7 L INEAR PRINCIPAL COMPONENT ANALYSIS

7.1. Introduction to linear principal component analysis (LPCA)

Principal component analysis is among the most popular methods for extracting information
from data, which has been applied in a wide range of disciplines. In chemical process
operation and control, PCA is used to solve several tasks including rectification (Kramer and
Mah, 1994), gross-error detection (Tong and Crowe, 1995), disturbance detection and
isolation (Ku et al., 1995), statistical process monitoring (Kresta et al., 1991; Wise et al.,
1990), and fault diagnosis (MacGregor et al., 1994; Dunia et al., 1996). PCA is popular for
process monitoring since it allows extension of the principles of univariate statistical process
monitoring (SPM) to monitoring of multivariate processes (Jackson, 1980; Kresta et al.,
1991).

Conventional PCA is best for analyzing a two-dimensional matrix of data collected from a
steady-state process, containing linear relationships between the variables. Since these
conditions are often not satisfied in practice, several extensions of PCA have been
developed. Multiway PCA allows the analysis of a multidimensional matrix (Nomikos and
MacGregor, 1994). Hierarchical or multiblock PCA permits easier modeling and
interpretation of a large matrix by decomposing it into smaller matrices or blocks (Wold et
al., 1996; MacGregor et al., 1994). Dynamic PCA extracts time-dependent relationships in
the measurements by augmenting the data matrix by time-lagged variables (Kresta et al.,
1991; Ku et al., 1995). Nonlinear PCA (Kramer, 1991; Hastie and Stuetzle, 1989; Dong and
McAvoy, 1996; Tan and Mavrovouniotis, 1995) extends PCA to extracting nonlinear
relationships between the variables. On-line adaptive PCA updates the model parameters
continuously by exponential smoothing (Wold, 1994).

The superficial dimensionality of data, or the number of individual observations constituting
one measurement vector, is often much greater than the intrinsic dimensionality, the
number of independent variables underlying the significant nonrandom variations in the
observations (Kramer, 1991). The reduction of the data set from its superficial to intrinsic
dimensions is the focus of principal component analysis.

Due to correlation, a few principal components are usually sufficient to capture the data
variance (Dunia, 1999). Two kinds of abnormal conditions can be distinguished using
PCA. These are:

- failure of sensor correlations: In this situation the PCA model is no longer valid and
the Euclidean norm of the residual vector increases significantly.

- Excessive normal variance: The variables used to define the operating variability
are out of the normal range, as suggested by the historical data.
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7.2. Introduction to Multiscale PCA (MSPCA)

Modeling by PCA and its extensions is done at a single scale, that is, the model relates data
represented on basis functions with the same time-frequency localization at all locations.
For example, PCA of a time series of measurements is a single-scale model since it relates
variables only at the scale of the sampling interval. Such a single-scale modeling approach
is only appropriate if the data contains contributions at just one scale. Unfortunately, data
from almost all practical processes are multiscale in nature due to:

* Events occurring at different locations and with different localization in time and
frequency.

* Stochastic processes whose energy or power spectrum changes with time and/or
frequency.

* Variables measured at different sampling rates or containing missing data

Consequently, conventional PCA is not ideally suited for modeling of most process data.
Techniques have been developed for PCA of some types of multiscale data such as
missing data, but the single-scale approach forces data at all scales to be represented at
the finest scale, resulting in increased computational requirements.

Another shortcoming of conventional PCA and its extensions is that its ability to reduce the
error by eliminating some components is limited, since an embedded error of magnitude
proportional to the number of selected components will always contaminate the PCA model
(Malinowski, 1991). This limited ability of PCA to remove the error deteriorates the quality of
the underlying model captured by the retained components, and adversely affects the
performance of PCA in a variety of applications. For example, in process monitoring by
PCA, due to the presence of errors, detection of small deviations may not be possible and
that of larger deviations may be delayed. Similarly, contamination by the embedded error
also deteriorates the quality of the gross-error detection and estimation of missing data.
Consequently, the performance of PCA may be improved by methods that allow better
separation of the errors from the underlying signal.

A popular approach for improving the separation between the errors and the underlying
signal is to pretreat the measurements for each variable by an appropriate filter. Linear
filters represent the data at a single scale, and suffer form the disadvantages of single-scale
PCA. Nonlinear filters are multiscale in nature, and cause less distortion of the retained
features, but perform best for piecewise constant or slowly varying signals, and are often
restricted to off-line use. The recent development of wavelet-based methods (Donoho et al.,
1995) overcomes the disadvantages of other nonlinear filters, and can be used on-line for
all types of signals (Nounou and Bakshi, 1998). Despite these advances in filtering
methods, preprocessing of the measured variables is still not a good idea, since it usually
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destroys the multivariate nature of the process data, which is essential for multivariate SPM
and other operation tasks (MacGregor, 1994).

For reaping the benefits of reducing errors by filtering to improve process monitoring, it is
necessary to use an integrated approach to both these tasks. For this reason the approach
developed by Bakshi (1998) is used who combined the ability of PCA to extract the
relationship between the variables and decorrelate the cross-correlation with the ability of
wavelets to extract features in the measurements and approximately decomrelate the
autocorrelation. This multiscale approach for modeling by PCA can also be generalized to
transform other single-scale empirical modeling methods to multiscale modeling. Interesting
enough, multiscale modeling has received surprisingly little attention, despite the fact that
most existing modeling methods are inherently single scale in nature, whereas most data
contain contributions at multiple scales.

The reconstructed signal in the time domain is generated from the large wavelet coefficients
and therefore MSPCA integrates the task of monitoring with that of extracting the signal
features representing abnormal operation, with minimum distortion and time delay.
Consequently, there is no need for a separate step for prefiltering the measured variables
(Bakshi, 1998)

7.3. Methodology of MSPCA

The MSPCA methodology consists of decomposing each variable on a selected family of
wavelets according to the methods discussed in Chapter 6. The PCA model is then
determined independently for the coefficients at each scale. All the scales (approximations
and details) are then combined to yield the model for all scales together.

The approach of computing the PCA of the wavelet coefficients instead of the time-domain
data, and its application to process monitoring has also been suggested by Kosanovich and
Piovoso (1997). Their approach preprocesses the data by the univariate FMH filter and then
transforms it to the wavelet domain before applying PCA to the coefficients. This approach
does not fully exploit the benefits of multiscale modeling, and the univariate filtering is not
integrated with the PCA. Furthermore, monitoring a process based only on its wavelet
decomposition will result in too many false alarms after a process returns to normal
operation.

MSPCA combines the ability of PCA to extract the cross-correlation or relationship
between the variables with that of orthonormal wavelets to separate deterministic
features from stochastic processes and approximately decorrelate the autocorrelation
among the measurements. The steps in the MSPCA methodology are shown in Figure
6.21 in Chapter 6 and the following algorithm:
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for each column in the data matrix,
compute wavelet decomposition

apply level dependent wavelet thresholding
end

select appropriate number of loadings
end

TN O ON =

0. for all scales together, repeat steps 6 to 8
1

each scale
12. end

for each scale that contains important information,
compute covariance matrix of wavelet coefficients at selected scale
compute PCA loadings and scores of wavelet coefficients

. reconstruct approximate data matrix from the selected and thresholded scores at

Steps 11 and 12 only serve to evaluate the linear principal component model and do
not serve a purpose in the monitoring scheme. Steps 11 and 12 are also evaluated for
the nonlinear principal component model discussed in Chapter 9, which will form part of

the monitoring methodology.

