
Chapter 1 


Introduction 


1. The problem and its context 

Software engineering is the process whereby software systems are 

being developed to so l ve problems that are defined by cer t a in 

user requirement s . The re are, however , e ffectivene ss a nd 

eff i c iency problems that have become accep ted facts in the 

software engineering industry _ What i s a l arming however, is that 

soft ware wi ll increasingly absorb a l arger percentage of the 

overall deve l opment cost for comput er - based systems (Longs t aff , 

2000 , p. 43). 

1.1. What gave rise to the existence of the problem? 

The prob lems concerning the software engineer i ng process arise 

because o f how software i s developed, how a growing vo lume o f 

existing s of t ware i s maintained and the growing demand f or 

so ftware which result in: 

• 	 Inaccurate sch edules and cost estimates ; 

• 	 Low productivit y of peop l e involved in the development of 

software ; 

• The poor quality of sof t ware. 


These problems relate to t he inherent character is tics of software 


and software engineering (Pressman, 1993 , p. 19) _ 


The characteristics are: 

Complexity 

Software engineering is inherently a complex process bec a use 

fund a mentall y software cons ist s of large numbers of variab l es and 

2 


 
 
 



unique components. Apart from the actual software system being 

developed, software engineers also have to capture, organise, 

analyse and present huge volumes of interrelated development 

information (Andersen, 1999). These variables, components and 

information are interdependent and influence each other (Roth, 

1994, p. 164). The fact that software is largely invisible 

because of a lack of visual representation also adds to 

complexity (Brooks, 1987). 

Scale 

Large-scale projects are more difficult to develop because the 

number of variables increases exponentially with the size of the 

project. The number of people involved also adds an extra 

dimension to the complexity. It is safe to say that the size of a 

software project is directly proportional to the difficulty of 

developing it (Kraut, 1995, p. 69). 

Uncertainty 

Software engineering is not a routine activ ity. Each system being 

developed is largely unique (Boehm, 2000, p. 32 ) . Uncertainty 

arises because: 

• 	 Software and the software engineering process is inherently 

unpredictable; 

• 	 Requirements change ov er time; 

• 	 Requirements and specifications are to some extent always 

incomplete; 

• 	 People involved make the whole process even more dynamic and 

unpredictable because they bring their own ideas and agendas 

to the process (Kraut, 1995, p. 70). 

Informal communication 

Because people develop systems together, their work has to be 

coordinated. This is often a huge challenge and can pose serious 

3 


 
 
 



problems if it is not done successfully. Formal communication is 

a necessary part o f this process , "but often fails in the face o f 

uncertainty, which typifies much software work" (Kraut , 1995, p. 

70) . Informal communication accommodates this shortcoming, but is 

difficult to coordinate. 

Human orientation 

Because people develop software according to other people's 

requirements, software is bound by and conforms to human 

constraints. For this reason software is constantly changing 

because requirements change and requirements are subject to the 

human mind and nature (Ro th, 1994, pp. 163, 164). Software also 

has a "logical rather than physical character" (Pressman, 19 93, 

p. 19). Software is engineered fr om beginning t o end. It is not 

manufactured 	like products in o ther engineering disciplines 

(Glass , 1995, p. 15). 

1 .2. Stating the problem 

The problems surrounding the software engineering process can 

largely be attributed to the lack of proper coordination and 

integration of informat ion used for development. 

1.2.1. Hypothesis 

The characteristics o f hypermedia technology seems t o provide a 

solution to the problem of coordinating and integrating 

information in the software engineering process. 

Th~ coordination and integration o f information used for 

development has t o do with the transfer o f information . Because 

people are so much involved, it can be defined as a communication 

4 


 
 
 



problem. This strongly relates to the characteristics of s oftware 

and software engineering, which are listed in 1.1. 

It 	is hypothesised that hypermedia techno l ogy can help to solve 

the communication problem mentioned above. 

This problem viewed from a communications perspective can be 

broken down int o the following: 

• 	 Communication problems between the user and the developers; 

• 	 Communication problems between people in the development 

process; 

• 	 Communication problems between developers and development 

information; 

• 	 Communication problems between user and user documentation. 

The problem will now be identified in the context of the software 

engineering process. 

1.2.2. 	 The problem in the context of the software engineering 

process 

1.2.2.1. 	 Problems during analysis 

A cl as s ical problem in the development of software is the 

phenomenon that the system being delivered is in many instances 

not what the user requested or it is what the user requested, but 

not what he or she requires. The problem, as far as the user is 

concerned , is therefore not solved (Winograd, 1995, p. 71). The 

problem encoun tered here is mainly a breakdown in communicat i on 

between the user and developer. A breakdown in communication 

oc curs because: 

• 	 Developers do not involve users enough in the development 

process; 

• 	 Developers misinterpret user requirements and / or 

5 


 
 
 



• 	 Users do not state requirements properly which in turn occurs 

because : 

• 	 Developers do not properly analyse user requirements and / or 

• 	 Developers do not properly analyse the domain where the 

system will function in and/or 

• 	 Users do not participate effective ly when requirements and 

domain analysis are being done. 

• 	 Communication between developers is not effective while 

developers are doing analysis to come to a common 

understanding of the problem from a development perspective . 

1.2.2.2. Problems during design 

During design all the information gained during analysis must be 

structured to model the solution to the user's problem (Winograd, 

1995, p. 71 ) . It has to be taken into account, however, that 

analysis and design are concurrent tasks for the greater part of 

development . 

The problems during design are: First of all most of the 

information gained from analysis and design gets lost because 

there is too much information to handle. This includes ideas , 

arguments, collaboration activities and feedback etc. The 

information is lost because of a lack of proper communication 

between the deve l oper(s) and the information that is available 

(Kraut, 1995, p . 70). 

Secondly, the designer must provide a conceptual model that the 

user can relate to. This should be done so that the user can give 

feedback to the designer. Usually this part of design is not 

effective because the communication is too technical and not 

understandable to the user (Loucopoulos, 19 95 , p. 66) . Design is 

6 


 
 
 



therefore not user orientated enough and results in systems being 

developed that do not entirely meet user requirements. 

Thirdly, when a large system is being developed and a large 

number of developers are involved, the formal and informal 

communication between developers is not always effective (Kraut, 

1995, p. 70). Although formal communication is recorded, it is 

not always structured well enough. For this reason it is not very 

accessible. Informal communication is usually not documented at 

all and mostly involves small groups of people. Informal 

communication is very important because in-depth, invaluable 

knowledge about the system under development and technical 

knowledge is communicated. This needs to be accessed by every 

member of the development team (Hayne, 1996). Apart from non­

effective communicatio n, individuals also have different 

perspectives on design. 

Lastly, the integration between the different leve ls of design is 

not effective in most cases. Software design involves several 

transformations. Each of these may be v iewed as an instance of 

the previous set in a new context. For example a requirement 

specification becomes a design specification which becomes source 

code which becomes object code. These transformations must be 

matched with a high degree of precision. 

1.2.2.3. Problems during coding and testing 

During coding and testing, the design model is transformed into a 

real application. Apart from the difficulties in moving from an 

abstract model to a physical model that consists of computer 

code, the people that are involved usually change from being 

analysts or designers to application programmers and / or database 

programmers and / or technical programmers. Therefore, information 

has to be communicated to another group of developers. 

7 


 
 
 



1.2.2.4. 	 Problems during implementation 

During implementation, the tested system is transferred to the 

user domain where it must solve the requested problem. Apart fr o m 

the physical implementation, the users also have to be trained in 

using the system . User-manuals and ot her re levant systems 

documentation, like database documentation, must also be 

supp lied. 

It is specifically in regard to the user-manuals that another 

problem arises. Because technical people, who developed the 

application and know it by heart, usually write the user-manuals, 

the manuals are almost always too technical for the user's needs 

and comprehension (Loucopoulos, 1995, p . 66 ). 

1.2.2.5. 	 Problems during maintenance and support 

Maint enance and support involves c hanges that have to be coded . 

This is often done by some one who was not involved in deve l oping 

the syst em. Without proper documentation and references t o 

spec ific information in the documentation, the person doing the 

maintenance has only the code as way of determining how the 

syst em functions. With large pro jects it is d i sast rous, if not 

impossible . The same is true for the process of reverse 

engineering where proper st ructuring and integration of 

developmen t information is needed. 

1.2.2.6. 	 Problems surrounding the documentation created during 

development 

8 


 
 
 



The vo l ume of documentation created during software deve lopment 

i s enormous and the information it conta ins is v ery important to 

deve l opers . If this information is not well structured and 

linked, retrieving needed information can be v ery difficult. In 

this c ase, the information does no t serve the purpose it was 

intended f o r. Development documentation i s generally not linked 

and referenced well enough. This presents a huge problem because 

quality information i s needed where the deve l opment of software 

changes hands from analysts to designers to development 

programmers to mai ntenance programmers . Documentation i s al so not 

always updated when changes or enhancements are made to the 

system . This results i n system documentation becoming worthl ess 

(Gl ass , 1995, p. 27). 

1.3. The importance of solving the problem 

The s i ze and complexi ty of software projects are increas ing and 

fast, effective changes wi ll i ncreasingl y be expect ed. There f ore , 

better integration and coordination o f softwar e development a l ong 

with better access to deve l opment information is vital (Cochran, 

2001). 

1.4. Determining the scope of the study 

The scope of the study i s to determine the support hypermedia 

technology can provide to the software engineering process in 

solving the prob l em of integration and coordination of 

deve l opment information . By relating the problem to the 

charac teristics of hypermedia technology and the t ype of prob l ems 

that ar e typically sol ved b y hypermedia technology, the value of 

hypermedia technology in sol vi ng the probl em can be det ermined . 

9 


 
 
 



1.5. 	 The importance of the study in providing a solution for the 

problem 

Hypermedia technology seems to be able to provide a solution for 

the problem of coordinating and integrating development 

information as encountered in the software engineeri ng process. 

In light of the fact that effective and efficient coordination 

and integration of information in the so ftware engineering 

process is of vita l importance because of the increasing size and 

complexity of software projects, the study is important because 

it wi ll provide information that will help solve this daunting 

problem (Cochran , 2001). 

2. 	 Overview of the state of research on the problem 

2.1. 	 Nature of the theory and research on the specified problem 

area 

Although the area of hypermedia support for the software 

engineering process is not as we ll researched as the softwar e 

engineering process or hypermedia technology, a number of 

researchers have noted the relationships and possibilities. 

Although most of them just mention the relationships in their 

work, others like Bottaci (1991 , pp . 219 - 235) and Roth (1994 , 

pp. 149 - 169) conducted more in-depth research in this area. 

