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SYNOPSIS

The aim of this study was to propose a nonlinear multiscale principal component
analysis (NLMSPCA) methodology for process monitoring and fault detection based
upon multilevel wavelet decomposition and nonlinear principal component analysis via
an input-training neural network.

Prior to assessing the capabilities of the monitoring scheme on a nonlinear industrial
process, the data is first pre-processed to remove heavy noise and significant spikes
through wavelet thresholding. The thresholded wavelet coefficients are used to
reconstruct the thresholded details and approximations. The significant details and
approximations are used as the inputs for the linear and nonlinear PCA algorithms in
order to construct detail and approximation conformance models. At the same time
non-thresholded details and approximations are reconstructed and combined which are
used in a similar way as that of the thresholded details and approximations to construct
a combined conformance model to take account of noise and outliers. Performance
monitoring charts with non-parametric control limits are then applied to identify the
occurrence of non-conforming operation prior to interrogating differential contribution
plots to help identify the potential source of the fault.

A novel summary display is used to present the information contained in bivariate
graphs in order to facilitate global visualization. Positive results were achieved.
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SINOPSIS

Die hoofdoel van hierdie ondersoek was om In nuwe metode voor te stel vir nie-lineere
multivlak hoofkomponent-analise vir prosesmonitering en foutopsporing. Die beginsel is
gebaseer op multivlak "wavelet"-ontbinding en nie-lineere hoofkomponent-analise deur
middel van In inset-verandering neurale netwerk.

Normale bedryfsdata vanaf In nie-lineere industriele proses word eers vooraf verwerk
om hewige geraas en beduidende uitskietpieke in die data te verwyder. Dit word
gedoen deur eers die data deur middel van "wavelet"-analise te ontbind in detail- en
benaderings- "wavelet"-koeffisiente en dan die "wavelet"-koeffisiente groter as In
sekere limiet uit te filter. Die gefilterde "wavelet"-koeffisiente word dan gebruik vir die
hersamestelling van gefilterde details en benaderings. Die beduidende details en
benaderings word gebruik as insette vir die Iineere en nie-Iineere hoofkomponent-
analise-algoritmes sodat detail- en benadering-konformasiemodelle saamgestel kan
word. Terselfdertyd word ongefilterde details en benaderings herkonstrueer vanaf
ongefilterde detail- en benaderingskoeffisiente wat dan gekombineer word om In
gekombineerde konformasiemodel saam te stel met die hoofdoel om geraas en
uitlopers in nuwe data in ag te neem.

Werkverrigtingsmoniteringsgrafieke met nie-parametriese beheerlimiete word dan
gebruik om die voorkoms van nie-konformerende of abnormale bedryf op te spoor.
Nadere ondersoek mbv differensiele bydrae grafieke word gebruik om te help met die
opsporing van die moontlike oorsaak van die fout.

In Nuwe metode om die inligting in bivariate grafieke in In kompakte en eenvoudiger
wyse voor te stel is gebruik en gee In beter geheelbeeld van die prosesverloop. Die
geskiktheid van die moniteringstelsel is getoets op nuwe data en positiewe resultate is
verkry.

Prosesmonitering; Foutopsporing, Nie-lineere Hoofkomponent-
Analise
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If a tool could do its job
after obeying a command or its own feeling

neither the architects (experts) would require assistants
nor the masters slaves.
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LIST OF DEFINITIONS

Cross-validation - Cross-validation is widely used as an automatic procedure to
choose a smoothing parameter in many statistical settings. The classical cross-
validation method is performed by systematically expelling a data point from the
construction of an estimate, predicting what the removed value would have been and
comparing the prediction with the value of the expelled point.

Covariance matrix - For a given data matrix X with m rows and n columns the
covariance matrix of X is defined as

XTX
cov(X)=--

m-l

This assumes that the columns of X have been 'mean centered', i.e. adjusted to have a
zero mean by subtracting of the original mean of each column.

Correlation matrix - Referring to the definition of covariance matrix, if the columns of
X have been 'autoscaled', i.e. adjusted to zero mean and unit variance by dividing each
column by its standard deviation, the equation for calculating the covariance gives the
correlation matrix of X.

Details - Details, generally known as the wavelet coefficients, are coefficients that
capture the details of the signal lost when moving from an approximation at one scale
to the next coarser scale.

Epochs - One training cycle after which the neural network parameters (weights and
biases) are updated.

FMH - Finite impulse response median hybrid filter (Heinonen and Neuvo, 1987). A
FMH is a median filter which has a pre-processed input from M linear FIR filters. Thus,
the FMH filter output is the median of only M values, which are the outputs of M FIR
filters. FMH filters are nonlinear filters, are most effective when applied to piecewise
constant signals contaminated with white noise, require careful selection of the filter
length, and are limited to off-line use.

Hessian Matrix - For a given data matrix X, the hessian matrix is given by Equation
8.25 (see Chapter 8).

 
 
 



Jacobian Matrix - The jacobian matrix is a matrix that contains the first derivatives of
the network errors with respect to the weights and biases of a neural network and is
given by Equation 8.26 (see Chapter 8).

Loadings - The loadings of a data matrix X containing n variables (columns) with m
samples (rows) each are transformed variable vectors containing information on how
the variables in X relate to each other and are the eigenvectors of the covariance
matrix of X.

Orthonormal - An orthonormal matrix A is a square matrix with the following
properties:

1. IAI= ±1 , where IAI is the determinant of A.

p p

2. I a~ = I a~ = 1 for al i = j .The sum of squares of any row or column is equal to
i;1 j;1

p

3. I aijaik = 0 for all j '* k. The sum of crossproducts of any two columns is equal to
i;1

zero and implies that the coordinate axes, which these two columns represent,

intersect at an angle of 90° .

This implies that AA' = I. If A is orthonormal, A -I = A' where A -I is the inverse of

A.

Orthogonal- Referring to the definition of a orthonormal matrix, a matrix is orthogonal
if it satisfies Condition 3 of orthonormality but not Conditions 1 and 2.

peA - Principal Component Analysis finds combinations of variables that describe
major trends in a data set. It also summarises the data in terms of a smaller number of
latent variables which are linear combinations of the original variables.

Rotation - Rotation is a method by which a set of data vectors is converted to what is
called simple structure. The object of simple structure is to produce a new set of
vectors, each one involving primarily a subset of the original variables with as little
overlap as possible so that the original variables are divided into groups somewhat

 
 
 



independent of each other. This is, in essence, a method of clustering variables that
might aid in the examination of the structure of a multivariate data set.

Scales - The scales or extend of the time-frequency localisation corresponds to the
wavelet decomposition level and is the contribution in different regions of the time-
frequency space into which a signal is decomposed by varying the scaling parameter of
the scaling function. The scaling functions are smoother versions of the original signal
and the degree of smoothness increases as the scale increases. As the scaling
parameter changes, the wavelet covers different frequency ranges (large values of the
scaling parameter correspond to small frequencies, or large scale; small values of the
scaling parameter correspond to high frequencies, or very fine scale).

Scores - The scores of a data matrix X with n variables (columns) with m samples
(rows) each are vectors containing information on how the samples in X relate to each
other. They are thus individual transformed observations of X and weighted sums of
the original variables.

Threshold - A threshold is certain chosen or calculated limit that has the effect of
zeroing a value, variable or coefficient if it is larger than the specified threshold and
leaving it unchanged if it smaller or equal to the threshold.

Wavelet - The wavelet transform is a tool that cuts up data, functions or operators into
different frequency components, and then studies each component with a resolution
matched to its scale. It is an extension of the Fourier transform that projects the original
signal down onto wavelet basis functions, providing a mapping from the time domain to
the time-scale plane. In general wavelets have the following three properties:
1. Wavelets are building blocks for general functions
2. Wavelets have space-frequency localisation
3. Wavelets have fast transform algorithms

 
 
 



• INTRODUCTION

1. To develop a Nonlinear Multiscale Principal Component Analysis (NLMSPCA)
methodology for process monitoring that is able to effectively detect abnormal
situations during their early development stage and to give a preliminary diagnosis
of the cause of the problem.

2. To develop NLMSPCA monitoring software as a Matlab toolbox that incorporates
the whole NLMSPCA methodology for step-by-step development and easy
application.

3. Application of the NLMSPCA methodology to real nonlinear multivariate chemical
process data so that the performance of the NLMSPCA methodology can be tested
and validated.

In order to develop and explain the NLMSPCA methodology, an overview discussion is
given on the following topics:

During these discussions those features that make these topics so significant for
process monitoring will be highlighted since it is these features that will be combined to
form the final NLMSPCA methodology. A discussion on abnormal situation
management (ASM) is also included in order to emphasize and justify the need and
significance of this work and also to put it into perspective with the global ASM
methodology.

 
 
 



In modern process plants controlled by distributed control systems, the role of
operators has changed from being primarily concerned with control to a broader
supervisory responsibility: analyzing operational data, identifying unusual conditions as
they develop and responding rapidly and effectively by taking corrective actions.

Any action taken on a process operation generally relies on a description of the state of
the operation or events that are occurring. Timely and correct interpretation of data
through improved process monitoring and fault detection will lead to improved quality,
reduced cost, safer operations, and waste reduction (Kosanovich et aI., 1996; Davis et
aI., 1995). However, there are significant obstacles to using data for process monitoring
and fault detection, including the sheer volume of the data, large numbers of variables,
process noise, and the non-stationary tendency of the process data due to process and
monitoring sensor drift.

The role of the operator has become a more challenging task than before because of
the overwhelming volume of data operators have to deal with (Chen et aI., 1999) due to
chemical processes becoming increasingly measurement rich. Large volumes of data
are recorded and are often not used until the process has undergone a significant
upset. Although there may be hundreds of measurements in a typical chemical
process, there are relatively few events generating this information.

High dimensional data analysis is becoming increasingly common as new problems are
placing greater demands on computing resources. With high dimensional data, it is
difficult to understand the underlying structure: it is difficult to "see the wood for the
trees." Additionally, the storage, transmission and processing of high dimensional data
places great demands on systems. This data can be very useful for process monitoring
if the appropriate tools are applied. Hence, it is desirable to reduce the dimensionality
of the data, whilst maintaining as much of its original structure as possible.

Under ideal conditions a process would be stationary, i.e. retain the same mean and
covariance structure over time. However, this is rarely observed over a long period of
time so that most processes will exhibit non-stationary behavior over a long enough
period. The process data may exhibit large amounts of normal systematic variation on

 
 
 



several time scales. This normal process drift is continuous on some time scales and
discontinuous on others while variations due to faults can be relatively minor in
comparison.

When a process suffers an out-of-control situation, the process behavior and normal
process variation can be manifested in a variety of unnatural patterns such as cyclic,
trend, systematic and sudden shift patterns. The root causes of process deviations and
poor process data quality, as shown below are (Ghanim & Jordan, 1996):

 
 
 



Temporary unstable phenomena caused by condition changes (e.g., change of
crude oil or utility system)

The result is that it is normal for the process data to show considerable variation over
time. This variation is often much larger than changes due to process faults. It has also
been observed that the process mean shows more erratic behavior than the process
covariance, i.e. how the process variables co-vary.

 
 
 



Fault detection in the petrochemical industry is routinely done with preset upper and
lower limits for each variable in the petrochemical industry. However, the method
sometimes does not detect faults in a short time, and furthermore, some kinds of faults
are fully missed or are only found after a long delay. Operators usually take a
succession of plant data as a trend (Le. a slow-changing behavior) and unconsciously
neglect fast-changing components as noise. Furthermore, they neglect the fact that
significant information about faults is also contained in high-frequency components of
measured data (Daiguji et aL, 1997). The result is that most of these variations and
especially the root causes of these variations cannot be observed or detected by
current monitoring systems. Therefore, techniques are needed that are able to detect
any form of process variation and systematic changes, and are also able to guide in the
investigation of the root causes of these process deviations.

Without proper pre-treatment, the necessary interpretation is difficult, if not impossible.
Gross data must be eliminated or modified and noise levels reduced. In many cases,
critical information occurs over short duration, and hence, is difficult to detect. Rioul
and Vetterli have described how wavelets can be used to pre-process data in order to
better locate and identify significant events (Davis et aL, 1995). Combining this type of
data pre-processing with multivariate statistics holds great promise for generating
useful insights into the problem of process monitoring, data analysis, and data
interpretation.

A wide variety of data treatment methods and chemometrics techniques are available
for application to process data, however, it is often not apparent what methods will be
useful in meeting monitoring and fault detection goals (Wise, et. aL, 1996). These
applications can be roughly divided between those directed at maintenance of process
instruments, e.g. calibration, and those concerned with maintenance of the process
itself, e.g. statistical process control and fault detection. The focus of this study is on
the latter. For this study principal component analysis (PCA) modeling methods, which
are commonly used for multivariate statistical process control (MSPC), are used and
modified to be robust over long time periods in the presence of process drift while
remaining sensitive to faults.

1.6. Data Analysis and Process Mon~oring

The terms data analysis and process monitoring, as used in the context of process
applications, collectively refer to the interpretation and evaluation of sampled process
measurements. Data analysis as used in this work is intended to describe how data are
manipulated and used together with fundamental understandings to infer the state of a

 
 
 



physical process. Monitoring, on the other hand, refers to the classification of the data
based upon a calibration model of expected behavior so that abnormal situations can
be detected and fault modes isolated. Figure 1.1 is a simplified view of the on-line
process monitoring activity.
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Due to the aspects discussed in the precious sections of this chapter significant
research has been done in recent years in more advanced techniques for multivariate
process performance monitoring because of its increasing strategic importance. This
research delivered promising results and followed the approach of reducing the
dimensionality of the data by summarizing the data in terms of a smaller number of
latent variables which are linear and nonlinear combinations of the original variables
(Bakshi, 1998; Dunia and Quin, 1998; Dunia et aI., 1996; Jia et aI., 1998; Kosanovich
and Piovoso, 1997;. Nounou and Bakshi, 1998; Shao et aI., 1999; Tong and Crowe,
1995; Wang et aI., 1999). The most popular techniques are linear and nonlinear
principal component analysis (LPCA and NLPCA). However, these analyses only
concentrated on one or neither of the aspects of multiscale decomposition and NLPCA.

This study presents the non-linear multiscale principal component analysis
(NLMSPCA) methodology which is an effort to combine the best of these techniques,
with a few adjustments, to detect deterministic changes and extract those features that

 
 
 



represent abnormal operation. It combines the ability of non~linearPCA to decorrelate
the variables by extracting both linear and non-linear relationships with that of wavelet
analysis to extract deterministic features and approximately decorrelate autocorrelated
measurements.

Nonlinear
PCA

Scores

Multiresolution
decomposition

and wavelet
thresholding

Linear
PCA

Scores

The NLMSPCA methodology (- Steps in the design phase; --- Steps in
the implementation phase)

The non-linear multiscale methodology illustrated in Figure 1.2 consists of first
decomposing each variable on a selected family of wavelets. Level dependent
thresholding is then applied to the wavelet coefficients to select a smaller subset of
wavelet coefficients. Thresholding of the coefficients at each scale identifies the region
of the time-frequency space and scale where there is a significant contribution from the
deterministic features of the signal. Details and approximations in the time domain are
reconstructed from the thresholded and nonthresholded wavelet coefficients. The
thresholded and nonthresholded details and approximations are treated separately.
The nonthresholded details and approximations are combined. PCA is performed
independently on the thresholded details and appoximations at each scale and consists
of both linear and non-linear PCA so that the process of extracting linear and non-linear
correlations from the data can be performed separately. The same procedure is
repeated on the combined nonthresholded details and approximations. For both linear
and non-linear PCA an appropriate number of loadings are selected. Applying linear
PCA results in a new set of uncorrelated ordinates. By retaining sufficient data
variability, the underlying non-linear structure is not compromised and only those linear
principal components associated with noise are discarded. Since the structure of the
noise is not known a-priori, cross-validation as discussed in Section 7.10 is generally
applied to assist in validating this.

Non-linear PCA is performed based upon the input-training neural network (IT-net)
approach. Internal network parameters are trained using the Levenberg Marquardt
algorithm while network inputs are updated using an extended backpropagation
algorithm. This combined training approach results in faster convergence than just
using backpropagation alone. After training the IT-net another network is trained that
maps the observed data to the reduced data. An autoassociative network is then

 
 
 



constructed by combining the mapping network and the IT-net. The non-linear principal
component scores are identified from the input layer of the IT-net. The advantage of
this method is that both linear and non-linear correlations can be extracted from the
process data to obtain a more parsimonious description of the original data. This
method results in a conformance and generalized conformance principal component
model.

Performance monitoring charts consisting of SPE and bivariate non-linear principal
component scores plots with data-driven, non-linear control limits are derived to
facilitate the comprehensive and robust occurrence of non-conforming operation.
Detection limits for the scores and model residuals are computed at each scale from
data representing normal operation and are calculated using the non-parametric
technique of kernel density estimation.

The signal is reconstructed to the time domain and the scores and residuals for the
reconstructed signal computed. The actual state of the process is confirmed by
checking whether the signal reconstructed from the coefficients violates the detection
limits of the PCA models. Since the reconstructed signal in the time domain is
generated from the large wavelet coefficients, this approach integrates the task of
monitoring with that of extracting the signal features representing abnormal operation,
with minimum distortion and time delay. Consequently, there is no need for a separate
step for prefiltering the measured variables. Furthermore, since the covariance matrix
for all the scales together contain all the scale dependent information, the final
detection limits to confirm the state of the process also adapt to the nature of the signal
features. NLMSPCA transforms conventional single-scale linear PCA to a nonlinear
multiscale modeling method, which is better suited for modeling data containing
nonlinear contributions that change over time and frequency.

For on-line monitoring, the NLMSPCA algorithm is applied to measurements in a
moving window of dyadic length.

A problem existing control chart displays are faced with is the space they occupy,
limiting the display to only a few graphs at a time. A new approach is presented which
allows the information to be displayed by univariate and bivariate control charts of the
principal component scores and time-series plot of the squared prediction error (SPE),
to be viewed in a compact manner so that the same information contained in multiple
graphs can be viewed on a single display.

This advanced on-line process performance monitoring scheme is illustrated through
application to a nonlinear multivariate chemical process. A complete toolbox has been
created in Matlab to facilitate the design and testing of the advanced process monitoring
scheme.

 
 
 



• ABNORMAL SITUATION MANAGEMENT

Process monitoring and fault detection forms part of a much larger topic called
Abnormal Situation Management (ASM). What follows may be regarded as an
unnecessary long introduction to abnormal situation management. However, it is very
important in the sense that it provides a background and bird's eye view over a subject
for which I find it impossible to determine even estimated boundaries and puts this
research topic of process monitoring in perspective to the global topic of ASM.
Furthermore, it also provides some ideas for further research topics. I'm sure another
ten years of intense research by a vast number of researchers can be spent on the
subject of Abnormal Situation Management. The ASM Solution Anatomy model
accompanying this work was developed from information collected from various
sources (Anderson and Vamsikrishna, 1996; Bullemer and Nimmo, 1998; Cochran and
Bullemer, 1996; Embrey, 1986; Harrold, 1998; Lorenzo, 1991; Musliner and
Krebsbach, 1998; Nimmo, 1995, 1996, 1998a, 1998b; Rothenberg and Nimmo, 1996;
Sticles and Melhem, 1998), including Internet searches, and represents a "generic"
ASM solution.

Abnormal Situations have always challenged operations personnel, and they likely
always will. Abnormal Situation Management is a particular challenge at this point in
history because increased demands for higher efficiency and productivity have
motivated the aggressive application of increasingly complex processes. The
tremendous increases in the sophistication of process control systems through the
development of advanced sensor and control technologies, and highly integrated
approaches to production planning have led to productivity levels only dreamed of by
previous generations of process engineers. The persistent paradox in the domain of
supervisory control is that as automation technology increases in complexity and
sophistication, operations professionals are faced with increasingly complex decisions
in managing abnormal situations. However, the capacity of human operators to deal
with this complexity, and the sophistication of their tools and user support technologies,
has remained essentially unchanged and has not kept pace with the task demands
imposed by abnormal situations. These sensor and control technologies have not
eliminated abnormal situations and will not in the future. Consequently, operations
personnel continue to intervene to correct deviant process conditions. Thus, the focus
of this program is to develop collaborative decision support technologies that will
significantly improve abnormal situation management practices.

Venkat Venkatasubramanian, professor at Purdue University's School of Chemical
Engineering (Lafayette, Ind.), compares chemical plants with people who have a very

 
 
 



complex illness."One or two doctorsare unableto diagnosethe illness.It takes a team of specialists
each looking at the symptoms, each developing an opinion, performing additional tests, and then
conferring \Nithteam members to reach a final condusion." Similar to an ill patient, diagnosing a
complex chemical process requirescombinationsof mathematicalmodels, expert systems, neural
networks,statisticaltechniques,and operationspersonnel,eachvvorkingto independentlydiagnosean
abnormalsituation,\NithfinaldiagnosesdevelopedthroughcooperativeproblemsoMng.

No standard definition of ASM exists. Although individual perceptions of abnormal
situation management vary, there is consensus that "normal" and "abnormal" represent
two distinct modes of operation. Abnormal Situations comprise a range of minor to
major process disruptions or series of disruptions that cause plant operations to deviate
from their normal operating state and in which operations personnel have to intervene
to correct problems with which the control systems cannot cope. The nature of the
abnormal situation may be of minimal or catastrophic consequence. A disturbance may
simply cause a reduction in production; in more serious cases it may endanger human
life.

Furthermore, abnormal operations are more likely during transition events such as
startup and shutdown. Errors in situation assessment can be a source of abnormal
situations, assumptions can direct plant personnel down the wrong diagnostic path and
due to the response times required to correctly deal with a situation the problem may
escalate.

To appreciate the significance of ASM one has to focus on the costs that accumulate
with plant "hiccups," interruptions, unscheduled shutdowns, equipment failures, small
losses of containment and quality problems. It is believed that solving these less
dramatic disturbances potentially could yield a very high payback for companies.
Estimates compiled by the ASM consortium (Harrold, 1998) indicate that elimination of
all abnormal situations in petrochemical plants alone could add 5% to profits.

The goal as explained here represents a long-term goal. The Abnormal Situation
Management approach is not just another attempt to introduce an "expert" artificial

 
 
 



intelligence device. Its success will hinge on its design as an embedded element in
industrial automation system technology-integration is not enough. This long term goal
is to drastically decrease the total costs of preventable process disruptions-saving
industry millions of rands-by developing technologies that will offer better methods for
informing operators, aiding operators during process disruptions, and preventing
process disruptions in the first place.

This system should improve operator performance and offer a new challenge to
operations by having the ability to interact with operations and production goals through
the control system. The system should understand operations and maintenance rather
than individual process variables. It should draw on other management techniques,
such as incident investigation reports and the plant's corporate memory, as sources of
knowledge. Useful design structures from process hazard analysis need to be captured
within the system and used as rules for maintenance and operations activities.

The system should also address the communication issues identified in the site studies
and provide solutions for plantwide communication, from the field to the control room.
The existing industrial automation system technology from a wide selection of suppliers
does not take into account casual users of the system. The same man-machine
interface is provided for all users. The Abnormal Situation Management System should
have the intelligence to recognize a user and provide information suitable for that
person's discipline and knowledge of the industrial automation system.

Research should also address issues such as the impact of using a predictive plant
state estimator on the alarm philosophy and man-machine interface. It should also
incorporate an understanding of process operations and production goals and their
relationship to safety, quality, environmental, and economic conflicts.

A comprehensive approach to the design of the human-machine system interaction is
needed so that operations personnel receive information appropriate to their needs,
while at the same time appropriate members of the operations staff are able to
collaborate to solve the problem as a team. Individual needs vary as a function of a
large number of variables: the current situation, the task being performed, individual
preferences and styles-and others yet to be determined. In order to serve these needs,
the information requirements need to be carefully assessed, not just for the current job
functions present in existing plants, but for the job functions that will evolve as better
decision aids become available and operators receive more support.

Systems must evolve so that the operator is not routinely swamped with information,
aggravated by the user interface, required to use error-prone techniques to enter data,
or exposed to situations in which being misled is even a remote possibility. The system
must completely prevent adverse consequences from happening when the interaction
of individuals predictably leads to misunderstandings, misperceptions, and mistakes. It

 
 
 



must also reduce, by orders of magnitude, the level of what post-incident review teams
always label "human error."

There should be no such thing as a break down in lock-out, tag-out procedures-the
user-machine system interaction model should utterly prevent such things from being
possible. There should never again be coloured text on clashing coloured backgrounds
on operational displays- the user interface development tools should make it very clear
to the developer why such a design is inappropriate. Users should never again have
difficulty in navigating from one display to another, should never again be able to enter
a value for a set point that is outside the controller's capabilities, or ever again perceive
the data from one unit as coming from another. And, looking to the future, decision
support systems must never act like a back-seat driver when what the user needs is a
helpful child-or vice versa.

When an abnormal situation is detected, operations and engineering teams must
dynamically diagnose the root cause and correct the failure whilst trying to continue to
meet the safety, environmental and production goals. At the same time they must track
the underlying chain of events that led to the root cause(s) of the abnormal situation.
As the abnormal situation evolves, some goals may need to be shed (that is, product
quality, throughput, efficiency) if they compete with more critical goals (environmental
or human safety).

The plant personnel should have a clear and up-to-date understanding of the types of
abnormal situations recently experienced by their plants, the identified root cause and
understanding of the incident investigation, and understanding of the correct steps to
resolve this problem. Some plants have a variety of opinions on what was the root
cause and generally lack understanding of the sources of abnormal situations and their
impact on plant productivity.