To combine the benefits of PCA and wavelets, the measurements for each variable
(column) are decomposed to the column's wavelet coefficients using the same
orthonormal wavelet for each variable. This results in transformation of the data matrix,
X, into the matrix, WX, where W is an nxn orthonormal wavelet transformation

operator containing the filter coefficients,
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where G, is the 2" x n matrix containing wavelet filter coefficients corresponding

toscale m=1,2,..., L, and H, is the matrix of scaling-function filter coefficients at the

coarsest scale discussed in Chapter 6. The matrix, WX, is the same size as the
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original matrix, X, but due to the wavelet decomposition, the deterministic component
in each variable in X is concentrated in a relatively small number of coefficients in
WX, while the stochastic component in each variable is approximately decorrelated in
WX, and is spread over all components according to its power spectrum.

The covariance of the wavelet transformed matrix, and equivalently of the original data
matrix, may be written in terms of the contribution at multiple scales as

WX wx)=H,X)"(H,X)+(G ,X)" (G, X)+...+(G, X) (G, X)+... 7.2)

+(G,X)"(G,X) | '
To exploit the multiscale properties of the data, the PCA of the covariance matrix of the
coefficients at each scale is computed independently of the other scales. The resulting
scores at each scale are not cross-correlated due to PCA, and their autocorrelation is
approximately decorrelated due to the wavelet decomposition. Depending on the
nature of the application, a smaller subset of the principal-component scores and
wavelet coefficients may be selected at each scale. The number of principal
components to be retained at each scale are not changed due to the wavelet
decomposition since it does not affect the underlying relationship between the variables
at any scale. Consequently, existing methods such as cross-validation may be applied
to the data matrix in the time domain or to all the wavelet coefficients to select the
relevant number of components. This is done to ensure that only those principal
components associated with noise are discarded. A cross-validation method for
selecting the relevant number of components will be discussed in Section 7.10.
Applying separate thresholds at each scale as discussed in Chapter 6 allows MSPCA
to be more sensitive to scale-varying signal features such as autocorrelated
measurements. Thresholding of the coefficients at each scale identifies the region of
the time-frequency space and scales where there is significant contribution from the
deterministic features in the signal and also helps in denoising the signal.

The covariance matrix for computing the loadings and scores for all scales together is
computed by combining the covariance matrices of all the approximations and details.

This MSPCA modeling method represents one way of using the PCA models at
multiple scales, and other approaches may be devised, depending on the application.

Instead of the MSPCA methodology described earlier, some of the benefits of the wavelet
representation may be reaped by just transforming the measured data on a selected
wavelet basis and computing the PCA of WX instead of X. PCA of WX will make it
easier to separate deterministic features in a stochastic process, but this approach will be
restricted to off-line use and will not fully exploit the benefits of the multiscale representation,
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since it will implicitly assume that the nature of the data does not change with scale. This
assumption will cause too many false alarms for autocorrelated measurements, as
compared to the MSPCA approach that accounts for the scale-dependent power spectrum.
False alarms will also be created for process monitoring based on the scores of WX after
a process retums to normal operation.

7.4. Principle of LPCA

Principal Component Analysis (PCA) is a multivariate technique in which a number of
related variables are transformed to (hopefully) a smaller set of uncorrelated variables.

PCA transforms the data matrix in a statistically optimal manner by diagonalizing the
covariance matrix by extracting the cross-correlation or relationship between the variables in
the data matrix. If the measured variables are linearly related and contaminated by errors,
the first few components capture the relationship between the variables, and the remaining
components are composed only of the error. Thus, eliminating the less important
components reduces the contribution of errors in the measured data and represents it in a
compact manner. Applications of PCA rely on its ability to reduce the dimensionality of the
data matrix while capturing the underlying variation and relationship between the variables.

7.5. Characteristic roots and vectors

The method of principal components is based on a key result from matrix algebra: A px p

symmetric, nonsingular matrix, such as the covariance matrix S, may be reduced to a
diagonal matrix L by premultiplying and postmultiplying it by a particular orthonormal matrix
U such that

U'SU =L (7.3)

The diagonal elements of L, /,, /,, ...,/ are called the characteristic roots, latent roots or
eigenvalues of S. The columns of U, u,,u,,...,u are called the characteristic vectors or

eigenvectors of S. The characteristic roots may be obtained from the solution of the
following detrimental equation, called the characteristic equation:

[S-1|=0 (7.4)

where I is the identity matrix. This equation produces a pth degree polynomial in / from
which the values /;, /,, ..., I, are obtained.
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7.6. The method of principal components

The starting point for PCA is the sample covariance matrix S (or the correlation matrix). For
a p-variable problem,

Sy S Sip
2
s s vee s
12 2 2
S=| | . 7 (7.5)
2
slp s2p sp

Where sf is the variance of the i th variable, x,, and S, is the covariance between the

ith and jth variables. If the covariances are not equal to zero, it indicates that a linear
relationship exists between these two variables, the strength of that relationship being
represented by the correlation coefficient, r, = s, /(s;s,).

The principal component transformation will transform the p correlated variables

X, X;,..., X, into p new uncorrelated variables z,, z,, ..., z,. The coordinate axes of

P

these new variables are described by the characteristic vector u, which make up the

matrix U of the direction cosines used in the transformation:
z=U'[x-X] (7.6)

Here x and X are px1 vectors of observations on the original variables and their

means.

The transformed variables are called the principal components of x or pc’s for short.
The ith principal component is

z, =u,[x-X] (7.5)

and will have mean zero and variance [, the ith characteristic root. To distinguish
between the transformed variables and the transformed observations, the transformed
variables will be called principal components and the individual transformed
observations will be called z-scores. The distinction is made here with regard to z-
scores because another normalization of these scores exists.
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7.7. Some properties of principal components

7.7.1. TRANSFORMATIONS

If one wishes to transform a set of variables x by a linear transformation z, = u;[x —X]

whether U is orthonormal or not, the covariance matrix of the new variables, S,, can

be determined directly from the covariance matrix of the original observations, S, by
the relationship

S, =U'SU (7.8)

However, the fact that U is orthonormal is not a sufficient condition for the transformed
variables to be uncorrelated. Only this characteristic vector solution will produce an S,

that is a diagonal matrix like L producing new variables that are uncorrelated.

7.7.2. INTERPRETATION OF PRINCIPAL COMPONENTS

The interpretation of principal components will be explained by means of an example.
For the purpose of illustration, linear principal component analysis was applied to the
first two variables from the industrial data. The coefficients of the first vector were found
to be 0.7236 and 0.6902. As observed, they are nearly equal and both positive,

indicating that the first pc, z,, is a weighted average of both variables. This is related to
variability that x, and x, have in common; in the absence of correlated errors of

measurement, this would be assumed to represent process variability. The coefficients
of the second vector were -0.6902 and 0.7236. They are also nearly equal except for

sign indicating that the second pc, z,, represent differences in the measurements for

the two variables that would probably represent testing and measurement variability.