2.2. 	 Important findings as reflected in the literature 

Hypermedia technology has made significant contributions to 

software development in three primary areas: 

• 	 Coordinating and accessing the massive amounts of information 

used and generated in developing software; 

10 


 
 
 



• 	 Linking h eterogeneous information in different documents and 

medi a; 

• 	 Prov i d ing access to everyone involved in order for them to add 

and manipulate information (Roth , 199 4, pp. 149 - 169; 

Andersen, 19 98). 

Hypermedia technology has strong rel ationships to many other 

kinds of software technology like : 

• 	 Databases (part i cularly re lational and object - or ient ed 

database s) 

• 	 Spreadsheets ; 

• 	 Text processor s ; 

• 	 Out liners ; 

• 	 Desktop publi s hing; 

• 	 Electronic mail; 

• 	 Programming packages ; 

• 	 Electronic publishing; 

• 	 Client / server systems for example the Int erne t; 

• 	 Expert or knowledge based sys t e ms ; 

• 	 Object-orien t ed programming (Woodhead, 1991, p . 32) . 

Hypermedia as a unifying paradigm 

Hypermedia technology is charact erised by enormous flexibility. 

Apart fr om int egrating information in different formats, it can 

a l so integrate different applicat i on s into a unified, seaml ess 

whole whi l e remaining independent of them a ll. This helps to 

inc rea se the quality of heterogeneous informat i on (Woodhead, 

1991 , p . 10). 

Hypermedia technology introduces a more user-orientated approach 

to working with development information 

11 

 
 
 



As previously mentioned, hypermedia technology integrates 

heterogeneous information. It also makes the use and manipulation 

of this information easier. The user plays a much more active 

role. Instead of being presented with pre-defined knowledge, 

users can define the information themselves and can also add 

their own views to the knowledge base. With the structural 

flexibility of hypermedia technology and variety of media, 

multiple different views of the same information can be created. 

This will accommodate people with different cognitive 

preferences. The interactive interface also enables more active 

participation by the user (Roth, 1994, p. 157). 

The relationship between hypermedia technology and software 

engineering 

Hypermedia technology provides a software engineering environment 

with the capabilities of linking broad categories of software 

engineering artifacts including: 

• Management reports; 

• Specifications and requirements; 

• Design and program documentation; 

• Implementation notes; 

• Source code; 

• Test specifications and results; 

• Object code; 

• Products (Roth, 1994, p. 153). 

Hypermedia technology, also "provides low overhead task switching 

in situations where users are performing concurrent tasks such as 

analysis and design" (Roth, 1994, p. 156). 

12 


 
 
 



The importance of hypermedia technology in interface development 

The relationship between hypermedia systems a nd interfaces is 

important because : 

• 	 Hypermedia technology successfully provide s access to 

r eference information; 

• 	 Hypermedi a technology provides an easy to use, flexible, 

interact i ve medium f or prototyping , developing and evaluating 

interfaces; 

• 	 Hypermedia, being an integrating medium, i s very useful as an 

inter face for d i stributed, heterogeneous informat ion ; 

• 	 "Hypermedi a can a lmost be considered as an interface 

att ribute " (Rot h, 1994, p. 15 6) . 

The importance of hypermedia technology in prototyping 

Prototypes are used to define requirements and to provide 

feedback. It is therefore primarily used to g i ve feedback of the 

developer's and the user's unders tanding of the problem and of 

each other. The relationships betwee n the develope r's and the 

user's conceptua l models must be accommodated . "Hypermedia bears 

the same relation to cogni tive mapping that automated systems 

analysis tools bear to structured systems analysis methodo l ogies . 

That is, they can substan tial l y reduc e the tedious 'paper ­

crunching' of numerous redrafts" (Woodhe ad, 1991, p . 141). 

A prot ot ype must also accommodate the user's level of knowledge. 

Storyboarding techniques and interactive prototypes result in 

better conceptua l understanding than conventional, pre-defined, 

static prototypes (Jetly, 1999). Al so, when a prototype is based 

on terminology, functions and images that are familiar to the 

user, it will result in the user understanding the probl em 

bet t er . Thi s will result in the deve l oper understanding the user 

13 


 
 
 



and therefore the requirements better. Hypermedia technology also 

makes easy, rapid prototyping possible. 

The importance of hypermedia technology in handling large volumes 

of information 

When internalising or processing information, people are limited 

to the amount of information that can be handled simultaneously. 

Hypermedia technology can extend a person's capability by 

optimizing the structure and content of the information. 

Hypermedia technology can provide access to large collections of 

development reference materials. This fits neatly into what 

Schneiderman calls the "Golden Rules of hypertext": 

• 	 "There is a large body of information organised into numerous 

fragments; 

• 	 The fragments relate to each other; 

• 	 The user needs only a small fraction at a time" (Roth , 1994, 

p.157). 

The importance of hypermedia technology in development 

documentation 

Hypermedia technology provides the means to link documents 

quickly and easily for access to a body of integrated 

information. When developing, hypermedia technology is useful in 

integrating documents that range from initial requirements to 

code and maintenance documents (Woodhead, 1991, p. 46). 

The importance of hypermedia technology in structuring 

information 

14 

 
 
 



Because hypermedia technology is structurally so flexible, 

information can be organised to be more intuitive and closer to 

how humans process information than other media. This feature 

accommodates people in forming and structuring ideas and patterns 

from information on different abstraction levels. An overview of 

a system's layout can be organised in a hierarchical structure 

and links can be made to more detailed information. Related 

information can also be link ed, thereby forming a web-like 

structure. Information content can also include different types 

of media (Bottaci, 1991, p. 223). 

Not much research has been done on the support hypermedia 

technology can provide to the software engineering process 

itself. However, the qualities of hypermedia technology in 

accommodating and manipulating information relates very well to 

the type of technology needed to manipulate information created 

during development. In literature related to the topic of 

software engineering, it was suggested that development 

information and documentation play a much more active role in 

dev elopment. With the hypothesis stated in 1.2., it is suggested 

that hypermedia technology will be useful in achieving this goal. 

2.3. 	 Motivation for continuing the research as reflected in the 

literature 

The following aspects will provide the motivation for continuing 

research: 

• 	 All aspects of the software engineering process needs better 

integration and coordination (Kraut, 1995, p. 69); 

• 	 Hypermedia technology is important for: 

• 	 structuring documentation (Woodhead, 1991, p. 46) 

• 	 structuring information (Bottaci, 1991, p. 223); 

15 

 
 
 



• 	 Enriching information content; 

• 	 Coping with massive amounts of information (Roth, 1994, p. 

1 64) ; 

• 	 Providing efficient access to large collections of 


development reference materials (Roth, 1994, p. 157) 


3 . Method that is to be used 

The research will be done in the form of a literature study, 

including a critical analysis and synthesis of the research 

results. From literature, the characteristics of hypermedia 

technology will be identified independently of software 

engineering aspects. Also from literature, the characteristics of 

software engineering, the criteria for good software engineering 

as well as the problems involved will be identified. Further, 

human information p r ocessing, communication, documentation and 

the technical aspects that are involved in software engineering, 

as well as related problems, will be identified. What is needed 

to solve these problems will be determined by interpreting what 

others say in literature and also by the researcher's experience 

as a computer programmer in developing software systems. 

To conclude, all the issues raised above will be discussed in 

relation to hypermedia technology as a proposed solution in terms 

of what was identified as what is needed to solve these software 

engineering problems. This conclusion will then be consolidated 

into a table to give an integrated perspective of the problem and 

the proposed solution. 

4. Chapter layout 

The chapter layout represents the methodology that will be 

followed. 

16 

 
 
 



4.1. 	 Characteristics of hypermedia technology 

The characteri stics o f hypermedia technology are researched 

independently of software deve l opment issues to render an 

unb i ased view of hypermedi a technology . 

4.2. 	 Characteristics of the software engineering process 

The character i stics of the software engineering process are 

researched . The emphasis is placed on the problems that exist 

because of these character i stics and what is needed to solve 

them. 

4.3. 	 The role of information processing and documentation in the 

software engineering process 

The characteristics of information process ing and conventional 

software documentation are researched . The emphas i s is placed on 

the p r ob l ems that exist because of these characteristics and what 

is needed to solve them . 

4.4. 	 Methods, tools and applications in the software engineering 

process 

Th e research entails t he methods and tools used , t h e appli cations 

deve l oped and what is neede d to assis t these operat i ons . 

4.5. Hypermedia technology as a proposed solution in supporting 

the software engineering process and solving the problems 

associated with it 

17 


 
 
 



Hypermedia technology is proposed as a solution to the prob l em of 

coordinating and integrating the software engineering process . 

The focus is on the problems identified in the previous chapters . 

18 


 
 
 



Chapter 2 


Characteristics of hypermedia technology 


1. 	Introduction 

Hypermedia technology has a broad and accommodat ing set 

of c haracteris tic s . In this c hapter , these characteristics will 

be loosely grouped into st ructural and human-ori entated 

characteristics . 

structural characteris ti cs address the primary aspec ts o f the 

technology itself and deal with: 

• 	 Th e architecture; 

• 	 structure of nodes and links ; 

• 	 The a ssoc i at ive structure that aris es as a result of the nodes 

and links ; 

• 	 How the structure improves functionali ty; 

• 	 The content in terms of the different types of media involved. 

Human - or ientat ed characteristics are secondary characterist i cs 

and result from the nature of the primary charac terist i cs 

ment i oned above . Human-orientated characteristics perta in to: 

• 	 Struc ture in terms of stor ing information ; 

• 	 Integrating capabili ties ; 

• 	 Favourable orientati on t owards the human mind ; 

• 	 Commun i cat ion capabil i ties; 

• 	 Ease of use and ef fe ct i veness. 

2. Structural characteristics 

19 


 
 
 



The structure of a hypermedi a system can range from physical to 

abstract, wh i ch involves associations with certain functionality 

and value attached. The structure will be described in terms of: 

• 	 Architecture; 

• 	 structure of nodes and links; 

• 	 The associative structure that results from the nodes and 

links; 

• 	 The content in terms of the different types of media involved; 

• 	 The functionality that results from this structure. 

2. 1 . Architecture 

Like all computer systems, hypermedia systems have a specific 

architecture. This architectural model, however, is only a 

generalised model and may be customised to benefit specific 

system needs. 

Generally, hypermedia systems consist of three architectural 

levels or layers: 

• 	 A presentation layer which is also the client-interface and 

which is usually a Graphical User Interface (GUI) (Gronbaek, 

n. d. ) ; 

• 	 The second layer is called a Hypertext Abstract Machine (HAM). 