Another goal is to enhance the ASM initiative to provide ways to detect and correct
human errors before an undesired consequence occurs. Solution components for this
problem are also beginning to emerge, but there is little consensus yet as to how to
apply them. Operator intent recognition can help systems act in task-specific ways.
Task modeling can help online information systems provide relevant (as opposed to
canned) support. Tailored user interface displays can ensure that colour-deficient users
can differentiate key data, users preferring graphs can see lots of graphs, and users
needing quantitative information can see lots of appropriate numbers. And, user-
centered design methodologies can ensure that this whole problem area is addressed
in an empirically rigorous way when the analytically rigorous methods are lacking.

It is not a question of whether al these needs can be achieved, but rather a question of
how long before they are achieved. Most of the technology is already available and just
needs to be utilized and adapted.

 
 
 



A typical chemical plant will have of the order of 1000 readable "points" and a few
hundred writable "points". In addition to PID control loops, industries use distributed
control systems (DCS) to simultaneously control thousands of process variables such
as temperature and pressure and which can be programmed with numerous "alarms"
that alert the human operator when certain constraints are violated (e.g., minimax
values, rate limits). Control systems can be designed, programmed, and tuned to
provide automated control for normal or near-normal operation. The major human role
in this control is to supervise these highly automated systems. This supervisory activity
requires: monitoring plant status; adjusting control parameters; executing pre-planned
operations activities; and detecting, diagnosing, compensating and correcting for
abnormal situations. The operator has a view of the values of all control points, plus
any alarms that have been generated. The actions the operator is allowed to take
include changing set points, manually asserting output values for control points, and
turning on or off advanced control modules. Figure 2.1 gives an illustration of a typical
control approach without abnormal situation management.

Alarms,
Plant State

Plant
State

Chemical
Process

When the process becomes unsafe, safety instrumented systems designed to initiate a
process shutdown, take over. But between normal operation and shutdown, processes
can deviate into abnormal situations lasting a few minutes, or several days. Often
deviations are undetected because automatic control readjusts the process. When an
abnormal situation comes to the operator's attention, the common response is to place

 
 
 



loops in manual, reduce feed and energy streams, and manually attempt to return the
process to a normal (steady) state-all the time searching for the initial cause of the
problem. Frequently, the switch from automatic to manual control only worsens the
situation, and a shutdown follows.

Previous approaches using technologies to assist operations in identifying and
managing abnormal situations evolved large, specialized applications. These
applications compared theoretical process models to real-time plant operations and
generated alerts, recommendations, and predictions. Some success has been
achieved with these solutions, but a lot of "care-and-feeding" is required to keep them
current with ever-changing plant operations. Also, some systems use linear models
that can ignore the nonlinearity and limitations of real equipment, and results in
developing false predictions of equipment or process responses.

Attempts to integrate knowledge-based systems with plant operations have been few in
number and mildly successful, mainly due to the complexities associated with:

• Identifying and implementing models and methods best suited to handle the variety
of complex problems of chemical process plants; and

• Getting all the operations "experts" to agree on what actions to take once the
problem has been identified.

To address the problems associated with process disturbances, several industry
leaders have joined forces with Honeywell to form the Abnormal Situation Management
Consortium with the aid of a National Institute of Science & Technology Advanced
Technology Program (NIST-ATP). Participating in the consortium are: Amoco,
Chevron, Exxon, Mobil, Novacor Chemicals, Shell, Texaco and two software suppliers-
Gensym and Applied Training Resources. This group is the offspring of the Alarm
Management Task Force formed in the late 1980s to address problems associated with
alarm functions in industrial automation systems and to suggest alarm-management
enhancements. That group's work resulted in an important set of new features- defined
and requested by users of the system-being included in the latest software release for
Honeywell's TDC 3000X system, Release 500. The consortium estimates that by
addressing the situations that are directly preventable, the losses attributable to
abnormal situations can be reduced by 64 percent.

 
 
 



If we are to address the problem and prevent incidents and provide tools for operators
to perform more efficiently in abnormal situations we must understand the root causes
of these incidents and the steps that need to be taken to eliminate or prevent
escalation from an abnormal condition to a major catastrophe. The control system
design needs to move from a reactive mode to a predictive mode and a long time
before an alarm is initiated the system must predict the event using the latest state
estimation tools.

The methodology of this research field needs to involve studying plants, reviewing
previous years' history of plant incidents for different plants and sharing "best
management practices". A systematic and statistical review of these incidents, together
with interviews of operations personnel, can identify root causes of incidents, including
problems introduced by today's industrial automation system technology and enabling
technologies and the impact of system integration. Visits to sites also need to include
human factor and personal performance reviews and research into how people and
systems communicate. Today's offering of object-oriented software designs, relational
databases, modular software development and maintenance tools, open
communication standards, and acceptance of pes makes development and
deployment of knowledge-based ASM applications possible, but users still need to
understand what they need and want.

• Human-machine interaction: A comprehensive approach to the design of the
human-machine system interaction is needed so that a single user interface
environment provides operations personnel with information appropriate to their
needs, while at the same time supporting the collaboration of appropriate
members of the operations staff in solving the problem as a team.

• System architecture: To provide accurate, timely support in abnormal
situations, a system architecture needs to be developed composed of multiple
processing modules, data bases and knowledge bases. These various software
modules must communicate their conclusions with each other in real time and
must remain coordinated among themselves and with human operators. Many
past efforts have failed because this problem alone is so challenging.

• System customization: A major practical challenge in collaborative decision
support technologies is configuring their capabilities to the idiosyncratic and
dynamic nature of the plant processes and operations. Aspects of the software
modules will need to be customized with specific knowledge about the

 
 
 



operations, equipment, personnel, and procedures of a specific site. Acceptable
solutions will need to be self-adaptive or easily customized by plant personnel.

The system needs to be developed in a layered architecture based upon an opened
standard, and so to enable it to run on any DCS which supports that standard.

Applications need to work together to determine the current state of the plant, decide
upon the most appropriate goals to pursue, develop plans for pursuing those goals,
and for executing those plans and monitoring the execution process. In addition,
applications need to be responsible for communicating with plant personnel and for
monitoring the Abnormal Situation Management System itself.

Whilst major catastrophes are of concern they are fortunately infrequent and the major
costs can be attributed to loss in production, quality problems, economic and
conversion efficiency, equipment replacement and a collection of environmental issues.

The problems identified as contributing to abnormal situations falls into two major
areas: human performance and performance of the industrial automation system and
associated control equipment.

A lot of inspiration can be found in the excellent work done by Don Lorenzo for the
Chemical Manufacturers Association, Inc. in his work "A Manager's Guide to Reducing
Human Errors Improving Human Performance in the Chemical Industry". In this book
Lorenzo states:

"Historically managers in the CPI have found human errors to be significant factors in
almost every quality problem, production outage, or accidents at their facilities. One
study of 190 accidents in chemical facilities found the top three causes were insufficient
knowledge (34%), procedure errors (24%), and operator errors (16%). A study of
accidents in petrochemical and refining units identified the following causes: equipment
and design failures (41%), operator and maintenance errors (41%), inadequate or
improper procedures (11%), inadequate or improper inspection (5%), and
miscellaneous causes (2%). In systems where a high degree of hardware redundancy
minimizes the consequences of single component failures, human errors may
compromise over 90% of the system failure probability".

Safety groups estimate that human performance has been responsible for 80 percent
of catastrophic incidents. The consortium's study identified several key personnel areas
that hinder effective management of abnormal situations. These include: procedures
not being followed, procedures that are too complex or unusable, lack of knowledge or

 
 
 



understanding, insufficient time to make effective decisions, and "information overload."
In general, these are the results of poor context sensitivity and a lack of effective
communication between the system and the people interacting with it.

Errors in sensor reading and valve positions cause a significant burden on the
operations team. Operators have made poor judgment calls because the automated
system reflects one value and the local traditional instrumentation registered a different
value. The operator will often put trust in the device that is right most of the time
especially if the other has maintenance or historical problems. Often the correlation
between one process value and other variables are significantly complex, a good
engineer may be able to discern that a pressure variable is incorrectly reading low
given that a temperature is currently very high. Poor judgment on the part of the
operator may result in erroneous diagnostics with potential catastrophic consequences.

Often, varied opinions lead to the development of multiple uncoordinated initiatives to
address symptoms of a problem, whilst the root cause has not been correctly identified.
The operations team believes that problems are caused by mechanical failures and the
engineering teams are convinced that equipment failures are due to operational
problems.

A contributing factor that does not raise the profile of this situation, and in some ways
masks the problem, is the lack of measurement. This is especially true of the short
upset, that may affect quality or cause slight loss of production, but which has a
significant effect on net profit. Most large incidents are investigated, but the financial
losses are often not recorded, making it difficult to help see the true cost in loss of
product, quality restrictions, accident and injury expenses, and insurance
reimbursement for damaged equipment or property. Currently only the obvious process
variables are monitored like pressure, flow and temperature. However, there are other
non-process variables that could provide needed diagnostic information such as noise,
smell, real-time video images, infra red cameras for hot spots and many others that
good field operators use every day using their human sensors.

Often escalation is caused by a series of "hidden" multiple failures in different systems.
The skill level of the individual diagnosing and correcting these failures can have a
significant impact on the success or disaster scenario. During a disturbance, when the
highest degree of concentration is crucial, operators are currently faced with high noise
levels and interference from outside sources such as phone calls, people traffic through
the control room, unhelpful observers and lack of access to the control system due to
the heavy traffic generated by alarms.

The largest contributor still remains the problem of time. For example, normal operation
of a polyethylene process is relatively slow, but during abnormal operation a run-away
reaction can cause very fast actions and there is no room for delay or error in
correcting problems.

 
 
 



The Union Carbide's Bhopal Plant accident (Nimmo, 1996) started out as a minor
problem and eventually escalated. The operator was trained and understood the
actions needed to make the plant safe. As he implemented the procedures he soon
discovered that backup systems were not available, cooling systems had been stripped
down for use in other working parts of the plant, the flare stack was under maintenance
and he was not aware of the full extent of what was in commission and was not
available. When things went wrong it was not from the operators' wrong choices, but
from their inability to take the correct action. That incident was based on a series of
unfortunate circumstances and lack of management of change and coordination of

information.

Developing a complete ASM solution requires implementing two parts, or layers as
illustrated in Figure 2.2. The first layer validates incoming data and generates
advisories of what is happening during an abnormal situation. The second layer
predicts where the process is likely to go if current conditions persist. Some ASM
solutions describe "closing-the-Ioop" between the ASM solution and the process. This
is a form of supervisory control, with provision for the operations team to remain part of
the diagnosing and prescribing process. While not all ASM solutions include all pieces
of both layers, most provide the following pieces for constructing the advisory layer.

A control system interface that uses robust, real-time communication standards,
such as OPC (OLE for process control), gateways to proprietary systems, or custom
written application program interfaces, is necessary to obtain information from the
control system about process measurements, valve positions, device status, etc.

Sensor validation to quickly detect sensor malfunctions or failures is critical to the
integrity and acceptance of the ASM solution. For example, "failed" sensor input
signals remain below a minimum value longer than a defined period, while "frozen"
sensor input signals do not exceed the expected noise band for a period of time.

Jack Stout, president of Nexus Engineering (Kingswood, Tex.), explains, "The
advanced diagnostics available in 'smart' transmitters and digital valve controllers is
valuable in validating individual sensors. Many control systems can alarm, based on
these diagnostic errors. ASM solutions differ by requiring sensor validation to include
establishing sensor relationships to produce 'signatures' of equipment module and/or
process unit performance. Informing the operations team that a pump has tripped
because of cavitation, and that an empty vessel caused the cavitation, is a simple
example of ASM sensor validation, alarming, and messaging."

 
 
 



Point retrieval of real and calculated process variable information is important in
developing ASM solutions. Real process variables include temperatures, flows,
pressures, analyzer results, control valve positions, etc. Calculated process variables
include outputs to valves, totalized volumes, on-line material and energy balance
calculations, etc. Combining real and calculated information is critical in developing
performance "signatures".

Message handling and viewing must provide accurate, concise, and timely
information about the current and future state of the process. ASM solution message
complexity can vary from single line text messages to context sensitive help systems,
allowing the operations team to view the appropriate level of detail. Some ASM solution
message handlers automatically "pop" the initial alert on the operator's screen. After
that, navigation buttons for cause-and-effect, details, procedures, and trouble-shooting
are available.

Alarm handling that alerts the operations team of escalating circumstances during an
abnormal situation requires advanced alarm management. Merely generating alarms,
as many control systems do, is inadequate. As processes move through varying
operational states, the operations team must remain focused on the task at hand.
Spending time to work through complex alarm scenarios and then implementing
advanced alarm management techniques will help the operations team to be more
effective during a crisis.

Incident history archives are files of past process performance data. Initially the data
may come from an existing data historian and can be used to playback past situations
(good and bad) for testing the expertise of the ASM solution. Rolling data archives
combine information collected by the point retrieval module and the sensor validation
module into files that allow other modules to work with "smoothed" data.

Custom and generic displays are the operation team's window into the ASM
workings. Custom displays are one-of-a-kind displays created specifically for a
particular part of the process. Generic displays are templates for repetitive process
areas (Le., tank farms) with relevant data mapped into the display based on operator or
event occurrences.

Combined, these pieces form the advisory layer to provide the operations team with
early-warnings of a process' current health. However, the ASM solution requires
additional sophistication to predict where the process is going.

The ASM solution prediction layer should develop equipment and plant signatures
during normal operations and compare these to current operating signatures. Elements
of this layer especially benefit by mixing mathematical models, neural networks, and
statistical techniques to implement a solid ASM predictive layer.

 
 
 



For illustration purposes, the predictive layer consists of two parts: modeling, and
planning and executing.
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ASM problems are so complex that no single mathematical modeling technique is
appropriate for each piece of plant equipment. Applying the appropriate model is easier
when plant equipment is viewed as individual objects. For example, the model most
appropriate for centrifugal pumps may differ from the model chosen for gear pumps.
Developing models in an object-oriented programming environment to match plant
objects, makes assembly and maintenance of the larger, more complex process
models easier.

 
 
 



Control module (measurements, valve outputs, etc.) modeling allows development of
sensor related calculations. For example, a "rate-of-change" calculation may be a more
appropriate model for a temperature measurement than working directly with the
process variable.

Equipment module (pumps, on/off valves, exchangers, headers, etc.) modeling
combines control module models with equipment status to form mixed expression logic
formulas. For example, combining the process variable value of a flowmeter in a
calculation with the on/off status of a pump to determine if a flow rate should be
present, avoids a low flow "nuisance" alarm when the pump is stopped.

Unit modeling combines control and equipment module calculations to form
mathematical models of equipment, such as distillation columns, fluidic catalytic-
crackers, fractionators, waste-heat boilers, and compressors.

The top layer of the anatomy diagram introduces very innovative concepts, especially
for many chemical operations. But, as chemical complexity (and product value)
increases, as quality demands continue to toughen, as pressure to reduce emissions
builds, and as demands to "stay-on-line" echo through chemical operations, innovative
thinking transforms good performing companies into great performing companies.

"Closing-the-Ioop" of an ASM solution requires very specialized functions, such as
state-estimator, goal-setter, planner, executor, communicator and monitoring modules.

State estimator modules can determine the current process state, such as improving,
staying the same, or getting worse, based on information provided from the lower
layers of the anatomy at varying levels of abstraction, by fusing diverse sensor data
and other available information (e.g. prior control moves, known malfunctions, human
observations).

Goal-setter modules gather and maintain information relevant to quality and
production goals established prior to the abnormal situation occurrence. It decides
which of the currently-threatened operational goals should be addressed.

Planner modules develop and recommend recover-plans to address threatened goals
selected by Goal Setter after refining multiple test results from current and historic
knowledge of the process represented in the modeling and advisory layers.

Executor modules close-the-Ioop, monitor success, execute plans, and update other
Abnormal Situation Management System components in progress towards goals.

Communicator modules communicate effectively with multiple plant personnel
including DCS operators and field personnel located outside the control room.

 
 
 



Monitor modules observe the performance of the Abnormal Situation Management
System components and may adjust or adapt the system's behavior in response to
observed performance.
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These functions interact by exchanging information on shared blackboard data
structures. The Plant Reference Model blackboard captures descriptions of the plant at
varying levels of abstraction and from various perspectives, including the plant's
physical layout, the logical processing layout, the operational goals of each component
and the current state and suspected malfunctions. Figure 2.3 shows how the Abnormal
Situation Management System interacts with the existing system.

Abnormal situation management solutions are specialized applications of expert
systems designed to work like the plant's best operator, on their best day, every day.
These systems never get bored, distracted, or take a break; they remember what
happened last week, last month, and last year, and provide accurate, consistent
information, even in the heat of "battle".

One of the first initiatives within the solution proposal should be to provide a knowledge
base of previous incidents. This system should allow the capturing of operating
experience into a form of corporate memory. The learning and information from
experience constitutes a fundamental source of requirements complementing those
articulated by persons and organizations with an interest in the system and traditional

 
 
 



standards and regulations. It is well known that accidents often occur that could have
been prevented by knowledge lurking in the corporate memory but forgotten and not
applied. It is this knowledge that is to be fed back into the design process. The aim
would be to extract this knowledge and apply it into an incident recall module. Once we
have a better monitoring and investigation system we can apply the learning to design,
operations and maintenance. This information could only be of use if the system
understands the context of the operations:

Hence, one of the strengths of solution should be its planning and goal setting ability.
When contemplating ways to improve human performance Lorenzo (Lorenzo, 1991)
states" there are two basic types of errors that managers must address:

(1) Errors whose primary causal factors are individual human characteristics unrelated
to the work situation and

By providing resources necessary to identify and eliminate error-likely situations,
managers can improve the performance shaping factors (PSFs) and dramatically
reduce the frequency of human errors. This strategy Lorenzo calls the work-situation
approach, and it involves the following elements:

• Implementing good human factors engineering of control systems, process
equipment, and the work environment

• Providing ways to detect and correct human errors before an undesired
consequence occurs

 
 
 



Therefore, the solution approach should form an integrated part of the current control
system and have good human factors built into the control system. This will involve a
new way of implementing control schematic diagrams. A style guide and
implementation strategy needs to be developed for the next generation control system.
More attention is recommended in control room design and the integration of different
supplier's equipment. Also, we need to discover what new control screens are required
and which of the more traditional need to be suppressed.

Another key issue is the configuration of the alarm system and the use of colours,
symbols, priorities and how the alarm will be filtered e.g. context sensitive. In the past
little attention was given to the design of the alarm system. Without proper
consideration a process monitoring device is added to the control/monitoring system
and on the surface it is a logical and justifiable action. During normal operating
conditions this device does not cause any conflict, and may be a useful addition to the
operator. However, during an abnormal situation this device is low priority and often
becomes a nuisance to the operator trying to manage priority alarms.

What is required is some form of intelligence to put the alarm in context with the plant
situation, eliminate unnecessary information and forward meaningful information to the
operator and avoid information overload. For example, a temperature of 500 °C is
appropriate under normal operations and any deviation by plus or minus 10 degrees
should be annunciated but during plant shutdown the temperature may vary by new
parameters, hence, the rules associated with the alarm need to change. Some
processes actually cause the temperature to go outside the range of the transmitter
and a new alarm is generated (BAD PV). This message is not very helpful because the
operator now has to assume that the process is operating outside the range of the
transmitter. This message could also mean that the transmitter is not working correctly
and the temperature has not changed. To resolve this problem we need more sensor
diagnostic information and better maintenance tools. The introduction of SMART
Sensors has made a significant contribution to industry and has provided on-line
calibration services and better diagnostics, however, more is required.

Sensors have made a significant contribution to error detection, improved reliability,
and maintainability, however, what is really required is not just raw data but useful plant
information. Measurement devices that are always suspect should be removed as their
contribution may be only negative. When a loop shares different technology every effort
must be made to ensure consistency and common calibration.

If the control system is well designed it will anticipate and prevent many situations from
occurring. However, when the control system cannot maintain control, many plants are
equipped with safety devices to ensure that the plant can be shutdown to a safe state.
It is currently the job of the operations and engineering teams to identify the root cause
of the situation and execute compensatory or corrective action in a timely and efficient

 
 
 



manner. A disturbance may simply cause a reduction in production; in more serious
cases it may endanger human life, hence, the requirement for mechanical relief
systems and automatic shutdown equipment which will always mitigate any failure of
the control and ASM systems.

Training is recognized by most manufacturers as a major consideration in these
situations. However there is not always a good understanding of the impact of poor
training, hence the problems are not always eliminated. Manufacturers find it difficult to
justify high-fidelity simulators or find the time needed for adequate training. Hence,
operators lack confidence, gain experience in only normal operations which can
contribute to difficulty in taking the correct actions within the time constraints imposed
by an abnormal event.

DCSs are not incompatible with problem-based alarming: Indeed, mass balance
analyses, expert systems, and statistical diagnostic techniques are becoming more
widespread, albeit very slowly. What is needed to accelerate this trend is better ways to
combine and aggregate data, better tools for easier, perhaps even automatic,
development of such problem monitors, and higher-level, more comprehensive
representations for plant equipment and processes.

 
 
 



• PROCESS DESCRIPTION

Since every abnormal situation is unique, it is difficult to study abnormal situation
management, and in this case process monitoring, as a single subject. The best way to
approach abnormal situation management is to study the theory and to then address a
specific case. In this study process monitoring, as the first step to abnormal situation
management, will be applied to a single nonlinear process and will lay the foundation
for further investigation and development.

The advanced process monitoring methodology was applied to a real industrial process
in order to evaluate its application capabilities. Due to the proprietary nature of the
industrial example, only a cursory explanation of the industrial process is provided. The
sensitive names of the process have been substituted with imaginary names and only
normalised and standardised data are displayed. The data used, however, are real; the
results of applying the methods are presented and discussed for process monitoring.

For the purpose of investigation a current problem in the steam export system at
Company A was investigated since it contains all the interesting and important aspects
of a typical abnormal situation.

At the time of the investigation Company A was busy building a new plant that would
put a greater demand on the steam export system. The steam distribution system
currently provides in the complete steam demand at Company A. However, with the
new plant this demand will increase substantially. When any situation in the plant
causes a decrease in the steam production, the steam export system won't be able to
supply in the whole steam demand. Selective supply will then need to be applied since
some processes will be more sensitive to a decrease in steam supply. A decrease in
steam supply to the new plant for example will cause it to shut down.

The problem operators are faced with is the high nonlinearity that exists between

steam production and steam distribution. No current accurate model exists that can
relate the steam production to the steam distribution to a specific plant. This has the

 
 
 



effect that the influence of an upset in the steam production on a specific plant cannot
be accurately anticipated in order to take preventative action with the result that an
upset in the steam supply is only discovered when it is too late.

It will be to great advantage if any upset to the steam export system can be anticipated
in advance in order to either take the necessary preventative actions to prevent it, or if
it is not possible, to minimise the effect it would have on the whole system. In order to
do this the cause of the upset needs to be identified as early as possible. The effect of
the upset also needs to be quantified in order to quantify the preventative or impact
minimisation actions.

So the main objective of the Abnormal Situation Management scenario under
investigation would be to minimise any effect on the steam export from Process A.
However, since only the process monitoring part is investigated this will not be possible
yet. It should however be possible to identify the specific abnormal situation before it is
noticed by the current alarm system or operator and identify the root cause of this
abnormal situation in the steam export system. Quantification will also be partly
possible. Only single faults will be investigated. In this study the objective is to confirm
the abnormal situations identified since it was known prior to investigation from the
plant history data.

In order to understand the nonlinearity between steam production and steam
distribution and why it is so difficult to generate a process model or to detect abnormal
variation in the steam production or supply, one needs to look at least at an overview
process description. The steam production and supply form a network throughout the
whole factory. Appendix D gives an overview impression of the whole factory
illustrating that the factory consists of a magnitude of separate process units linked with
each other.

The most important fact to keep in mind is that during normal plant operation all the
units are monitored independently. From the process description one gets a general
idea of the multitude of interactions and the sheer magnitude of the process that needs
to be monitored. These interactions cause many variables to be highly correlated. A
general problem faced with observing such a magnitude of variables is deciding first
which abnormal situation objective needs to be met (Le. early detection of decrease in
steam availability) and secondly which variables to monitor to meet this objective.
These variables should be most representative of the whole process. Thirdly one
needs to decide where the central monitoring system is going to be located since it will
include variables from different process units. Although only a few variables are

 
 
 



selected in the end for monitoring purposes, there are many other factors that have an
effect on these variables and on the normal operation of the plant. Therefore, the
NLMSPCA system should be robust enough to detect abnormal operations despite
other changes or disturbances occurring.

Since each unit is controlled separately (lack of plant wide control) it is currently almost
impossible to determine when an abnormal situation is starting to occur. If two separate
situations are developing in Unit 1 and Unit 2, without affecting the normal operation of
these units, the effects will be carried over to unit 3 unnoticed. If, for example the two
situations together have an abnormal affect on Unit 3 it will only be noticed after being
carried over to Unit 3 which is some time after the initial 'symptoms' occurred in Unit 1
and Unit 2.

The advanced monitoring system was formally evaluated in five scenarios of which one
was selected for discussion. These scenarios included sudden and unexpected
malfunctions, problems originating in process equipment and the process itself.

The first set of influences investigated was that of a cutback in pure gas (PG) and
reformed gas or fresh feed to Process A. Its effect on the steam export and in
particularly its effect on the 43 bar steam export and export to gasification was
investigated. For this purpose five sets of data were used during the month of
November 1998. Firstly, data representing normal operation was gathered and used for
training the system. For investigation purposes each data set represented an upset
which caused a cutback in either the pure gas (PG), reformed (RG) gas or both.

 
 
 



15:22 Signal on Methane reforming compressor disappeared which caused train 5 to
trip. Pure gas was cut by 100 000 m3/h.

Loose compressors at cold separation (cooling compressors). This causes the feed to
methane reforming to be halved (cutback on reformed gas). The other half (90 000
m3/h) that does not go back to Process A is flared.