7.7.3. GENERALIZED MEASURES AND COMPONENTS OF VARIABILITY

In keeping with the goal of multivariate analysis of summarizing results with as few
numbers as possible, there are two single-number quantities for measuring the overall
variability of a set of multivariate data. These are

1. The determinant of the covariance matrix, [S|. This is called the generalized

variance. The square root of this quantity is proportional to the area or volume
generated by a set of data.

2. The sum of the variances of the variables:
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st +s3 +...+sf, =1r(S) (trace of S) (7.9)

Conceivably, there are other measures of generalized variability that may have certain
desirable properties but these two are the ones that have found general acceptance
among practitioners.

A useful property of PCA is that the sum of the original variances is equal to the sum of
the characteristic roots. For the two variable case,

st + 52 =0.7986+0.7343 =1.5329
=1.4465+0.0864 =1, +1,

This identity is particularly useful because it shows that the characteristic roots, which
are the variances of the principal components, may be treated as variance
components. The ratio of each characteristic root to the total will indicate the proportion

of the total variability accounted for by each pc. For z,, 1.4456/1.5329 = 0.944 and for
z,, 0.0864/1.5329 = 0.056. This says that roughly 94% of the total variability of these
data (as represented by 7(S)) is associated with, accounted for or “explained by” the

variability of the process and 6% due to the variability related to testing and
measurement. Since the characteristic roots are sample estimates, these proportions
are also sample estimates.

7.5.4. CORRELATION OF PRINCIPAL COMPONENTS AND ORIGINAL VARIABLES

It is also possible to determine the correlation of each pc with each of the original
variables, which may be useful for diagnostic purposes. The correlation of the ith pc,

z,, and the j th original variable, x,, is equal to
po=2N (7.10)

For instance, the correlation between z, and x, is

ul; _ 0.7236+1.4465
5, J0.7986

=0.974

The first pc is more highly correlated with the original variables than the second. This is to
be expected because the first pc accounts for more variability than the second. Note that
the sum of squares of each row is equal to 1.0.
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7.8. Scaling of Data

7.8.1. INTRODUCTION

There are two ways of scaling principal components, one by rescaling the original
variables, which will be discussed here, and the other by rescaling the characteristic
vectors, which won’t be discussed here. There is no significant reason for choosing the
one method above the other and in the end remains a personal choice. To me, scaling
the original variables made more sense.

The results obtained by scaling the original data will depend on the method employed. Once
the method of scaling is selected, the PCA operations will proceed, for the most part, as
described earlier but there will be some modifications unique to each method. The main
effect of this choice will be on the matrix from which the characteristic vectors are obtained.

Specifically, the following three methods will be considered:
1. No scaling at all. The final variate vector is x.

2. Scaling the data such that each variable has zero mean ( i.e., in terms of deviation
from the mean). The final variate vectoris x —X.

3. Scaling the data such that each variable is in standard units. (i.e., has zero mean
and unit standard deviation). Each variable is expressed as (x, —x,)/s, .

As stated above, the choice of scale will determine the dispersion matrix used to obtain
the characteristic vectors. If no scaling is employed, the resultant matrix will be the
product or second moment matrix; if the mean is subtracted, it will be the covariance
matrix; if the data are in standard units, it will be a correlation matrix.

7.8.2. DATA AS DEVIATIONS FROM THE MEAN: COVARIANCE MATRICES

Here it is not necessary to actually subtract the variable means from the data; the
operations required to obtain the covariance matrix will take care of it.

If one were to subtract the means from the data and use these deviations as a data set,
say x, =Xx—X with the resulting nx p data matrix X, the covariance matrix would
be X,X,/(n-1). The characteristic vectors U,V and W would stay the same. For

large problems in terms of sample size or large number of digits for the original data,
this option may be preferable, numerically, to obtaining S from the raw data directly.
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There are many occasions when one cannot use the covariance matrix. There are two
reasons for this:

1. The original variables are in different units. In this case, the operations involving the
trace of the covariance matrix have no meaning. For instance, if a variable is
expressed in centimeters, its variance is 100 times what it would be if it were
expressed in millimeters (variance of variable in cm divided by variance of variable
in mm). The variable would now exert considerable more influence on the shaping
of the pc's since PCA is concerned with explaining variability. When the units are
different, the solution is to make the variances the same (i.e., use standard units),
which makes the covariance matrix into a correlation matrix.

2. Even if the original variables are in the same units, the variances may differ widely,
often because they are related to their means. If this gives undue weight to certain
variables, the correlation matrix should be employed here also (unless, possibly,
taking logs of the variables or the use of some other variance-stabilizing
transformation will suffice).

Nevertheless, when the variables are in the same units and do have the same amount
of variability, there are some advantages in using covariance matrices. This is
particularly true in physical applications where PCA is used in building physical models.
Using the covariance matrix should also help with diagnostics since the V -vectors are
in the original units of the variables.

It is important to note that there is no one-to-one correspondence between the pc's
obtained from a correlation matrix and those obtained from a covariance matrix. The
more heterogeneous variances are, the larger the difference will be between the two
sets of vectors. If the covariance matrix has (p—k) zero roots, then the correlation

matrix will also have (p—k) zero roots. However, if the covariance matrix has (p — k)

equal roots, the correlation matrix will not necessarily have the same number.

7.9. Using Principal Components in Quality Control

7.9.1. TYPE | ERRORS

When one uses two or more control charts (i.e. time-series plot of the squared
prediction error, SPE) simultaneously, some problems arise with the type | error. This is
the probability of a sample resuit being outside the control limits when the process is at
the mean or the standard established for that process. If one would consider first the

two control charts for x, and x, which is variable one and variable two of the training
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data (see Paragraph 3.11 of Chapter 3), the probability that each of them will be in
control if the process is on standard is 0.95. If these two variables were uncorrelated
(which they are not in this case), the probability that both of them would be in control is
0.95% = 0.9025 so the effective Type | error is roughly a=0.10, not 0.05. For 8
uncorrelated variables, the Type 1 error would be 1-(0.95%) =0.37. Thus if one was

attempting to control 8 independent variables, at least one or more of these variables
would indicate an out-of-control condition over one-third of the time.

The problem becomes more complicated when the variables are correlated as they are
here. If they were perfectly correlated, the Type | error would remain 0.05. However,
anything less than that, such as the present case, would leave one with some involved
computations to find out what the Type | error really was. The use of principal
component control charts resolves some of this problem because the pc's are
uncorrelated; hence, the Type | error may be computed directly. This may still leave
one with a sinking feeling about looking for trouble that does not exist.

7.9.2. GOALS OF MULTIVARIATE QUALITY CONTROL

Any multivariate quality control procedure, whether or not PCA is employed, should
fulfill four conditions.

1. A single answer should be available to answer the question: "Is the process in
control?"

2. An overall Type | error should be specified.
3. The procedure should take into account the relationships among the variables.

4. Procedures should be available to answer the question: "If the process is out-of-
control, what is the problem?"

Condition 4 is much more difficult than the other three, particularly as the number of
variables increases since it needs expert information which is more than just the
mathematical or statistical information needed in the first three conditions. There is
usually no easy way to this, although the use of PCA may help.