It manages the nodes and links and thus the structure of the 

information. The heart of a hypermedia system is the Hypertext 

Abstract Machine (HAM) (Andersen, 1999; Gronbaek); 

• 	 Th e last layer or database layer is where the information is 

physically stored. The database layer can range from simple, 

flat text files to sophisticated structures like relational 

databases, for example SQL server or Oracle (Nielsen, 1995, p . 

131; Gronbaek, n.d.). 

The operations of each layer are largely transparent to t h e ot her 

20 


 
 
 



layers which makes layers modular and weakly coupled. The 

operations of the system as a whole are also transparent to the 

user. The result is a set of seamless interfaces between layers 

and between the system and the user. 

A hypermedia system can therefore be defined as an information 

system, which provide the possibility of non-sequential access to 

information through a network of nodes connected by links (McRae , 

n.d.). The nodes and links are the essential features of the 

hypertext structure. 

2.2 Structure of nodes and links 

A node is a self-contained, modular unit of encapsulated 

information . Each node should present a single, unique idea or 

piece of information (Nielsen, 1995, pp . SO, 309). The 

information inside a node can consist of various different media 

or functionality. A node contains information or content that can 

be related to the information or content of other nodes. This can 

be done by linking the node to other nodes. These links provide 

continuity between nodes. Links are very important because in 

connect ing nodes, structure emerges. Linking or referencing 

provides structure to an otherwise fragmented group of node s . 

Link s giv e the content in a node a particular context within a 

larger hypermedia system (Marshal l, 1995, p. 88) . Links are used 

to form associations b etween different nodes of information in a 

hypertext structure, thereby creating an integrated frame of 

reference information. These different nodes can reside in the 

same document or can be different documents altogether. In 

addition to facilitating the making of associations between 

documents or nodes, nodes and links can also be made active by 

adding behaviour to them. This is achieved by using programming 

and scripting languages (Jetly, 1999). Links can also point t o 

applications or embedded components . 

21 

j' \ 5~1 q z.. ob 
b l S2bl4 S h7 

 
 
 



Links can basically be grouped as: 

• Referential - which is a reference from source to destination 

with no relation to structure between them; 

• Parental - which involves a hierarchical organization of 

information and where links provide references between parent 

and child nodes (Jonassen, 1989, p. 8). 

Within these two broad categories, there are also different types 

of links with different functions. For instance, an annotation 

provides only a small portion of additional information 

whereafter the user returns to the primary material. 

Unidirectional links traverse from one node to another and do not 

return to the node that initiated the link as in the case of 

annotations. The new node becomes the active node. Bi-directional 

links work technically the same as unidirectional links, except 

that there is a link back to the source document (Ashman, 1994) 

Links can be defined explicitly. Explicit links are predefined by 

the author and do not change unless changed explicitly. An 

implicit link is defined automatically at run-time by adding some 

programmatic conditions or behavior to a link (Definitions of 

concepts, 1997). A link of this type can be made to point to 

references for different conditions. These links are known as 

super-links. 

Nodes can further be linked together and referenced by a single 

name, thus forming a composite node that represents a composite 

concept, which in turn can be related to other composite nodes 

(Balasubramanian, 1994). Another advantage of being able to link 

nodes is that the same information can be molded into different 

structures without making changes to the content. Therefore, when 

the content of a node is designed to represent a single idea, 

nodes will be modular, avoiding duplication (Nielsen, 1995, pp. 

50, 309). Characteristics and functionality of nodes or objects 

22 


0 

 
 
 



can be inherited instead of being recreated. Hypermedia systems 

can be developed to use object-oriented methods like operation 

overloading and inheritance (Nielsen, 1995, p. 264). An important 

issue concerning this however is to maintain balance between the 

size of nodes and fragmenting information. 

2.3 Associative structure 

The combination of nodes and links results in making the 

information in a hypertext system an integrated whole. It has the 

effect that in a hypermedia system information is organised as an 

associative network of nodes and hyperlinks that link these 

nodes. As a result the emerging structure is non-sequential and 

non-linear (Aedo, 1994, p. 111). This structure is free from the 

linear structure that is dominant in other media. Because of the 

associative structure of hypermedia technology, systems can be 

developed that are structurally very flexible. Any structure can 

be accommodated, ranging from rigid structures like strict 

hierarchies to structures with crossover links between 

hierarchies and even to systems with no structure at all. 

Information in nodes can have one-to-one, one-to-many or many-to­

many relationships. It is this inherent flexibility that makes it 

possible to develop systems that "externalize the structure of 

subject matter and represent the information as it is stored in 

human memory" (Jonassen, 1989, p. 13). In terms of structural 

variety, hypermedia can be categorised as having a multi ­

dimensional structure. 

2.4 Functionality 

Hypermedia technology has all the conventional functionality that 

other media have in terms of organising information including: 

23 


 
 
 



• 	 Information structuring 

• 	 Table o f contents; 

• 	 Overviews; 

• 	 Guided tours. 

• 	 Search functions 

• 	 Indexes ; 

• 	 Keyword searches; 

• 	 Boolean operat ors; 

• 	 Filters; 


Path history; 


• 	 Term-weighting (Ashman, 1994). 

Apart from this, hypermedia technology also makes it possible to 

structure the same information in a variety o f ways for a variety 

of fun c tionality that results in much flexibility (Ek lund, 1996). 

The structural flexibility of hypertext makes it possible to 

navigate through the information in the system. Navigation 

through hypertext is as flexible as the flexibility in structure 

(Ek lund, 1996). Navigation ranges from unstructured exploration 

or browsing to guided navigation where the user is constantly 

kept up to date of where in the structure o f the system he o r she 

is. This gives the user the option to explore new nodes in 

context of the whole body of information as well as to backtrack 

to nodes already visited. This functional flexibility contributes 

to enhance applications, increase comprehension and e nrich 

context (B ieber, 1995, p. 28). Hypermedia technology is also not 

limited t o its inherent functi onal ity. The functional framewor k, 

for exnmplc, CLln bc c)c tcndcd or oustomised using programming 

languages like C++, Vi sual Basic, Pascal and Java. 

2.5. Media 

24 

 
 
 



The multi-dimensional structure of hypermedia technology that was 

mentioned earlier, can further be extended in terms of the 

different types of media (called multi-media ) that can be used to 

represent information. These different levels of structuring 

information and the var iet y of media available can be integrated 

seamlessly into a system (Narayanan, 1997). 

Although acquiring information or communicating using text as a 

medium is efficient, the material is always sub jec t to a certain 

interpretation by the reader. This interpretation varies because 

of a lack of knowledge of the domain, the situation, the 

background associated with the subject material and the 

interpreter's background or frame of reference. Using other media 

in conjunction with text may give the reader a more complete 

perspective because the subject matter is viewed from different 

perspectives. Info rmatio n can also be re-ordered and re-read . 

As far as media is concerned, hypermedia tec hnology combines text 

with audio, animation, graphics and video that results in a 

higher bandwidth of information being recorded (Ro th, 1994, p. 

165). For example, when a specific doma in has to be described, 

photographs, drawings, diagrams, comments, text descriptions, 

v ideo recordings, audio recordings and animated simulations can 

all be used. Saffo (1997, p. 97 ) has the followi ng to say about 

hypermedia technology: "Seeing that hypermedia systems use 

information in different types of media, dimensions and 

structures, this will help connect the symbolic universes of our 

creation with the physical world". 

Hypermedia technology can be extended even further with virtual 

reality techno logy . Virtual realit y is in essence an extension of 

hypermedia technology (Weiss , 1998 ) . This can be seen on the 

World Wide Web where VRML (Virtual Reality Modeling Language ) is 

already being merged with HTML (Hypertext Markup Language ) and 

25 


 
 
 



JAVA to create an environment that lS more dynamic, interactive 

and user-friendly. 

Virtual reality increases the sensory breadth of a hypermedia 

system in that it promises to integrate touching with hearing and 

seeing in a hypermedia system. In full immersion the user' s whole 

body is the interface to the computer, which responds to human 

behaviour, thereby making the interface very intuitive and easy 

to use . With virtual reality, the user is also not restr icted to 

the fixed size of a two-dimensional screen, but i s central to a 

three d imensiona l environment that has virtual l y no limit in 

size . It i s also inclusive, interactive and happens in real-time. 

The user becomes in effect part of the v irtual world and can 

affect what happens in this world by manipulating virtual objects 

and by moving. Virtual reality is a very intense, immersive, 

active and believable experience (more so than any othe r medium) 

" Virtual reality i s the first conceptual, almost intuitive 

computer system" (Sherman, 1992, p. 71 ) . Currently, virtual 

reality does not offer full realism, but with future advances in 

graphics, screen resolution and CPU power, v irtual reality 

environments will become increasingly realistic. " VR, with its 

augmented reality, allows a smoother, more controlled transition 

from virtual to real and back" (Heim, 1993, p. 128 ) . 

3.Human orientated characteristics 

3.1. Information structure 

Hypermedia technology can be sai d to present a multi-dimensional 

functionality, which is defined , in terms of the different level s 

of abstract i on into which information can be structured. The 

structuring ranges from high levels of abstraction, that 

accommodate abstract conceptualisation, to low leve l s of 

abstraction wh ich amount to concrete experiencing o f events 

26 

 
 
 



(Vatcha raporn, 1994, p. 102; Nielsen, 1995, p. 131). Information 

c a n also either be structured, or have no structure at all. In 

other words, a system can be constructed so that it either 

supports unconstrained searching that offers free association 

between different items of information, or is tied to problem 

solving for deep understanding (Thuring, 1995, p. 57). 

Hypermedia structures can show divergent points of view in 

context (Spiro, n.d.). These structures are subject to a variety 

of interpretations. It is important that this variety is allowed 

because it accommodates users with different individual 

preferences as far as information content and structure is 

concerned. Information can be added to such a system so that a 

specific structure is not forced upon the reader, but rather left 

implicit to be formed when and how it is needed. A hypermedia 

system can be designed specifically to accommodate the semantic 

network of a particular user or to resemble a specific subject 

matter. A system can also be developed to be open-ended. 

Information can be internalised in a mutually constructive and 

not just a receptive way. Parallel or lateral structures of 

information can be provided to suit different users, for example: 

• 	 Logical structures to show the semantic relationship between 

different items; 

• 	 Pragmatic structures to show certain views of relationships 

that may either emphasise or minimise aspects of the logical 

structure; 

• 	 Dynamic structures to show the interaction of relationships 

over time (Woodhead, 1991, p. 85). 