For discussion in this report, case study 3 was selected. A second case study chosen
for discussion did not involve an upset to the process itself, but involved the
identification of an error in some calculation procedures after replacement of two
control valves in the steam export system which influenced other parts of the system.

 
 
 



The overall objective of the steam system is to distribute steam at High, Medium and Low
pressure to consumers in the factory for use among other as an energy source. This is done
by producing high-pressure steam (40 bar and 43 bar) with boilers and Process A, and
letting this down to medium pressure (8 bar) and low pressure (4bar).

The boilers produces superheated steam at 40 bar and Process A produces saturated
steam at 43 bar. This is distributed to consumers and letdown to the 8 bar and 4 bar
headers. Most important to notice is that Process A needs a fixed amount of the steam that
it produces for internal use. Only the excess steam is exported. If an upset in the steam
production is caused, Process A will first satisfy its own internal demand before exporting
steam. This problem is addressed by example in Section 3.9 and will provide a better
understanding of how the steam distribution network operates. Figure 3.1 gives a schematic
that puts Process A and the steam production system in perspective to the rest of the plant.
Figure 3.2 gives an illustration of the steam distribution network.

The 40 bar superheated steam is letdown to 8 bar via two letdown stations each with a
desuperheater. The 40 bar also supplies the 4 bar with steam via three letdown stations
each with a desuperheater. The major consumers of 40 bar superheated steam are
Gasification, Oxygen plant, Power Generation and Process A.

The 43 bar saturated steam is letdown to the 8 bar header via 4 letdown stations and to the
4 bar header via 1 letdown station. Each of these letdown stations has a condensate
knockout-drum. The major consumers of 43 bar saturated steam are Chemical Work-up,
Phenosolvan and Gasification.

The 8 bar header receives steam from the 40 and 43 bar headers and supplies steam to the
4 bar header via three letdown stations each with two letdown valves in parallel and a
desuperheater. Consumers of 8 bar include Benfield, Phenolsovan, and Rectisol.

The 4 bar header receives steam from the 40 and 43 bar headers. In the case of a high
pressure on this header steam is vented to atmosphere via 4 vent valves. Consumers of 4
bar steam include Rectisol, Benfield and Chemical Work-up.
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3.6. Control Objective

The objective of controlling the steam letdown stations is to ensure a stable pressure on the
headers and reliable temperature control when desuperheating.

In the case of one letdown valve going out of operation no deadband must exist and when
the valve is brought back into operation bumpless transfer must be guaranteed.

Temperature needs to be controlled in such a way to ensure that as little as possible
condensate will be present in the headers.
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The system must also ensure that when pressure is lost on one header it must not affect the
other headers drastically.

The objective is to control the pressure on the 43 bar header by letting down to the 8 bar
and 4 bar headers. This is achieved by utilizing a pressure controller to which the operator
enters the desired pressure setpoint.

The steam is supplied by the Process B reactors at 43 bar and 256 ac. The steam is
letdown to the 8 bar header via 4 letdown stations (2 existing and 2 new) each with a
knockout drum and control valve. The letdown to the 4 bar header is accomplished with one
control valve with a knockout drum upstream from the control valve (1 new station).

A direct acting pressure controller operates in split range, first opening 3 of the 4 valves
letting down to 8 bar then switching back to the last valve letting down to 8 bar.

This scheme supplies all the excess steam available on the 43 bar header to the 8 bar and
4 bar headers.

The objective is to control the pressure on the 8 bar header by letting down from 40 bar and
to 4. This is achieved by utilizing a pressure controller to which the operator enters the
desired pressure setpoint.

The main steam supply is from the 43 bar header. The 40 bar header will supply any
additional steam needed via two letdown stations in split-range. The reverse acting pressure
controller operates in split-range between letting down to 4 bar (0-55%) and the letdown
from 40 bar (55-100%).

A feedforward signal from the outputs of the valves letting down from 43 bar to 8 bar via a
summation block is utilized to act when the pressure in the 43 bar header changes. When
this situation occurs pressure will be stabilized by either shutting the 8-4 letdown valves or
be made up from the 40 bar header.

 
 
 



Process Description

A. 43 to 8 bar letdown

B. 40 to 8 bar letdown

c. 8 to 4 bar letdown

D. 40 to 4 bar letdown

E. 43 to 4 bar letdown

F. 4 bar to atmosphere vent

If an under pressure situation occurs on the 40 bar an under pressure controller will override
the pressure controller via an override low selector and close the valves letting down from
40 bar.

 
 
 



An over pressure situation on the 8 bar will cause the 6 valves letting down to 4 bar to open
in split-range and relieve the situation. The valve on the northern side of the factory will be
placed first in the split-range to alleviate the pressure drop problem in the northern side of
the factory.

Temperature controllers on each of the letdown stations (except the new 8-4 letdown
station) are used to control the amount of desuperheating.

The output of two of the valves has been characterized because the valves do not have a
linear effect on the process Le. when the one valve is 90% open and it is closed by 10% the
other valves open 10% because of the bumpless transfer. When this occurs, a bump in the
process is experienced because of the non-linear characteristic of the valve.

If the pressure in the 40 bar header drops, an under pressure controller will override the 8
bar pressure controller via an override low selector. When this happens a direct acting
pressure controller will initialize to prevent windup. The output of one of the controllers is
limited between 55 and 100%. This is done because when the controller reaches 55% both
the valves letting down from 40 bar will be closed and any further reduction in output will
have no effect. It is also desired that this controller does not influence the 8-4 letdown
stations.

The objective is to control the pressure on the 4 bar header by letting down from 40 bar and
venting to atmosphere by utilizing two pressure controllers to which the operator enters the
desired pressure setpoint.

The 4 bar header receives feed from the 43 bar, 40 bar and 8 bar and vents to atmosphere.
The steam is letdown from the 43 bar via one letdown station (new), from the 40 bar via
three stations with desuperheating (existing), from 8 bar via three stations (two existing with
desuperheating, 1 new without desuperheating) with two valves on each station and vents
to atmosphere via four valves.

If the situation occurs where pressure on the 4 bar decreases, a reverse acting controller
will increase the letdown from 40 bar in split range to increase pressure. If however an
under pressure situation on the 40 bar system occurs at the same time a direct acting
controller will override the pressure controller and close the letdown valves.

In the situation where the pressure on the 4 bar header increases the reverse acting
controller will decrease the letdown from 40 bar until normal situation is reestablished.

 
 
 



The Process B reactor was designed as a replacement for the existing Train 8 CFB reactor
which remains as a standby "swing" reactor. The Process B reactor makes use of an
existing Train 8 quench column, product cooling train, and total feed compressor. The
existing cooling train is debottlenecked by a quench column top pumparound cooler that
preheats the total BFW to the Process A area. The Process B reactor has its own reactor
coolant system.

The Process B reactor takes its total feed from the existing Train 8 CFB reactor inlet line.
The gas enters the bottom of the Process B reactor through a gas sparger. It flows up
through a distributor grid that supports the fluid catalyst bed. As the feed gas flows through
the bed, hydrocarbons, water, and oxygenates are synthesized via the Fisher-Tropsch
reaction. All reactor products are in the vapor phase at reactor conditions. Water and carbon
dioxide are formed via the water-gas shift reaction. A mixture of water - and oil-soluble
oxygenated hydrocarbons are byproducts. The reaction is exothermic. A portion of the heat
of reaction heats the feed gas from the inlet temperature of the reactor to the operating
temperature. The excess heat of reaction is removed by generating high pressure steam in
the cooling coils.

Catalyst that is entrained from the bed with the gas stream is separated in internal cyclones
and returned to the bed. The cyclones discharge effluent gas into a plenum from which the
effluent gas exits the reactor. The effluent line ties into the existing Train 8 reactor effluent
line upstream of the existing hot quench tower.

The reactor coolant system removes the excess heat of reaction from the reactor by
generating high pressure steam. BFW is fed to the steam drum through a level control valve
to maintain the drum level. Saturated water is fed to the BFW circulation pumps. The BFW

is pumped to the reactor cooling coils which have on/off valves on the inlets.

The reactor temperature is controlled by the operator varying the number of cooling coils in
operation. Water is partially vaporized as it flows through the coils and a saturated
water/steam mixture returns to the steam drum. The generated steam is disengaged from
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the water in the top section of the drum. The steam exits through a demi~ter and flows
through a pressure control valve that maintains the steam generating pressure constant.

The steam separator separates any water that is carried over from the drum plus
condensate formed by dropping the pressure. The steam then goes to the high pressure
saturated steam header. Condensate is fed to the low pressure steam header. A continuous
blowdown stream (for conductivity control) goes to the blowdown header.

1. Fresh feed gas is taken in at the Process B plant. This gas consists of a mixture of the
following:

2. The fresh feed gas that is added to an internal recirculation stream, is then compressed
by the total feed gas compressor, heated and fed to the reactor.

1. The gas that enters the reactor picks up catalyst and carries it through a reaction
chamber where the Fisher-Tropsch synthesis takes place. Two banks of cooling coils
are provided to remove the heat from the reaction. High pressure steam is generated in
the cooling coils and then exported via the steam drum. The catalist is separated from
the gas by means of five sets of cyclones. The reactor outlet gas is separated
downstream into different products.

2. The reactor outlet gas is fed to the quenchtower, where a light oil stream as well as a
heavy oil circulation stream is injected into the gas stream.

3. Overhead vapours from the quench tower are now cooled and condensated in air
conditioners followed by a shell-and-tube heat exchanger. This stream is then
separated in the separations drum to form three main product streams.

 
 
 



Uncondensed gas which is partially used as the internal recirculation stream, and
partially as spare gas.

Light oil, of which a large portion is recirculated to the quench tower and the net oil
production, that is exported to the light oil stabilizing plant.
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The flue gas is compressed by means of a centrifugal compressor and washed with water
to remove the non-acid chemicals before it is transported to the plants further down.

Carbon monoxide is removed downstream from the Process A plant through the Benfield
plant. The Cold Separation plant divides the gas into hydrogen-rich and methane-rich
streams, as well as a C2-rich and three condensate streams.

A large part of the hydrogen-rich gas streams is recirculated from Cold Separation to
Process A. The methane-rich stream is reformed with oxygen to manufacture carbon
monoxide and hydrogen. This reformed gasstream is also recirculated to Process A. The
reformed gas and hydrogen-rich gas streams are called the external recirculation.

 
 
 



 
 
 



The figures in Figure 3.4 and Figure 3.5 will serve to illustrate the nonlinear relationships
that exist between the gasloads, steam production and steam export. All the figures
presented illustrate the relationship between various steam quantities and pure gas feed.
The dashed lines are regression models fitted to the data for interest.

From Figure 3.4(a) we can see that there is a nonlinear relationship between the total steam
being utilised in the system and the pure gas supply. This total steam is a summation of
Figure 3.4(b) and Figure 3.4(c). Figure 3.4(b) clearly illustrates the nonlinear relationship
between the PG-supply and the 43-bar steam export. Figure 3.4(c) illustrates the
relationship between the PG-supply and the 40-bar steam import and Figure 3.4(d) gives
the relationship between the PG-feed to and total steam generated by Process A. The
influence on the steam export is clearly illustrated in Figure 3.5 generated from the data in
Figure 3.4. From Figure 3.5(a) we can see that a 10% reduction in PG feed will cause a
24% reduction in 43-bar steam export and a 12% reduction in the total steam export.

A 50% reduction in PG feed will cause an 88% reduction in 43-bar steam export and a
reduction of 40% in the total steam export.

From this it is evident that the problem lies with the 43-bar steam export. Thus, a small
upset in the PG feed to Process A can have a huge effect on the 43-bar steam export,
which in turn can have a major influence on the rest of the system since so many
plants are dependent on the steam supply.

A list of all the process variables appear in Appendix C together with the calculated
variables used in the investigation. From this list eight variables were selected that
most accurately represent the system under investigation and is listed in Table 3.1.
More detail will be provided in Chapter 5.

Table 3.1. Process variables used in the investigation (See Appendix C)

Variable Variable Description Variable Variable Description
number number

Total Rectisol Feed
Total Pure Gas feed
Total Reformed Gas Feed
Total Fresh Feed

Total Tail gas
Total Steam Consumers
Total Steam Letdown
Total Steam Export (Measured)
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IISOFTWARE DEVELOPMENT & INSTALLATION

The software used in this research was developed using Matlab. The full functionality
of Matlab was implemented in order to create a toolbox that provides as much user-
friendliness as is currently possible with Matlab. The creation of a separate complete
NLMSPCA toolbox can be justified due to the following reasons:

• There is currently no software available for NLMSPCA since it is a new concept.
• Matlab does include a Wavelet Analysis Toolbox, but it does not contain any

boundary corrected wavelet filters, does not incorporate the necessary threshold
methods and cannot be used online.

• Matlab also includes a Neural Network Toolbox, but this toolbox does not allow
input training or modification of algorithms.

• Using Matab's toolbox functions makes it difficult to understand the mathematics
and concepts.

• The structure of the toolboxes is such that it is very difficult to make alterations to
the current software.

• It also would have been difficult to link the different toolboxes in order to form a
complete functional step-by-step procedure.

The significance of the toolbox lies in the fact that:
• It operates independently from other toolboxes;
• It is understandable so that modifications or alternative ideas can easily be

incorporated or linked to the current software;
• It is user-friendly;
• It automates the whole process allowing a step-by-step procedure for NLMSPCA;
• The complete toolbox can be used and accessed via user-interface;
• The flowcharting method used makes the various steps easy to follow;
• Help and background information are provided for quick reference.

The documentation provided here gives a thorough description of the toolbox and
Appendix B provides extra information on the setup of the programs for someone who
wishes to make alterations or use some of the applied methods in their own software
development.

 
 
 



1. Simply copy the \Monitor directory located on the supplied cd to an appropriate
directory on your hard drive for example c:\. For this example the directory
c:\Monitor will then exist on you hard drive.

and press enter. The setup may take a few seconds. While the setup is in progress
the message in Figure 4.1 will appear.

 
 
 



Path set up successfully.

8. Start the Matlab Path Browser from the Matlab workspace menu and save the path
as illustrated in Figure 4.3.

c: \asa'aonitor\ inter tacelJ\vave

:;~:::~:::~:::~~::::~:~::~::::~
c: \as.,aon1tor\1ntartac •• ,nlpc... ~~~:::~:::~~::~~::::~:~::~~~~~, .,

9. The setup is now complete. The setup will advance to the Database Setup, which is
discussed in the next section.

The application makes use of a database in which all the necessary variables are
stored. Each time the application is run, the variables in the database is updated. The
database:

1. ensures that data is not lost while the training phase is in progress since it can take
up to a few hours to generate this data,

2. saves the information generated during the training phase so that it is available for
the application phase,

3. ensures that the data is available for further processing, comparisons and
independent plotting.

 
 
 



The database is a Matlab mat-file. The system contains a default database called
data_base. mat. This database resides in the ... \monitor\database directory. Appendix
C contains a list of all the variables that are contained in the database. As discussed in
the previous section, after completion of the Path Setup, the setup will advance to the
Database Setup in by displaying the Database Setup Interface in Figure 4.4. It contains
the name of the default database. However, a new database can be created by
changing the name of the specified database.

data_base

Default: data_base

The default database can be selected by clicking on the OK-button. If the default
database is used the current variables that reside in the database can be used as
default or can be overwritten by choosing the Retain option where available. If a new
database is created no default options exist for the first time this database is used. The
results in different databases can be compared with each other. Note however that the
variables in the different databases will be the same so that if variables from two
different databases need to be compared with each other the variables in the first
database first need to be renamed before loading the second database. If not, the
variables from the second database will overwrite the variables in the workspace
loaded from the first database. After clicking the OK-button, creation of the database
will be acknowledged by displaying Figure 4.5.

r.j -rDatabase Setup Suc;;~s --- ~.. ---.- ~_. __.. - - ..~

Database created successfully.

 
 
 



After creation of the database has been acknowledged the introductory window in
Figure 4.6 will be displayed:

IVIASTERS OF ENGINEERING (CONTROL ENGINEERING)
i

FACULTY OF

After displaying the introductory interface the setup will advance to the main interface in
Figure 4.7. The main interface is a shortcut interface to all the main processing steps in
the process monitoring setup which includes the following:

 
 
 



(a) to (f) form part of the setup process which uses the normal operating process data.
(h) is the actual monitoring process with new data. Selecting button 6 will take you to
the first step in the process monitoring setup sequence. If you want to use current data
from the database, you can jump to any other step in the setup sequence by selecting
the appropriate button from the main menu. Thus, it is not necessary to start the whole
process all over again if you were unable to complete the whole NLMSPCA setup
process.

ADVANCED
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IIDATASETUP

The joint implementation of multiresolution analysis, wavelet filtering and non-linear PCA for
process performance monitoring and fault detection is illustrated by application to a
nonlinear industrial process which, in this case, is applied to the process data from case
study 1 in Chapter 3 which is representative of that widely seen in the chemicals
manufacturing industries .. Details of the process, except the background information
provided in Chapter 3, are withheld for commercial confidentiality reasons. For the same
reason the data was standardized prior to illustration. The data setup procedure is the first
step in the process monitoring setup sequence and is accessed from the main menu as
discussed in chapter 4.

It has been pointed out several times in the recent literature that chemical processes are
becoming more heavily instrumented and the data is recorded more frequently (Wise et. ai,
1990; Kresta et. ai, 1991). This is creating a data overload, and the result is that a good deal
of the data is 'wasted', Le. no useful information is obtained from it. The problem is one of
both compression and extraction. Generally, there is a great deal of correlated or redundant
information in process measurements. This information must be compressed in a manner
that retains the essential information and is more easily displayed than each of the process
variables individually. A/so, often essential information lies not in any individual process
variable but in how the variables change with respect to one another, Le. how they co-vary.
In this case the information must be extracted from the data. Furthermore, in the presence
of large amounts of noise, it would be desirable to take advantage of some sort of signal
denoising. These concepts will be discussed in more detail in subsequent chapters.

5.3. Data Setup Interface

This interface is used to load the various data sets into the workspace and save it to the
database for further processing.

 
 
 



2. Testing data set - this data can be used for validation purposes when working with
neural networks.

 
 
 



The option exists to load the data from a mat-file by using button 4, a workspace
variable or from the database. After the data has been chosen it can be loaded using
button 7.

II databascfig.mat
l!l dbsuccess.mat
l!l introd.mat
l!l pathsuccess.mat
l!l simdat.mat
l!l simout.mat
ri1taBJ§·m;"Mi

If no option is chosen (edit box 5 is left empty) then the data is loaded from the default
database.

The original data can then be viewed prior to normalization or standardization using
button 6. This interface plots each individual variable separately as illustrated in Figure
5.3 and can be used to plot other variables in the workspace by changing the variable
name.

16. Toggle between hold and unhold. Use this if you need to plot more than one variable on
the same graph.



17. Variable name. When the display window is opened it displays the default variable, in
this case the variable traindata.
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The option exists to either normalise or standardise the data, The necessity for this
becomes more apparent when the issue of principal component analyis is addressed. The
normalised or standardised data can be viewed in a similar way as the original data using
button 10.
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The statistics viewer is accessed using button 12. Currently only the correlation coefficient
can be calculated. However, other empty buttons are provided should the necessity of more
statistic calculations be required.

 
 
 



Chapter 5 Data Setup

CifJ
_ OIX

file .Edit Iools It£indow J:le1p

l ~hD;lt;l~•.•.+•••.•• ~t~ti..,.+i,...,.•.

1 -0.062795 0.46058 0.46119 0.53199 0.16634 0.27636 0.48453 I Traindata l .:,
-0062795 1 0.85695 0.7483 0.062363 -0.15369 -0.12887 0.09154
0.46058 0.85695 1 0.90369 0.3302 -0.050792 0.0281 0.33164
0.46119 0.7483 0.90369 1 031561 -0.029944 0.044182 0.30561
0.53199 0.062363 0.3302 0.31561 1 0.19004 0.4053 0.99226
0.16634 -0.15369 -0.050792 -0.029944 0.19004 1 0.97455 0.20417
0.27636 -0.12887 0.0281 0.044182 0.4053 0.97455 1 0.41668
0.48453 0.09154 0.33164 0.30561 0.99226 0.20417 0.41668 1

Corr Coeff I I I I Help I Close I
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The first stage of the analysis was to manually carry out data pre-screening to identify and
handle outliers, in-fill missing data, etc. Time-series plots of the process variables indicated
that many of the measurements were corrupted by noise with some variables exhibiting
sharp spikes. The sharp spikes were treated as outliers and were assumed to be due to

missing data and faulty measurements. They were removed in Excel and replaced with the
average of the five preceding values and five values following the outliers. Without
appropriate pre-treatment of the data, the construction of a robust nominal process model
for process performance monitoring is problematical and potentially worthless. Figure 5.7 is
a plot of all eight variables on the same axes in order to show their relative values after
removal of the outliers. Figure 5.8 is a plot of the same variables, but standardized. Both
plots represent normal operation.

 
 
 



Chapter 5

i Sial Viewel I!lIiI~
file fdit Iools ~indow Jielp

1 -0.64317 -0.6257 -0.62547 -0096615
-0.64317 1 0.99974 0.98134 0.33722
-0.6257 0.99974 1 0.98126 0.34068
-062547 0.98134 0.98126 1 0.23113
-0.096615 033722 034068 0.23113 1
-066581 0.79231 0.7875 0.77697 0.17888
-0.59977 0.80502 0.80239 0.74853 056126
-012697 0.37143 0.37464 0.26867 0.99609

-0.66581 -0.59977
0.79231 0.80502
0.7875 0.80239
0.77697 0.74853
0.17888 0.56126

1 0.91469
0.91469 1
0.205 0.58163

-0.12697
0.37143

0.37464
0.26867
0.99609
0.205

0.58163
1

Con Coeft I

, , ,

I-~ .•.•...~.~-------. ..•..---",-,...,...--.--....,"'--.-_ ...~"""'--.-- .•..•.•

-..............----....- ... - - -~~~-----

.~.........,.~ '----- .......•..,,~~,.-..-.._~,...,...,... .•..•...._"""-~- - -V'V".~~-..._.-........".__ ,._~ ..,______ .~ ...... ~~· ..I_-
v---~'-""'--'·"""*'-._.,. ___~ ./'-.-...-............."'#'o,.-...,r..~~"\,/\..

~ ...r.v.~---~.....,........,

::::::--v:~==-..=.::=--:-~~A.;---=.~r,.',..~~~..~:::=:~~ .•.,c.-~~:~;::::.:::..:::;.:~
~~--...J'oo"o

, , , ,

 
 
 



1 -0.64317 -0.6257 -062547 -0.096615
-0.64317 1 0.99974 098134 033722
-0.6257 0.99974 1 0.98126 0.34068

-062547 098134 0.98126 1 0.23113
-0.096615 0.33722 034068 0.23113 1
-0.66581 0.79231 0.7875 0.77697 0.17888
-0.59977 0.80502 0.80239 0.74853 056126
-0.12697 0.37143 0.37464 0.26867 099609

-0.66581 -0.59977
0.79231 0.80502
0.7875 0.80239
0.77697 0.74853
017888 0.56126

1 0.91469
0.91469 1

0.205 0.58163

-0.12697
0.37143

0.37464
0.26867
0.99609
0.205

0.58163
1

 
 
 



 
 
 



• WAVELET ANALYSIS

Industrial data is synonymous with process measurement "noise". Noise associated with the
process measurements is known to have impact upon the robustness of the process model.
It is therefore desirable to extract the "true" signal from the noise-corrupted data prior to
carrying out any detailed statistical analysis. The most widely used forms of filtering
algorithm found in the process industries include exponential and polynomial filters and the
median filter. For data eXhibiting small signal-to-noise ratios, heavy filtering can result in
significant phase-shifts in the signal. A further limitation of some filters is that they cannot
handle signal spikes efficiently or effectively. Finally, to implement some filtering algorithms
it is necessary to have future values, e.g. in the median filter. In this respect they are
unsuitable for on-line application. The wavelet transform addresses some of these
limitations. In particular, through the application of wavelet de-noising, high-frequency noise
as well as sharp spikes in the data can be removed without smoothing out the important
features in the process data. The discrete wavelet transform is also an effective tool for
reducing the amount of data.

6.2. Previous work on feature extraction of dynamic transients

This section briefly reviews some of the previous work on feature extraction. Feature
extraction is basically a transformation of the data composing a dynamic trend to a
lower dimensionality. An important property of such a transformation is that it is
information preserving, that is, data is reduced by removing redundant components
while preserving, in some optimal sense, information which is crucial for pattern
discrimination (Chen et aI., 1999).

Some researchers have adapted the episode representation technique originated by
William (1986) to qualitative interpretation of transient signals. Janusz and
Venkatasubramanian (1991) developed an episode approach that uses nine primitives

to represent any plots of a function. Each primitive consists of the signs and the first
and second derivatives of the function. Therefore, each primitive possesses the
information about whether the function is positive or negative, increasing, decreasing,
or not changing and the concavity. An episode is an interval described by only one
primitive and the time interval the episode spans. A trend is a series of episodes that
when grouped together can completely describe the dynamic feature. The approach
automatically converts on-line sensor data to qualitative classification trees. Cheung

 
 
 



and Stephanopoulos (1990) developed the triangular-episode that uses seven triangle
components to describe a dynamic trend. Bakshi and Stephanopoulos (1994, 1996)
used wavelet decomposition of functions in different scales and zero-crossing of
wavelet derivatives to find the inflections of decomposition. In this way, episodes can
be identified automatically by computers. Based on episode analysis, dynamic trends
can be interpreted as symbolic representations. The main idea of dynamic trend
interpretation using episode approaches is to classify a trend such as increasing or
decreasing pieces. This interpretation is sometimes not enough and inadequate in
process analysis. Furthermore, there is no noise filtering in any of the episode based
approaches, which significantly limits the trend representation and identification
capability.