7.10. Selecting the number of principal components

7.10.1. INTRODUCTION

One of the greatest uses of PCA is its potential ability to adequately represent a
p—variable data set in k< p dimensions. The question becomes: “What is & ?"

“
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Obviously, the larger k is, the better the fit of the PCA model; the smaller k is, the
more simple the model will be. Somewhere, there is an optimal value of k& ; what is it?
To determine &, there must be a criterion for optimality.

One method for determining the optimum number of pc's is the cross-validation
approach by Wold (1976, 1978), Eastment and Krzanowski (1982) and Krzanowski
(1983, 1987). This approach is recommended when the initial intention of a study is to
construct a PCA model with which future sets of data will be evaluated as in this case.

In PCA it consists of randomly dividing the sample into g groups. The first group is
deleted from the sample and a PCA is performed on the remaining sample. The
vectors obtained from that reduced sample are used to obtain pc's and Q-statistics
(explained in more detail in Chapter 10) for the deleted group. That group is returned to
the sample, the next group is deleted, and the procedure is repeated g times. The
grand average of the Q-statistic, divided by p, is called the PRESS-statistic

(PREdiction Sum of Squares). Its primary use in PCA is as a stopping rule. It differs
from other stopping rules in that it is based on the Q-statistic rather than the
characteristic roots. Krzanowski pointed out that it is possible to have different data
sets produce the same covariance or correlation matrix but would probably produce
different PRESS-statistics although their characteristic roots would be the same. Cross-
validation also differs from other stopping rules in requiring the original data while other
procedures work directly from the covariance or correlation matrix. Although the
procedure described here is not a significance test, it is more quantitative than most
other stopping rules.

7.10.2. A SIMPLE CROSS-VALIDATION PROCEDURE

The principle of cross-validation as a stopping rule will be illustrated using dataset 1
(refer to Chapter 6 paragraph 6.9.2.4.), where p=8 and n=645. The transformed
data matrix will be denoted by the 645x8 matrix X. For this case the data set will be
divided into g =35 groups of 20 observations each so that the first group will be

observations 1-20, the second group 21-40, and so on. The procedure is as follows:

1. Delete the first group from the sample. Perform a PCA on the remaining
observations (i.e., 21-645). Obtain all eight vectors. This example used a
correlation matrix, the data will be in standard units.

2. For the deleted sample, obtain all eight z-scores for each observation using the
vectors obtained in step 1.
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3. Using, in turn, the first pc, the first two pc’s, and so on, obtain the predicted values
of the deleted sample. X will be equal to zero.

4. For each observation in the deleted sample, obtain Q. For the first observation,
Q =1.054 for one pc, Q = 0.639 for two pc's, and so on.

5. Return the deleted group to the sample and remove the second group. Repeat
steps 1-4. Do the same for the other three groups. This concluded, there will now
be 645 values of O for a one-pc model, another 645 for a two-pc model, and so on.

6. For each pc model, add up the 645 Q —statistics and divide each sum by
np =5160. These are called PRESS-statistics and be designated by PRESS(1),

PRESS(2), and so on. It will also be necessary to obtain PRESS(0), the sum of
squares of the original data, again assuming a mean of zero.

7. To determine whether the addition of another pc, say the & th pc, to the model is
warranted, form the statistic

_ [PRESS(k —1)— PRESS(k)]/ D,,

w (7.11)
PRESS(k)/ D,
where
D, =n+p-2k (7.12)
k
Dy =p(n-1)-> (n+ p-2i) (7.13)
i=}

If W >1, then retain the kth pc in the model and test the (k +1) st. for example, to test
whether the first pc should be included, one would form

11.62

w _ [PRESS(0)— PRESS(]/651 _ 0.0077
PRESS(1)/4501 0.00066303

and the first pc would be included in the model. For the process data the process
terminated with the inclusion of the third principal component.

In practice, if one had a large number of variables and was confident that only a smali
number of pc’s would be retained, a different strategy might be employed, in which
each characteristic vector is obtained and tested sequentially before obtaining the next
and, in that way, only one unwanted vector is obtained.
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Table 7.1. PRESS values for selecting the number of pc’s to retain

k PRESS(k) D, D, w

0 8.0000

1 2.9843 651 4501 11.6200
2 2.2097 649 3852 2.0806

3 1.1594 647 3205 4.4873

4 0.9813 645 2560 0.7204<1
5 0.9634 643 1917 0.0555

6 0.8834 641 1276 0.1804

7 0.8811 639 637 0.0025

It is possible that if one were to continue this process beyond the first occurrence
where W <1, later values of & might produce one or more occurrences of W >1. This
may be due to the presence of outliers.

7.10.3. ENHANCEMENTS

In the previous section X was assumed to be zero since it was equal to zero for the
entire example. However, it may be that the mean is not equal to zero and the cross-
validation technique for it is more complicated, involving the deletion of variables.
Furthermore, both U and z are considered estimates and, as we now know, may be
estimated simultaneously using singular value decomposition. This, of course, is not
possible here because the z -scores are obtained for the observations not included in
the sample from which U is obtained. The solution to this problem is to use ali »
observations in each subsample but randomly delete elements from each data vector.
The good way to do this is to randomly order the observations and use a cyclic deletion
pattern given by Wold (1987). The estimation procedure will, of necessity, require SVD
but the SVD algorithm employed must be able to handie missing data.
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Figure 7.1. displays the LPCA interface which can be used to apply LPCA to the data.
This interface can either be displayed from the main interface or by using the Next
button from the wavelet analysis interface.

1. Name of the variable containing the data to which linear PCA needs to be applied.
If this space is left blank the default variable from the database will be used. The

variable must contain more than one column of data.

2. Level selection slider. This slider is used if the default data from the database is
used. Since LPCA is applied to each level separately, the level to which LPCA
needs to be applied can be selected using this slider. It will automatically detect the
number of levels contained in the database.



LPCA application button. Using this button will apply PCA to the named variable or
the specified level in the database.

Variability interface used to view the variability of the principal components. This
button will open Figure 7.2.

Principal component viewer interface used to view each principal component
separately. This button will open Figure 7.3.

Number of principal components selection interface. This button will open Figure
7.4.

Specify the final number of principal components to select. This choice is based on
the results obtained from the principal components selection interface in Figure 7.4.

Accept the number of principal components specified in 8. This reduces the number
of principal components to the number specified and saves the results to the
database.

S ———

~0.6 “““"":“'

=04



Y p— Yoo
~06 ; ; . + e + . .
. : | ; : :
T 1 1 1
> 04 - [ r r r f--mmm-

SRS S S S

1(1151542) 2(0.23255) 3(0.19864)4(0.037 492p(001538~(0.00051171(6.0047 e-aB(il)7217 e-017)
Principal Component

Variabllity

i R |




t-

0 =mmmmmmmmmm e
S S

R

Close

10

Help

1



Yva

2 @)

16. Reconstruct the original variable in 15 using the number of principal components
specified here.

17. As an option you can choose the number of principal components to retain using
the Krzanowski cross-validation method based on PRESS values discussed in
Section 7.8.

20. Error plot between the original and reconstructed variable using the number of

principal components specified.