When using an application or searching for information, users 

normally follow references, thereby building up the necessary 

context. In terms of a hypermedia system, the information 

structure within the system can be hierarchical which is valuable 

for a high level overview or meta-information and have web or 

27 


 
 
 



network structures for micro-hierarchies in the system . This 

structuring i s useful because it provides manageab le structures 

in large applications and documents. Users can thus immerse 

themselves in the l oca l meaning o f a sub-system without losing a 

globa l perspective of the who le system . At progressively higher 

levels in the system hierarchy, increasing abstraction occurs, 

thus decreasing the complexity o f the system overa ll. Such 

systems accommodate users to expand to lower levels of 

abstraction or move to higher levels of abstraction. Users of 

hypermedia applications can also browse through unstruc tured 

information and add to or create their own abstractions. This 

feature of hypermedia technology enables the user to expect and 

formulate relationships in information. 

These features make it possible for users to be lead or to search 

by thems elves. It is up to the user to decide wh ich paths and at 

what depths to explore, thereby giving a user direct access to 

the content and interconnections of an informat i on domain 

(Bieber, 1995, p. 28). It also lets the making of strategi c 

decisions remain with the user. This enables users , rather than 

direct them, thereby facilitating the customizat ion of individual 

needs. Many hypermedia implementations go even further by 

allowing readers to become authors by adding comments 

(annotations) and additional links to what they read (Ashman, 

1994). Users can view and manipulate structure as we ll as 

content. It allows users to actively engage in constructing the 

meaning of text. In all these ways the hypermedia technology 

accommodates cho ice and change to a much greater extent than any 

other f orm of media. 

3.2.Integration 

Hypermedia is an integrating technology with its potenti a l to 

unify diverse media, tasks, information structures, applications, 

28 


 
 
 



software, hardware, users, technologies and geographic barriers 

(Jetly, 1999 ) . This unifying quality provides for a seamless 

hypermedia environment with functi onality that prevails between 

the above- menti oned components rather than being unique to each 

of them. This model provides the ability to both increase the 

quality o f heterogeneo us information and to increase the ease 

with which it can be used (Woodhead, 1991, p. 10). Hypermedia 

techno logy s uppo rts c omputing and communication as well as social 

scientific areas like teaching (computer-based training) and 

cognitive science. It is both an info rmation and a communication 

technology . 

Informatio n can also be re-used in hypermedia systems (Spiro, 

n.d.). With re-use, information is placed in different contexts 

so that the same material is used in different structures, 

thereby building multiple relationships around a single piece o f 

information (Ne lson, 1995, p. 32; Spiro, n.d.). Re-use promotes 

efficiency because it reduc e s the making o f mistakes, maintains 

consistency and less phys ical space is required (Garzotto, 1995, 

p. 74 ) . Re-use also fa c ilitates integratio n because different 

parts o f a system are connected via a re-usable component. 

Info rmation can also be shared across multiple l ocatio ns or 

machines. Hypermedia systems need no t be geographically bound. A 

good example o f this is the Wo rld Wide Web. The Wo rld Wide Web is 

platform independent. HTTP (Hypertext Transfe r Protoco l ) i s used 

on the Internet and links different hardware and operating system 

platforms to provide multi-platform n omadic computing 

environments (Schase, 1995, p. 72). Information units can 

therefore be re-used across technological and geographical 

boundaries . 

3.3.Mind 

29 

 
 
 



Hypermedia technology is very much orientated towards the human 

mind in that it has striking similarities to the functional level 

models of neurology and higher level cognitive models of human 

associative memory. It also takes advantage of the human 

perceptual system, spatial and geographic memory and spatial 

intelligence. It thereby accommodates and facilitates concept 

formation. It also complements visual memory and supports the 

interpretive process, forming of abstractions and visualising 

complex structures. It also encourages critical thinking (Spiro, 

n.d. ) . People structure information by forming links of 

associations, sets and composites in order to handle large 

amounts of information. In the process, emerging patterns can be 

detected. These functions and characteristics are principles of 

human learning, writing, collaborating and thinking. It comes 

together to promote better understanding when humans collect, 

read and analyse information in light of a problem to be solved 

or a specific task that must be done (Marshall, 1995, p. 93, 

Chun, 1995, p. 97). This whole process or set of processes 

resembles fuzzy logic, which closely relates to how people do 

problem solving. To further illustrate the cohesion between the 

human mind and hypermedia technology: 

• 	 The human mind is perceived as a system's phenomenon (Capra, 

1997, p. 55); 

• 	 The brain operates by massive connectivity (Capra, 1997, p. 

70) 	. 

In the process of problem solving, a person acquires knowledge 

about the problem to be solved that is vital to the quality of 

the solution. Knowledge acquisition or epistemology seems to 

evolve into more concrete or empirical ways of knowing. From 

there the change to evolutionary epistemology (Spiro, n.d.). This 

new development integrates well with the theory of 

constructionism. The constructionist views gaining knowledge in a 

reflective way, thereby creating a feedback loop in the process. 

30 


 
 
 



The learner constructs knowledge rather than being instructed. 

Initial instruction is merely the frame around which one has to 

construct knowledge through interpreting e xperiences. uRather, 

because knowledge will have to be used in too many different ways 

for them all to be anticipated in advance, emphasis must be 

shifted from the retrieval of intact knowledge structures to 

support the construction of new understandings U (Spiro, n.d.) 

Every person's understanding of reality is therefore unique. 

Therefor, knowledge a c quisition is a process of design. 

In light of what is mentioned above, hypermedia information can 

have major advantages over information in other media that do no t 

have this kind of support. Hypermedia technology makes it 

possible to handle large volumes of information quite 

effectively, because "coherence (constructing a mental picture 

that correlates with facts and relations) can be increased while 

the cognitive overhead c an be reduced" (Thuring, 1995, p. 65). 

This is possible because the connection density of individual 

information items can be increased up to the mental capacity of 

the developer or reader. 

Hypermedia technology can thus be said to stimulate rational 

thinking as well as creativity. 

3.4.Communication 

When different people collaborate in solving a problem or 

developing a system, it is very important to be mutually 

constructive in order to be successful. To illustrate, "people 

differ in how they approac h learning of new ideas and concepts 

while solving problems" (Vatcharaporn, 1994, p. 101; Young, 

2000). In accommodating these individual differences, a person 

can work with information in a way that suits him / her the best. 

31 


 
 
 



However, the results of these different ways of working have to 

be reconciled for the collaborative process to be effective. 

Knowledge cannot be communicated precise l y in an instructive way 

because each individual's interpretations, experiences and 

beliefs differ. However, we need to share common knowledge about 

the objective world. This common knowledge is constructed through 

our interactions with one another. uResearch has established the 

ability of hypertext for argumentationu (Jetly, 1999). People 

must accommodate and integrate other peoples' interpretations and 

ideas into their own frames of reference about reality. Knowledge 

sharing follows a social path of back and forth negotiation, 

rather than just a one way transmission of information. This 

process has many similarities to the constructionist process. 

This way the reader can communicate with his or her as well as 

other peoples' ideas, thereby deepening his or her understanding. 

This way of acquiring knowledge is effective because the reader 

is not just passively interpreting information, but is an active 

part of the process. 

Hypermedia technology accommodates and assists the seamless 

integration of different kinds of knowledge in the same system, 

thereby providing a colourful picture and different angles. 

Presenting the same material from different points of view not 

only accommodates different perspectives, but also enhances an 

application's richness. The valuable implication of this is that 

a person can have different views of the same material and 

therefore get a more holistic perspective of the material and 

other people's understanding of the material (Jetly, 1999). 

Therefore, hypermedia technology not only offers cognitive 

flexibility in accommodating different perspectives, but also 

offers the communication of information between people. This 

quality facilitates social interaction during problem solving 

32 


 
 
 



(Spiro, n.d.). As Jones states: "hypermedia technology has, from 

a philosophical point of view, enormous potential for putting 

texts into contexts and for generating imagined conversations" 

(Jones, 1992, p. 143; Star, 1995, p. 152). Hypermedia technology 

provides a rich contextual bridge for communicating information 

effectively because it presents information that connects 

simulated environments (including well known cultural symbols) 

with abstract word symbols. According to Bottino (1994, p. 310), 

"it is possible to create representations that are not completely 

arbitrary, but preserve a strong analogical link with the related 

objects. These representations could act as mediators between the 

problem situation and its meanings, ideas, relationships and 

processes". 

3.S.Usability 

Hypermedia technology shields the user to a great extent from the 

underlying implementation and technological detail that is 

involved, by making the user-interface largely transparent to the 

underlying implementation (Nielsen, 1995, p. 311). This promotes 

ease of use because it does not require a high level of technical 

skill to develop a hypermedia system. As far as using a 

hypermedia application, a user only needs minimal familiarity 

with the technology. In this sense hypermedia technology bridges 

the gap between experienced and inexperienced users. 

Applications also have very intuitive interfaces that users can 

relate to and offers close man-machine coupling (Bell, 1997, p. 

32). For example, through hypermedia technology on the Internet, 

a user is not just able to access any document, but can also 

start an application automatically by just choosing a specific 

file, for example a text, spreadsheet or database file etc. 

Although the Internet is not a hypermedia application but rather 

enables hypermedia technology to function in the environment, the 

33 


 
 
 



arrival of the World Wide Web caused the use of the Int ernet to 

increase exponentially. The World Wi de Web is a hypermedia-based 

system (Andrews, 1996) . Software market leaders like Microsoft 

a re seriously inco rporating hypermedia technol ogy int o their 

products . It permits users to concentrate o n the information 

content of objects and not the mechanics of acquiring i t . 

There ar e also certain advantages t o using hypermedia techno logy 

as opposed to other information processing technologie s o r 

te c hniques . In using hypermedia technology , users acquire : 

• More c ognitive, meta-cognitive advantages (Spiro, n.d . ) ; 

• Richer and better connected knowl edge (Spiro , n.d . ); 

• More collaboration and p l anning abilities (Ande rsen, 1 999) 

• Greater creativity ; 

• Better organising abili t ies (Jetly, 1999). 

4. Problem characteristics 

4 . 1 . Uncertainty 

The support that hypermedia techno logy provides for change and 

non-linearity can and o ften does cause uncertainty. Because o f 

the structure or lack of a definite structure of a hypermedia 

system, a user can fee l lost . This, comb ined with the fact that 

there are no physical attributes , l ike the size of a book , to 

guide a user, can hamper the effective use of a system (Nunes, 

n . d . ). This shortcoming , however, can be overcome to a great 

extent by good des ign and new advances in the technology . 

4.2. Interpretation problems 

34 


 
 
 



By arranging information into nodes and by linking these nodes, 

information is subject to unique interpretation, as is the case 

with other media. However, if more people collaborate to the 

structuring of such an information base, interpretation can be 

generalised and therefore become more objective. 