Whiteley and Davis (1992) applied back-propagation neural networks (BPNN) to
convert numerical sensor data into symbolic abstractions. The major limitation of this
approach is that it requires training data to train the model first.

The best known technique for signal analysis is probably the Fourier transform and it is
therefore necessary to mention it here.

a ~{ (nnx) . (nnx)}f(x) =-t+ f:t an cos p +bnsm p

1 C+2P ()an = - f F(x)cos nnx dx
PcP

1 C+2P ()b
n

= - f F(x)sin nnx dx
PcP

Fourier transform uses sine and cosine functions as its bUildingblocks to decompose a
function into a sum of frequency components. However, Fourier transform does not
show how frequency varies with time, therefore it is not able to detect when a particular
event took place. It means that the non-stationary feature of the signal is not captured.
The short-time Fourier transform is able to overcome this limitation by sliding a window
over the signal in time. However in time-frequency analysis of a non-stationary signal,
there are two conflicting requirements. The window width must be long enough to give
the desired frequency resolution but must also be short enough to lose track of time
dependent events. While it is possible to optimise the design of window shapes, or

 
 
 



trade-off time and frequency resolution, there is a fundamental limitation on what can
be achieved, for a given fixed window width (Dai, Joseph & Motard, 1994).

Only a very brief introduction to wavelet transformation for signal processing will be
presented. Only the main mathematical issues will be addresses to give some
background to its calculation since it is too broad to cover here and won't facilitate a
better understanding for this purpose.

According to Chen et al. (1999), wavelets can be viewed as an extension to Fourier
analysis that is well-suited and designed to address the problem of non-stationary
signals. Such signals are not well represented in time and frequency by the Fourier
transform methods. One major advantage afforded by wavelets is the ability to perform
local analysis - that is, to analyze a localized area of a larger signal. Wavelet analysis
is capable of revealing aspects of data that other signal analysis techniques miss,
aspects like trends, breakdown points, discontinuities in higher derivatives, and self-
similarity. Further, because it affords a different view of data than those presented by
traditional techniques, wavelet analysis can often compress or de-noise a signal
without appreciable degradation. Wavelets offer a technique to localise events in both
time and frequency and they can be applied to continuous and discrete-time problems
and to two-dimensional, and in principle, to higher-dimensional data.

Another useful property of wavelets is that although they are not known to be exact
eigenfunctions or principal components of any operators, they are approximate
eigenfunctions of a large variety of operators (Wornell, 1990; Dickerman and
Majumdar, 1994). ConsequentlY, the wavelet coefficients of most stochastic processes
are approximately decorrelated. The variance of the wavelet coefficients at different
scales represents the energy of the stochastic process in the corresponding range of
frequencies, and corresponds to its power spectrum. Thus, for an uncorrelated
Gaussian stochastic process or white noise, the variance of the wavelet coefficients is
constant at all scales, whereas for coloured noise, the variance decreases at finer
scales.

A wavelet is a waveform of effectively limited duration that has an average value of
zero. Compare wavelets with sine waves, which are the basis of Fourier analysis.
Sinusoids do not have limited duration - they extend from minus to plus infinity. And
where sinusoids are smooth and predictable, wavelets tend to be irregular and
asymmetric as illustrated in Figure 6.1.



Fourier analysis consists of breaking up a signal into sine waves of various
frequencies. Similarly, wavelet analysis involves the breaking up of a signal or time
function into simple, fixed building blocks, termed wavelets (Rioul & Vetterli, 1991;
Motard & Joseph, 1994; Chui, 1992). These building blocks are actually a family of
functions which are derived from a single generating function called the mother wavelet
by translation and dilation operations. Dilation, also known as scaling, compresses or
stretches the mother wavelet and translation shifts it along the time axis. That is, the
signal is mapped to a time-scale plane, as illustrated in Figure 6.2, that is analogous to
the time-frequency plane used in the short-time Fourier transform.

r:If/(t)dt = 0
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The parameter a is a scaling factor and stretches (or compresses) the mother wavelet.

The parameter b is a translation along the time axis and simply shifts a wavelet and so

delays or advances the time at which it is activated. Mathematically delaying a function

jet) by td is represented by j(t - td)' The factor 1/ ~ is used to ensure the energy

of the scaled and translated versions are the same as the mother wavelet.

The stretched and compressed wavelets through scaling operation are used to capture
the different frequency components of the function being analysed. The translation
operation, on the other hand, involves shifting of the mother wavelet along the time axis
to capture the time information of the function to be analysed at a different position. In
this way, a family of scaled and translated wavelets can be created using scaling and
translation parameters a and b. This allows signals occurring at different times and
having different frequencies to be analysed. In contrast to the short-time Fourier
transform, which uses a single analysis window function, the wavelet transform can use
short windows at high frequencies or long windows at low frequencies. Thus wavelet
transform is capable of zooming in on short-lived high frequency phenomena and
zooming-out on sustained low frequency phenomena. This is the main advantage of
the wavelet over the short-time Fourier transform.

6.4. Wavelet Analysis Methodology

In the introduction the effect of noise was mentioned. Noise is a phenomenon that
affects all frequencies and appears in different forms such as high-frequency
measurement noise and spikes due to process filters being purged and other process
operations. However, the "true" signal tends to dominate the low-frequency area,
especially in chemical processes. The traditional approach to filtering is to remove the
high-frequency components above a certain level since they are associated with noise.
Small wavelet coefficients at low scales (high-frequency area) are usually expected to
be mainly due to noise components. The procedure for wavelet de-noising is as
follows:

- Threshold those elements in the wavelet coefficients that are believed to be attributed to
noise,

- Apply the inverse wavelet transform to the thresholded wavelet coefficients to obtain a
de-noised signal.

 
 
 



Wavelet transforms can be categorized into continuous and discrete. Continuous, in
the context of wavelet transform, implies that the scaling and translation parameters a
and b change continuously. However, calculating wavelet coefficients for every
possible scale can represent a considerable effort and result in a vast amount of data.
Therefore a discrete parameter wavelet transform is often used where we choose only
a subset of scales and positions at which to make our calculations. The discrete
parameter wavelet transform (DWT) uses scale and position values based on powers
of two (so-called dyadic scales and positions) and makes the analysis much more
efficient, whilst remaining accurate. To do this, the scale and time parameters are
discretised as follows,

-m12 b b na = ao ' = n oao

( ) -m12 (-m b )If.'m,n t = ao If.' ao t - n 0

DWTf (m, n) = (I, If.'m,n)
= a~ml2 r: 1(t)If.'(a~mt - nbo)

An efficient way to implement this scheme using filters was developed in Mallat (1989).
This very practical filtering algorithm yields a fast wavelet transform - a box into which
a signal passes, and out of which wavelet coefficients quickly emerge.

For many signals, the low frequency content is the most important part that gives a
signal its identity. The high frequency content, on the other hand provides flavour or
nuance. In wavelet analysis the high-scale, low frequency content is called the
approximation and the low-scale, high frequency content is called the detail. The
filtering process uses lowpass and highpass filters to decompose an original signal into
the approximation and detail parts. The filtering process at its most basic level, which is
a single-level decomposition, is illustrated in Figure 6.3 where the original signal,

 
 
 



s = J(t) , passes through two complementary high- and lowpass filters and emerges as

two signals.

'\ /

Unfortunately, if we actually perform this operation on a real digital signal, we end up
with twice as much data as we started with. Suppose, for instance, that the original
signal s consists of 1000 samples of data. Then the approximation and the detail will
each have 1000 samples, for a total of 2000. However, it is not necessary to preserve
all the outputs from the filters and therefore, to correct this problem, we introduce the
notion of downsampling where we keep only the even components of the lowpass and
highpass filter outputs and throwaway every second data point. While doing this
introduces aliasing, which is a type of error (Strang and Nguyen, 1995), in the signal
components, it turns out we can account for this later on in the process. This procedure
is illustrated in Figure 6.4(a) and (b).

Figure 6.4(a) Wavelet decomposition without downsampling, and (b) with
downsampling.

 
 
 



The process in Figure 6.4(b), which includes downsampling, produces discrete wavelet
transform (OWT) coefficients. The detail coefficients will consist mainly of the high-
frequency noise,while the approximationcoefficientswill containmuch less noise than does
the originalsignal.

The actual lengths of the detail as well as the approximation coefficient vectors will be
slightly more than half the length of the original signal. This has to do with the filtering
process, which is implemented by convolving the signal with a filter. The convolution
"smears" the signal, introducing several extra samples into the result.

Multilevel decomposition tree (An octave band non-subsampled filter
bank.)

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower-resolution
components. This is called the wavelet decomposition tree, illustrated in Figure 6.5,
which can yield valuable information.

Since the analysis process is iterative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the individual details consist of a
single sample or pixel. In practice, you'll select a suitable number of levels based on
the nature of the signal, or on a suitable criterion such as entropy.

After calculating the wavelet coefficients, these coefficients can be thresholded to
remove noise prior to reconstruction. Wavelet thresholding is discussed in more detail
in Section 6.6, but it is worth noting that this step is applied after calculating the wavelet
coefficients.

 
 
 



The process of assembling the components back into the original signal with no loss of
information is called reconstruction, or synthesis. The mathematical manipulation that
affects synthesis is called the inverse discrete wavelet transform (IOWT). Where
wavelet analysis involves filtering and downsampling, the wavelet reconstruction
process consists of upsampling and filtering. Upsampling is the process of lengthening
a signal component by inserting zeros between samples.

The filtering part of the reconstruction process is crucial since achieving perfect
reconstruction of the original signal depends on the choice of filters. In the case of a
discrete wavelet transform, reconstruction of the original signal is not guaranteed.
Recall that the downsampling of the signal components performed during the
decomposition phase introduces a distortion called aliasing. It turns out that by carefully
choosing filters for the decomposition and reconstruction phases that are closely
related (but not identical), we can "cancel out" the effects of aliasing. This was the
breakthrough made possible by the work of Oaubechies (1992) who developed

conditions under which {If/ m.n} forms an orthonormal basis. A technical discussion of

how to design these filters can be found in p. 347 of the book Wavelets and Filter

Banks, by Strang and Nguyen (1995). Usually, ao = 2 and bo = 1 are used, although

any values can be used. In this case, both the transform and reconstruction are
complete because the family of wavelets form an orthonormal basis. The low- and
high pass decomposition filters (L and H), together with their associated reconstruction
filters (L' and H'), form a system of what is called quadrature mirror filters.

So it is possible to reconstruct the original signal from the coefficients of the
approximations and details. It is also possible to reconstruct the approximations and
details themselves from their coefficient vectors. As an example, let's consider how we

would reconstruct the first-level approximation Al from the coefficient vector cAI• We

pass the coefficient vector cAI through the same process we used to reconstruct the

original signal. However, instead of combining it with the level-one detail cDI, we feed

in a vector of zeros in place of the details as in Figure 6.6.

The process yields a reconstructed approximation A1, which has the same length as
the original signal s and which is a real approximation of it. Similarly, we can

reconstruct the first-level detail 01, using the analogous process illustrated in Figure
6.7.
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The reconstructed details and approximations are true constituents of the original
signal. In fact, we find when we combine them that:

Note that the coefficient vectors cAI and cDI - because they were produced by

downsampling, contain aliasing distortion, and are only half the length of the original
signal - cannot directly be combined to reproduce the signal. It is necessary to
reconstruct the approximations and details before combining them.

/
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Extending this technique to the components of a multi-level analysis, we find that
similar relationships hold for all the reconstructed signal constituents. That is, there are
several ways to reassemble the original signal:

For an orthogonal wavelet, in the multiresolution framework, we start with the scaling

function ¢ and the wavelet function 1fI. One of the fundamental relations is the twin-

scale relation (dilation equation or refinement equation):

All the filters used in DWT and IDWT are intimately related to the sequence (Wn)nEZ'

Clearly if ¢ is compactly supported, the sequence (wn) is finite and can be viewed as

a filter. The filter W, which is called the scaling filter (non-normalized), is:

1
of norm .fi

From filter W, we define four FIR filters, of length 2N and of norm 1, organized as in
Table 6.1.

The four filters are computed using the scheme in Figure 6.8 where qmf is such that H'

and L' are quadrature mirror filters (i.e., H'(k)=(-1)kL'(2N-l-k). Note that wrev

flips the filter coefficients so Hand L are also quadrature mirror filters.

 
 
 



L'= W
norm(W)

6.6. Wavelet Denoising through Thresholding

To address the issue of noise, wavelet de-noising can be applied where the wavelet
coefficients cAj and cDj are thresholded in order to remove noise components

contained in the signal and thus also in the wavelet coefficients.

Multiscale rectification using wavelets is based on the observation that random errors
in a signal are present over all the coefficients, while deterministic changes get
captured in a small number of relatively large coefficients. Thus, stationary Gaussian
noise may be removed by suppressing coefficients smaller than a selected value
(Donoho et aI., 1995).

Donoho and coworkers have studied the statistical properties of wavelet thresholding
and have shown that for a noisy signal of length n, the rectified signal will have an
error of order log n of the error between the error-free signal and the signal rectified

with a-priori knowledge about the smoothness of the underlying signal (Donoho and
Johnstone, 1994).

 
 
 



Generally speaking, wavelet thresholding can be divided into two categories: global

thresholding and level-dependent thresholding. If the threshold value is denoted as A.,

then in global thresholding a single value of A. is selected and is applied globally to all
empirical wavelet coefficients above a certain frequency level. For leveldependent

thresholding, a different threshold value A.j can be selected for the wavelet coefficient

at level j. This approach is necessary when the noise in the data is non-stationary

and/or correlated and is the approach used in this study.

Selecting the proper value of the threshold is a critical step in the rectification process
and a number of different methods for selecting appropriate threshold values for
wavelet denoising have been proposed in the literature (e.g. Donoho and Johnstone,
1994,1995; Donoho, 1995; Donoho et aI., 1996; Hall et aI., 1996; Hall and Patil, 1996;
Nason, 1996).

Generally, wavelet denoising methods are based on either a hard or a soft thresholding
approach. If the threshold value is denoted as A., hard thresholding is given by
Equation 6.10, whilst soft thresholding is given by Equation 6.11. Soft thresholding
shrinks the value of the wavelet coefficients towards zero (eliminates coefficients) if
they are above a certain threshold and hard thresholding if they are smaller.

H {x if I x I> A.0), (x) = o otherwise

{

X -A.

of (x) = 0
x+A.

ifx>A.
if I x I::; A.
if x <-A.

Hard thresholding can lead to better reproduction of peak heights and discontinuities,
but at the price of occasional artifacts that can roughen the appearance of the rectified
signal, while soft thresholding usually gives better visual quality of rectification and less
artifacts. An artifact, which is not present in the original signal, is created in the
reconstructed signal when the wavelet function used to represent a feature in the signal
and the feature itself does not align. Such artifacts are due to a localized Gibbs
phenomenon which is caused by the lack of translational invariance in orthonormal
wavelet decomposition.

Two factors that can influence the performance of wavelet thresholding are considered
in the selection of the threshold values, these are the sample size N and the noise
level (j. For good visual quality of the rectified signal, the Visushrink method
determines the threshold as

 
 
 



where N is the signal length and a j is the standard deviation of the errors at scale

j.

In practice, the value of the standard deviation of the noise in the data, a, is unknown

and is replaced by an estimate a-. Donoho and Johnstone (1995) proposed the use of

the median of the absolute deviation (MAD) of the wavelet coefficients at the finest
level (level=1):

a- = median(1 WI'; D / 0.6745

where i = 0, ... , 2J
-
I -1, J = log2 (N). The median absolute deviation of the

coefficients is a robust estimate of a. When coloured noise is suspected, the noise

level a needs to be estimated level-by-Ievel using a similar kind of strategy and the

threshold values also need to be modified according to the level-dependent estimation
of the noise.

Wavelet de-noising is able to remove as much noise as required but not at the expense of
smoothing out any real fine-scale features (Ogden, 1997). The advantage of spatially
adaptive methods such as wavelet de-noising is that they perform close to the optimum
across the whole range of noise levels, no matter the smoothness of the signal. On the
other hand, the best performing median filter is almost as efficient as the wavelet de-noising
methods at relatively high signal to noise ratios, if the window size is selected appropriately.
However, for low signal-to-noise ratios, phase-shift may result. Moreover, future values are
needed to apply the median filtering algorithm, thus making it unsuitable for on-line
application and therefore wavelet de-noising remains a better alternative.

Wavelet-based multiscale rectification is a very effective approach for denoising signals
contaminated by white, as well as correlated Gaussian noise. If the traditional wavelet
decomposition algorithm is applied to a signal with non-Gaussian errors, outliers will be
present at multiple scales in both the scaled and detailed signals, and large coefficients
corresponding to outliers get confused with those corresponding to important features.
Thus, wavelet thresholding is not effective in eliminating non-Gaussian errors. This limitation
may be overcome by combining wavelet thresholding with multiscale median filtering as in
the robust multiscale rectification technique (Bruce et aI., 1994).

6.7. Algorithms

This section takes you through the most important steps of the wavelet analysis and
de-noising algorithms in view of the actual implementation. It considers in more detail
the magnitude and nature of the different calculated values and signals.

 
 
 



Starting out with a signal s of length N, the DWT consists of log2 N stages at most.

The first step produces, starting from s, two sets of coefficients: approximation

coefficients cAI and detail coefficients cDI• These vectors are obtained by convolving

s with the low-pass filter L for approximation, and with the high-pass filter H for
detail, followed by dyadic decimation. The first step is illustrated by Figure 6.9.

Low-pass filter downsample

F
L

Approximation
Coefficients

G
H

High-pass filter
downsample

The length of each filter is equal to 2N. If n = length(s) , the signals F and G, are of

length N + 2N - 1 and then the coefficients cAI and cDI are of length

(
n -1)floor-2- + N .

The next step splits the approximation coefficients cAI in two parts using the same

scheme, replacing s by cAI ' and producing cA2 and cD2 ' and so on as illustrated in

Figure 6.5. So the wavelet decomposition of the signal s analyzed at level j has the

following structure: leAj , cD j' •.. , cD! J.

The next step involves applying level-dependent thresholding to the coefficients so that
the wavelet decomposition of the signal s analyzed at level j now has the following

structure: [cA~, cD~, ... , cD~]. where cA~ and cD~ are the thresholded approximation

and detail wavelet coefficients.

Conversely, starting from cA~ and cD~, the IDWT reconstructs A~_l' the reconstructed

approximation signal, inverting the decomposition step by inserting zeros and

 
 
 



Chapter 6

convolving the results with the reconstruction filters as depicted in Figure 6.10 where
wkeep means taking the central part of U with the convenient length.

Existing nonlinear rectification techniques do perform better than linear filters for a
broad variety of signals. However, a significant disadvantage of these nonlinear
multiscale methods is that they cannot be implemented online. In general wavelet filters
are noncausal in nature and require future measured data for calculating the current
wavelet coefficient. This introduces a time delay in the computation that increases at
coarser scales and smoother filters. This time delay may be overcome in a rigorous
manner by using special wavelets at edges that eliminate boundary errors while being
orthonormal to the other wavelets (Cohen, et aI., 1993). These boundary corrected
filters are causal and require no information about the future to compute wavelet
coefficients at the signal end points. Another reason for restricting the wavelet-based
methods to off-line use is the dyadic discretization of the wavelet parameters, which
requires a signal of dyadic length for the wavelet decomposition.

A signal containing a dyadic number of measurements can be decomposed as shown
in Figure 6.11(a). In contrast, if the number of measurements is odd, the last point
cannot be decomposed without a time delay as shown in Figure 6.11(b). In many
applications such a time delay is unacceptable. Consequently, this section describes
an online method for multiscale rectification (OlMS), where absolutely no time delay is
allowed.

 
 
 



Figure 6.11. Time delay introduced due to dyadic length requirement in wavelet
decomposition

On-line multiscale rectification is based on multiscale rectification of data in a moving
window of dyadic length, as shown in Figure 6.12. The aLMS methodology can be
summarized as follows:

(1) Decompose the measured data within a window of dyadic length using a causal
boundary corrected wavelet filter.

(4) When new measured data are available, move the window in time to include the
most recent measurement while maintaining the maximum dyadic window length.
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The measurements in each window are rectified by the wavelet thresholding approach
of Donoho et al. (1995) decribed in the previous section. This simple approach is very
effective compared to the single-scale techniques and retains the benefits of the
wavelet decomposition in each moving window, while allowing each measurement to
be rectified on-line.

Any filtering method requires typical data or information about the underlying signal and
noise for selecting the filter parameters. In OLMS rectification the filter tuning
parameters are the value of the threshold and the maximum depth of the wavelet
decomposition. Other practical issues include selecting a wavelet and the maximum
length of the moving window.

The threshold may be estimated by applying the Visushrink method (Donoho et aI.,
1995; Nason, 1996; Nounou and Bakshi, 1999) to the available measurements. For
data corrupted by stationary errors, the threshold value stops changing much after and
adequate number of measurements are available. Consequently, for stationary noise,
the threshold may be estimated from the measurements until the change is below a
user-specified value. This approach for estimating the threshold cannot be performed
recursively due to the median operator used in Equation 6.9 and will require storage of
a large number of measurements.

Thresholding wavelet coefficients at very coarse scales may result in the elimination of
important features, whereas thresholding only at very fine scales may not eliminate
enough noise. Therefore, the depth of wavelet decomposition needs to be selected to
optimize the quality of the rectified signal. Empirical evidence suggests that a good
initial guess for the decomposition depth is about half of the maximum possible depth,
that is (log2(n))/2 where n is the moving window length. However, a smaller depth

might be more appropriate in aLMS rectification if a long boundary corrected filter with
a large support is used in the decomposition since the filters at the two edges might
overlap at very coarse scales. The depth may also be determined by cross-validation.

 
 
 



The type, length, and nature of the wavelet filer used in alMS affect the quality of the
rectification. Since the alMS rectification uses only the last rectified data point from
each translated signal, it is crucial that only boundary corrected causal wavelet filters
are used. If boundary corrected filters are not used, then the last point is among the
least accurate ones due to the end effect errors. alMS rectification using Daubechies
second-order boundary corrected filters was used and results in smaller mean-square
error than alMS rectification using other simpler wavelet filters like the Haar wavelet.

This background is a graphical
display of a continuous wavelet

transform

The wavelet analysis user interface is displayed by using the Next button on the data setup
interface or it can be accessed via the main user interface. The options are related to the

 
 
 



theory discussed in the previous sections. Normally one would have to play around with
different combinations of the parameters in order to select the best combination since there
are no definite rules.

1. Name of variable to which the wavelet transform should be applied. By default
traindatas from the database is used. Any other variable name may be specified.
However, it is important to know that the data should be normalized or standardized
prior to applying the wavelet analysis.

2. Maximum dyadic (power of two) window size. For this application a maximum window
size of 256 (28

) was used.

4. Variable number. The wavelet analysis is applied to one variable at a time. The specific
variable is specified via its column number in the data matrix.

6. Type of threshold to apply to the wavelet coefficients. Those methods with multi as
prefix refer to level dependent thresholding.

7. Toggle between real-time viewer on an off. If the viewer is on, one is able to view the
coefficients and reconstructed approximations and details as they are calculated as
illustrated in Figure 6.14 and Figure 6.15.

 
 
 



Chapter 6

12. Switch between multi resolution analysis (Figure 6.14) and wavelet coefficient (Figure
6.15) plot.

16. Reconstructed detail signal at finest scale/level before (cyan) and after (blue)
thresholding

17. Reconstructed detail signal at second scale/level before (cyan) and after (blue)
thresholding

18. Reconstructed detail signal at coarsest scale/level before (cyan) and after (blue)
thresholding

 
 
 



Wavelet Analysis

Figure 6.16 is a completed version of Figure 6.14. This was the multiresolution wavelet
analysis of variable one.
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22. The name of the variable containing the thresholded multiresolution data for a
specific level. Here thmra_level_1 refers to the thresholded multiresolution data of
level one which is a data matrix containing the first detail level of all the variables
each in a separate column.

23. The nonthresholded (black) and thresholded (red) reconstructed detail level of the
level specified by tag 22 and variable number specified by tag 24. Here the
nonthresholded and thresholded detail of detail level one of variable one can be
viewed.

25. Here the effect of removing or adding the specific nonthresholded detail level can
be viewed. The black plot represents the original nonthresholded reconstructed
signal and the red plot the thresholded signal with the added effect of removal or
adding of a nonthresholded detail level. This is used if one wishes to override the
thresholding of a specific level. During thresholding a specific detail level may be
zeroed (removed) as in this example. The user may however decide that the
specific level is significant and that it contains important information. In such a case

the detail level may be replaced and the effect on the final signal can be viewed.

 
 
 



Thresholding may also retain some information in the detail levels that the user may
decide is insignificant, in which case it can be removed.
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The eight standardized variables from chapter 5 were decomposed into their
contributions in different regions of the time-frequency space by projection on the
corresponding wavelet basis function, as depicted in Figure 6.18 for variable one.

 
 
 



Wavelet Analysis

Figure 6.18 represents a moving window width of 256 data samples at a given time
instance.
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(a) Original signal; (b)-(e) wavelet coefficients (m=1 ,... , 4); (f) scaling function coefficients (L=4); (g)
extracted deterministic component.

Figure 6.18. Wavelet decomposition and separation of stochastic and deterministic
components.

The high-scale, low frequency content (approximation) of variable one is represented
on a set of scaling functions, as depicted in Figure 6.18(f). The low-scale, high
frequency content (detail) of variable one is illustrated by Figure 6.18(b)-(e).