Once the data matrix of the combined non-thresholded details and approximations (dataset
2) and matrix of approximations (dataset 1) from Chapter 6 had been obtained, the next
step was to remove any data points which did not correspond to nominal process operation.
By visual inspection ten coefficients from dataset 1 and 30 from dataset 2 (refer to Chapter
6 paragraph 6.9.2.4.) were identified as not being representative of normal operation.
Dataset 2 contained 40 columns and Dataset 1 eight columns. Linear PCA was applied to
the resultant data sets. The cross-validation method using Krzanowski's PRESS-statistic
(Krzanowski, 1987) was used to select the appropriate number of principal components.
This technique indicated that three and four linear principal components were adequate to
explain the underlying variability in dataset 1 and dataset 2 respectively. For dataset 2 this
meant four out of a possible 40 and for dataset 1, three out of a possible eight, indicating a
high degree of correlation. A total of 94.47% and 93.5% of the total explained variance was
captured by the two sets of principal components respectively.

o |1 LoVt
e~ Al
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Figure 7.6 gives the first four linear principal components of dataset 1 of which the first
three were retained. Table 7.2 gives a summary of the cumulative variability of the
eight and first eight principal components of dataset 1 and dataset 2 respectively.



Chapter 7 Linear Principal Component Analysis

Table 7.2. Cumulative variability for pc's of dataset 1 and dataset 2
# Principal Cumulative Variability Cumulative Variability
Components For Dataset 1 For Dataset 2
1 0.50957 0.48375
2 73978 0.70285
3 0.89768
4 0.98321 . 0893503
5 0.99796 0.96529
6 0.99934 0.97937
7 0.99994 0.98790
8 1 0.99089
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8

NPUT TRAINING NEURAL NETWORKS

8.1. Introduction

Many industrial processes such as the case under consideration exhibit significant
nonlinear behavior. In these cases the application of PCA is not strictly appropriate. A
non-linear PCA methodology is proposed to take account of the non-linearities inherent
within the process data.

The non-linear PCA method proposed in this study is based upon the input-training
neural network approach (Tan and Mavrovouniotis, 1995). The advantage of this
approach is that it enables both the second-order and higher-order correlations to be
extracted separately. This is achieved by first applying linear PCA as discussed in
Chapter 7 to compress the data prior to implementing non-linear compression. By
adopting this procedure, a more parsimonious description of process behaviour is
achieved. The methodology is investigated for non-linear process performance
monitoring in Chapter 9.

In chapter 7 the concept of multiscale linear principal component analysis (MSLPCA)
was introduced as means of dimensionality reduction. In this chapter it will be extended
to nonlinear principal component analysis (NLPCA) and in chapter 9 this will be
combined with the LPCA from chapter 7 and multiscaling from chapter 6 to form
multiscale nonlinear principal component analysis (MSNLPCA). Since NLPCA uses a
type of neural network referred to as an input training neural network this concept will
first be introduced separately before being applied to MSNLPCA.

Apart from input training neural networks, dimensionality reduction can also be
performed by autoassociative neural networks, which are feedforward neural nets
trained to perform the identity mapping between network inputs and outputs. Although
IT-nets are an improvement over autoassociative neural networks (AANN), AANN's will
be briefly discussed in order to realize the similarities and differences between the two.

Figure 8.1 gives a schematic of an AANN. With AANN's dimensionality reduction is
achieved through a bottleneck, that is a hidden layer with a small number of nodes.
Most previous work focused on single-hidden-layer networks (Ackley et al., 1985;
Cottrel et al., 1987; Abbas and Fahmy, 1993). Kramer (1991) pointed out that the
single-hidden-layer architecture was unable to model nonlinear relationships between
observed variables and latent variables, and consequently offered no significant
improvement over conventional PCA. He then established a three-hidden-layer
architecture for autoassociative networks to capture nonlinear correlations. The three-
hidden-layer autoassociative networks can be used to perform various data screening
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Chapter 8 Input Training Neural Networks

tasks, such as data noise filtering, missing measurement replacement, and gross error
detection and correction (Kramer, 1992).

An autoassociative network is composed of a mapping subnet and a demapping
subnet, each of which is a single-hidden-layer network by itself. Dong and McAvoy
(1993) proposed to train the two subnets separately. The method they proposed
involves three steps:

(1) find principal curves by successively applying the algorithm of Hastie and Stuetzie
(1989) to observed data and residuals;

(2) train a network that maps the original data to principal curves;
(3) train another network that maps principal curves to the original data.

Autoassociative networks are typically trained through backpropagation. In general, the
performance of backpropagation deteriorates as the number of hidden layers gets
larger (Hertz et al., 1991). The poor performance of backpropagation in training the
mapping subnet is attributable to the large number of layers. In the process of
backpropagation learning, modifications of weights are based on errors propagated
backward from the output layer. After several layers of error propagation, the searching
direction for the weights in the mapping subnet may deviate from the direction that
minimizes the output error function. This effect becomes even more pronounced for an
autoassociative network due to its bottleneck layer.

Input Mapping Bottleneck Demapping Output
Layer Layer Layer Layer Layer

Figure 8.1. A 2-4-1-4-2 autoassociative network
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Thus, as an alternative, the new method proposed by Tan and Mavrovouniotis (1995)
was used. In their work they also used neural networks as nonlinear models for
observed variables and latent variables and additionally used a concept called input
training (IT). With this method, only one single-hidden-layer network is needed for
dimensionality reduction of a given data set. The method proposed by them however,
uses backpropagation to train the network, which is not an optimized training method
and tends to take long to converge to the performance goal. In order to overcome this,
this work extends the backpropagation training algorithm and combines it with the
Levenberg-Marquardt (LM) training algorithm in an effort to facilitate enhanced speed
and better convergence. This new enhanced training algorithm forms a significant
contribution to the process of NLPCA.

In section 8.2. a background to Backpropagation is given and in section 8.3.
background is provided to the Levenberg-Marquardt training algorithm. Section 8.4
explains the concept of input training. Section 8.5. extends section 8.3 and 8.4 to
develop an enhanced training algorithm for input training neural networks (IT-nets).

8.2. The Backpropagation algorithm

8.2.1. GENERAL BACKPROPAGATION

There are many variations of the backpropagation algorithm. The simplest
implementation of backpropagation learning updates the network weights and biases in
the direction in which the performance function decreases most rapidly - the negative
of the gradient.