5. Conclusion 

Hypermedia technology accommodates and facilitates indirect 

communication. This level of communication is communication 

through information (structures, representations and other 

people/s perspectives). Indirect communication in hypermedia 

technology accommodates the human mind because firstly, it 

integrates the views of people with different perspectives. 

Secondly, coherence (constructing a mental picture that 

correlates with facts and relationships), can be increased while 

the cognitive overhead can be reduced. Lastly, representations 

preserve a strong analogical link between related objects in a 

problem space. The user and the technology accommodate each 

other which benefits the integrated system of both the user and 

the technology. The capabilities of the technology as well as the 

user's thinking and learning abilities is enhanced. The whole 

then becomes greater than the sum of its parts. 

Hypermedia technology essentially facilitates better knowledge 

transfer because of more effective communication between people 

and information than other media. The result of this is that it 

also facilitates communication between people where the 

mode of communication is other than direct person-to-person 

communication. 

The next chapter will concentrate on the characteristics of 

software and software engineering. 

35 

 
 
 



Chapter 3 


Characteristics of software engineering 


1 . Introduction 

Whereas the previous chapter focused on the characterist ic s of 

hypermedia technology, this chapter wil l focus on the 

characteristics of sof twar e and software engineering. 

Software engineering i s the di sc ipli ne ass oc iated with the 

development of large-scale software products or systems 

(Ande rsen, 1999). It i s a coherent activity and has technical, 

social, cognitive , organi sat i ona l and cu ltural aspects to it 

(W inograd, 1995, p. 67) . The quality of a software product is 

measured in terms o f correctness, reli ability, robustness, 

performance, user friendliness, maintainability, evolvability and 

re-usability (Ghezzi, 1991, pp. 19- 35 , Jetly, 1999). "There are , 

however, problems associated with the development of quality 

software . These problems are caused by the character of software 

itself a nd by the failings of the people developing it" 

(Pressman, 1993 , p. 19). 

Through the years , much has been done to build software 

engineering foundations to improve the development of complex 

software. However, the problems to be solved have also grown 

rapidly in compl exity (Leveson, 1997, p. 130). What is 

problematic, is the trend that with distributed and scalable 

systems, more people are using the same system. Sof t ware is also 

increasingly embedded into other syst ems, and systems, containing 

software, are increasingly linked to form an interconnected whol e 

(Bo ehm, 2000 , p. 28) . This situation adds considerable 

responsibility t o the developers of a system. Outsourc ing is 

another major trend. Although ou t sourcing makes sense from a 

36 


 
 
 



resource management point of view, it also means that developers 

of 	systems do not have the domain knowledge that in-house 

developers usually have. 

There are five key dimensions to software engineering: 

• 	 The people that are involved in the process. They are business 

people, developers and end-users; 

• 	 The software engineering process; 

• 	 The software system or application; 

• 	 The technology used to develop and implement the system; 

• 	 The environment where the system will function as part of a 

bigger process. 

"Of these dimensions, people have more impact on productivity 

than any other factor" (McConnell, 1996, p. 12). 

Almost all software engineering problems relate to people. The 

most critical ones involve domain knowledge, requirements, 

communication and coordination . Major problems largely disappear 

when these aspects are engineered effectively (Hoc, 1990, p. 

262; Pressman, 1997, p. 65). 

The software engineering process has certain characteristics, 

which define the limits, the essence and the problems associated 

with the software engineering process. In this chapter, every 

characteristic wi ll be defined and described individually. 

However, these characteristics are not independent of each other. 

They are related and influence each other. These relations will 

therefore be mentioned in each definition and description by 

referring to other characteristics when necessary. Firstly, each 

characteristic and the problems surrounding it will be described. 

Secondly, solutions to these problems will be suggested. Some of 

the problem characteristics that were referred to in chapter one 

37 


 
 
 



are put into more gene ral categories f o r mo re effective 

o rganisational purposes. 

Six general characteristics can be identified and the structure 

of this chapter revo lves around them. These characteristics are -

Software engineering: 

• Is complex; 

• Has an element o f uncertainty; 

• Is a non-linear process; 

• Is a multi-disciplinary process; 

• Is a human-orientated process; 

• Is a communication process. 

2. Software engineering is complex 

Software is based o n intellectual content. This g ives software a 

unique and highly flexible nature (Boehm, 2000, p. 33). Softwar e 

can not be measured in the same wa y as the products of other 

engineering disciplines. The so- c alled hardware engineering 

disciplines use components that obey physical laws and limits, 

and can be measured using these limits. The limits software has, 

has more to do with human abilities and the accuracy of the 

information available (Pressman, 1997, p. 65). For these reasons 

a software system has a fluidity that is difficult to 

conceptualise and understand. 

In addition, "Computing is the only profession in which a single 

mind is obligated to span the distance from a bit to a few 

hundred megabytes, a ratio of to 10 to the power of 9, or nine 

orders of magnitude. Thi s gigantic ratio is stagg ering. Compared 

to that number of semantic levels, the average mathematical 

theory is almost flat" (Mc Connell, 1993, p. 774; Jetly, 1999) 

 
 
 



There are however tools and techniques t o help conquer these 

complexities. Designing and modeling system components and the 

relationships between them make the system visible. Decomposing 

and anal ys ing individual components aids understanding because a 

person can then concentrate on smaller portions at a time 

(Pressman, 1997, p. 281). Designing and modeling o n the one hand, 

and decomposition and analysis on the other, are complementing 

sets o f activities of the same interac tive process that can be 

used on any level. "We do this by imposing on the software 

engineering process the discipline that nature imposes on the 

hardware engineering process" (Leveson, 1997, p. 129). If, 

however , it can be accepted that the problems with building 

complex systems are rooted in people's limited ability to handle 

complexity, then our techniques and tools need to address this 

limitation more than any other. Complexity as a characteristic of 

software and the software engineering process can also be defined 

in terms of all the other characteristics, because they all 

influence c omplexity directl y (Roth, 1994, p. 164). 

2.1. The scale factor 

No aspect of software engineering has a more profound influence 

on complexity than the size of a project (Glass, 1995, p. 27). 

Size amplifies complexity in all other characteristics and all 

characteristics influence complexity. Large projects that are 

beyond the handling of an individual or a small group are 

difficult to develop because the complexity involved in the 

development of large projects increases exponentially (Kraut, 

19 95, p. 69). Except for a minority of systems that are very 

complex regardless of size, it can generally be accepted that the 

difficulty of developing a software project is directly 

proportional to its size. The reas on for this is very much a 

human orientated problem. The larger the number of vari ables 

people have to take into account simultaneously, the less 

39 


 
 
 



efficient they tend t o become. The levels o f abstraction also 

increase propor tio nally with increase in project size . Because of 

these reasons, people find it difficu lt t o v i sua lise a large 

system as a who le . Specifications are also f urther removed in 

terms of abstraction f or large systems than f or small ones . 

One way t o c onquer this complexity is speciali sa ti on . Developers 

with a lot of experience in a speciali sed fi e ld can almos t 

develop good systems intuitively (Ghezzi, 199 1, p. 518). Although 

this way o f work ing results in some success in so ftwar e 

engineering, it also presents another prob lem. Many peopl e are 

involved in the developmen t o f a large system. To make a group o f 

highly special ised developers in d ifferent fields work t oge ther 

effectively, requires go od coordination a nd communicat ion (Glas s , 

1995 , p. 40). Therefo re, apart fr om the inherent difficult ies 

di scussed in the previous paragraph, members of a development 

team have to communicat e effectively in order f or e fficient 

development t o take place. This does not p re sent much o f a 

prob lem if there are onl y a few team members. However, in large 

development teams the t ot al number o f communication path s amount s 

to a level o f complexity tha t can be termed as chaotic. Thi s i s 

because the number of communication paths i s exponentially 

proporti onal to the number o f team members (McConnell, 1996, p. 

28) . To add t o this, the qua li t y of communication in d evelopment 

teams i s generally poor. 

The difficulties inherent t o developing large syst ems result 

in different perspectives o f the problem and solution 

(Va tcharaporn , 19 94 , p . 101 ). The problem o f different 

perspectives combined with the fact that developers generally 

l ack good formal c ommun i cation s kil l s creates th e possibilit y 

that communicati on can be a major factor in impairing developmen t 

ef fi ciency. Developers also tend to spend more time on r eading 

about, rather than on formal communicati on o f a prob lem . In o ther 

words, communi cati on via documentation i s ve ry important. 

40 

 
 
 



The communication problems that result because of size can be 

categorised as: 

• 	 Communication of developers involved in different phases of 

development; 

• 	 Communication of developers across different levels of 

abstraction; 

• 	 Communication of developers with different perspectives of 

what should be done and how it should be done. If team members 

refuse to acknowledge one another's perspectives, a breakdown 

in communication occurs (Brooks, 1987). 

2.2. 	 What is needed 

What is needed is some form of representation that is flexible 

enough to allow developers to understand the system as a whole 

while working in detail on parts of the system. Developers need 

to be able to cope with huge amounts of information and variables 

and the relationships between them (Andersen, 1999). What is also 

needed is information about the system that different developers 

can understand. A medium is also needed to allow developers to 

communicate information regarding the problem efficiently. 

Documentation is the medium that is most frequently used. 

3. 	 The software engineering process has an element of 

uncertainty 

The software engineering process has an element of uncertainty 

because some aspects of it are unpredictable and also because the 

software engineering process has a non-linear structure. Because 

of these inherent uncertainties, there are also great risks 

involved. To control these risks, risk assessment and management 

41 


 
 
 



is needed. However, there are also uncertainties in regard to 

these aspects which can be understood from Heisenberg's 

Uncertainty Principle which states that it is impossible to 

measure the exac t position and momentum of a particle at the same 

time. UWhen we apply this principle to the software life- cycle 

and to information assurance, it means this: We cannot 

simultaneously measure the risks associated with software and 

information assurance when no protective actions are taken and 

measure the efficacy of deploying risk assessment and management 

on the system because the system has fundamentally changed. 

Moreover, software development is a dominantly intellectual 

enterprise, and the very attributes that make software so 

attractive (flexibility, low tooling cos t, ease of reproduction ) 

also make it hard to measure and quantifyU (Longstaff, 2000, pp. 

44, 45). This situation results in inc reased complexity to 

problem solving because UUncertainties complicate the problemu 

(Longstaff, 2000, p. 46). 