 
 
 



Multiresolution decomposition based on wavelets was carried out for each variable to
observe both the general trend and the detailed features of the process data. The
discrete fast wavelet transform using a boundary-corrected Daubechies second order

filter at level L = 4 I which is half the maximum length, was used.

s·~~N~'~
D4~!~~~j
D3;~~~,.~
D2.~.~t~~~1
D1~~~~~~~~~~~

The length of the dyadic window was chosen as 256 which is a power of two (28
) since

classically the discrete wavelet transform is defined for sequences with length of some
power of two. Note that this initial window length is not a restriction. Theoretically,
OLMS rectification can start with any dyadic set of measurements, starting at two.
However, since the threshold is estimated from the data in the moving window, the
threshold estimate improves as the moving window length increases. When the noise
is assumed to be stationary, the threshold stops changing after a large set of
measurements are collected, and, thus, the moving window length can be held
constant. Figure 6.19 shows the multiresolution analysis plot for process variable one.
Approximation coefficients at scale 4 (A4) represent the underlying trend of the signal(s)

 
 
 



whilst wavelet coefficients (04 - 01) show the high-frequency details. Examining the
multiresolution analysis results for all eight process variables (see Paragraph 3.11 of
Chapter 3), the level of noise corruption was found to be different for each variable
necessitating level dependent thresholding.

This was repeated for each of the eight variables and provided similar results for each
of the variables.

Wavelet thresholding based on hard thresholding was then used to remove the high-
frequency noise as well as the spikes known to be outliers. Level-dependent threshold
values were derived from the Visushrink threshold strategy. In this manner both noise
and spikes were removed from the signal without affecting the underlying process
trends. The thresholding zeroed all the detail coefficients indicating that all the detail
could be attributed to noise. The approximation coefficients obtained in Figure 6.19 for
variable one and all the other variables preserve the process trend well in a compact
form since all high-frequency elements are omitted (Shimizu et aI., 1997).

The thresholded and non-thresholded wavelet coefficients were used to construct
thresholded and non-thresholded approximations and details. The non-thresholded
details and approximations were combined to form data set 2 from which the combined
principal component model was derived. At each level the thresholded details were
investigated to see if they contained any significant contributions. The significant
contributions were combined according to the level from which the detail principal
component model for each separate level was derived. The investigation revealed that
the current thresholded details did not contain any significant contributions so that no
need existed to derive detail principal component models. An approximation principal
component model was derived from the combined approximations (dataset 1). By
removing the undesirable high-frequency elements from the nominal data, the
possibility of input-training network overfitting (Chapter 8) is greatly reduced. If by
chance any desirable high-frequency elements were removed, it would be accounted
for in the combined model.

Figure 6.20 gives dataset 1 which contains the approximations of all eight variables.
Oataset 2 contains these approximations together with all the nonthresholded details of
all eight variables. The methodology explained in this section is illustrated by Figure
6.21.

 
 
 



Chapter 6 Wavelet Analysis
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Figure 6.21. Comparison between the original signal, de-noised signal and the
approximation coefficients used for model derivation

 
 
 



• LINEAR PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is among the most popular methods for extracting information
from data, which has been applied in a wide range of disciplines. In chemical process
operation and control, PCA is used to solve several tasks including rectification (Kramer and
Mah, 1994), gross-error detection (Tong and Crowe, 1995), disturbance detection and
isolation (Ku et aI., 1995), statistical process monitoring (Kresta et aI., 1991; Wise et aI.,
1990), and fault diagnosis (MacGregor et aI., 1994; Dunia et aI., 1996). PCA is popular for
process monitoring since it allows extension of the principles of univariate statistical process
monitoring (SPM) to monitoring of multivariate processes (Jackson, 1980; Kresta et aI.,
1991).

Conventional PCA is best for analyzing a two-dimensional matrix of data collected from a
steady-state process, containing linear relationships between the variables. Since these
conditions are often not satisfied in practice, several extensions of PCA have been
developed. Multiway PCA allows the analysis of a multidimensional matrix (Nomikos and
MacGregor, 1994). Hierarchical or multiblock PCA permits easier modeling and
interpretation of a large matrix by decomposing it into smaller matrices or blocks (Wold et
aI., 1996; MacGregor et aI., 1994). Dynamic PCA extracts time-dependent relationships in
the measurements by augmenting the data matrix by time-lagged variables (Kresta et aI.,
1991; Ku et aI., 1995). Nonlinear PCA (Kramer, 1991; Hastie and Stuetzle, 1989; Dong and
McAvoy, 1996; Tan and Mavrovouniotis, 1995) extends PCA to extracting nonlinear
relationships between the variables. On-line adaptive PCA updates the model parameters
continuously by exponential smoothing (Wold, 1994).

The superficial dimensionality of data, or the number of individual observations constituting
one measurement vector, is often much greater than the intrinsic dimensionality, the
number of independent variables underlying the significant nonrandom variations in the
observations (Kramer, 1991). The reduction of the data set from its superficial to intrinsic
dimensions is the focus of principal component analysis.

Due to correlation, a few principal components are usually sufficient to capture the data
variance (Dunia, 1999). Two kinds of abnormal conditions can be distinguished using
PCA. These are:

failure of sensor correlations: In this situation the PCA model is no longer valid and
the Euclidean norm of the residual vector increases significantly.
Excessive normal variance: The variables used to define the operating variability
are out of the normal range, as suggested by the historical data.

 
 
 



Modeling by PCA and its extensions is done at a single scale, that is, the model relates data
represented on basis functions with the same time-frequency localization at all locations.
For example, PCA of a time series of measurements is a single-scale model since it relates
variables only at the scale of the sampling interval. Such a single-scale modeling approach
is only appropriate if the data contains contributions at just one scale. Unfortunately, data
from almost all practical processes are multiscale in nature due to:

• Events occurring at different locations and with different localization in time and
frequency.

• Stochastic processes whose energy or power spectrum changes with time and/or
frequency.

Consequently, conventional PCA is not ideally suited for modeling of most process data.
Techniques have been developed for PCA of some types of multiscale data such as
missing data, but the single-scale approach forces data at all scales to be represented at
the finest scale, resulting in increased computational requirements.

Another shortcoming of conventional PCA and its extensions is that its ability to reduce the
error by eliminating some components is limited, since an embedded error of magnitude
proportional to the number of selected components will always contaminate the PCA model
(Malinowski, 1991). This limited ability of PCA to remove the error deteriorates the quality of
the underlying model captured by the retained components, and adversely affects the
performance of PCA in a variety of applications. For example, in process monitoring by
PCA, due to the presence of errors, detection of small deviations may not be possible and
that of larger deviations may be delayed. Similarly, contamination by the embedded error
also deteriorates the quality of the gross-error detection and estimation of missing data.
Consequently, the performance of PCA may be improved by methods that allow better
separation of the errors from the underlying signal.

A popular approach for improving the separation between the errors and the underlying
signal is to pretreat the measurements for each variable by an appropriate filter. Linear
filters represent the data at a single scale, and suffer form the disadvantages of single-scale
PCA. Nonlinear filters are multiscale in nature, and cause less distortion of the retained

features, but perform best for piecewise constant or slowly varying signals, and are often
restricted to off-line use. The recent development of wavelet-based methods (Donoho et aI.,
1995) overcomes the disadvantages of other nonlinear filters, and can be used on-line for
all types of signals (Nounou and Bakshi, 1998). Despite these advances in filtering
methods, preprocessing of the measured variables is still not a good idea, since it usually

 
 
 



destroys the multivariate nature of the process data, which is essential for multivariate SPM
and other operation tasks (MacGregor, 1994).

For reaping the benefits of reducing errors by filtering to improve process monitoring, it is
necessary to use an integrated approach to both these tasks. For this reason the approach
developed by Bakshi (1998) is used who combined the ability of PCA to extract the
relationship between the variables and decorrelate the cross-correlation with the ability of
wavelets to extract features in the measurements and approximately decorrelate the
autocorrelation. This multiscale approach for modeling by PCA can also be generalized to
transform other single-scale empirical modeling methods to multiscale modeling. Interesting
enough, multiscale modeling has received surprisingly little attention, despite the fact that
most existing modeling methods are inherently single scale in nature, whereas most data
contain contributions at multiple scales.

The reconstructed signal in the time domain is generated from the large wavelet coefficients
and therefore MSPCA integrates the task of monitoring with that of extracting the signal
features representing abnormal operation, with minimum distortion and time delay.
Consequently, there is no need for a separate step for prefiltering the measured variables
(Bakshi, 1998)

The MSPCA methodology consists of decomposing each variable on a selected family of
wavelets according to the methods discussed in Chapter 6. The PCA model is then
determined independently for the coefficients at each scale. All the scales (approximations
and details) are then combined to yield the model for all scales together.

The approach of computing the PCA of the wavelet coefficients instead of the time-domain
data, and its application to process monitoring has also been suggested by Kosanovich and
Piovoso (1997). Their approach preprocesses the data by the univariate FMH filter and then
transforms it to the wavelet domain before applying PCA to the coefficients. This approach
does not fUlly exploit the benefits of multiscale modeling, and the univariate filtering is not
integrated with the PCA. Furthermore, monitoring a process based only on its wavelet
decomposition will result in too many false alarms after a process returns to normal
operation.

MSPCA combines the ability of PCA to extract the cross-correlation or relationship
between the variables with that of orthonormal wavelets to separate deterministic
features from stochastic processes and approximately decorrelate the autocorrelation
among the measurements. The steps in the MSPCA methodology are shown in Figure
6.21 in Chapter 6 and the following algorithm:

 
 
 



1. for each column in the data matrix,
2. compute wavelet decomposition
3. apply level dependent wavelet thresholding
4. end
5. for each scale that contains important information,
6. compute covariance matrix of wavelet coefficients at selected scale
7. compute PCA loadings and scores of wavelet coefficients
8. select appropriate number of loadings
9. end
10. for all scales together, repeat steps 6 to 8
11. reconstruct approximate data matrix from the selected and thresholded scores at

each scale
12. end

Steps 11 and 12 only serve to evaluate the linear principal component model and do
not serve a purpose in the monitoring scheme. Steps 11 and 12 are also evaluated for
the nonlinear principal component model discussed in Chapter 9, which will form part of
the monitoring methodology.

To combine the benefits of PCA and wavelets, the measurements for each variable
(column) are decomposed to the column's wavelet coefficients using the same
orthonormal wavelet for each variable. This results in transformation of the data matrix,

X, into the matrix, WX, where W is an n x n orthonormal wavelet transformation

operator containing the filter coefficients,
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where G m is the 210gz
n-m x n matrix containing wavelet filter coefficients corresponding

to scale m = 1, 2, "', L , and HL is the matrix of scaling-function filter coefficients at the

coarsest scale discussed in Chapter 6. The matrix, WX, is the same size as the

 
 
 



original matrix, X, but due to the wavelet decomposition, the deterministic component
in each variable in X is concentrated in a relatively small number of coefficients in
WX , while the stochastic component in each variable is approximately decorrelated in
WX, and is spread over all components according to its power spectrum.

The covariance of the wavelet transformed matrix, and equivalently of the original data
matrix, may be written in terms of the contribution at multiple scales as

(WX)T (WX) = (HLX)T (HLX)+ (G LX)T (G LX) + ... +(G mX)T (G mX)+",

+(G1Xl (G]X)

To exploit the multiscale properties of the data, the PCA of the covariance matrix of the
coefficients at each scale is computed independently of the other scales. The resulting
scores at each scale are not cross-correlated due to PCA, and their autocorrelation is
approximately decorrelated due to the wavelet decomposition. Depending on the
nature of the application, a smaller subset of the principal-component scores and
wavelet coefficients may be selected at each scale. The number of principal
components to be retained at each scale are not changed due to the wavelet
decomposition since it does not affect the underlying relationship between the variables
at any scale. Consequently, existing methods such as cross-validation may be applied
to the data matrix in the time domain or to all the wavelet coefficients to select the
relevant number of components. This is done to ensure that only those principal
components associated with noise are discarded. A cross-validation method for
selecting the relevant number of components will be discussed in Section 7.10.
Applying separate thresholds at each scale as discussed in Chapter 6 allows MSPCA
to be more sensitive to scale-varying signal features such as autocorrelated
measurements. Thresholding of the coefficients at each scale identifies the region of
the time-frequency space and scales where there is significant contribution from the
deterministic features in the signal and also helps in denoising the signal.

The covariance matrix for computing the loadings and scores for all scales together is
computed by combining the covariance matrices of all the approximations and details.

This MSPCA modeling method represents one way of using the PCA models at
multiple scales, and other approaches may be devised, depending on the application.

Instead of the MSPCA methodologydescribedearlier, some of the benefits of the wavelet
representation may be reaped by just transforming the measured data on a selected
wavelet basis and computing the PCA of WX instead of X. PCA of WX will make it
easier to separate deterministicfeatures in a stochasticprocess, but this approach will be
restrictedto off-lineuse and will not fully exploitthe benefitsof the multiscalerepresentation,

 
 
 



since it will implicitly assume that the nature of the data does not change with scale. This
assumption will cause too many false alarms for autocorrelated measurements, as
compared to the MSPCA approach that accounts for the scale-dependent power spectrum.

False alarms will also be created for process monitoring based on the scores of WX after

a process returns to normal operation.

Principal Component Analysis (PCA) is a multivariate technique in which a number of
related variables are transformed to (hopefully) a smaller set of uncorrelated variables.

PCA transforms the data matrix in a statistically optimal manner by diagonalizing the
covariance matrix by extracting the cross-correlation or relationship between the variables in
the data matrix. If the measured variables are linearly related and contaminated by errors,
the first few components capture the relationship between the variables, and the remaining
components are composed only of the error. Thus, eliminating the less important
components reduces the contribution of errors in the measured data and represents it in a
compact manner. Applications of PCA rely on its ability to reduce the dimensionality of the
data matrix while capturing the underlying variation and relationship between the variables.

The method of principal components is based on a key result from matrix algebra: A p x p

symmetric, nonsingular matrix, such as the covariance matrix S, may be reduced to a

diagonal matrix L by premultiplying and postmultiplying it by a particular orthonormal matrix

U such that

The diagonal elements of L, 11' 12, ••• , 1p are called the characteristic roots, latent roots or

eigenvalues of S . The columns of U , U 1 , U 2 , ••. , up are called the characteristic vectors or

eigenvectors of S. The characteristic roots may be obtained from the solution of the

following detrimental equation, called the characteristic equation:

IS-lIl = 0

where I is the identity matrix. This equation produces a pth degree polynomial in 1 from

which the values 1), 12, ••• , 1p are obtained.

 
 
 



The starting point for peA is the sample covariance matrix S (or the correlation matrix). For

a p-variable problem,

S2
SI2 SIpI

S12 S2 S2pS= 2 (7.5)

SIp S2p S2
p

Where Si
2 is the variance of the i th variable, Xi' and Sij is the covariance between the

i th and j th variables. If the covariances are not equal to zero, it indicates that a linear

relationship exists between these two variables, the strength of that relationship being

represented by the correlation coefficient, rij = Sij /(SiS j) .

The principal component transformation will transform the p correlated variables

XI' x2' ••. , X pinto p new uncorrelated variables ZI' Z2' ••. , Z p. The coordinate axes of

these new variables are described by the characteristic vector ui which make up the

matrix U of the direction cosines used in the transformation:

Here x and x are p x 1 vectors of observations on the original variables and their

means.

The transformed variables are called the principal components of x or pc's for short.
The i th principal component is

and will have mean zero and variance l, the i th characteristic root. To distinguish

between the transformed variables and the transformed observations, the transformed
variables will be called principal components and the individual transformed
observations will be called z-scores. The distinction is made here with regard to z-
scores because another normalization of these scores exists.

 
 
 



If one wishes to transform a set of variables x by a linear transformation Zj = u~[x - x]

whether U is orthonormal or not, the covariance matrix of the new variables, Sz , can

be determined directly from the covariance matrix of the original observations, S, by
the relationship

However, the fact that U is orthonormal is not a sufficient condition for the transformed

variables to be uncorrelated. Only this characteristic vector solution will produce an Sz

that is a diagonal matrix like L producing new variables that are uncorrelated.

The interpretation of principal components will be explained by means of an example.
For the purpose of illustration, linear principal component analysis was applied to the
first two variables from the industrial data. The coefficients of the first vector were found
to be 0.7236 and 0.6902. As observed, they are nearly equal and both positive,
indicating that the first pc, Zl' is a weighted average of both variables. This is related to

variability that Xl and x2 have in common; in the absence of correlated errors of

measurement, this would be assumed to represent process variability. The coefficients
of the second vector were -0.6902 and 0.7236. They are also nearly equal except for
sign indicating that the second pc, Z2' represent differences in the measurements for

the two variables that would probably represent testing and measurement variability.

In keeping with the goal of multivariate analysis of summarizing results with as few
numbers as possible, there are two single-number quantities for measuring the overall
variability of a set of multivariate data. These are

1. The determinant of the covariance matrix, ISI. This is called the generalized

variance. The square root of this quantity is proportional to the area or volume
generated by a set of data.

 
 
 



S\2 + si + ... + s~= Tr(S) (trace of S)

Conceivably, there are other measures of generalized variability that may have certain
desirable properties but these two are the ones that have found general acceptance
among practitioners.

A useful property of PCA is that the sum of the original variances is equal to the sum of
the characteristic roots. For the two variable case,

S\2 + si = 0.7986 + 0.7343 = 1.5329
= 1.4465 + 0.0864 = /\ + /2

This identity is particularly useful because it shows that the characteristic roots, which
are the variances of the principal components, may be treated as variance
components. The ratio of each characteristic root to the total will indicate the proportion

of the total variability accounted for by each pc. For z\' 1.4456/1.5329 = 0.944 and for

Z2' 0.0864/1.5329 = 0.056. This says that roughly 94% of the total variability of these

data (as represented by Tr(S)) is associated with, accounted for or "explained by" the

variability of the process and 6% due to the variability related to testing and
measurement. Since the characteristic roots are sample estimates, these proportions
are also sample estimates.

It is also possible to determine the correlation of each pc with each of the original
variables, which may be useful for diagnostic purposes. The correlation of the i th pc,

Zj' and the j th original variable, Xl' is equal to

un.Ji: = 0.7236.Jl.4465 = 0.974
s\ .J0.7986

The first pc is more highly correlated with the original variables than the second. This is to
be expected because the first pc accounts for more variability than the second. Note that
the sum of squares of each row is equal to 1.0.

 
 
 



There are two ways of scaling principal components, one by resealing the original
variables, which will be discussed here, and the other by resealing the characteristic
vectors, which won't be discussed here. There is no significant reason for choosing the
one method above the other and in the end remains a personal choice. To me, scaling
the original variables made more sense.

The results obtained by scaling the original data will depend on the method employed. Once
the method of scaling is selected, the peA operations will proceed, for the most part, as
described earlier but there ,will be some modifications unique to each method. The main
effect of this choice will be on the matrix from which the characteristic vectors are obtained.

2. Scaling the data such that each variable has zero mean ( Le., in terms of deviation
from the mean). The final variate vector is x - x .

3. Scaling the data such that each variable is in standard units. (Le., has zero mean

and unit standard deviation). Each variable is expressed as (Xi - Xi) / Si .

As stated above, the choice of scale will determine the dispersion matrix used to obtain
the characteristic vectors. If no scaling is employed, the resultant matrix will be the
product or second moment matrix; if the mean is subtracted, it will be the covariance
matrix; if the data are in standard units, it will be a correlation matrix.

Here it is not necessary to actually subtract the variable means from the data; the
operations required to obtain the covariance matrix will take care of it.

If one were to subtract the means from the data and use these deviations as a data set,

say Xd = x - x with the resulting n x p data matrix Xd, the covariance matrix would

be X~Xd /(n -1). The characteristic vectors U, V and W would stay the same. For

large problems in terms of sample size or large number of digits for the original data,

this option may be preferable, numerically, to obtaining S from the raw data directly.

 
 
 



There are many occasions when one cannot use the covariance matrix. There are two
reasons for this:

1. The original variables are in different units. In this case, the operations involving the
trace of the covariance matrix have no meaning. For instance, if a variable is
expressed in centimeters, its variance is 100 times what it would be if it were
expressed in millimeters (variance of variable in cm divided by variance of variable
in mm). The variable would now exert considerable more influence on the shaping
of the pc's since PCA is concerned with explaining variability. When the units are
different, the solution is to make the variances the same (Le., use standard units),
which makes the covariance matrix into a correlation matrix.

2. Even if the original variables are in the same units, the variances may differ widely,
often because they are related to their means. If this gives undue weight to certain
variables, the correlation matrix should be employed here also (unless, possibly,
taking logs of the variables or the use of some other variance-stabilizing
transformation will suffice).

Nevertheless, when the variables are in the same units and do have the same amount
of variability, there are some advantages in using covariance matrices. This is
particularly true in physical applications where PCA is used in building physical models.
Using the covariance matrix should also help with diagnostics since the V -vectors are
in the original units of the variables.

It is important to note that there is no one-to-one correspondence between the pc's
obtained from a correlation matrix and those obtained from a covariance matrix. The
more heterogeneous variances are, the larger the difference will be between the two
sets of vectors. If the covariance matrix has (p - k) zero roots, then the correlation

matrix will also have (p - k) zero roots. However, if the covariance matrix has (p - k)

equal roots, the correlation matrix will not necessarily have the same number.

7.9. Using Principal Components in Quality Control

When one uses two or more control charts (Le. time-series plot of the squared
prediction error, SPE) simultaneously, some problems arise with the type I error. This is
the probability of a sample result being outside the control limits when the process is at
the mean or the standard established for that process. If one would consider first the
two control charts for Xl and x2 which is variable one and variable two of the training

 
 
 



data (see Paragraph 3.11 of Chapter 3), the probability that each of them will be in
control if the process is on standard is 0.95. If these two variables were uncorrelated
(which they are not in this case), the probability that both of them would be in control is

0.952 = 0.9025 so the effective Type I error is roughly a = 0.10, not 0.05. For 8

uncorrelated variables, the Type 1 error would be 1- (0.958
) = 0.37. Thus if one was

attempting to control 8 independent variables, at least one or more of these variables
would indicate an out-of-control condition over one-third of the time.

The problem becomes more complicated when the variables are correlated as they are
here. If they were perfectly correlated, the Type I error would remain 0.05. However,
anything less than that, such as the present case, would leave one with some involved
computations to find out what the Type I error really was. The use of principal
component control charts resolves some of this problem because the pc's are
uncorrelated; hence, the Type I error may be computed directly. This may still leave
one with a sinking feeling about looking for trouble that does not exist.

Any multivariate quality control procedure, whether or not PCA is employed, should
fulfill four conditions.

1. A single answer should be available to answer the question: "Is the process in
control?"

4. Procedures should be available to answer the question: "If the process is out-of-
control, what is the problem?"

Condition 4 is much more difficult than the other three, particularly as the number of
variables increases since it needs expert information which is more than just the
mathematical or statistical information needed in the first three conditions. There is
usually no easy way to this, although the use of PCA may help.

7.10. Selecting the number of principal components

One of the greatest uses of PCA is its potential ability to adequately represent a
p - variable data set in k < p dimensions. The question becomes: "What is k?"

 
 
 



Obviously, the larger k is, the better the fit of the PCA model; the smaller k is, the
more simple the model will be. Somewhere, there is an optimal value of k; what is it?
To determine k, there must be a criterion for optimality.

One method for determining the optimum number of pc's is the cross-validation
approach by Wold (1976, 1978), Eastment and Krzanowski (1982) and Krzanowski
(1983, 1987). This approach is recommended when the initial intention of a study is to
construct a PCA model with which future sets of data will be evaluated as in this case.

In PCA it consists of randomly dividing the sample into g groups. The first group is

deleted from the sample and a PCA is performed on the remaining sample. The
vectors obtained from that reduced sample are used to obtain pc's and Q-statistics
(explained in more detail in Chapter 10) for the deleted group. That group is returned to
the sample, the next group is deleted, and the procedure is repeated g times. The

grand average of the Q-statistic, divided by p, is called the PRESS-statistic

(PREdiction Sum of Squares). Its primary use in PCA is as a stopping rule. It differs
from other stopping rules in that it is based on the Q-statistic rather than the
characteristic roots. Krzanowski pointed out that it is possible to have different data
sets produce the same covariance or correlation matrix but would probably produce
different PRESS-statistics although their characteristic roots would be the same. Cross-
validation also differs from other stopping rules in requiring the original data while other
procedures work directly from the covariance or correlation matrix. Although the
procedure described here is not a significance test, it is more quantitative than most
other stopping rules.

The principle of cross-validation as a stopping rule will be illustrated using dataset 1
(refer to Chapter 6 paragraph 6.9.2.4.), where p = 8 and n = 645. The transformed

data matrix will be denoted by the 645x 8 matrix X. For this case the data set will be
divided into g = 5 groups of 20 observations each so that the first group will be

observations 1-20, the second group 21-40, and so on. The procedure is as follows:

1. Delete the first group from the sample. Perform a PCA on the remaining
observations (Le., 21-645). Obtain all eight vectors. This example used a
correlation matrix, the data will be in standard units.

2. For the deleted sample, obtain all eight z-scores for each observation using the
vectors obtained in step 1.

 
 
 



3. Using, in turn, the first pc, the first two pc's, and so on, obtain the predicted values
of the deleted sample. x will be equal to zero.

4. For each observation in the deleted sample, obtain Q. For the first observation,

Q = 1.054 for one pc, Q = 0.639 for two pc's, and so on.

5. Return the deleted group to the sample and remove the second group. Repeat
steps 1-4. Do the same for the other three groups. This concluded, there will now

be 645 values of Q for a one-pc model, another 645 for a two-pc model, and so on.

6. For each pc model, add up the 645 Q - statistics and divide each sum by

np = 5160. These are called PRESS-statistics and be designated by PRESS(1),

PRESS(2), and so on. It will also be necessary to obtain PRESSeD), the sum of
squares of the original data, again assuming a mean of zero.

