22 H is ideal for reference materials, development documentation 
23 H accommodates modularisation, encapsulation, reuse and other problem-solving 

techniques and methods 
24 H bridqes the qap between different types of databases 
25 H accommodates all applications especially CIS 
26 H is the ideal application manaqer 
27 H is dynamic and accommodates chanqe 
28 H has an associative structure 
29 H is non-linear 
30 H supports concept formation and understanding 

143 


 
 
 



Table 2 
SE characteristics and 
issues 

Problems involved What is needed Hypermedia 
solution as 
per Table 1 

SE involves technical, 
social , 
organisational,cultural 
aspects 

Information is 
diverse and not 
easily integrated 

Need medium to integrate 
and coordinate information of 
all software engineering 
aspects 

1,2,18,26 

SE is a multi­
disciplinary process 

Information is 
diverse and not 
easily_ integrated 

All the aspects involved need 
to be integrated as a whole 

2,9,18 

SE is based on 
intellectual content 

Information is 
subjective and 
complex 

Effective conceptualisation 10,12,15,19, 
20 

Software systems are 
flexible and dynamic 

Conventional 
documentation is 
not flexible 

Need adaptable, flexible 
documentation that 
accommodates changing, 
evolvinq systems 

1,27 

SE is complex Simplified models 
and information do 
not represent the 
complexities 
involved 

Need to structure and 
represent information in a 
format that is closer to reality 
to conquer complexity 

1,16 

Software is largely 
invisible 

l\Jeed a documentation 
medium to make information 
more visible 

14 

Formal techniques 
are not always 
viable to deal with 
highly complex 
situations 

SE need intuition to conquer 
complexity 

5 

SE has an element of 
uncertainty 

Highly structured 
conventional 
documentation do 
not accommodate 
uncertainty 
effectively 

Need integration of rich, 
imprecise, uncertain, 
subjective, complex and no 
oversimplified information 

16 

Size is a huge factor in 
SE 

Huge numbers of 
variables and 
relations 

Need to cope with huge 
amounts of information and 
relationships 

11 

Different levels of 
abstraction 

Need to understand whole 
while working on detail 

6 

SE is a non-linear 
process 

Conventional 
documentation is 
linear 

Need a non-linear 
documentation medium 

28,29 

SE com ponents are 
interdependent 

Manipulation of 
com ponents may 
influence other 
components 

Need medium to manage 
integration of components 

26,29 

SE is a interactive, 
iterative process 

Conventional 
documentation is 
not interactive 

Needs documentation 
medium that accommodates 
experimenting and 
exploration 

7,8 

SE involves 
heterogeneous 

Conventional 
documentation 

Need a medium to 
accommodate structured/ 

1,9,24 

144 


 
 
 



information contains mostly unstructured and 
homogeneously 
structured 
information 

formal/informal and 
logical/analogical and 
human/machine information 

SE is a human 20 
orientated process 
SE involves human 
information processing 

Is subjective and 
leads to 

Need to accommodate 
information processing and 

1,2,9,12,13, 
15,19 

miscommunication differences and integration 
thereof 

SE involves Conventional Need a medium to extend 4,10,21 
communication process documentation does communication bandwidth 

not communicate Need a medium to 21 
information well accommodate collaboration 
enough and sharinq of information 

Different people are Conflicting Need to coordinate and 1,4,10,21 
involved perspectives, 

interpretations 
integrate differences and 
communication 
l\Jeed multiple representations 1,13 

SE involves learning Conventional Need a medium that 10 
documents accommodate construction of 
accommodates knowledge, understanding 
absorption of 
interpreted 
knowledge 

SE involves different A conventional Integrate and accommodate 23 
problem solving 
activities and 

document is rigidly 
structured according 

various different 
activities and methodoloqies 

methodologies to a specific 
methodology 

Needs documentation 
medium to accommodate 

23 

modeling, modularisation, 
abstraction, reuse 

5. Conclusion 

It is important t o take note that software engineering is not a 

conventio nal engineering disc ipline, but has some interesting 

c h a rac teristics invo lving humans to a great ext e nt. This human 

invo l v ement inc ludes human nature, bac kground, the mind, 

information proc essing and communication and the probl ems 

associated with these aspects . 

The c harac teristics of hypermedia techno l ogy accommodate and 

complement sof t ware engi neering charac t er istics and i ntegrate 

145 


 
 
 



well with software engineering. 

In light of the problem at hand and the research being done, the 

following conclusion is made: Hypermedia is capable of making a 

large contribution to solving many of the problems related to 

coordinating, communicating and integrating software engineering 

information. It must however be noticed that hypermedia 

technology cannot be a substitute for effective, direct 

communication. 

6. Future research 

The following related areas for research is suggested: 

• 	 Further research on the representation of software engineering 

information using hypermedia technology; 

• 	 Further research on how hypermedia technology can practical l y 

be used as a documentation medium for software engineering 

information; 

• 	 Research on human and communication aspects in software 

engineering; 

• 	 Research on the influences of the human-orientated sciences on 

computer related sciences and vice versa. 

146 


 
 
 


	Front
	Chapter 1-3
	CHAPTER 4-7
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Bibliography