3.1. Unpredictability 

Softwa re engineering is not a routine activity. Although there 

are portions of every system that are standard or co mmon to most 

systems, every system is mostly unique with aspects that are not 

clearly understood at first. This gives the development of 

software an unpredictable nature that causes a lot of uncertainty 

during the process (Boehm, 2000, p. 27). To solve a problem using 

software, a developer's or developers' interpretation of a 

customer's problem must be translated through several layers of 

abstraction into a machine readable format that is very difficult 

for people to understand. This becomes apparent in large and 

complex systems. A software system can therefore be seen as a 

communica tion process between the developer and the customer 

about the problem, using the computer as communication link. 

42 


 
 
 



Thes e factors further contribute to the inherent unpredictability 

of software and it s development. 

Apart fr om the inhere nt unpredictability, unpredictabilit y also 

results from inefficient communication, especially in large 

deve l opment teams and large , complex systems. Thi s results in 

making unnecessary changes to the sys tem that might and o ft en 

does res ult in compromising syst em integrity . Because changes In 

software cannot be prevented e ntirely, specifications must be 

flexible enough t o anticipate and accommodate change (Ghezzi, 

1991, p. 65; Pressman, 1997 , p. 288). There will always be 

info rmati o n that is not known beforehand that will only become 

known during the process of development. However, inco mpletenes s 

can be reduced wi th more effective communi cat ion. Much o f the 

information that needs to be known before development starts, is 

avail able (P ressman, 1997 , pp. 104 - 106). Developers just have 

t o find it using good communication practices. This will lead to 

more complete and better quality s pecifica tions and better 

systems. Changes due t o bad communications can be greatly 

reduced, which wi ll have an impact o n sys tem stability. These 

changes are not just limited to user requirement specifications, 

but also involve spec ificatio ns generated during other phases of 

development. 

3.2. What is needed 

What is needed is a do cumentation and representation medium that 

makes problem and development information more accessible, 

comprehensible and stimulates good communication. 

4. The software engineering process has a non-linear structure 

43 


 
 
 



Non-linear systems are systems that are c haracterised by chaotic 

processes, involving feedback. In feedback systems, small c hanges 

in initial conditions lead to s ignifi c ant differences in ultimate 

outcomes . Non-linear systems are also c haracterised by a high 

degree of component or sUb -system interdependence . Change in any 

indiv idua l factor h as an effect on the system as a wh o le (Ol son, 

1993 , p.35). 

Chaotic systems generally share th e following features: 

• 	 Area s of order - areas o f well-defined structure, order and 

pat t ern ; 

• 	 Areas o f disorder - the boundary between o ne area of order and 

another is usually disorderly; 

• 	 Self similarity - the whole and the parts o f the who l e l ook 

the same ; for instance in design, the layer ing of abstract 

data type s , designing and coding are st ructurall y the same ; 

• 	 Self dissimilarity - areas of orde r can also differ, f or 

example an a l ys is (taking apart) and design or synthesis 

(pu tting together) ; 

• 	 Response to changes - complex systems are ve ry sens itive to 

c h ange and because thi s process i s not linear, changes have 

unpredic table resu lt s (Olson, 1993 , p. 55). 

Software engineer ing i s such a f eedback , chaoti c problem sol v ing 

process from beginning to end. There is constant feedback during 

all the phases of the so ft ware engineering process. Thi s makes 

software engineering component s interdependent. Thi s 

interdependence i s not only true for compo nent s o f sys tems be ing 

developed, but als o f or the components o f the sof tware 

engineering process , like the different software engineering 

phases, people and other systems involved. Int erdependence in 

software engineering is evident from observing people's 

dependence on communicatio n. 

44 


 
 
 



The correlation between well-defined requirements and project 

success, has led many people to believe that requirements 

gathering is the most significant factor in the success of 

software engineering (McConnell, 1996, p. 236). Gathering 

requirements is a difficult activity because interpretations 

vary. The process is dependent on feedback from sources 

(customer, developer) that are constantly changing. Both the 

developer and customer adjust their understanding according to 

each other's efforts (Pressman, 1997, pp. 272 - 278). To strive 

for ordered development, feedback-loops must be kept as short as 

possible during development. If customers can only give feedback 

on the completed system, the feedback-loops in development will 

be very long and the process will be too chaotic to be 

successful. The result will therefore not be what the customer 

wants or needs. However, when customers are closely involved in 

the development process - in other words when constant 

interaction between developer and customer takes place ­

feedback-loops will be shorter and development will be more 

orderly and successful. If the user is kept up to date, 

development remaino oynehroniccd with the user's knowledge and 

requirements (Olson, 1993, p. 27). This emphasises the utmost 

importance of effective communication during the software 

engineering process. Communication of this nature also occurs 

between developers throughout the development process and the 

same rules, as was mentioned above between developers and 

customers, apply. 

4.1. What is needed 

Because of the non-linear structure of the software engineering 

process, it has to be accepted that change is an inherent part of 

the process and should be accommodated. However, as mentioned 

before, effective communication and working flexibility can solve 

45 


 
 
 



many issues relating to problems associated with non-linear 

systems. 

5. Software engineering is a multi-disciplinary process 

Software engineering consists of a variety of components. These 

components can be loosely grouped as: software, management, 

business and people . These components are all fie lds of study in 

well-established scientific disciplines (Boehm, 2000, p. 31). 

Software engineering is a rela tively new science compared to more 

established scientific disciplines like physics and engineering. 

Software engineering is very much influenced by the scientific 

fields it involves. All these influences give the software 

engineering process a multi-disciplinary nature. This multi­

disciplinary influence gives sof tware engineering a more complete 

perspective to problem solving (Pfl eeger, 1999, p. 32). This is 

necessary, because large-scale systems must be perceived from a 

multi-disciplinary perspective . However, the disadvantage of this 

multi-disciplinary infl uence is that people in different 

disciplines do not communicate effectively, because different 

disciplines, and therefore the people involved, are isolated 

(Longstaff, 2000, p . 44) . 

The influences on software engineering that took place over the 

past four decades mainly came from the so - called hard sciences 

like physics, chemistry, engineering and mathematics . This 

resulted in a situation where software was, and to a great ext en t 

still is, regarded as an engineered product rather than a human 

product derived from intellectual content in a social setting 

(Leveson, 1997, p. 130). As for the future, the so-called so ft 

sciences, including such diverse fields as psychology, neuro­

physiology, sociology, philosophy and economics, wil l have a 

major impact on information technology. In fact, this impact 

promises to be much greater than that of the hard sciences. 

46 


 
 
 



However, information technology will not just be influenced by 

all the mentioned disciplines, but in turn it will influence them 

as well. The influence of information technology on the human 

sciences, in turn, also promises to be greater than on the hard 

sciences. 

Natural existing systems, like genetic systems and the 

evolutionary process, also have an impact on computing. In the 

area of evolving systems, of which neural networks and fuzzy 

systems are part, genetic programming and genetic algorithms have 

come onto the scene. These systems employ the principles of 

reproduction and mutatio n where many individual programs or 

potential solutions reproduce and mutate or die in striving for 

survival of the fittest solution (Boehm, 2000, p. 31). 

To illustrate the extreme diversity of the software engineering 

field even further, software engineering is at the same time a 

science and an art. 

Software engineering is first o f all a scientific discipline. It 

is a problem solving discipline that has a definite structured 

process and produces standardised, quantifiable, ob jective 

results (Shaw, 19 96 , pp. 10 - 12). 

On the other hand, software engineering is also an art (Glass, 

1995, p. 92). The reason for this is that the complexity o f the 

systems to be designed often transcends any detailed analysis and 

specification. Even with a completely specified system, it may 

not operate the way a person thought it would, especially if it 

invo lves user interaction. Intuition plays an important role 

because often, what "feels right" really is the best solution, 

even though it might not follow the rules of convention. 

Experimental studies support this in so far as any creative 

activity involves an opportunistic mental process (Ghezzi, 199 1 , 

47 


 
 
 



p. 518). The solution to a problem is almost never a simple 

linear progression from the original requirements. The problem 

solving process follows a recursive pattern between analysis and 

design, wherein analysis and design are completely dependent on 

each other. Feedback is used to integrate these two activities 

into a functional whole and thereby used to evaluate and modify 

(Capra, 199 7 , p. 127). Because this is a creative process and 

therefore very subjective to each individual, good communication 

is essential. 

These scientific and artistic aspects are interdependent. In 

developing a system as a solution to a problem or requirements, 

the software engineer works simultaneously as a scientist and an 

artist. Software engineering also has another uniqueness in its 

diversity. Most of the time the problem to solve is in another 

domain with which the developer is not necessarily familiar. Very 

often this other domain is another field of study or even another 

discipline as diverse as accounting, physics or psychology etc. 

5.1. Phases in the software engineering process 

The application of the software engineering process involves 

"achieving a fit between the people, the discipline, the problem 

and the organization" (Olson, 1993, p. 54). Apart from this, the 

software engineer must be able to adapt to the fastest evolving 

industry in the world. In addition to developing and maintaining 

applications, the software engineer must also keep abreast of new 

and changing technology. This means that a software engineer is 

obligated to do ongoing research. This in effect gives software 

engineering a development, as well as research characteristic, 

rather than just a development one. 

The software engineering process consists of different phases 

with a different focus on problem solving in each phase. Although 

48 


 
 
 



the different dimensions and phases are essential in making the 

software engineering process manageable, what happens betwe en the 

different phases and dimensions are just as important as the 

phases and dimensi o ns themselves. The bridging o f these phases 

and dimensions can only be accomplished through effective 

communication. 

5.1.1. Strategic phase 

Software engineering is generally part of a larger process a nd 

needs to be treated as such. The larger process is a discipline 

called systems engineering. Systems engineering f ocuses on a 

larger system, r a ther than just the software system. In fact, the 

software system is a component of this larger system. Systems 

engineering emphasises the system as a whole and the 

relationships between subsystems as the components of this larger 

system, rather than focusing o n isolating the components of the 

system or subsystems (Pressman, 1997, pp. 234, 2 35 ) . 

Though the strategic phase is no t directly involved in 

development, it is very important because some critical errors 

can be eliminated during the strategic phase. "Many of the 

critical insights in software engineering is not code-focused, 

but strategic and philosophical" (McConnell, 1996 p. xvi). 

The strategic phase starts with identifying and prioritising all 

variables that are relevant to the problem situation. Information 

regarding these variables is collected. Typica l variables involve 

the existing system to be replaced or changed, its integration 

with other systems and its users; economical and management 

issues; organisational philosophies, scope, risk and resources 

(Boehm, 2000, pp. 114 - 11 6) . Brainstorming plays an important 

role in this phase. The strategic phase is mainly business driven 

and done by proJect managers, business analysts and systems 

49 

 
 
 



analysts. System analysts also take part in the development 

phase. Initial and global specifications are defined on the 

grounds of the strategic analysis of the problem domain and user 

requirements undertaken. An initial requirements specification is 

produced. Using the initial requirements, a number of solutions 

are proposed. Scenario planning and feasibility studies are 

conducted, tested and refined for each solution and in accordance 

with the user, the best solution is chosen (Pfleeger, 1999, pp. 