7. To determine whether the addition of another pc, say the k th pc, to the model is

warranted, form the statistic

w = [PRESS(k -1) - PRESS(k)]/ DM

PRESS(k)/ DR

k

DR = p( n -1) - ~) n + p - 2i)
;=1

If W > 1 , then retain the k th pc in the model and test the (k + 1) st. for example, to test

whether the first pc should be included, one would form

W = [PRESS(O) - PRESS(1)]/ 651 = 0.0077 = 11.62
PRESS(1)/4501 0.00066303

and the first pc would be included in the model. For the process data the process
terminated with the inclusion of the third principal component.

In practice, if one had a large number of variables and was confident that only a small
number of pc's would be retained, a different strategy might be employed, in which
each characteristic vector is obtained and tested sequentially before obtaining the next
and, in that way, only one unwanted vector is obtained.

 
 
 



Chapter 7 Linear Principal Component Analysis

Table 7.1. PRESS values for selecting the number of pc's to retain

k PRESS(k) DM DR W

0 8.0000

1 2.9843 651 4501 11.6200

2 2.2097 649 3852 2.0806

3 1.1594 647 3205 4.4873

4 0.9813 645 2560 0.7204<1

5 0.9634 643 1917 0.0555

6 0.8834 641 1276 0.1804

7 0.8811 639 637 0.0025

It is possible that if one were to continue this process beyond the first occurrence
where W < 1, later values of k might produce one or more occurrences of W > 1. This
may be due to the presence of outliers.

In the previous section x was assumed to be zero since it was equal to zero for the
entire example. However, it may be that the mean is not equal to zero and the cross-
validation technique for it is more complicated, involving the deletion of variables.
Furthermore, both U and z are considered estimates and, as we now know, may be
estimated simultaneously using singular value decomposition. This, of course, is not
possible here because the z -scores are obtained for the observations not included in
the sample from which U is obtained. The solution to this problem is to use all n
observations in each subsample but randomly delete elements from each data vector.
The good way to do this is to randomly order the observations and use a cyclic deletion
pattern given by Wold (1987). The estimation procedure will, of necessity, require SVD
but the SVD algorithm employed must be able to handle missing data.

 
 
 



Figure 7.1. displays the LPCA interface which can be used to apply LPCA to the data.
This interface can either be displayed from the main interface or by using the Next
button from the wavelet analysis interface.

1. Name of the variable containing the data to which linear PCA needs to be applied.
If this space is left blank the default variable from the database will be used. The
variable must contain more than one column of data.

2. Level selection slider. This slider is used if the default data from the database is
used. Since LPCA is applied to each level separately, the level to which LPCA
needs to be applied can be selected using this slider. It will automatically detect the
number of levels contained in the database.

 
 
 



4. LPCA application button. Using this button will apply PCA to the named variable or
the specified level in the database.

5. Variability interface used to view the variability of the principal components. This
button will open Figure 7.2.

6. Principal component viewer interface used to view each principal component
separately. This button will open Figure 7.3.

7. Number of principal components selection interface. This button will open Figure
7.4.

8. Specify the final number of principal components to select. This choice is based on
the results obtained from the principal components selection interface in Figure 7.4.

9. Accept the number of principal components specified in 8. This reduces the number
of principal components to the number specified and saves the results to the
database.
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16. Reconstruct the original variable in 15 using the number of principal components
specified here.

17. As an option you can choose the number of principal components to retain using
the Krzanowski cross-validation method based on PRESS values discussed in
Section 7.8.

20. Error plot between the original and reconstructed variable using the number of
principal components specified.

 
 
 



Once the data matrix of the combined non-thresholded details and approximations (dataset
2) and matrix of approximations (dataset 1) from Chapter 6 had been obtained, the next
step was to remove any data points which did not correspond to nominal process operation.
By visual inspection ten coefficients from dataset 1 and 30 from dataset 2 (refer to Chapter
6 paragraph 6.9.2.4.) were identified as not being representative of normal operation.
Dataset 2 contained 40 columns and Dataset 1 eight columns. Linear PCA was applied to
the resultant data sets. The cross-validation method using Krzanowski's PRESS-statistic
(Krzanowski, 1987) was used to select the appropriate number of principal components.
This technique indicated that three and four linear principal components were adequate to
explain the underlying variability in dataset 1 and dataset 2 respectively. For dataset 2 this
meant four out of a possible 40 and for dataset 1, three out of a possible eight, indicating a
high degree of correlation. A total of 94.47% and 93.5% of the total explained variance was
captured by the two sets of principal components respectively.
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Figure 7.6 gives the first four linear principal components of dataset 1 of which the first
three were retained. Table 7.2 gives a summary of the cumulative variability of the
eight and first eight principal components of dataset 1 and dataset 2 respectively.

 
 
 



Table 7.2.
# Principal
Components

1
2
3
4
5
6
7
8

Cumulative variability for pc's of dataset 1 and dataset 2
Cumulative Variability Cumulative Variability

For Dataset 1 For Dataset 2
0.50957 0.48375
0.73978 0.70285

0.89768
0.98321
0.99796
0.99934
0.99994
1

0.96529
0.97937
0.98790
0.99089

 
 
 



• INPUT TRAINING NEURAL NETWORKS

Many industrial processes such as the case under consideration exhibit significant
nonlinear behavior. In these cases the application of PCA is not strictly appropriate. A
non-linear PCA methodology is proposed to take account of the non-Iinearities inherent
within the process data.

The non-linear PCA method proposed in this study is based upon the input-training
neural network approach (Tan and Mavrovouniotis, 1995). The advantage of this
approach is that it enables both the second-order and higher-order correlations to be
extracted separately. This is achieved by first applying linear PCA as discussed in
Chapter 7 to compress the data prior to implementing non-linear compression. By
adopting this procedure, a more parsimonious description of process behaviour is
achieved. The methodology is investigated for non-linear process performance
monitoring in Chapter 9.

In chapter 7 the concept of multiscale linear principal component analysis (MSLPCA)
was introduced as means of dimensionality reduction. In this chapter it will be extended
to nonlinear principal component analysis (NLPCA) and in chapter 9 this will be
combined with the LPCA from chapter 7 and multiscaling from chapter 6 to form
multiscale nonlinear principal component analysis (MSNLPCA). Since NLPCA uses a
type of neural network referred to as an input training neural network this concept will
first be introduced separately before being applied to MSNLPCA.

Apart from input training neural networks, dimensionality reduction can also be
performed by autoassociative neural networks, which are feedforward neural nets
trained to perform the identity mapping between network inputs and outputs. Although
IT-nets are an improvement over autoassociative neural networks (AANN), AANN's will
be briefly discussed in order to realize the similarities and differences between the two.

Figure 8.1 gives a schematic of an AANN. With AANN's dimensionality reduction is
achieved through a bottleneck, that is a hidden layer with a small number of nodes.
Most previous work focused on single-hidden-Iayer networks (Ackley et aI., 1985;
Cottrel et aI., 1987; Abbas and Fahmy, 1993). Kramer (1991) pointed out that the
single-hidden-layer architecture was unable to model nonlinear relationships between
observed variables and latent variables, and consequently offered no significant
improvement over conventional PCA. He then established a three-hidden-layer
architecture for autoassociative networks to capture nonlinear correlations. The three-
hidden-layer autoassociative networks can be used to perform various data screening

 
 
 



tasks, such as data noise filtering, missing measurement replacement, and gross error
detection and correction (Kramer, 1992).

An autoassociative network is composed of a mapping subnet and a demapping
subnet, each of which is a single-hidden-Iayer network by itself. Dong and McAvoy
(1993) proposed to train the two subnets separately. The method they proposed
involves three steps:

(1) find principal curves by successively applying the algorithm of Hastie and Stuetzle
(1989) to observed data and residuals;

Autoassociative networks are typically trained through backpropagation. In general, the
performance of backpropagation deteriorates as the number of hidden layers gets
larger (Hertz et aI., 1991). The poor performance of backpropagation in training the
mapping subnet is attributable to the large number of layers. In the process of
backpropagation learning, modifications of weights are based on errors propagated
backward from the output layer. After several layers of error propagation, the searching
direction for the weights in the mapping subnet may deviate from the direction that
minimizes the output error function. This effect becomes even more pronounced for an
autoassociative network due to its bottleneck layer.

Input
Layer

Mapping
Layer

Bottleneck
Layer

Demapping
Layer

Output
Layer

_ Nonlinear Node

 
 
 



Thus, as an alternative, the new method proposed by Tan and Mavrovouniotis (1995)
was used. In their work they also used neural networks as nonlinear models for
observed variables and latent variables and additionally used a concept called input
training (IT). With this method, only one single-hidden-Iayer network is needed for
dimensionality reduction of a given data set. The method proposed by them however,
uses backpropagation to train the network, which is not an optimized training method
and tends to take long to converge to the performance goal. In order to overcome this,
this work extends the backpropagation training algorithm and combines it with the
Levenberg-Marquardt (LM) training algorithm in an effort to facilitate enhanced speed
and better convergence. This new enhanced training algorithm forms a significant
contribution to the process of NLPCA.

In section 8.2. a background to Backpropagation is given and in section 8.3.
background is provided to the Levenberg-Marquardt training algorithm. Section 8.4
explains the concept of input training. Section 8.5. extends section 8.3 and 8.4 to
develop an enhanced training algorithm for input training neural networks (IT-nets).

8.2. The Backpropagation algorithm

There are many variations of the backpropagation algorithm. The simplest
implementation of backpropagation learning updates the network weights and biases in
the direction in which the performance function decreases most rapidly - the negative
of the gradient.

x(1 ) t(1 )

x(2) t(2)

x(R) t(82)

 
 
 



Consider a multilayer feedforward network, such as the two-layer network of Figure
8.2. The net input to unit i in layer k + 1 is

Sk

nk
+
1 (i) = z:W

k
+
1 (i,j)ak (j) + bk

+
1 (i)

)=1

The task of the network is to learn associations between a specific set of input-output

pairs {(Xl'f1),(x2,f2), """ ,(xQ,fQ)}.

lz:Q M T M lz:Q TE = - (t - a ) (t - a ) = - e e
2 q q q q 2 qq

q=l q=l

where a~ is the output of the network when the qth input, xq, is presented and eq is

the error for the qth input. For standard backpropagation algorithm, as in this case, we
use an approximate steepest descent rule. The performance index is approximated by

where the total sum of squares is replaced by the squared errors for a single
inpuUoutput pair. The approximate steepest (gradient) descent algorithm is then

A k (" .) BEuW 1,) = -a kaw (i,j)

 
 
 



as the sensitivity of the performance index to changes in the net input of unit i in layer

k. Now it can be shown, using (1), (6), and (9), that

There are two different ways in which this gradient descent algorithm can be
implemented: incremental mode and batch mode. In the batch mode which is applied
here, all of the inputs are applied to the network before the weights are updated.

 
 
 



The training function has one learning parameter associated with it - the learning rate
a shown in equations 8.7 and 8.8. With standard steepest descent as applied here,

the learning rate is held constant throughout training. The performance of the algorithm
is very sensitive to the proper setting of the learning rate. The larger the learning rate,
the bigger the step. If the learning rate is made too large the algorithm may oscillate
and become unstable. If the learning rate is set too small, the algorithm will take a long
time to converge. It is not practical to determine the optimal setting for the learning rate
before training, and, in fact, the optimal learning rate changes during the training
process, as the algorithm moves across the performance surface.

Let f pkbe the value of the kth observed variable in the pth training sample and Zpkthe

corresponding IT-net approximation. Then the objective function to be minimized in
network training is

E= L L(Zpk -fpkY
p k

Assuming that input and output nodes use the identity activation function, like in this

study, while hidden nodes use a sigmoidal function (f = a), the network output is

given by

Zpk = L W kja(bj + L vjixpi)
j i

where a(.) is a sigmoidal function, bj is the bias of the jth hidden node, and Vji and

Wkj are network weights. Hence, the steepest descent direction for training network

inputs is

I1xpi = L vji8pj
j

 
 
 



5pj =a'(bj + LVjiXp;)(Lwkj(fpk -Zpk)
; k

Note that the steepest descent direction for training network weights between the input
layer and the hidden layer is

l:!.Vji = LXpi5pj
p

Therefore, the extra computation required for training the inputs is negligible compared
with training the rest of the network. In the preceding derivation, it is assumed that only
hidden nodes use sigmoidal functions and that input and output nodes are linear since
this is the setup applied in this study. The same derivation can be carried out for
networks with sigmoidal output and/or input nodes and Equation 8.19 still holds but
with different 5 pj .

8.3. Levenberg-Marquardt

While backpropagation is a steepest descent algorithm, the Levenberg-Marquardt
algorithm is an approximation to Newton's method. The Levenberg-Marquardt
algorithm was designed to approach second-order training speed without having to
compute the Hessian matrix. The Jacobian matrix can be computed through a standard
backpropagation technique (Hagan and Menhaj, 1994) that is much less complex than
computing the Hessian matrix. Suppose that we have a function E(x) which we want

to minimize with respect to the parameter vector x , then Newton's method would be

where V2 E(x) is the Hessian matrix and VE(x) is the gradient. If we assume that

E(x) is a sum of squares function

N

E(x) = Le;2(x)
;=1

 
 
 



where J(x) is the Jacobian matrix, which contains first derivatives of the network

errors with respect to the weights and biases, and e is a vector of network errors.

8e) (x) 8e] (x) 8e] (x)
ax) ax2 ax

n

8e2(x) 8e2(x) 8e2(x)
J(x)= ax) 8x2 ax

n

8eN(x) 8eN (x) 8eN (x)
ax] ax2 ax

n

and

N

Sex) = 2:e;(x)V2e;(x)
i=)

For the Gauss-Newton method it is assumed that Sex) ~ 0, and the updated equation

8.22 becomes

The parameter J1 is multiplied by some factor (fJ) whenever a step would result in an

increased E(x). When a step reduces E(x) , J1 is divided by some factor t;. In this

case a value of J1 = 0.001 was selected as an initial value, with t; = 0.1 and fJ = 10.

Thus, it is decreased after each successful step (reduction in performance function)
and is increased only when a tentative step would increase the performance function.
In this way, the performance function will always be reduced at each iteration of the
algorithm. Notice that when J1 is large the algorithm becomes steepest descent (with

step 1/ J1), while for small J1 the algorithm becomes Gauss-Newton. The Levenberg-

Marquardt algorithm can be considered a trust-region modification to Gauss-Newton.

The key step in this algorithm is the computation of the Jacobian matrix. For the neural
network mapping problem the terms in the Jacobian matrix can be computed by a
simple modification to the backpropagation algorithm. The performance index for the
mapping problem is given by equation 8.16. It is easy to see that this is equivalent in
form to equation 8.23, where
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For the elements of the Jacobian matrix that are needed for the Marquardt algorithm
we need to calculate terms like

These terms can be calculated using the standard backpropagation algorithm with one
modification at the final layer

Note that each column of the matrix in equation 8.33 is a sensitivity vector which must
be backpropagated through the network to produce one row of the Jacobian.

1. Present all inputs to the network and compute the corresponding network outputs

(using equations 8.3 and 8.4), and errors eq = tq - a~. Compute the sum of

squares of errors over all inputs (E(x) ).

4. Recompute the sum of squares of errors using x + ~x. If this new sum of squares
is smaller than that computed in step 1, then reduce f.1 by f3, let x = x + ~x, and

go back to step 1. If the sum of squares is not reduced, then increase f.1 by f3 and

go back to step 3.

5. The algorithm is assumed to have converged when the norm of the gradient
(equation 8.24) is less than some predetermined value, or when the sum of squares
has been reduced to some error goal.

The training parameters as used in Matlab for the Levenberg-Marquardt training
algorithm are:

 
 
 



A value by which Jl is multiplied whenever the performance function is reduced by

a step (10);

A value by which Jl is multiplied whenever a step would increase the performance

function (0.1);

A maximum value of Jl so that if Jl becomes larger than this maximum value, the

algorithm is stopped (1e10);

8.4. Concept of Input Training

Instead of training a whole three-hidden-Iayer autoassociative network, only its
demapping subnet can be trained. Training such a subnet is meaningful and can be
done by extending the backpropagation algorithm, and in this case also combining it
with the Levenberg-Marquardt training algorithm.

The difference between training a demapping subnet and training an ordinary
feedforward network is that the inputs to the subnet are not given. Not only the internal
network parameters but also the input values need to be changed to reproduce the
given data as accurately as possible. When network inputs are adjusted, each' output
sample should be uniquely associated with one input vector. Figure 8.3 shows a 2-4-5
input training network with input adjustment used for reducing the dimensionality of a

data set from five to two. Each input vector (x p1 X p2 Y is adjusted to minimize only

the error of its corresponding output vector (z p1 Zp2 ••• Zp5 Y while internal network

parameters are trained using all output samples.

 
 
 



After the demapping subnet and its inputs are properly trained, we obtain a reduced
matrix and a demapping model in the form of a neural network. Thus all requirements
for data dimensionality reduction can be fulfilled through training a single-hidden-Iayer
network and its input simultaneously. The concept of input training (IT) gives an
alternative to the autoassociative network architecture for reducing data dimensionality.
It is this architecture that is referred to as an IT-net. Two characteristics are basic for an
IT-net: the input layer has fewer nodes than any other layer, and inputs are adjusted
according to corresponding outputs.

Note that the term input in the context of input training slightly differs from what is used
for traditional neural networks, where inputs are always given. It is not unusual,
however, to adjust inputs to a model while its parameters are being modified to
minimize the output error. Examples of this model-fitting strategy include the
polynomial PCA and factor analysis (FA). Input training is an application of the same
strategy in neural networks. Training an IT-net with one input node and no hidden layer
is equivalent to PCA.

IT-nets are basically feedforward networks. With one hidden layer of sigmoidal nodes,
a feedforward network can approximate any nonlinear function to an arbitrary accuracy
given sufficient hidden nodes (Cybenco, 1989). Let ¢k (11.1, ... , Af), k = 1, ... , n,

denote nonlinear mappings by an IT-net. When the output error for a given data vector,

(t p1' ... , t pnY , is minimized at an i~put vector, (xp1' ... , X pf Y ,we have:

~)ZPk-tpk)[8¢k] =0, i=1, ... ,f
k 8Aj X=x.

I pi

If the IT-net has exactly one input node, the functions ¢k (11.), k = 1, ... , n, represents

a smooth curve in n-dimensional space. Equation 8.35 indicates that the vector of
output errors, Zp - t p' is orthogonal to the tangent of the curve at II. = x p when the sum

of the square errors is minimized through input training. Therefore, the result of training
a single-input-node IT-net with a hidden layer of sigmoidal nodes is equivalent to a
principal curve as defined by Hastie as Stuetzle (1989). Similarly, training a two-input-
node IT-net will result in a principal surface, which is a vector of continuous functions

 
 
 



driven by two parameters and minimizes the orthogonal deviation of the data from the
surface (Hastie and Stuetzle, 1989).
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8.5. Training IT-Nets

For IT-nets with hidden layers, a direct iterative procedure for network inputs is not
available. The backpropagation and Levenberg-Marquardt training method discussed
in Section 8.2 and 8.3 are applied to network inputs. Similar to network weights,
network inputs are modified using errors backpropagated from the output layer. Thus,
the steepest descent direction for minimizing the output errors through adjustment of
network inputs is used.

8.6. Input Training

For input training we start with the Levenberg-Marquardt algorithm and proceed to the
end. When step 5 from section 8.4 is completed, we jump to the general

backpropagation algorithm with a view adjustments. We first calculate gk' the gradient,

and multiply it by ak, the learning rate, according to equation 16. Since this is

 
 
 



equivalent to 0pj' and the new weights have been calculated from the LM-algorithm,

we can implement equations 8.17 and 8.18 to update the inputs.

When starting the training procedure from the IT-Net interface (Figure 9.1 discussed in
Chapter 9), the training status will be displayed every show iterations of the algorithm.
The other parameters determine when the training is stopped. The training will stop if
the number of iterations exceeds the number of epochs, if the performance function
drops below goal, if the magnitude of the gradient is less than the minimum gradient, or
if the training time is longer than time seconds.

8.7. Testing and Using IT-Nets

A trained IT-net can be tested through cross validation. In this sense, testing and using an
IT-net involve the same computing task. We will need to describe only testing. Because
network inputs are unknown for testing samples, the appropriate way to test a trained
network is to adjust network inputs while freezing all internal network parameters (weights
and biases). That is, testing an IT-net still requires a searching procedure that optimizes
each input pattern to yield a good approximation for its corresponding output sample.

Note that optimization of inputs for testing is much less time-consuming than training a
whole IT-net. First, testing can be done for each individual sample and it involves much
fewer searching variables than training the whole network. In addition, since the inputs
of training data are available, we can apply a nearest neighbor algorithm to obtain good
initial guesses for the inputs of testing samples. Finally, replacing the small fixed
learning rate with a 1-D search significantly improves the speed of optimizing network
inputs.

As an alternative to the preceding testing method, after training an IT-net we might
proceed to train another network that maps the observed data to the reduced data. An
autoassociative network could then be constructed by combining the mapping network
and the IT-net. The major motivation for doing this is that using a trained
autoassociative network would then be as simple as feedforward calculation. However,
the result of this method of construction of an autoassociative network is often
disappointing due to the following factors:

(2) Two network training rounds are independent of each other and there is no
effective mechanism to ensure the quality of the whole autoassociative network.

In this study this alternative mapping method proved to be effective and gave
acceptable results.

 
 
 



• NONLINEAR peA

In practice, both linear and non-linear correlations exist between process variables.
The presence of linear correlations within the d.ata impacts upon the non-linear PCA
algorithm in terms of its ability to extract a parsimonious description of the underlying
characteristics of the process. The presence of linear correlations between the
variables results in the need for higher dimensionality to define the underlying non-
linear structure.

Linear PCA is effectively a rotation. Since the rotation is carried out in linear space, the
non-linear structures will be encapsulated within the principal component scores sub-
space if the dimensionality of the sub-space is sufficiently large. Thus, the process of
extracting linear and non-linear correlations from the data can be performed separately.
In this chapter a non-linear PCA approach is proposed which combines the advantages
of both linear PCA and the previous non-linear PCA algorithms. This is done by
extending the principles of Input Training as discussed in Chapter 8 to nonlinear
principal component analysis.

9.2. Nonlinear Principal Component Analysis

So how does NLPCA differ from LPCA? As we have seen, linear principal components
analysis (LPCA) is a projection-based statistical tool traditionally used for
dimensionality reduction. Consider an rn-dimensional data set X = [XI' x2' ..• , xm]

whose variance-covariance matrix has eigenvalue-eigenvector pairs

(ApPI)' (A2,P2)"'" (Am,Pm) where ~ ;:::A2 ;:::... ;:::Am ;:::O. The linear principal

component decomposition of X can be represented as:

[

X = TpT + E = L t iPi + E (l < m)
i=1

where T = [tp t2, ••• , t[] is defined to be the matrix of principal component scores,

p = [PI' P2' ... , P[] is the matrix of principal component loadings and E is the residual

matrix in the sense of minimum Euclidean norm. Non-linear PCA is an extension of
linear PCA. Whilst PCA identifies linear correla~ionsbetween process variables, non-
linear PCA can extract both linear (second-order statistics) and non-linear (higher-order
statistics) correlations. This generalisation is achieved by projecting the process

 
 
 



variables down onto curves or surfaces instead of lines or planes using the same

objective function, i.e. minimising the mean-square error E{II X - X 11
2
}. The data X

can be expressed in terms of k non-linear principal components, where k « m ,

where T = [t], t2, ••• , tk] is the matrix of non-linear principal component scores, F

is the non-linear function equivalent to the loadings in linear PCA and E is the matrix
of residuals.

The IT-net discussed in Chapter 8 can effectively represent non-linear systems which
include both additive and multiplicative types of non-linearities through the
simultaneous calculation of the latent variables. A potential disadvantage of this
approach is that the complexity of training the IT-net increases exponentially with the
dimensionality of the training dataset (Bakshi, 1998).

Two steps form the basis of the algorithm. In the first step, linear PCA is applied to
the original observations as in Chapter 7, resulting in a new set of uncorrelated
ordinates. By retaining sufficient data variability, the underlying non-linear structure is
not compromised and only those linear principal components associated with noise
are discarded. By reducing the dimensionality of the data, the non-linear structure
becomes more apparent. In the second step the IT-net is used to extract the latent
non-linear structure in the transformed dataset. To overcome the problem of local
minima, the training of the IT-net is repeated several times with different initial
conditions for each network architecture to ensure that the global minimum is found.
The proposed non-linear PCA representation can be defined as follows:

where T(k < l < m) is the matrix of non-linear principal component scores which are

identified from the input layer of the IT-net at the second stage and P(m x l) is the

matrix of linear principal loadings calculated from the first stage of the algorithm.
F(.) represents the input-training network function and E is the matrix of model

residuals. Equation 9.2 gives the non-linear principal scores T. However, for a new
observation, to calculate the corresponding non-linear principal component score
requires the implementation of a time consuming non-linear optimisation algorithm
and is thus not appropriate for on-line application. An alternative and more
straightforward approach is to develop a model between the process observations X
and the non-linear principal scores T using a feed-forward neural network. Finally,
the function relating the non-linear principal component scores to the process
observations is defined as

 
 
 



The function G(·) is the feed-forward neural network model with the linear PCA

transformed data set X· P as the input layer and the non-linear principal scores T
as the output layer. Once models based on Equations 9.2 and 9.3 are built, the task
of developing an on-line monitoring and fault detection scheme is straightforward
requiring minimal computational effort.

The NLPCA setup interface can be accessed by using the Next button from the
LPCA interface or can accessed directly from the Main interface. In Figure 9.1 to
Figure 9.4 the NLMSPCA model is created. The use of the interfaces are
straightforward.

NulTberof
Principal

COlJllonents

 
 
 



1. Dataset used to construct the NLMSPCA model. In this case it will either be
dataset 1 or dataset 2.

2. Display the Network Parameter window (Figure 9.1). This allows the user to set
up the input training neural network structure.