Wi(1,1) (1 & w2(1,1 2(1 2(1
X(1) Z ni(1) f1 a'(1) (1,1) Z n2(1) f2 a¥(1) }t(1)
lb‘m lbzm
1(2) 1(2) 2(2) 2(2)
x(2) y n 1 2 y n 12 2 > t(2)
lb*(z) lb’(z)
n1(S1) al(s1) n%(S2) a%(S2) -
X(R) WI(S1,R) ) f! W2(S2,51) ) f? > 4(S2)

lb1(s1) lbz(sz)

Figure 8.2. two-layer feedforward network
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Consider a multilayer feedforward network, such as the two-layer network of Figure
8.2. The net input to unit i in layer k +1 is

Sk .
n* @) =D W, f)a* () + b (i) (8.1)
J=1
The output of unit i will be
ak+l (i) — fk+] (nk+l (i)) (82)
For an M layer network the system equations in matrix form are given by
a’ =x (8.3)

2! =fk+l(Wk+lak+] +bk+1) k=0,1,...,M—1 (8.4)

The task of the network is to learn associations between a specific set of input-output
pairs {(x,,1,),(x;,6,), ..., (xg,85)} -

The performance index for the network is
18 MAN\T M 18 T
E:EZ}(tq —a))'(t, —al ):52%% (8.5)
q= q=

where aff is the output of the network when the qth input, x_, is presented and e, is

the error for the gth input. For standard backpropagation algorithm, as in this case, we
use an approximate steepest descent rule. The performance index is approximated by

1

E=—ele (8.6)

q

where the total sum of squares is replaced by the squared errors for a single
input/output pair. The approximate steepest (gradient) descent algorithm is then

oo ok
Aw" (i, J) =~ POV (8.7)
VST S G, )
‘. oF
AB* (i) = — 8.8
Q) aab"(i) (8.8)

where « is the learning rate. Define
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A

__OFE
T ot (i)

5* (i) (8.9)

as the sensitivity of the performance index to changes in the net input of unit i in layer
k . Now it can be shown, using (1), (6), and (9), that

ok oE  an* (i) e ol
= =3 8.10
oty mmarGy o 00V (619
) N
OE  OE on (i) = 5% (i) (8.11)

ob* (i)  on* (i) b* (i)

It can also be shown that the sensitivities satisfy the following recurrence relation

5k = Fk(nk)Wk+]T6 K+l (8.12)
where
feray 0 0
Fk(nk)z 0 f (”’ 2) 0 (8.13)
0 0 o fR(n*(Sk))
and
P =2 (8.14)
dn

The recurrence relation is initialized at the final layer
8" =-F"@")t,-a) : (8.15)

The overall learning algorithm now proceeds as follows:

1. Propagate the input forward using equations 8.3 and 8.4;

2. Propagate the sensitivities back using equations 8.15 and 8.12;

3. Update the weights and offsets using equations 8.7, 8.8, 8.10, and 8.11.

There are two different ways in which this gradient descent algorithm can be
implemented: incremental mode and batch mode. In the batch mode which is applied
here, all of the inputs are applied to the network before the weights are updated.
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The training function has one learning parameter associated with it - the learning rate
a shown in equations 8.7 and 8.8. With standard steepest descent as applied here,
the learning rate is held constant throughout training. The performance of the algorithm
is very sensitive to the proper setting of the learning rate. The larger the learning rate,
the bigger the step. If the learning rate is made too large the algorithm may oscillate
and become unstable. If the learning rate is set too small, the algorithm will take a long
time to converge. It is not practical to determine the optimal setting for the learning rate
before training, and, in fact, the optimal learning rate changes during the training
process, as the algorithm moves across the performance surface.

8.2.2. BACKPROPAGATION APPLIED TO IT-NETS

Let tpk be the value of the kth observed variable in the pth training sample and z,, the

corresponding IT-net approximation. Then the objective function to be minimized in
network training is

E=Y Y (z, -t,) : (8.16)
p k .
The steepest descent direction for optimizing network inputs X is given by

OE 0z
Ax, ===ty —2)— 8.17
pi a o - (pk Zpk)axp,. ( )

Assuming that input and output nodes use the identity activation function, like in this
study, while hidden nodes use a sigmoidal function (f =o), the network output is

given by

Z i =ZijU(bj + D ViXy) (8.18)
j i

where o(.) is a sigmoidal function, b; is the bias of the jth hidden node, and V; and

ij are network weights. Hence, the steepest descent direction for training network

inputs is

AXy =3V, (8.19)
J

where &, is the propagated error at the hidden layer and has been defined as
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O = 0" (b; + 2 v Xy N Wy (b —2,) (8.20)
i k

Note that the steepest descent direction for training network weights between the input
layer and the hidden layer is

Av; =) x,6, (8.21)
p

Therefore, the extra computation required for training the inputs is negligible compared
with training the rest of the network. In the preceding derivation, it is assumed that only
hidden nodes use sigmoidal functions and that input and output nodes are linear since
this is the setup applied in this study. The same derivation can be carried out for
networks with sigmoidal output and/or input nodes and Equation 8.19 still holds but

with different & o -

8.3. Levenberg-Marquardt

While backpropagation is a steepest descent algorithm, the Levenberg-Marquardt
algorithm is an approximation to Newton’s method. The Levenberg-Marquardt
algorithm was designed to approach second-order training speed without having to
compute the Hessian matrix. The Jacobian matrix can be computed through a standard
backpropagation technique (Hagan and Menhaj, 1994) that is much less complex than
computing the Hessian matrix. Suppose that we have a function E(x) which we want

to minimize with respect to the parameter vector x, then Newton’s method would be
Ax = {V’E(x)]"'VE(x) (8.22)

where V’E(x) is the Hessian matrix and VE(x) is the gradient. If we assume that

E(x) is a sum of squares function
N

E(x)=) e} (x) (8.23)
i=1

then it can be shown that
VE(x) = J" (x)e(x) (8.24)

V2E(X) = J7 (x)J(x) + S(x) (8.25)
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where J(x) is the Jacobian matrix, which contains first derivatives of the network

errors with respect to the weights and biases, and e is a vector of network errors.

| de(x) Ge(x)  Ge(x) ]
axl 6‘x2 axn
Oe,(x) Oe,(x) Oe, (x)
JX)=|| ox, ox, ox, (8.26)
Gou(x) e, (0 | Bey(®
|y, ox, o, ||
and
S(x) = iei (x)V7e,(x) ' (8.27)
i=1

For the Gauss-Newton method it is assumed that S(x) ~ 0, and the updated equation

8.22 becomes

Ax =[JT (x)J(x)]"'J" (x)e(x)] (8.28)
The Levenberg-Marquardt modification to the Gauss-Newton method is

AX =[JT (x)J(x) + ] T7 (x)e(x) (8.29)

The parameter u is multiplied by some factor () whenever a step would result in an
increased E(x). When a step reduces E(x), u is divided by some factor ¢ . In this
case a value of 1 =0.001 was selected as an initial value, with £ =0.1 and B =10.

Thus, it is decreased after each successful step (reduction in performance function)
and is increased only when a tentative step would increase the performance function.
In this way, the performance function will always be reduced at each iteration of the
algorithm. Notice that when u is large the algorithm becomes steepest descent (with

step 1/ u ), while for small 4 the algorithm becomes Gauss-Newton. The Levenberg-

Marquardt algorithm can be considered a trust-region modification to Gauss-Newton.

The key step in this algorithm is the computation of the Jacobian matrix. For the neural
network mapping problem the terms in the Jacobian matrix can be computed by a
simple modification to the backpropagation algorithm. The performance index for the
mapping problem is given by equation 8.16. It is easy to see that this is equivalent in
form to equation 8.23, where

x=[w L)W (1,2)... w' (SLR)B'(1)... B (SDW (L, 1) ... B (SM)]” (8.30)
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and N =QOxSM
Standard backpropagation calculates terms like

SM )
oF 6; e, (m)

T (8.31)
ow'(i,j)  ow (i,))

For the elements of the Jacobian matrix that are needed for the Marquardt algorithm
we need to calculate terms like

oe (m)

PPN (8.32)
ow" (i, j)

These terms can be calculated using the standard backpropagation algorithm with one
modification at the final layer

AY = —FM @) (8.33)

Note that each column of the matrix in equation 8.33 is a sensitivity vector which must
be backpropagated through the network to produce one row of the Jacobian.

