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ABSTRACT

The South African mining industry has been dominated by experts on stope and
tunnel support design for gold mines in the last 50 years. Little work to date has
been done on the Bushveld Complex Platinum and Chrome Mines. Many questions
still remain to date how to properly design support in a quasi-static environment
using geological characteristics as an indicator and design tool. Many believe
empirical means are best to establish design criteria for the Platinum and Chrome
Mines. The question remains how to go about establishing a sound empirical

approach to generate reliable design criteria.

In the platinum-mining environment poor rockmass support interaction has been
associated with highly jointed and low friction rockmass structures, as well as the fall
out of blocks between support units, where highly persistent vertical jointing is

present.

This thesis will provide a simple approach in analysing existing critical rockmass
parameters and provide information with an empirical validation method based on
Barton’s Rock Tunneling Quality Index, Q, for rockmass conditions found on a

typical South African Platinum mine.
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PLATE DESCRIPTION
L 10 Level Crosscut No. 9-Shaft — Impala Platinum — 640m below surface

PLATE 1 Photo showing typical joint spacing, infilling, joint
roughness (i.e. undulating)

PLATE 2 Pegmatite vein with sympathetic jointing

PLATE 3 Photo showing typical joint spacing, infilling, joint
roughness (i.e. Undulating, planar)

PLATE 4 Photo showing tunnel profile with no support installed

PLATE 5 Dyke intruded with altered infilling, joint roughness
(undulated)

PLATE 6 Hangingwall at wide section, keyblock fallout’s, joint angle
at 70 degrees from the horizontal. Hangingwall supported
with 12mm diameter shepherd crooks, 1,8m long, typical
spaced 1m apart

PLATE 7 Section with relative low angle (i.e. 50 degrees) sympathetic
jointing with Cross-jointing intersection close to a fault plane
Perpendicular discontinuous jointing between main joint
system — Could be related to inherent stresses from fault planes

PLATE 8 Section with relative low angle (i.e. 50 degrees) sympathetic
jointing with Cross-jointing intersection close to a fault plane
Perpendicular discontinuous jointing between main joint
system — Could be related to inherent stresses from fault planes

PLATE 9 Tunnel 4,8m wide at this section

PLATE 10  1,8m long, 12mm diameter, shepherd crooks installed at
the normal 1m spacing. Little jointing is found at this
wide section

PLATE 11 = Tunnel profile, with only eyebolts installed. Again limited
amount of jointing found

PLATE 12 Tunnel profile, with only eyebolts installed. Limited amount
of jointing found

PLATE 13 Joint spacing, infilling and joint roughness (undulating)
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PLATE 14

PLATE 15

PLATE 16

PLATE 17

PLATE 18

PLATE 19
PLATE 20

IL 23 Level Incline No. 14-Shaft — Impala Platinum — 1054m below surface

PLATE 21

PLATE 22

PLATE 23

PLATE 24

PLATE 25
PLATE 26

PLATE 27
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Dyke intersection with sympathetic jointing — undulated /
slickensided jointing

Dyke intersection with sympathetic jointing — undulated /
slickensided jointing

Typical keyblock fall out in dyke from hangingwall with the
tunnel profile adjacent to dyke intersection

Spotted Anorthosite — Signs of stress fracturing

Spotted Anorthosite — Signs of stress fracturing

Set Support — Signs of dripping water

Set Support — Signs of dripping water

Poor photo. However clear intense jointing providing a
highly blocky texture. Typical three joint sets intersecting.
Jointing are however rough undulating. Hangingwall view.
Support installed are 3,0m long, 16mm diameter, shepherd
crooks at a regular 1m spacing

Sidewall view. Joint frequency high resulting slabs. Rough
planar jointing

Poor quality photo. However clearly showing joint angles
at 90 — 70 degrees, rough undulating joint planes. Support
installed are 3,0m long, 16mm diameter, shepherd crooks
at a regular 1m spacing. Hangingwall view

Poor quality photo. However clearly showing joint angles
at 90 — 70 degrees, rough undulating joint planes. Support
installed are 3,0m long, 16mm diameter, shepherd crooks at
a regular 1m spacing. Hangingwall view

Fault plane gouge infilling

Sidewall view. Joint frequency high resulting slabs. Rough
undulating jointing. Blocks interlocking

Sidewall view. Joint frequency high resulting slabs. Rough

undulating jointing. Blocks interlocking
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PLATE 28  Internal angle of friction measured on site at 35 degrees
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TERMINOLOGY
Aperture

Block size

Critical Bond length

Filling
Joint
Joint Set

Joint System

Persistence

Random Joints

Rockbolt
Rock mass

Rockfall

The perpendicular distance between adjacent rock surfaces of a
discontinuity

Rock block dimensions resulting from the intersection of joint
sets and resulting from spacing and orientation of the individual
sets

That minimum bonded length of a particular tendon and grout
combination that develops a pull-out resistance equal to that of
the tensile strength of the tendon

Material that separates the adjacent rock surfaces of a
discontinuity and that is usually weaker than the parent rock.

A break in the rock of a geological origin, not man made, along
which there has been no visible displacement or movement.

A group of joints, which run parallel to each other

If joint sets intersect they form what is called a joint system.
The discontinuity trace length observed in an exposure
Termination in solid rock or at other discontinuities reduces
persistence. Describing the areal extent or size of a discontinuity
within a plane

Joints which do not have the same orientation as the joint sets
observed. They are not visible for long distances, only a couple
of centimeters or perhaps meters

Generic term for all types of inflexible rock reinforcement units,
as well as to the process of rock reinforcement (e.g. Roofbolting)
In-situ rock, composed of small or large pieces of solid rock
limited by discontinuities

Loosening or failure of rock from the rock mass
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Rock reinforcement  The installation of rockbolts, cables or any other type of element
in a rock mass to reinforce and mobilize the inherent strength of
the rock, so that the rock becomes self-supporting. The rock
reinforcement element is installed inside the rock mass, that is, it
forms part of the rock mass

Roughness The inherent surface roughness and waviness relative to the
mean plane of the discontinuity

Seepage Water flow and moisture visible in individual discontinuities or
in the rock mass as a whole

Shotcrete This is a mixture of cement, aggregate and water which is
pumped pneumatically through a nozzle onto walls of an
excavation to form a bonded coherent layer. It may contain
admixtures, additives and fibres or a combination of these to
improve tensile, flexural and shear strength, resistance to
cracking

Tendon Includes the generic “rockbolt”, plus flexible forms such as

“cable anchor”
Wall strength The equivalent compression strength of the rock adjacent to the

surface of a discontinuity
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