3. Display the Training Parameters window (Figure 9.2). This allows the user to set
up the training parameters for the input training neural network.

4. Display the Epoch Viewer. This allows the user to view the Mean Squared Error
(MSE) graphically as the training of the IT-Net progresses in order to get an idea
of how fast and how well the training is progressing.

5. Train the IT-Net. After setting up Figure 9.1 and Figure 9.2 and after selecting
Figure 9.3 this button is used to start the training and the progress will be
displayed via Figure 9.3. Depending on the network structure and the error goal
this can take a long time to complete. Training of the IT-Net will stop as soon as
one of the stopping criteria is reached or when terminated by the user.

7. Retain the network. If the user is satisfied with the trained network the network
structure and parameters can be saved to the database.

8. Number of nonlinear principal components. By default the same number of
nonlinear as linear principal components are chosen. However, the user has the
option to change the number of nonlinear principal components to retain. Recall
that the linear principal component scores are used as initial input to the IT-Net.

9. Input nodellevel transfer function. By default a linear transfer function is used and
should remain so.

10. Number of hidden nodes. This is actually the only network structure parameter,
except for perhaps the number of nonlinear principal components, that will be
changed. There is no set rule for the optimum number of hidden nodes and
therefore the user will have to play around with this parameter together with the
training parameters until acceptable results are obtained. The more hidden
nodes, the longer the training will take.

11. Transfer function of the hidden node. By default the sigmoidal transfer function is
used and it should not be necessary to use any other transfer function. Other
options include the linear and tangent transfer functions.

 
 
 



12. Number of original variables. This will be automatically displayed according to the
number of variables in the database. Recall that the process variables are used
as output for the IT-Net.

I 25 I. 25~ Epod'ls between updating display ~~~=.
~ Maximum number of epochs ....•..•................ ..1--10-00--]. 1000

~ Sum-squared error goal ..1 0.02 I. 0.02

~ Minimum gradient .[_ ~:~ J. 1e-6

~ Initial value for MU 1 0.001 J. 0.001

~ Multiplier for increasing "'lU ..............•........... 1 10 I. 10

~ Multiplier for decreasing MU .......................•..1 0.1 I.0.1

~ Maximum yaluefor MU ........•......................... 1 1810 I. 1e10

• learning rate for inputtraining ....•................1-0.1 J. 0.1

Figure 9.2 displays default values for the training parameters next to the edit boxes.
These values have proven to work in most cases. If the error goal is not met after
training the first parameter that can be altered is to increase the maximum number of
epochs that will also increase the training time. After the training has stopped, a
message will be displayed in the Matlab workspace indicating the stopping criteria

used to stop the training. If, for example, training was terminated because the
maximum value for mu was exceeded and the user is not yet satisfied with the
performance, this will be an indication that the maximum value of mu needs to be
increased. At this stage no other value except 0.1 for the learning rate will work.

 
 
 



100

MSE : 1043.007

15. The mean squared error of the network so far. This is also displayed via the
graph. This window is updated on intervals specified in the Training Parameters
window (Figure 9.3, Epochs between updating display).

After the training has stopped the interface in Figure 9.4 can be used to simulate the
network. The newly generated nonlinear principal components are used as input and
the original process variables are used as output. This allows the user to visually
inspect the performance of the network.

17. Data name. By default the original data representing normal operation in the
database is used. The user can however test the network performance by using

 
 
 



new unseen data. The name of the variable containing this data can be entered
here. The variable must reside in the Matlab workspace with each column
representing a separate process variable.

19. Original versus simulated variable. The original process variable and the same
process variable generated from the IT-Net through simulation are displayed to
give a visual comparison between the original and trained data. This normally
gives an indication of the level of network performance, especially in the case of
new (validation) data.
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After the IT-Net has been trained the interface in Figure 9.5 can be used to generate
a mapping model that generates a model between the linear and nonlinear principal
component scores that can be connected to the IT-Net model. This interface is
displayed by using the next button from the NLPCA interface (Figure 9.1) or can be
accessed directly from the Main interface. Its setup and use are identical to Figure
9.1 to Figure 9.4 except for its inputs and outputs and for the fact that this is just a
normal feedforward neural network that is trained using the Levenberg Marquardt
training algorithm.

21. Number of linear principal components. This is automatically displayed according

to the number of linear principal components recorded in the database.

22. Number of nonlinear principal components. This is automatically displayed
according to the number of nonlinear principal components recorded in the
database.

 
 
 



Non-linear PCA was applied to dataset 1 and dataset 2 using the IT-net methodology
to extract the nonlinear correlations between the process variables and to build the
nonlinear multiscale PCA representation.

Here, as in the case of linear principal component analysis, three principal
components were retained in the model for dataset 1 capturing 97.72% of the data
variability and again four for dataset 2 capturing 98.53% of the data variability making
this a 3-4 principal component-model. The discarded principal components were
attributed to process noise. Different network initialisation and neural network
structures were used to train the neural networks to address the local minima
problem. Finally, an IT-net with a 4-13-40 structure and a 40-18-4 feedforward neural
network were built to model the projection of the data onto the nonlinear sub-space
and its inverse, respectively for dataset 2 and a 3-12-8 structure and 8-14-3
feedforward neural network for dataset 1. The training parameters are summarised
in Table 9.1. The shadowed blocks indicate the criteria on which the training was
terminated for each case.

Epochs between updating display 25

Maximum number of Epochs

Sum squared error goal

Sum squared error achieved 0.029

Minimum gradient 1e-6

Initial value for MU 0.001

Multiplier for increasing MU 10

Multiplier for decreasing MU 0.1

Maximum value of MU 1e10

Learning rate for Input Training 0.1

0.032 0.01 0.01

1e-6 1e-6 1e-6

0.001 0.001 0.001

10 10 10

0.1 0.1 0.1

1e10 1e10 1e10

0.1

 
 
 



Using the combined backpropagation and Levenberg-Marquardt training algorithm
resulted in an average improved convergence rate of 350%. The results showed that
the final nonlinear peA representation captures 89.5% of the variability in dataset 2
and 93.1% in dataset 1. For the validation data it is 89.9% and 94.4% respectively.
Action and warning limits for the bivariate score and SPE plots were then derived.

 
 
 



IIPROCESS MONITORING

To be effective, a plant-wide control monitoring and performance assessment system
should have the following properties:

(i) automated background operation, including scheduled remote collection of
control loop data and data integrity checks,

Together, these properties form the basis of a comprehensive control performance
monitoring and assessment system, as shown in Figure 10.1.

Figure 10.1. Important components of an industrial performance monitoring
assessment, and diagnosis strategy.

 
 
 



The main aim here is to concentrate on the computational issues part of the industrial
performance monitoring assessment and diagnosis strategy. Complete separate studies
Can be conducted on the other issues on their own and are therefore outside the scope of
this study.

During the LPCA and NLPCA processes principal scores and loadings are calculated. A
subset of the first few scores, A < N, provides information in a lower dimensional space, the
score space, of the behaviour of the process during the period in which the measurements
were made. This set of scores and the PCA loadings can be used to determine if the
present process operation has changed its behavior relative to the data that were used to
define the scores and loadings (Piovoso et aI., 1992a).

There are several ways of interpreting the PCA results. Typical monitoring control charts
include:

• univariate and bivariate principal component score plots, a qualitative representation of
the process performance, relative to the calibration model in the model space defined by
the calibration model;

These have been widely used to obtain early warning of the occurrence of nonconforming
operation. Once a NLPCA representation has been built for process performance
monitoring and fault detection, action and warning limits require to be calculated.

Bivariate score plots and the squared prediction error (SPE) were used in the approach
adopted by Dong and McAvoy (1996) for defining the action and warning limits for their non-
linear performance monitoring scheme. However, adopting this approach requires that the
non-linear scores and residuals follow a multivariate normal distribution.

 
 
 



For multivariate statistical process monitoring by NLMSPCA, the region of normal operation
is determined at each scale from data representing normal operation. For new data, an
abnormal situation is indicated when the current coefficient violates the detection limits. The
actual state of the process is confirmed by checking whether the signal reconstructed from
the selected coefficients violates the detection limits of the PCA model for the significant
scales. This approach is equivalent to adaptively filtering each value of the scores and
residuals by a filter of dyadic length that is best suited for separating the deterministic
change from the normal process variation. The detection limits for the scores and residuals
also adapt to the nature of the signal.

These detection limits consist of action and warning limits. Waming limits are usually 95%
confidence bounds and serve as a warning that the process is approaching an abnormal
condition. Action limits are usually 99% confidence bounds indicating that an abnormal
operation is occurring and that action needs to be taken.
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However, for non-linear PCA the assumption that the non-linear scores and residuals follow

a multivariate normal distribution cannot be guaranteed. Although it is possible to define the

region of normal operation without any underlying assumption concerning the probability

distribution of the measurements, an assumption is still required to apply hypothesis-based

statistical tests to identify when the process is moving outside the action or warning limits.

The assumption of a normal distribution is incorrect as illustrated in Figure 10.2, which gives

the histogram plots of the eight variables representing nOm1al operation used in the

application. Except for the last variable they do not closely resemble a normal distribution.

Therefore, using this assumption will introduce a significant error. An alternative approach

that effectively deals will this problem is introduced in Section 10.4.

An alternative approach to defining the action and warning limits is based upon non-

parametric density estimation. Non-parametric bounds for process performance monitoring

have previously been developed (Martin and Morris, 1996), using kernel estimation. Density

estimation is the construction of an estimate of the density function from the observed data.

A multivariate product kernel estimator can be constructed based upon the m -dimensional

random samples Xl' X2' ... , xn from a density f (Scott, 1992):

where h is the window width, also called the smoothing parameter or bandwidth, and K is

the kernel function which satisfies the conditions

K(x) ~ 0, and 1m K(x)dx.= 1

The shape of the density estimate is determined by the choice of the smoothing parameter

h, and to a lesser extent by the choice of the kernel (Scott, 1992; Bowman, 1984). An

automatic procedure for determining the optimal window width was used, the minimisation

of the mean integrated squared error cross validation (Bowman, 1984). When using the

density estimation-based approach to define the action and warning limits for the monitoring

charts, the density function of the non-linear principal component scores and squared

prediction error are calculated for the nominal (reference) data. Depending upon the

confidence level required, 95% for the warning limits and 99% for the action limits, the

contour or value can be calculated to define the control limits for the non-linear principal

component scores plot and the SPE. Action arid warning limits based upon kernel density

estimation are theoretically more appropriate in the development of a non-linear PCA

 
 
 



monitoringscheme. However, if the underlyingdistributionis normal,similar resultsto those
obtainedfrom the conventionalapproachesare obtained.

For on-line monitoring, the MSPCA algorithm is applied to measurements in a moving
window of dyadic length. The use of a moving window makes the on-line wavelet
decomposition algorithm equivalent to wavelet decomposition without downsampling,
causing a signal of length n to result in a total of n(L + I) coefficients, where L is the

depth of the wavelet decomposition. This increase in the number of coefficients
requires on-line monitoring by MSPCA to increase the detection limits at each scale to
maintain the desired confidence limit for the reconstructed signal. For example, for
normally distributed uncorrelated measurements in a window length of 128,
approximately one sample will lie outside the 99% confidence limits. The off-line
wavelets transform will also result in 128 uncorrelated coefficients, and approximately
one coefficient will violate the 99% limits. In contrast, the on-line wavelet transform of
these data will result in 128 coefficients at each scale, and approximately one
coefficient will violate the 99% detection limits at each scale. Thus, if the signal is
decomposed to four detail signals and one scaled signal, that is, for L = 4 as in this
case, application of the 99% confidence limit at each scale will result in an effective
confidence of only 95% for the reconstructed signal, since the coefficients violating the
detection limits at each scale need not be at the same location. Consequently, the
detection limits at each scale for on-line monitoring by MSPCA need to be adjusted to
account for the overcompleteness of the on-line wavelet decomposition by the following
equation:

1
CL = lOO--(lOO-C)

L+I

where C is the desired overall confidence limit, CL is the adjusted confidence limit at

each scale at present, and L is the number of scales to which the signal is
decomposed, resulting in L detail signals and one scaled signal.

Another effect of the on-line wav~let decomposition approach is that the wavelet
coefficients retain more of the autocorrelation in the signal due to the use of
overlapping windows for the decomposition. Fortunately, the performance of monitoring
by NLMSPCA is not adversely affected by the autocorrelated coefficients in adjacent
windows, since the confidence limits at each scale are increased by equation 10.3, and
even relatively small deterministic features are captured by large wavelet coefficients.

 
 
 



may be inverted so that the original variables may be stated as a function of the
principal components, viz.,

because V is orthonormal and hence V-I = U'. This means that, given the z-scores,
the values of the original variables may be uniquely determined. However, x will be
determined exactly only if all the pc's are used. If k < p pc's are used, only an

estimate :i: of x will be produced, viz.,

a type of expression similar to those often found in other linear models. In this case, the
first term on the right-hand side of the equation represents the contribution of the
multivariate mean, the second term represents the contribution due to the pc's, and the
final term represents the amount that is unexplained by the pc model - the residual.

There are outliers associated with each of these and it is important to keep their
identities distinct. (Hawkins refers to them as Type A and Type B outliers.)

The Type A outlier refers to a general outlier from the distribution form one wishes to
assume. Usually this assumption will be multivariate normal and these outliers will be

detected by large values of T2 and/or large absolute values of the z-scores. The
important thing about this type of outlier is that it would be an outlier whether or not
PCA has been employed and hence could be picked up by conventional multivariate
techniques without using PCA. However, the use of PCA might well enhance the
chance of detecting it as well as diagnosing what the problem might be.

 
 
 



Chapter 10

Here we will be concerned with the Type B outlier, the third term in equation 10.6,
which is an indication that a particular observation vector cannot be adequately
characterized by the subset of pc's one chose to use. This result can occur either
because too few pc's were retained to produce a good model or because the
observation is, truly, an outlier from the model. It is also possible in repetitive
operations, such as quality control, that the underlying covariance structure and its
associated vector space may change with time. This would lead to general lack-of-fit by
the originally defined pc's.

When most of the variance of the variables is summarized by only two principal
components, then we can express the results as a biplot. Although biplots are originally
meant two-dimensional plots, they may be used for any number of dimensions. For
two-dimensional plots it means that for the singular value decomposition we are
summarizing a lot of the information in only two dimensions. Two-dimensional plots are
very popular because they are easy to work with but should always include some
statement with regard to the proportion of the total variability explained by the first two
characteristic roots. Unless this quantity is sUfficiently large, the interpretation of the
plot is suspect.

Although biplots will be used, they will only be used indirectly. Another technique will be
introduced for viewing the information contained in a biplot.

Since the data contained in samples when the process was not operating normally,
applying peA as a simple outlier detector revealed which data could be classified as
such. Score biplots of the first few principal components can be used to visually detect
these outliers (Piovoso et aI., 1992).

10.8. Hotelling's T2 statistic: An overall measure of variability

Hotelling'sT2-statistic measuresunusualvariabilitywithin the calibrationmodel space. That
is, if the calibrationmodel data representprocessoperationat one operatingcondition,and
the process has shifted to a different one, then the T2-statisticwill show that data at this
operating condition cannot be classified with the calibration data. The T2-statistic is
proportionalto the sum of the squares of the scores on each of the principal components
(Piovosoet aI., 1992).

The T2 statistic can be applied (Johnson and Wichen, 1992) to the principal component
scores to calculate the control limits. It is based upon the assumptionthat the limits of the

 
 
 



control charts are calculated assuming that the original data X follows a multivariate
normal distribution. Under these assumptions, the principal component scores and residuals
obtained from linear PCA will also exhibit normality since PCA is "a linear transformation and
a linear combination of a normal distribution is itself normally distributed.

which is a quantity indicating the overall conformance of an individual observation
vector to its mean or an established standard. This quantity, due to Hotelling (1931), is
a multivariate generalization of the Student t -test and does give a single answer to the

question: "Is the process in control?"

which does not use PCA and is a statistic often used in multivariate quality control.

Substituting 8-1 = WW' and Yi = w;[x - x] in equation10.8 results in

T2 - [ -]'8-1 [ -]- x-x x-x
= [x - x]'WW'[x - x] = y'y

so equations 10.7 and 10.8 are equivalent. The' important thing about T2 is that it not

only fulfills Condition 1 for a proper multivariate quality control procedure as listed in
Chapter 7, Section 7.9.2, but Conditions 2 and 3 as well. The only advantage of

equations 10.7 over 10.8 is that if W has to be obtained, the computations are

considerably easier as there is no matrix to invert. In fact, y'y is merely the sum of

squares of the principal components scaled in this manner (T2 = YI2 + yi for the two-

variable case) and demonstrates another advantage in using W -vectors. If one uses

U -vectors, the computations become, essentially, a weighted sum of squares:

Few books include tables for the distribution of T2 because it is directly related to the

F -distribution by the relationship

T2 =p(n-I)F
p,n,a p,n-p,an-p

 
 
 



r8~900,o.o5 = 8,187

An observation vector that produces a value of r2 greater than 8,187 will be out of
control on the chart.

However, the traditional approach to calculating action and warning limits for
multivariate process performance monitoring based on Hotelling's T2

, is inappropriate
in the non-linear case since a non-linear mapping does not necessarily guarantee that
the generated data will follow a normal distribution as discussed earlier. This problem
was addressed by calculating the control limits using the non-parametric technique of
kernel density estimation in Section 10.4. This approach has the advantage that no a
priori assumption of normality is required.

An alternative method of plotting r2 is to represent it in histogram form, each value of

r2 being subdivided into squares of the y -scores. This is sometimes referred to as a

stacked bar-graph, and indicates the nature of the cause of any out-of-control
situations. However, the ordinate scale would have to be arithmetic rather than
logarithmic.

Process monitoring can also be referred to as ·a form of multivariate quality control. The
procedure or guidelines for monitoring a multivariate process using peA is as follows:

1. For each observation vector, obtain the y -scores of the principal components and

from these, compute r2
• If this is in control, continue processing.

2. If r2 is out of control, examine the y -scores. As the pc's are uncorrelated, it would

be hoped that they would provide some insight into the nature of the out-of-control
condition and may lead to the examination of particular original observations.

The important thing is that r2 is examined first and the other information is examined

only if r2 is out of control. This will take care of the first three conditions listed in
Section 7.9.2 and, hopefully, the second step will handle the fourth condition as well.

Even if r2 remains in control, the pc data may still be useful in detecting trends that
will Ultimately lead to an out-of-control condition.

 
 
 



The residual term of Equation 10.6 can be tested by means of the sum of squares of
the residuals:

This represents the sum of squares of the distance of x -:i from the k -dimensional
space that the PCA model defines.

h = 1- 20103

o 302
2

[(;,J -B,h, ~~' -1) -1]
c = 0 ----~-=-==---

I ~202hg

is approximately normally distributed with zero mean and unit variance (Jackson and
Mudholkar, 1979). Conversely, the critical value for Q is

where Ca is the normal deviate cutting of an area of a under the upper tail of the

distribution if ho is positive and under the lower tail if ho is negative. This distribution

 
 
 



holds whether or not all of the significant components are used or even if some
nonsignificant ones are employed.

In Section 2.6, it was suggested that the last two characteristic roots in the example
were not significantly different from each other and hence the last two pc's were

deleted. If only the first two pc's were retained, what would be the limit for Q? The last

two roots were 29.33 and 16.41. From these, 81 =45.74, 82 =1129.54,

83 = 29650.12, and from these ho = 0.291. Letting a = 0.05, the limit for Q, using

equation 10.14 is

[ ]

110,291

Q = 45.74 (1.645)~(2)(1129.54)(0.291)2 + (1129.54)(0.291)(-0.709) + 1
0.05 45.74 . (45.74)2

=140.45

Values of Q higher than this are an indication that a data vector cannot be adequately

represented by a two-component model.

10.10. Contribution plots

When a new observation moves outside the control limits, it is assumed that an unusual
process event or equipment malfunction has occurred and operator personnel need a tool
to identify which variables, or combination of variables, are responsible for, or indicative of,
changes in the process. One approach is through the implementation of a process variable
contribution plot (Miller et aI., 1993). Consequently, for the identification of variables
indicative of non-conforming operation, differential contribution plots based upon model
residuals and non-linear principal component scores are used.

By comparing the contribution plot of a sample taken from the calibration set with one that is
outside the confidence limits, differences in the expected variables' magnitude may provide
an indication of which variables have exceeded their expected limits, and a possible
compensation to correct the problem.

Contribution plots describe the change in the magnitude of the variables for the new
observation relative to the average value calculated from the nominal linear PCA
model. It decomposes the scores into their summation operands and graphs them

versus the contributing variable. The summation operands are the products of the
loadings of variable j and the corresponding value of variable j. A large product
associated with a particular variable implies a correspondingly large contribution
(Piovoso et aI., 1992)

 
 
 



Using a similar argument, a contribution plot can be derived and applied in a non-linear
situation. The contribution of the process variables to the SPE can be calculated in a similar
way to that for linear PCA. However, since the mapping function between the process
variables and their non-linear principal scores is 'non-linear, the relationship between the
variables and the non-linear principal scores is not as straightfomard as in the linear case
where the scores can be decomposed as a weighted sum of the process measurements.
An altemative approach is based upon the assumption that the partial derivative of a
function with respect to a specific dimension can indicate the relative influence of the
corresponding variable on that function. If the first-order partial derivatives of a multivariate
function are known for a specific variable space coordinate, then these derivatives can be
used to compare the relative influence of the individual variables on the function at a
particular location in variable space. Thus a differential contribution plot which describes the
difference between the contribution of the process variables to its non-linear scores can be
defined by comparing the influence of the first-order partial derivatives of the non-linear
scores to each process variable for a specific sample or time point. The differential
contribution plot that indicates the contribution of the process variables at a specific time

point (xo) to a non-linear score ti, can then be examined by calculating the individual

components of the vector product

atlx 0-

Ix=xo Ox t=t,

where at / Ox is the first-order partial derivative function between t and x. The relationship

between the non-linear principal scores t to the process variables x is given in Equation

9.3. This approach is also suitable for linear PCA since linearity can be viewed as a special
case of non-linearity. In the linear case, the first-order partial derivatives of t relative to x

become constant which in practice are the principal component loadings, P. Thus Equation

10.15 can be simplified to x Ix=xo °Pi which is the same expression as that for the

contribution plot to the scores proposed by Miller et al. (1993).

Figure 10.3 illustrates the traditional biplots with detection limits for the normal linear
case (a) and based on the kemel density estimation (b). The contours represent normal
operation detection limits. If an observation moves outside these detection limits it will
indicate that an abnormal condition has occurred. With a new observation we are
actually just interested in how far from abnormal the condition is. This can be
calculated using the methodology illustrated in Figure 10.4.
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We are interested in the in the shortest tangent line to the warning limit which can be
extended to find the shortest tangent line to the action limit. In Figure 10.4(a) there
exist two tangent lines with one (d2) being the shortest line to any position on the
warning limit contour. Figure 10.4(b) contains more than two such tangent lines. Thus,
for a new observation we just need to calculate all the possible tangent lines from the
observation point to the warning limit contour and select the shortest as an indication of
how far the process is from a nonconforming condition. This can be calculated for
different biplot combinations and summarized as illustrated in Figure 10.5 where the
first bar is based on Figure 10.4(b). The warning limit line forms the baseline. dm is a
non-tangent line and thus will not be considered.

......................
............

 
 
 



Process MonitorinQ

Action limit

J......\
Warning limit

10.12. Application

Figure 10.6 is used to set up the bivariate contour plots. Its sole purpose is to choose
the confidence limits for the action and warning limits. It shows the linear and nonlinear
limits for comparison. The different combinations of scores can be viewed. The
summary bivariate plots are automatically generated from the bivariate plots and thus
do not need to be set up separately.

2. Dataset number display. In this case one will first set up the bivariate plots for
dataset one and then for dataset two.

4. Y-axes principal component number display. For this application one will have a
choice between three principal components for dataset one and four for dataset
two.
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6, X-axes principal component number display, For this application one will have a
choice between three principal components for dataset one and four for dataset
two,

7, Confidence limit for the bivariate principal component score plot As one changes
the confidence limit the contour plot on the interface will change accordingly.

8. Application button to save the parameters to the database. The fist one accepted
will be the warning limit and the second one will be the action limit After the second
limit has been applied one can advance to the next pair of principal component
scores for a new bivariate plot.

 
 
 



Figure 10.7 is used to set up the action and warning limits for the SPE plot and works
in a similar way to Figure 10.6.

 
 
 



Up to this point all previous software was just used to set up the NLMCPCA model and
is not used again except when changes to the model need to done. All the relevant
information is stored in the database. Figure 10.7 is the actual process monitoring
interface which is used to monitor new process data. This interface can be accessed by
using the next button in Figure 10.6 or can be accessed directly via the Main
interface.

This interface shown in Figure 10.8 allows the user to choose between the following
plots:

 
 
 



Process Monitorinq

Only one of these plots can be viewed at a time. One would normally use the bivariate
summary plot and only view the SPE and contribution plots when an abnormal operation is
detected. While viewing the bivariate summary plot, the SPE is also calculated. In an event
of an abnormal operation first being detected by the SPE the SPE plot will automatically
replace the bivariate summary or contour plot.

15. Name of the variable containing the new data for investigation purposes. The
NLMSPCA model will be applied to this data in order to detect the existence of
abnormal behavior in the data. This variable must reside in the matlab workspace
and contain the data of each variable in a separate column.

17. Start the NLMSPCA monitoring process using the parameters selected during the
setup/training of the ~LMSPCA model with normal data.

18. Bivariate contour pl~t. Only one bivariate contour plot can be plotted at a time. By
default, principal component one is plotted versus principal component two. Other
combinations can be selected using 5 and 6. If dataset 1 contains four principal
components and dataset contains six, principal component one to four will refer to
dataset 1 and five to ten to dataset 2.