36, 37). An estimation of the cost of development is done and 

presented to the customer. If the customer accepts, planning for 

the software engineering process is done by determining what the 

functions of the system to be developed is in broad terms. A high 

level or strategic design is done for the solution including 

hardware, software and people. Using this information, goals and 

strategies to meet these goals are set. On these grounds, 

development scheduling, resource planning and allocating, as well 

as risk assessment is done. The important decisions of what 

methodology and technology to use, are also made during this 

phase. The development phase can be defined as an implementation 

of the strategic phase. 

5.1.2. Development phase 

In the development phase of the software engineering process, 

development is done on the software component of the high level 

design in the strategic phase. Although development is done on 

the software component, it is not isolated from other components 

of the total solution, namely people, hardware, documentation and 

the problem domain (Pressman, 1997, p. 232). Using analysis and 

design activities, step-wise refinement and modeling of the 

system is done until the system is implemented or when 

maintenance is done successfully. 

50 


 
 
 



The first step in the deve lopment phase is t o flesh out the 

initial requirement spec ification with detail (Pressman, 1997 , 

pp . 272 - 278) . Where the initial requirement specification were 

set up by management personnel in the customer o rganization, the 

detailed requirements must be gathered from operational personnel 

who are working in the problem-domain and who will be working 

with the new system. Proto typing, animation, natural language 

paraphrasing and CASE too ls can be used t o refine the 

requirements specification (Loucopoulos, 1995, pp. 1 31 - 1 36 ). 

The development phase has logical and physical designs. Prob lem 

specific logical designs are still abstract, but less than 

strategic designs. The focus is on the logic o f the problem and 

on the solution of the software system. This is an abstraction 

level that states the solution in problem-domain specific terms. 

Implementation specific logical designs are still abstract, but 

less than problem spec ific logical designs with an abstraction 

leve l that states the solution in implementation-specific l ogical 

terms. This lower level logica l design models the system in terms 

of what should technically be done, but not how it should be 

done. Physical designs focus on how the system should be 

constructed physically and tec hnically through coding and using 

testing as feedback mechanism for coding. Apart from feedback 

rece ived from users, the compiler, that generates executable 

portions of code, also plays an impo rtant feedback role in the 

physical design. 

5.1.3. Implementation phase 

The implementation phase involves implementing the system in the 

problem-domain, doing testing with problem-domain specific data, 

training users in the use o f the system and offering system 

support where small alterations are made to fine-tune the system. 

51 


 
 
 



5.1.4. Maintenance phase 

Maintenance involves the software development life-cycle for 

existing systems. Maintenance involves making changes to the 

developed system because of changes in requirements 

specifications and program errors (Pressman, 1997, p. 32). 

Maintenance usually takes place on isolated portions of a system. 

Because system components are interdependent, making changes to 

isolated parts can have negative effects on the rest of the 

system. Developers, other than the original developers, also, 

more often than not, do maintenance on the system, which means 

that they do not have an in-depth knowledge of the system. It 

must be accepted, however, that specifications change and that 

changes must be made accordingly. However, it happens too often 

that maintenance is done for making changes as a result of bad or 

misinterpreted requirement specifications. This whole maintenance 

problem has the effect that generally up to eighty percent of 

development time is spent on maintenance (Ford, 1994, pp. 7, 

135). This situation can largely be avoided by the effective 

communication of user and development requirement specifications. 

In the maintenance phase, user support and configuration 

management is also done (Mazza, 1996, pp. 256, 257, 365). 

5.2. 	 Problem solving activities in the software engineering 

process 

Analysis and design activities, in one form or another, are 

present in all the phases of the software engineering process. 

Analysis and design are integrated and dependent on each other 

and forms an iterative process. Apart from building a solution 

through design, the result of the design process is also used as 

a feedback mechanism to verify or disprove the analyst/s 

52 

 
 
 



understanding of the problem or domain. This interactive feedback 

mechanism allows a developer to handle complexity that is not 

possible to conceptualise through analysis alone. This feedback 

process can be seen as a form of communication. The analysis and 

design process has both a top-down and bottom-up structure and 

looks at the system from both a high-level and low-level 

perspective. It is also a heuristic, non-linear process that 

involves some trial and error and experimentation (Capra, 1997, 

p. 127). This experimentation also holds true for methodology. 

Using multiple approaches enables the developer to choose and use 

the most suitable approach for a specific situation (McConnell, 

1993, p. 163). 

The objective of analysis is to investigate a problem in a 

domain. The analyst strives firstly to discover the essence of 

the problem by collecting data. Data is collected by interviewing 

users, reading documentation and observing users at work with the 

current system in the problem-domain. The data is then processed 

and analysed by the analyst to form an understanding of the 

problem that is to be used in design (Pressman, 1997, pp. 278 ­

284) . 

With the understanding that was reached during analysis about the 

problem, a design of a possible solution to the problem is made. 

This design depends on what it is needed for. For example, 

designs in the strategic, development or implementation phases 

range from very abstract designs with a focus on system 

integration, to less abstract designs with a focus on the 

problem, to little or no abstraction with a focus on coding. A 

design, apart from leading to a solution, also reflects the 

developer's understanding of the problem and might stimulate 

further analysis. 

5.3. What is needed 

53 

 
 
 



As described, there are many different disciplines , phases, 

tasks, act i vities and processes involved in the software 

engineering process. This multi-perspective influence stimulat es 

creat ivity but also involves a need f or good communication. What 

is needed is a medium to accommodate and integrate this variety. 

6. Software engineering is a human-orientated process 

Software engineering involves intellectual content in order to 

deve lop a system to be utilised by humans. 

6.1. Software and the human factor 

Software is based on thinking. In some ways, the computer and the 

software are strongly related to the human mind and thought 

processes. Software engineering has in a way similar goals and 

limitations to that of psychology. Just as psychology is a study 

of the soul, so ftware engineering is ultimately about 

understanding other people's thoughts. "Software comes directly 

fr om the thoughts of the human soul. The best software often 

takes advantage of the creativity of the soul. Furthermore, it 

wi ll forever be doomed to the psycho logical makeup of its 

crea tor" (Wood , 1998). 

Because software is based on intellectual content, software 

systems also have a logi cal and social, rather than a physica l 

character (Pfleeger, 1999, pp . 33, 34). A set of instructions is 

used to cons truct a software system. This set of instructions can 

be seen as a vocabulary, also cal l ed a programming language. The 

software engineer is in fact communicating a solution to a 

problem to a compu ter via a programming language. A computer can 

54 


 
 
 



respond to any vocabulary. The computer's vocabulary is, however, 

subject to human limitations. 

6.2. Software engineering in general 

Software engineering is a problem so lving activity and software 

engineering techniques and tools are used to assist humans in 

this activity. Problem solving is chaotic, involving feedback and 

very soon, while busy solving the problem, "people loose track of 

the distinction between problem and solution. The two together 

become a new situation which is more complex than the original 

situation" (Olson, 1993 , p. 55). To accommodate this evolving, 

complex process, multiple problem s o l v ing approaches have to be 

incorporated for flexibility with the emphasis on user­

involvement. This aspect of problem solving is very important. In 

his book Am I clever or am I stupid, Neethling (1996), the 

creativity expert, starts by acknowledging the fact that people 

have different mind-orientations, which refers to their different 

approaches to problem solving. Neethling (1996), places the 

emphasis on the importance of accommodating, understanding and 

integrating these different mind-orientations in creative, 

collaborative problem solving. 

Software engineering, being a problem solving activity, involv es 

learning. The whole learning process, however, is an example of a 

non-linear system . An individual's understanding of the system 

evolves as learning progresses. "Because people are learning 

creatures and because learning involves feedback, it can safely 

be said that every human endeavor is non-linear in nature" 

(Olson, 199 3 , p. 171). In light of this, software engineering 

must be seen as a human orientated activity - "Our art is 

abstract, but has a profound emotional and social effect on our 

audience" (Lanier, 1997, p. 56). 

55 

 
 
 



Therefore, it makes sense that so ftware engineering is packed 

with contrasts. Not only does it invo l ve a variety of 

disciplines, as previously mentioned, but it also involves both 

high and l ow level cognitive processes. The high level cognitive 

processes include high-level problem solving and linguistic 

skills, which in turn invo lve concurrent processing of lower 

level cognitive tasks, like analysis and design with feedback. 

Another se t of contrasts invol ve s outwardly focused activities, 

like communication and the study of people and their requirements 

on the one hand, and inward, private activities like programming 

on the o ther hand (McConnell, 1993, p. 7 56). These contrasting 

situations cause many communication problems. 

6.3. Purpose of software engineering 

Everything in the software engineering process revolves around 

the user's problem and determining what the user's requirements 

are (Winograd, 1995, p. 71). Doing this, however, is not that 

easy because of human nature. Where humans are invo l ved , there 

are always changes of mind taking place. Therefo re, change is an 

inevitability that has to be catered for and the software 

engineering process has to be flexible enough to accommodate it. 

"This, however, is not a substitute for good communication, but 

an anticipation of change" (Roth, 1994, p. 163 ) . 

Taking change into account, the most challenging part of software 

engineering is conceptualising the problem. If this is done well, 

success is virtually guaranteed. This is why user invo lvement in 

the software engineering process is so important. Apart from 

satisfying user requirements, the resulting system must be easy 

to use, efficient, maintainable, portable and flexible (Olson, 

1993, p. 48 ) 

56 


 
 
 



6.4. People as factors in the software engineering process 

The software engineering process takes place within certain 

environments. Everyone of these environments has a culture that 

is specific and unique to it (Star, 1995, p. 113). Apart from an 

individual's psychological perspective, the relationships between 

individuals in an environment create a culture that impacts 

greatly on development. This is reflected in the software being 

developed. 

The general type of personality profiles of the members of a 

development team, must also be considered for the sake of better 

coordination and communication Neethling (1996). Whereas managers 

have an outward focus towards relationships, people and things, 

developers are inwardly focused towards their own ideas and the 

need for stimulation. Developers are also less formal in their 

methods of working than managers. 

In terms of problem solving, managers tend to have a holistic 

view of matters. Developers on the other hand, focus more 

narrowly on smaller portions and do detailed analysis (McConnell, 

1996, p. 240). If this difference in perspectives is left 

uncoordinated, it can lead to serious communication problems that 

might have an impact on the quality of the system being 

developed. 