The Marquardt modification to the backpropagation algorithm thus proceeds as follows:

1. Present all inputs to the network and compute the corresponding network outputs
(using equations 8.3 and 8.4), and errors e, =t, —af. Compute the sum of

squares of errors over all inputs ( E(x) ).
2. Compute the Jacobian matrix (using equations 8.33, 8.12, 8.10, 8.11, and 8.26).
3. Solve equation 8.29 to obtain Ax.

4. Recompute the sum of squares of errors using x + Ax . If this new sum of squares
is smaller than that computed in step 1, then reduce 4 by S, let x = x+ Ax, and

go back to step 1. If the sum of squares is not reduced, then increase 4 by B and

go back to step 3.

5. The algorithm is assumed to have converged when the norm of the gradient
(equation 8.24) is less than some predetermined value, or when the sum of squares
has been reduced to some error goal.

The training parameters as used in Matlab for the Levenberg-Marquardt training
algorithm are:
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- Maximum number of epochs to train (1000);

- Epochs between showing progress or updating display (25);

- Performance goal which is the sum-squared error goal (0.02);
- Minimum performance gradient (1e-6);

- Maximum validation failures (10);

- Aninitial value for g (0.001),

- Avalue by which x is multiplied whenever the performance function is reduced by
a step (10);

- Avalue by which x is multiplied whenever a step would increase the performance
function (0.1);

- A maximum value of u so thatif 4 becomes larger than this maximum value, the

algorithm is stopped (1e10);
- Learning rate for input training (0.1).

The values in brackets are the default values.

8.4. Concept of Input Training

Instead of training a whole three-hidden-layer autoassociative network, only its
demapping subnet can be trained. Training such a subnet is meaningful and can be
done by extending the backpropagation algorithm, and in this case also combining it
with the Levenberg-Marquardt training algorithm.

The difference between training a demapping subnet and training an ordinary
feedforward network is that the inputs to the subnet are not given. Not only the internal
network parameters but also the input values need to be changed to reproduce the
given data as accurately as possible. When network inputs are adjusted, each output
sample should be uniquely associated with one input vector. Figure 8.3 shows a 2-4-5
input training network with input adjustment used for reducing the dimensionality of a

data set from five to two. Each input vector (x,, X, )7 is adjusted to minimize only

the error of its corresponding output vector (z,, z,,...2Z,; )" while internal network

P
parameters are trained using all output samples.
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After the demapping subnet and its inputs are properly trained, we obtain a reduced
matrix and a demapping model in the form of a neural network. Thus all requirements
for data dimensionality reduction can be fulfilled through training a single-hidden-layer
network and its input simultaneously. The concept of input training (IT) gives an
alternative to the autoassociative network architecture for reducing data dimensionality.
It is this architecture that is referred to as an IT-net. Two characteristics are basic for an
IT-net: the input layer has fewer nodes than any other layer, and inputs are adjusted
according to corresponding outputs.

Note that the term input in the context of input training slightly differs from what is used
for traditional neural networks, where inputs are always given. It is not unusual,
however, to adjust inputs to a model while its parameters are being modified to
minimize the output error. Examples of this model-fitting strategy include the
polynomial PCA and factor analysis (FA). Input training is an application of the same
strategy in neural networks. Training an IT-net with one input node and no hidden layer
is equivalent to PCA.

IT-nets are basically feedforward networks. With one hidden layer of sigmoidal nodes,
a feedforward network can approximate any nonlinear function to an arbitrary accuracy

given sufficient hidden nodes (Cybenco, 1989). Let ¢, (4,,...,4,), k=1,...,n,
denote nonlinear mappings by an IT-net. When the output error for a given data vector,

(tos, ..., t,, )7, is minimized at an input vector, (x , X, )", we have:

P ERRD

d .
[a—i;(qﬁk—tpk)z} =0, i=1..,f (8.34)

Ai=Xp;

which can be rearranged into

z(zpk—tpk)[%} 0, i=1,..,f (8.35)
k i .

=X pi
where Z,, =@, (Xp, ..., Xy ).

If the IT-net has exactly one input node, the functions ¢, (1), k=1,..., n, represents
a smooth curve in n-dimensional space. Equation 8.35 indicates that the vector of
output errors, z, —{,, is orthogonal to the tangent of the curve at 1 = X, when the sum
of the square errors is minimized through input training. Therefore, the result of training
a single-input-node IT-net with a hidden layer of sigmoidal nodes is equivalent to a

principal curve as defined by Hastie as Stuetzle (1989). Similarly, training a two-input-
node IT-net will result in a principal surface, which is a vector of continuous functions
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driven by two parameters and minimizes the orthogonal deviation of the data from the
surface (Hastie and Stuetzle, 1989).

BXi | wmXe B Xm Za Zx Zm
! ! Z: Z» Zn

)& Xz Xom
- Zn Zn Zn

Xz Xz Xre
Zu 224 Zml

Inputs
Z15 ZZS erﬁ
Outputs

Figure 8.3. Concept of input training

8.5. Training IT-Nets

For IT-nets with hidden layers, a direct iterative procedure for network inputs is not
available. The backpropagation and Levenberg-Marquardt training method discussed
in Section 8.2 and 8.3 are applied to network inputs. Similar to network weights,
network inputs are modified using errors backpropagated from the output layer. Thus,
the steepest descent direction for minimizing the output errors through adjustment of
network inputs is used.

8.6. Input Training

For input training we start with the Levenberg-Marquardt algorithm and proceed to the
end. When step 5 from section 84 is completed, we jump to the general
backpropagation algorithm with a view adjustments. We first calculate g, , the gradient,

and multiply it by «,, the learning rate, according to equation 16. Since this is
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equivalent to 5, , and the new weights have been calculated from the LM-algorithm,

we can implement equations 8.17 and 8.18 to update the inputs.

When starting the training procedure from the IT-Net interface (Figure 9.1 discussed in
Chapter 9), the training status will be displayed every show iterations of the algorithm.
The other parameters determine when the training is stopped. The training will stop if
the number of iterations exceeds the number of epochs, if the performance function
drops below goal, if the magnitude of the gradient is less than the minimum gradient, or
if the training time is longer than time seconds.

8.7. Testing and Using IT-Nets

A trained IT-net can be tested through cross validation. In this sense, testing and using an
IT-net involve the same computing task. We will need to describe only testing. Because
network inputs are unknown for testing samples, the appropriate way to test a trained
network is to adjust network inputs while freezing all internal network parameters (weights
and biases). That is, testing an IT-net still requires a searching procedure that optimizes
each input pattern to yield a good approximation for its corresponding output sample.

Note that optimization of inputs for testing is much less time-consuming than training a
whole IT-net. First, testing can be done for each individual sample and it involves much
fewer searching variables than training the whole network. In addition, since the inputs
of training data are available, we can apply a nearest neighbor algorithm to obtain good
initial guesses for the inputs of testing samples. Finally, replacing the small fixed
learning rate with a 1-D search significantly improves the speed of optimizing network
inputs.

