

































































&

UNIVERSITEIT V¥
UNIVERSITY 0
YUNIBESIT Y

h 4

T =

Chapter 5

Methods, techniques and tools in the software engineering process

1. Introduction

Software engineering operates in both the problem and solution
domains. Whereas understanding the problem and documentation
related issues usually centers on the problem domain, development
centers on the solution domain with its technical and
methodological aspects. The problem is that traditionally the
emphasis 1n software engineering was almost entirely placed on
the solution domain. These two working areas must, however, be
closely integrated. This is so because on the one side software
problems are constantly demanding solutions that are more complex
and cover a greater diversity. On the other side, software
engineering involves increasingly more than just programming.
Other problem solving aspects like creativity, communication,
understanding, idea generation, intuition and thinking in terms
of analogies are becoming increasingly important (Jarzabek, 1998,
p. 95). This calls for development strategies and tools that can
accommodate complexity and diversity and can adapt to changes.
Whereas chapter four focused on documentation, information
processing, understanding and communication, this chapter will

focus mainly on development issues.

2. Methods

For development to be adaptable to complexity and change,
development strategies need to include methods that focus on the

system as a whole as well as on system components and

relationships between components.

87






















































a another language, like VBScript is from Visual Basic. Script is

also interpreted by a browser (McGee, 1996).

3.4.4. Conventional programming languages versus query and

declarative languages

Procedural and object-oriented languages are mainstream
programming languages. By far most development 1s done in these
languages. However, there are also other tvpes of languages that
are used for speclalised types of applications. The structure of
such a language revolves around the characteristics of the
application being developed. Examples of these languages are
functional languages like LISP and logic programming languages
like Prolog, which are used for artificial intelligence
programming {Sebesta, 1993, p. 6). Although the internal
implementation of these two types of languages differs from each
other, they share an essential characteristic in that they
support declarative structuring. This means that the programmer
only has to specify what is to be done and not how it is to be
dene, because the underlying structure facilitates this (Mazza,
1996, pp. 179, 180). Procedural and object-oriented languages
differ essentially from functiconal languages like LISP, logic
programning languages like Prolog and guery languages like SQL in
that "the program logic is embedded in the sequence of
operations, instead of in a data-model (eg. the trees of Prolog,
the lists of LISP and the tables of relational database

management systems)” (Mazza, 1996, p. 178).

4. Applications

The methodology, operating platform, tocls and techniques to be
used must be chosen to match an application’s characteristics.

The way in which this is done, as mentioned already, depends on

105






























































































































	Front
	Chapter 1-3
	CHAPTER 4-7
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Bibliography