6.5. What is needed 

When considering the influence that the human factor has In 

software engineering, combined with the knowledge of how 

developers' personalities and perspectives generally differ from 

those of managers and customers, what is needed is a medium that 

accommodates these factors for the purpose of better coordination 

and communication. 

57 

 
 
 



7. Software engineering is a communication process 

7.1. Communication defined 

A critical success factor in the software engineering process is 

the efficient communication so that everyone can reach a common 

under s tanding of what is involved. Communication is effective 

when the receiver of a message understands it as it is intended. 

Communication is defined in literature as follows: 

"Communicati on relies upon the capacity of members t o project 

themselves imaginatively into the standpoint of others in order 

to comprehend the dimensions of the situation as a whole in terms 

of possibilities and ac tualitie s " (Langsdorf, 1995, p. 144). 

" Communicati on is the art in which s oc ial imagination allows one 

to take different perspectives of the same s itua tion" 

(Langsdor f, 1995, p. 1 48) . "Communication is a n o ngoing process 

that leads to the making of a linguistic produc t on the one hand 

and creative doing on the other" (Langsdorf, 1995, p. 204) 

Taking a ll these definitions into a ccount, the essence of 

communication is that it must lead t o understanding. 

Commun i c ation is also a non-linear process and part o f the 

ongo ing process of action and reflection. In soft ware engineering 

terms communication also invo lves analys is and design. 

7.2. Software engineering and communication 

Software engineering is in essence a communication process. 

According to acclaimed computer scientist and virtual realit y 

" guru" Jaron Lanier: "Information science [= software eng ineering 

- HC] will continue to reveal the unsuspected potential in 

relationships between human beings " (Lanier, 1997, p. 56). People 

58 


 
 
 



are in effect communicating with a non-human intelligence, which 

is a machine, and we are using programming languages to do so 

(Pressman, 1993, p. 19). "Howeve r, the concepts need t o be 

examined in more than a machine context. What is needed is to 

l ook past the machines t o the communication between people" 

(Summit, 1995, p. 114) . Therefore, software engineering must 

primarily be seen as communicating with people and only on a 

secondary level with the computer. "When we treat computers as no 

more than conduits between human imaginations, grand vistas open" 

(Lanier, 1997, p. 56). What must be taken into account, however, 

is that although all forms of communication in software 

engineering are in essence between people, it also involves 

interaction between humans and machines; people (be they 

developers or customers) and the problem-domain; people and the 

problem at hand and last ly people and information. 

7.3. Background communication problems 

Not only is communication critical to the software engineering 

process and ve ry often the source of problems, but it also has a 

powerful effect on the world surrounding software and the 

software engineering process. 

There are harmful perceptions o f the world of software that 

influence software engineering considerably. These perceptions 

that are created and communicated are: 

• 	 That computers, rather than people, should be emphasised 

(Hayne, 1996). This perception exists because of people/s lack 

of knowledge about computers and the erroneous portrayal of a 

computer's abi l ities by the media and art world. 

59 


 
 
 



• 	 The business perception that something must be produced as 

fast as possible. Everyone agrees that good software 

engineering practices and communication are essential (Boehm, 

2000, p. 28), However, it is generally more important to 

business people to have a working product ready as soon as 

possible, so that it can be sold. Rapid development tools are 

therefore popular and they are very powerful in order to 

produce applications quickly. However, the quality of these 

products is often not so good (Boehm, 2000, pp. 29, 32). 

• 	 People are made to believe that technology solves problems 

(Boehm, 2000, p. 31). In reality, what is needed is sound 

software engineering principles geared towards solving the 

customer's problem. There should be less emphasis on technical 

aspects. The perspective of software engineering should be 

geared more towards the involvement of people and the 

relationships between them, since this is the most critical 

element in software engineering (Winograd, 1995, p. 68). 

The bottom line is that people, especially customers who pay to 

have their requirements met, should be given honest, realistic 

expectations (McConnell, 1996, p. 243). 

The communication structure and attitude in an organisation form 

another obstacle to the proper flow and use of information and 

knowledge. Good communication internally, as well as externally 

to users, provides a solution to most of these problems (Hoc, 

1990, p. 263). Communicating well with users is especially 

important because it is the starting point of and pivotal to the 

development of any system. If any misunderstandings can be 

avoided or resolved early in the process, success is a near 

certainty. Involving customers in the development process 

enhances vital communication that results in better understanding 

and cooperation. In fact, in 1994 the standish Group concluded 

60 


 
 
 



that user involvement is the most important factor in project 

success (McConnell, 1996, p. 236). "Software products are used or 

monitored by humans and the way that software is designed to 

interact with humans is a critical factor in whether the software 

i s useful or not usable by them" (Leveson, 1997, p. 130). 

7.4. People involved in the software engineering process 

It is important to remember that people with different 

professional backgrounds, knowledge, perceptions and 

personalit ies are grouped together in the software engineering 

process and must therefore communicate with each other (Burgoon, 

1994, p. 101). 

When a single developer works on a project, communication is 

limited to interaction with the user. In this case communication 

is relatively simple and the emphasis is placed on development 

activities. With a team of developers, interaction becomes a 

weighty factor. When different teams are working together, good 

communication becomes a critical success factor. Not only are 

there many people invo l ved, but also, inter-team interaction 

takes p lace through intermediaries, which results in indirect 

lines of communication. Communication is now no longer a one­

dimensional process with one line o f interaction between two 

people, but a multi-dimensional process that grows in complexity 

relative to the number of people involved, as well as to the 

number of indirect communication lines (McCo nnell, 1996, p. 28) 

7.4. 1 . Project managers 

Project managers manage a project throughout the software 

engineering process. Software, however, cannot be managed 

61 

 
 
 



entirely in a conventional way because of its nature and the 

complexities involved. 

A project manager is involved in project planning and monitoring 

as well as managing the development team efficiently, which has 

much to do with assigning tasks to people that suit their skills 

set best (Ghezzi, 1991, p. 13). To further coordinate the 

cooperation of people in their assigned tasks as a team, the 

project manager needs to coordinate good clear communication 

between team members. This is important because members will 

engage in more informal communication that is not only very 

important in software development, but is characteristic of 

developers. If possible, a team must consist of the same people 

because "cohesion results in better communication" (McConnell, 

1996, p. 288). Business analysts are only involved in the 

strategic phase and together with project managers, their 

activities are business-driven. 

7.4.2. Developers 

Development teams consist first of all of system analysts and 

programmers and often there is no clear distinction between the 

two roles. Therefore, a relatively new position called analyst 

programmer was created. Apart from these members, graphic 

artists, language specialists, interface designers, usability 

engineers and database administrators might also be involved. 

Team members often have different beliefs and perspectives on 

what should be done and how it should be done (Vatcharaporn, 

1994, p. 101). However, having people with different viewpoints 

is not problematic. It is actually quite useful because this way 

the problem and its solution are pursued from various angles 

resulting in flexible, more creative solutions. By coordinating, 

and thereby integrating these views, everyone can have access to 

this information. This is important because members of a 

62 

 
 
 



development t eam are dependent on one another and therefore need 

to wor k t owards the same goal (McConnell , 1996, p. 286). 

Deve lope rs also specialise in specific areas like r esearch, 

technica l programming and applications programming. Spec ialist 

areas c an further be d i vided into specif i c techno l og i es li ke 

back-end, midd l e- tier and front - end techno l ogi es . 

Conven tiona l methods of communicating are essential for high­

leve l routine activities like high - l evel coordinating and 

planning . It is however less effec tive when there exists much 

uncertainty . This c har acteri ses software engineering a t large , 

because very often there is muc h uncerta int y and confusion with 

rega rds t o user requirements and perceptions . A real danger lies 

in the tendency of developers to "treat requirements as being 

explicit and complete rather than as examples o f a more general 

n eed " (Olson, 1993, p . 49). Deve l opers communicate valuabl e 

information in much the same way as they do development - in an 

informal, unstructured and non-linear way . "I nformal 

communication is needed here f or coordina tion , but problemat i c 

because of the s ize of teams and projects " . (Kraut, 1995, p . 70 ) 

7.4.3. Customers or users 

The cus tomer o r user requires a solution to a prob l e m and the 

sof t ware engineering team has to provide the cor r ect so l ut i o n. 

The customer measures progress by being kept up to date with 

deve l opment proceedings . Users are also often used to work wi th 

finished part s of a sys tem during deve lopment. Doing t hi s , the 

user can give feedback o n usability and o n whether the system 

meets requi remen ts (Olson , 1993, p . 27) . 

7.5. What is needed 

63 

 
 
 



All the people involved in the software engineering process have 

to come to a common understanding of what a system solution must 

be like. This can only be achieved through effective 

communication with all parties' interests and perceptions taken 

into account. What is needed is for development information to be 

in a format that promotes effective communication. 

8. Conclusion 

This chapter aimed to emphasise the critical importance of people 

and the interaction between them in the software engineering 

process. Communication envelops the software engineering process 

and also filters through every aspect of it. Most of the problems 

associated with the characteristics of the software engineering 

process can be solved by improved communication. Apart from 

direct person-to-person communication, communication also takes 

place through documentation. A medium for documentation is 

necessary that accommodates effective communication of 

structured, unstructured and dynamic information. It must also 

accommodate broader communication bandwidth as far as media 

presentation is concerned. 

This chapter focussed on the general characteristics of software 

and software engineering. The next two chapters will focus on the 

functional aspects of software engineering in more depth. 

64 


 
 
 



Chapter 4 

Documentation in the software engineering process and the 
processes it involves 

1 . Introduction 

Software engineering, like all other forms of problem solving, 

involves information processing to a great extent. Analysing, 

defining, internalising information to become knowledge, 

communicating, documenting and coding are all information 

processing activities that take place during the software 

engineering process . Whereas the previous chapter focused on the 

characteristics in general, this chapter and the next will focus 

on the functional aspects of software engineering in more depth. 

This chapter will emphasise documentation and the information 

processing behind it as a vital part of the software engineering 

process. The following aspects will be covered: 

• 	 Fundamentals of human information processing and 

communication; 

• 	 What must be done in the software engineering process; 

• 	 Why documentation is needed; 

• 	 Problems in the software engineering process; 

• 	 What is needed in the software engineering process . 

2. 	 Fundamentals of human information processing and 

communication 

Documentation is a product of human information processing. To 

understand the impact and effectiveness of documentation in the 

software engineering process , one has to realise that software 

engineering involves information processing by humans and 

65 

 
 
 


	Front
	CHAPTER 1-3
	Chapter 1
	Chapter 2
	Chapter 3

	Chapter 4-7
	Bibliography