21. Summary bivariate plot. All possible combinations for dataset 1 and dataset 2 are
plotted.

26. Warning alarm. This alarm is shown as soon as the warning limits of the bivariate or
SPE plots are violated. This alarm will remain for three time intervals before being
cleared automatically.

27. Action alarm. This alarm is shown as soon as the action limits of the bivariate or
SPE plots are violated. This alarm will remain for three time intervals before being
cleared automatically.

 
 
 



First a calibration model was developed based upon 900 one-minute samples taken of
the eight monitored variables according to the preceding chapters. To test the new
methodology, data representing abnormal operation had to be collected. Figure 10.9
shows typical variable traces taken of 830 process data points at one minute intervals
and gives a plot of the nonconforming or abnormal operation data used in the
assessment and validation of the methodology.

 
 
 



The aim is not just to show that the algorithm works, but also to satisfy the 3rd stated
objective in terms of the critical assessment and validation of the methodology so that
the comparative advantages that each of the elements of the NLMSPCA approach
offers, becomes clear. This is the main objective of this section. It sets a standard to
which the NLMSPCA methodology can be compared. In the end this should enable one
to answer the question: How much better is the NLMSPCA approach?

The two methodologies that follow were assessed using the set of unseen data in
Figure 10.9 through both the SPE and principal component scores plot. In both cases
the action and warning limits were calculated using kernel density estimation.
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Figure 10.10. SPE plots for the test data based on the 4-3 LMSPCA model with 95%
and 99% non-parametric limits

In Figure 10.10 and Figure 10.11 a similar methodology to NLMSPCA was applied
except that, instead of using NLPCA, a classical linear PCA was used. The whole
process of using neural networks was thus omitted. This will be referred to as the
LMSPCA methodology. Using linear principal scores results in different action and
warning limits as compared to nonlinear principal scores. Furthermore, using LPCA
resulted in six and five principal components to be retained for dataset 1 and dataset 2
respectively to describe the same degree of variability, compared to four and three in
the case of NLPCA. As can be se~n from the results, this methodology was unable to

 
 
 



effectively detect the point of nonconforming operation. This is to be expected, since
the data used was highly nonlinear.

(Time I '20' )

Figure 10.11. Scores plots for the non-conforming test data based on the 4-3
LMSPCA-model.

In the next exercise, again the same methodology was applied to the data in Figure
10.9 except that, instead of using a multiscale methodology, a singlescale methodology
was used. This will be referred to as the NLPCA methodology. The processes of
multiresolution analysis and wavelet thresholding were thus omitted. This also resulted
in only one dataset to be used instead of two. Figure 10.12 and Figure 10.13 gives the
results after applying this methodology. As can be seen, it was able to detect the point
of nonconforming operation three time intervals earlier than the current alarm system.
However, it continued giving false alarms after the process returned to normal
operation.
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Figure 10.12. SPE plots for the test data based on the 4-3 NLPCA model with 95%
and 99% non-parametric limits

Figure 10.13. Scores plots for the non-conforming test data based on the 4-3 NLPCA-
model.

 
 
 



In the industrial application indications of failure are difficult to identify, due to the large
number of monitored variables, large interactions and nonlinearities as illustrated
through Figure 10.10 and Figure 10.11. Current alarm limits as well as the number and
type of alarms also have a tendency to conceal the development of abnormal
situations. In some cases, for the process under investigation, what was thought to be
a failure mode turned out to be a false alarm with no evidence of failure as was partly
illustrated in Figure 10.12 and Figure 10.13. It is under these circumstances that one
can appreciate a process monitoring scheme, like the one developed here, that is able
to overcome these problems and limitations.
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Figure 10.14. SPE plots for the test data based on the 4-3 NLMSPCA model with 95%
and 99% non-parametric limits

The nonlinear multiscale PCA scheme introduced in Chapter 8 and 9 was assessed
using the set of unseen data in Figure 10.9 through both the SPE and nonlinear
principal component scores plot. Figure 10.14 illustrates the results for the SPE for the
nonconforming test data set. Also shown are the action and warning limits calculated
using kernel density estimation. In this application, the non-parametric control limits are
wider than the corresponding limits calculated based upon the assumption of normality.
Figure 10.15 shows the nonlinear bivariate scores plot of principal component one

 
 
 



versus two of dataset 1 of the test data with non-parametric control limits, indicating 39
points violating the action limits with the first indication of nonconformance at sample
289.

Figure 10.12 shows the summary plot of the bivariate scores plots for dataset 1 and
dataset 2 of the testdata. It can be seen that the process disturbance could be
identified from the SPE and bivariate scores plots. The advanced monitoring system
was able to detect the process disturbance seven time intervals earlier than the current
alarm system. The number of false alarms are also reduced. This illustrates its
superiority over the methodologies in Section 10.12.3 and can thus be assumed to be a
better methodology.

After a process deviation is identified, the next step is to investigate the cause. In
Figure 10.17, a differential contribution plot for non-linear principal component two of
dataset 1 and a residual contribution plot were calculated for sample 289, respectively.
From both figures, process variable two has the largest contribution, therefore
reflecting the possible cause of the process deviation, which gave a positive indication
in this case.

Figure 10.15. Scores plots for the non-conforming test data based on the 4-3
NLMSPCA-model.

 
 
 



Figure 10.16. Summary plot of the bivariate sores plots based on the 4-3 NLMSPCA-
model

I WARNING I _ ( Time I 289 ~

Figure 10.17. Differential ( ) and residual ( ) contribution plots to investigate the
cause of process deviation in the non-conforming data

 
 
 



From the differential contribution plot, it is interesting to observe that not only is variable
two flagged up, but a large number of other variables appear to contribute to the out-of-
control signal. This scenario has been discussed by a number of researchers including
Dunia et al. (1996) and Tong and Crowe (1995) and has been identified to be due to
the contribution analysis to the SPE being based upon reconstruction. As a
consequence, the effect of the changes in the original set of non-conforming variables
can propagate to other variable estimates, increasing the chance of erroneous
identification. In this respect, interrogation of the contribution plot for the non-linear
principal component score is more reliable for the diagnosis step than the linear case.
From this industrial application, it can be seen that the nonlinear multiscale PCA model
achieves good fault detection results which is also better than using classical LPCA or
singlescale analysis.

 
 
 



Chapter

11 CONCLUSION

11.1. Summary

In this study an online multiscale nonlinear PCA approach was derived for process
monitoring and fault detection and its performance validated on unseen test data from a
nonlinear industrial process. The advantage of this method is that both linear and nonlinear
correlations can be extracted from the process data to obtain a more parsimonious
description of the original data. The data was first decomposed into different levels of detail
and approximations through multilevel wavelet decomposition. Heavy high-frequency noise
and sharp data spikes in the industrial data sets were then eliminated through wavelet
thresholding. The thresholded level coefficient vectors that contained important information
were reconstructed to form reconstructed details and approximations containing the most
important information of the data at different levels. Thus, in applying the discrete wavelet
transform the underlying process trend was preserved in the approximation and detail
coefficients. This was then used to develop a linear and nonlinear principal component
model. All the scales were also combined for deriving a combined principal component
model. Using wavelet coefficients in the derivation of the nonlinear PCA model significantly
reduces the computational burden without impacting upon the predictive ability of the
process representation. Moreover, the possibility of the input-training network to overfit the
data is greatly reduced and the generalisation properties of the network enhanced.
Fortunately, the last MSPCA steps of selecting the scales that indicate significant events,
reconstructing the signal to the multilevel time domain, and computing the scores and
residuals for both the thresholded and non-thresholded reconstructed signals, improve the
speed of detecting abnormal operation and eliminate false alarms after a process returns to
normal operation. Using the multilevel methodology also greatly enhances the ability of the
monitoring system to detect different types of abnormal conditions. Data-driven, nonlinear
control limits and modified contribution plots were derived to facilitate the comprehensive
and robust monitoring and fault detection.

The results of the application of the conjunction of the multilevel wavelet decomposition,
wavelet thresholding technique and nonlinear PCA algorithm to an industrial process
demonstrates the advanced performance for fault detection and isolation. According to the
results it should be possible to determine the development of an abnormal situation in the
steam distribution system early enough in order to reduce the consequences of the
abnormal event. Here the methodology was only applied to one specific case. The accuracy
and reliability of the methodology needs to be validated on more scenarios.

Keeping the process in mind it should be clear at this stage that it is not yet possible to apply
this methodology in real time since the factory currently lacks the infrastructure. At this stage
it is not possible to access or monitor all the variables throughout the factory from a single
point. It is only possible to access a'specific unit's variables from that unit's control room.
However, this infrastructure will be implemented over the next two years. The only way to
currently gain access to all the variables from a single point is through the

 
 
 



History Module which is a central database. This database only saves data at a
minimum sampling rate of one minute and access to the database is not very
reliable.

Apart from this industrialapplication,it can be seen that the NLMSPCA model achieves
good fault detection results. Moreover, the non-parametriccontrol limits are statistically
more valid for non-linear,on-line,processperformancemonitoring.

The use of the summarised plots allows enhanced global visualisation capabilities
and interpretation and reduces the space taken up by conventional multivariate
statistical plots. It can be concluded that the advanced monitoring system
architecture is qualified for further development.

11.2. Further development

The next step would involve the development of an application to create plans to
recover from malfunctions and threatened goals. It should be capable of replanning
in real time, and use knowledge of the process represented in blackboards to carry
out planning without the need for human planners to exhaustively explore every
possible scenario. This function should assess the success of the plan and be
capable of closed loop control of the process if so authorized.

11.3. Practical implications

In process monitoring and fault detection the major issue becomes that of practical
implications.

Common to all approachesdescribed as intelligentfault detection, is that they derive or
synthesize higher order statements'about the plant from lower order information, e.g.
process measurements,event information,alarms. They must all be seen as add-ons
which complement an existing good quality basic process alarm system. They will
produce results if the basic informationsystem is sound. None of the approacheswill cure
fundamentalfaults in the basicalarm system,and should not be consideredas doing so.

The major problem with all the computerized fault detection techniques is that, even
with sufficient implementation tools, they require considerable engineering analysis of
plant behavior. Some of this can be done 'on paper' from the plant design
information, but generally considerable post-commissioning tuning is also required.
Applying these techniques also demands some 'failure mode analysis' to be
performed to ensure missing or incorrect input data not causing false conclusions.
Questions also remain with artificial intelligence and expert systems techniques

 
 
 



about demonstrating that a procedure that is developed on a limited range of plant
transients will be effective in unexpected situation.

The development and applicat10n of this technique would require specialist
knowledge. Unfortunately the reports of large scale practical applications on working
plants are few and far between. Priority should be given to applying other more basic
methods to eliminate the simple problems, and only then to invest in the more
advanced methods. So why develop more advanced technology? By the time the
more basic problems have been addressed, advanced methods like the one
developed here should be ready for application since the experimental stage, and
especially the period up to general acceptance and reliability, for new and advanced
technology is much longer.

 
 
 



This table lists the variables contained the database data_base. mat together with a

description of each variable.

Matlab Variable Variable Description
i Wavelet level number 0.

j Variable number
x Dataset number
bipl index lev i Siplot level index
demap b1 lev i First layer bias values for the demapping neural network
demap b2 lev i Second layer bias values for the demapping neural network
demap f1 lev i First layer transfer function for the demapping neural network
demap f2 lev i Second layer transfer function for the demapping neural network
demap w1 lev i First layer weights for the demapping neural network
demap w2 lev i Second layer weights for the demapping neural network
ddeg varj Daubechies degree applied to each variable during wavelet analysis
fi It_va rj Reconstructed, thresholded signal
FSr level i Reduced linear principal component scores
Ipca I lev i Eigenvalues of covariance matrix
Ipca Ir lev i Reduced eigenvalues of covariance matrix
level thwc i Thresholded wavelet coefficients
Ipca scr lev i Linear principal component scores
Ipca_sumrLlev_i 1s, column: Proportion of total variability accounted for by each pc

2nd column: Cumulative variability
Ipca u lev i Linear principal loading (eigenvectors of the covariance matrix)
Ipca ur lev i Reduced principal loadings
map b1 lev i First layer bias values for the mapping neural network
map_b2JevJ Second layer bias values for the mapping neural network
map f1 lev i First layer transfer function for the mapping neural network
map_f2Jev i Second layer transfer function for the mapping neural network
map w1 lev i First layer weights for the mapping neural network
map_w2_lev_i Second layer weights for the mapping neural network
mra varj Multilevel reconstructed signal based on wavelet coefficients
mwsize_varj Maximum window size for wavelet analysis
newdata New data on which to test the final NLMSPCA model
newdatan Normalized new data
newdatas Standardized new data
nlpca b1 lev i First layer bias values for the input training neural network
nlpca_b2 lev_i Second layer bias values for the input training neural network
nlpca_f1_lev_i First layer transfer function for the input training neural network
nlpca f2 lev i Second layer transfer function for the input training neural network
nlpca_scrJev_i Nonlinear principal components generated from the input training

neural network
nlpca w1 lev i First layer weights for the input training neural network
nlpca_w2_lev_i Second layer weights for the input training neural network
num var Total number of variables
Num_pcs_x Number of principal components to retain
orig varj Original variables before normalization or standardization

 
 
 



testdata Validation data
testdatan Normalized validation data
testdatas Standardized validation data
th_leveU Thresholded wavelet coefficients for each level
thmra_varj Multilevel reconstructed signal based on thresholded wavelet

coefficients
thtype_varj Threshold type applied to each variable
traindata Training data used to train the NLMSPCA model
traindatan Normalized training data
traindatas Standardized training data
UUeveU Reduced linear principal component loadings
wlevels Total number of wavelet decomposition levels
wlevs_var_1 Number of wavelet decomposition levels applied to each variable

 
 
 



This appendix gives a short description of how the interfaces were created if
someone is interested in creating similar interfaces.

The following procedure creates the basic interface template on which to add
buttons, text boxes, etc.:

1. Create the background using Microsoft PowerPoint.
2. After creating the background, run the background as a PowerPoint presentation,

filling the whole screen.
3. Capture the screen by pressing the Alt and Print Screen keys on the keyboard

simultaneously.
4. Past the image in a picture editor, in this case Microsoft Picture Editor.
5. Cut out the part of the image that is needed and past it as a new image.
6. Save the image as a bitmap file.
7. From the Matlab prompt change to the directory containing your bitmap image.

» cd c:\asmVnterfacesVmages
8. Type the following command at the Matlab prompt

» [a, b] = imread('my_image.bmp');
» image(a);
» guide

This will display the image as a new figure and activate Guide Control Panel
which is the graphical user interface editor. The figure can be sized and scaled to
preference and is ready to be used as a background. Buttons, edit boxes, etc.
can be added on top of the image.

9. The best way to create such an interfac~.is to open an existing interface from the
Matlab command window and to type

» guide
which will launch the Guide Control Panel. Use the Property Editor and Callback
Editor to view the different properties and their values.

 
 
 



A few examples are provided to illustrate the most important parameters and their
values.

FileName:
'C :\AS M\monitor\1 nterfaces\setup\database
_fig.m'
Tag: dbfig
Name: Database Setup

FileName:
'C:\ASM\monitor\lnterfaces\int main.m'
Tag: int_01 -
Name: Advanced Monitoring System

Interface
background

Accept and
advance to
next interface
Specify name
of database

Interface
background

NumberTitle: 'Off
Resize: 'Off

'Ytick','[ ],
'Xtick','[ l',
'La er','Sottom'

'Ytick','[ ],
'Xtick','[l',
'La er','Sottom'
'Name','Advanced
Process Monitoring
System'
'NumberTitle', 'Off,
'Resize','Off

 
 
 



CData: a
int_01 -start_01 int_data [a,b]=imread('button Data selection

01.bm '; and Setu
CData : a

int_01_start_02 Int_wave [a,b]=imread('button Wavelet
02.bm '; Anal sis
CData: a

int_01 -start_03 InUpca_main [a,b]=imread('button LPCA
03.bm ';
CData : a

int_01 -start_04 Fig_05_main [a,b]=imread('button NLPCA
04.bm ';
CData : a

int_01 _start_05 [a, b]=imread ('button Demapping
05.bm ';
CData: a

int_01 -start_06 [a,b]=imread(bck_m
arb.bm ' ;
CData : a

int_01 -start_O? [a,b]=imread(bck_m
arb.bm ' ;
CData : a

int_01 -start_08 [a,b]=imread('button Monitoring
08.bm ';
CData : a

Int_01 _help_01 [a,b]=imread(bck_m
arb.bm ' ;
CData : a

int_01 _bckg_01 Bckgr_01_01 [a,b]=imread(bck_m Background
arb.bm ' ;
CData: a

int_01 -exit_01 Int_exit [a,b]=imread(bck_m Exit
arb.bm ' ;
CData:

int_01 -next_01 int_data bck_marb.bmp Next

View_01a

Callback Other Function

Background
image

Matlab variable
containing data

 
 
 



view_01 a_plot_01 Layer: top

Max
view_01 a_slid_01 ploC01a Min

SliderStep
Value

view_01 a_edit_01 int_main String

view_01 a_grid_01 grid_an_off String Grid on/off

view_01 a_hold_01 hold_an_off String Hold On/off

view_01 a_hold_01 Help

view_01 a_close_01 Close

Interface
background

Specify
wavelet level
to anal ze

Fig_05_push('net
w'

Display slider
value
Network
parameters
Dis la la er 1

Fig_05_push('trai
n'

Training
arameters

Fig_05_push('ep
och'

 
 
 



Simulate
network and
plot
comparisson
and error

Retain network
parameters if
results are
satisfacto

Number of
PC's
Number of
hidden nodes

Number of
variables
Input layer
transfer
function
Hidden layer
transfer
function
Output layer
transfer
function

 
 
 



Epochs
Fig_05a_ediC01 'Visible' ,'Off between

updating
dis la
Maximum

Fig_05a_ediC02 'Visible', 'Off number of
e ochs to train

Fig_05a_ediC03 'Visible', 'Off Sum-squared
error oal

Fig_05a_ediC04 'Visible' ,'Off Minimum
radient

Fig_05a_edit_05 'Visible', 'Off Initial value for
mu
Multiplier of

Fig_05a_ediC06 'Visible', 'Off increasing mu

Multiplier of
Fig_05a_ediC07 'Visible', 'Off decreasing mu

Fig_05a_edit_08 'Visible', 'Off Maximum
value for mu
Learining rate

Fig_05a_edit_09 'Visible', 'Off for input
trainin

Fig_05a_image_01 'Visible', 'Off

I LAYER 3 Fig_05_b 'Visible', 'Off

~
Fig_05b_line_01 'Visible', 'Off

Fig_05b_text_04 'Visible', 'Off Epoch string

Fig_05b_text_02 'Visible', 'Off Display epoch
number

Fig_05b_text_03 'Visible', 'Off Error string

Fig_05b_text_01 'Visible', 'Off Display SSE

 
 
 



ApPENDIXC

The purpose of the tag list is as folfows:
• It gives a summary of all the variables (total number and type) that had to be

considered when selecting the most important variables for modeling purposes.
• It gives an indication of the signal source which can be one of the following:

OP = controller output signal : Local
: Setpoint

SP = set point : (SP)
Process ~ •PV = process variable variable 0·

CR, CK, CS = calculated (PV)
~• • • • • • • • • • • • • FI Controller

Controller r---\ :
Output ~.c? (OPI

• The tag number gives an indication of the type of signal, i.e. 36P1 001 D.OP is a
pressure signal.

• The tag number also gives the process unit where the signal is generated,
36P1 001 D.OP indicates that the signal is generated in unit 36. If all the tags are
viewed it can be gathered that variables from many process units had to
considered which made it even more difficult since each unit is operated
independently.

• The shaded cells contain the variables that were used in the modeling and
indicate how they were calculated.

TAGLIST
NO TAG DESCRIPTION INFO
1 63P1001D.OP 43-8BAR LETDOWN VLV 1
2 63P1001E.OP 43-8BAR LETDOWN VLV 2
3 63P1001F.OP 43-8BAR LETDOWN VLV 3
4 63P1001G.OP 43-8BAR LETDOWN VLV 4
5 63P1005A.OP 43-4BAR LETDOWN VLV 1
6 50FIC140.PV 43 BAR STEAM FLOW Gasification exp
7 50FIC142.PV 43 BAR STEAM FLOW FASE 2 Gasification exp
8 10F0164.PV HP STEAM HEADER FLOW
9 10F2564.PV HP STEAM HEADER FLOW
10 20F1127.PV SATURATD HPSTM EXPORT
11 20F1239.PV HP SAT STEAM EXPORT
12 16F1036.PV ES115 REB STM FL Phenosolvan exp
13 23F2077.PV H.P.STM TO REB Benfield/Cold Sep exp
14 32F1034.PV HPSU STM TRAIN 1 Cat Cond/LPG Recovery exp
15 32F2034.PV HPSU STM TRAIN 2 Cat Cond/LPG Recovery exp
16 29F1006.PV HP STEAM TO ES-101B Light Oil Fractionation exp

 
 
 



17 29F1005.PV HP STEAM TO ES-101A Light Oil Fractionation exp
18 37F1023.PV FIC MEK DEH TWR ST CWU exp
19 37F1022.PV FIC ACETONE RECYC CWU exp
20 15F1028.PV HPSASTM' Naphta exp
21 35F1108.PV HPSA STM TO UNIT 35 Distillate HTU exp
22 27F1077.PV HP STM ES-109 Isomerisation exp
23 14F1003.PV HPSA STM TO RES Tarexp
24 14F2003.PV HPSA STM TO RES Tarexp
25 14F3003.PV HPSA STM TO RES Tarexp
26 14F4003.PV HPSA STM TO RES Tarexp
27 71F0126.PV 2500 kPa steam to VL 104 Acid Recovery exp
28 71 F0202.PV 2500 kPa steam to VL201 Acid Recovery exp
29 71 F0209.PV 2500 kPa steam to VL202 Acid Recovery exp
30 71 F0218.PV 2500 kPa steam to 71VL203 Acid Recovery exp
31 20F084.CS REACTION WATER
32 20F1111.CS T.T REACT H2O
33 20F1001A.PV PURE GAS FEED TRAIN 1
34 20F2001A.PV PURE GAS FEED'TRAIN 2
35 20F3001.PV PURE GAS FEED TRAIN 3
36 20F4001.PV PURE GAS FEED TRAIN 4
37 20F5001.PV PURE GAS FEED TRAIN 5
38 20F6001A.PV PURE GAS FEED TRAIN 6
39 20F7001A.PV PURE GAS FEED TRAIN 7
40 20F8001.PV PURE GAS FEED TRAIN 8
41 20F1002A.PV EXT RECYCLE FEED TRN 1
42 20F2002.PV H2 RICH REF.GAS TRAIN 2
43 20F3002.PV H2 RICH REF. GAS TR 3
44 20F4002A.PV EXT RECYCLE FEED TRN 4
45 20F5002.PV H2 RICH REF GAS TRAIN 5
46 20F6002A.PV EXT RECYCLE FEED TRN 6
47 20F7002A. PV EXT RECYCLE FEED TRN 7
48 20F8002.PV H2 RICH REF GAS TRAIN 8
49 20F0102.PV REF GAS FLOW TO PLANT
50 20F1080.PV TAILGAS PRODUCT TRAIN 1
51 20F2080.PV TAILGAS PRODUCT TRAIN 2
52 20F3080.PV TAILGAS PRODUCT TRAIN 3
53 20F4080.PV TAILGAS PRODUCT TRAIN 4
54 20F5080.PV TAILGAS PRODUCT TRAIN 5
55 20F6080.PV TAILGAS PRODUCT TRAIN 6
56 20F7080.PV TAILGAS PRODUCT TRAIN 7
57 20F8080.PV TAILGAS PRODUCT TRAIN 8
58 12F1003.PV PURE GAS FLOW TR1
59 12F2003.PV PURE GAS FLOW TR2
60 12F4003.PV PURE GAS FLOW TR4
61 12F5003.PV PURE GAS FLOWTR5
62 FOF1013A.PV S3 TO S2 PURE GAS
63 FOF1013S.PV S2 TO S3 PURE GAS

 
 
 



20F1092.PV
20F1096.PV
10K0146.CS
21K0168.CR
20K1001.CR
20K2001.CR
20K3001.CR
20K4001.CR
20K5001.CR
20K6001.CR
20K7001.CR
20K8001.CR
20F0101.CK
20F0102.CK

TAIL GAS WASH TWR OVHD A
TAIL GAS WASH TWR OVHD 8
TOT LPTYD.VERGSRS
TOTAAL
use for 20K1001A.CR
use for 20K1001A.CR
RUN STATUS TR3
RUN STATUS TR4
RUN STATUS TR5
RUN STATUS TR6
RUN STATUS TR7
RS901 on Line
TOT SUIWERGAS TO SYNTHOL
TOTAL REF GAS +H2

CALCULATED

Total gassifiers on line
Total reformers on line

70+72
(68+69+ 73+ 74)/[2]
71+75
1*[2.3379]
2*[2.3379]
3*[1.96695]
4*[1.96695]
5*[1.96248]
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SLO
Fractionation

Reformer
Cooling Trains

Tail Gas WlTowers
W/Compressors

Synthol
Cooling Trains

WEST FACTORY
PHASES AND TRAINS

PHASE 1

Reformed Gas •

PHASE 2• L Reformed Gas

i

PHASE 3• PHASE 4•

40 Gasifiers total ( 8 Ba~ks. 5 Gasifiers per Bank)
PHASE 1 PHASE 2

EAST FACTORY
PHASES AND TRAINS

02 Compressors
Cold Boxes
Air
Compressors

40 Gasifiers total ( 8 Ba~ks. 5 Gasifiers per Bank)
PHASE 3 ! PHASE 4
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