As an alternative to the preceding testing method, after training an IT-net we might
proceed to train another network that maps the observed data to the reduced data. An
autoassociative network could then be constructed by combining the mapping network
and the IT-net. The major motivation for doing this is that using a trained
autoassociative network would then be as simple as feedforward calculation. However,
the result of this method of construction of an autoassociative network is often
disappointing due to the following factors:

(1) Training errors are introduced twice

(2) Two network training rounds are independent of each other and there is no
effective mechanism to ensure the quality of the whole autoassociative network.

In this study this alternative mapping method proved to be effective and gave
acceptable results.
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9

ONLINEAR PCA

9.1. Introduction

In practice, both linear and non-linear correlations exist between process variables.
The presence of linear correlations within the data impacts upon the non-linear PCA
algorithm in terms of its ability to extract a parsimonious description of the underlying
characteristics of the process. The presence of linear correlations between the
variables resuits in the need for higher dimensionality to define the underlying non-
linear structure.

Linear PCA is effectively a rotation. Since the rotation is carried out in linear space, the
non-linear structures will be encapsulated within the principal component scores sub-
space if the dimensionality of the sub-space is sufficiently large. Thus, the process of
extracting linear and non-linear correlations from the data can be performed separately.
In this chapter a non-linear PCA approach is proposed which combines the advantages
of both linear PCA and the previous non-linear PCA algorithms. This is done by
extending the principles of Input Training as discussed in Chapter 8 to nonlinear
principal component analysis.

9.2. Nonlinear Principal Component Analysis

So how does NLPCA differ from LPCA? As we have seen, linear principal components
analysis (LPCA) is a projection-based statistical tool traditionally used for
dimensionality reduction. Consider an m-dimensional data set X =[x,,Xx,,...,X,,]

whose variance-covariance matrix has eigenvalue-eigenvector pairs
(4>p1)s (45,P5), ..., (4,,,p,) where A 2A4,2..24 >0. The linear principal

component decomposition of X can be represented as:
i

X=TP"+E=)tp, +E (I<m)
i=1

where T=[t,t,,...,t,] is defined to be the matrix of principal component scores,

P =[p,,p,,...,p,] is the matrix of principal component loadings and E is the residual

matrix in the sense of minimum Euclidean norm. Non-linear PCA is an extension of
linear PCA. Whilst PCA identifies linear correlations between process variables, non-
linear PCA can extract both linear (second-order statistics) and non-linear (higher-order
statistics) correlations. This generalisation is achieved by projecting the process
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variables down onto curves or surfaces instead of lines or planes using the same
objective function, i.e. minimising the mean-square error E{|| X~ X ||*}. The data X

can be expressed in terms of £ non-linear principal components, where k << m,
X=F(T)+E (9.1)

where T =[t,, t,,..., t,] is the matrix of non-linear principal component scores, F

is the non-linear function equivalent to the loadings in linear PCA and E is the matrix
of residuals.

The IT-net discussed in Chapter 8 can effectively represent non-linear systems which
include both additive and multiplicative types of non-linearities through the
simultaneous calculation of the latent variables. A potential disadvantage of this
approach is that the complexity of training the IT-net increases exponentially with the
dimensionality of the training dataset (Bakshi, 1998).

Two steps form the basis of the algorithm. In the first step, linear PCA is applied to
the original observations as in Chapter 7, resulting in a new set of uncorrelated
ordinates. By retaining sufficient data variability, the underlying non-linear structure is
not compromised and only those linear principal components associated with noise
are discarded. By reducing the dimensionality of the data, the non-linear structure
becomes more apparent. In the second step the IT-net is used to extract the latent
non-linear structure in the transformed dataset. To overcome the problem of local
minima, the training of the IT-net is repeated several times with different initial
conditions for each network architecture to ensure that the global minimum is found.
The proposed non-linear PCA representation can be defined as follows:

X =F(T)-P" +E (9.2)

where T(k <! < m) is the matrix of non-linear principal component scores which are
identified from the input layer of the IT-net at the second stage and P(mx!) is the

matrix of linear principal loadings calculated from the first stage of the algorithm.
F(.) represents the input-training network function and E is the matrix of model

residuals. Equation 9.2 gives the non-linear principal scores T . However, for a new
observation, to calculate the corresponding non-linear principal component score
requires the implementation of a time consuming non-linear optimisation algorithm
and is thus not appropriate for on-line application. An alternative and more
straightforward approach is to develop a model between the process observations X
and the non-linear principal scores T using a feed-forward neural network. Finally,
the function relating the non-linear principal component scores to the process
observations is defined as
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The function G(-) is the feed-forward neural network model with the linear PCA

transformed data set X- P as the input layer and the non-linear principal scores T
as the output layer. Once models based on Equations 9.2 and 9.3 are built, the task

of developing an on-line monitoring and fault detection scheme is straightforward
requiring minimal computational effort.

The NLPCA setup interface can be accessed by using the Next button from the
LPCA interface or can accessed directly from the Main interface. In Figure 9.1 to

Figure 9.4 the NLMSPCA model is created. The use of the interfaces are
straightforward.

NulTberof
Principal
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Chapter 9 Nonlinear PCA

Figure 9.1 Tags:

1.

10.

11.

Dataset used to construct the NLMSPCA model. In this case it will either be
dataset 1 or dataset 2.

Display the Network Parameter window (Figure 9.1). This allows the user to set
up the input training neural network structure.

Display the Training Parameters window (Figure 9.2). This allows the user to set
up the training parameters for the input training neural network.

Display the Epoch Viewer. This allows the user to view the Mean Squared Error
(MSE) graphically as the training of the IT-Net progresses in order to get an idea
of how fast and how well the training is progressing.

Train the IT-Net. After setting up Figure 9.1 and Figure 9.2 and after selecting
Figure 9.3 this button is used to start the training and the progress will be
displayed via Figure 9.3. Depending on the network structure and the error goal
this can take a long time to complete. Training of the IT-Net will stop as soon as
one of the stopping criteria is reached or when terminated by the user.

Simulate the network. This will display Figure 9.4.

Retain the network. If the user is satisfied with the trained network the network
structure and parameters can be saved to the database.

Number of nonlinear principal components. By default the same number of
nonlinear as linear principal components are chosen. However, the user has the
option to change the number of nonlinear principal components to retain. Recall
that the linear principal component scores are used as initial input to the IT-Net.

Input node/level transfer function. By default a linear transfer function is used and
should remain so.

Number of hidden nodes. This is actually the only network structure parameter,
except for perhaps the number of nonlinear principal components, that will be
changed. There is no set rule for the optimum number of hidden nodes and
therefore the user will have to play around with this parameter together with the
training parameters until acceptable results are obtained. The more hidden
nodes, the longer the training will take.

Transfer function of the hidden node. By default the sigmoidal transfer function is
used and it should not be necessary to use any other transfer function. Other
options include the linear and tangent transfer functions.




12. Number of original variables. This will be automatically displayed according to the
number of variables in the database. Recall that the process variables are used
as output for the IT-Net.

~ Epod'ls between updating display -I"*'*&E’. J- 25

~ Maximum number of epochs ....e..e................ _._.,1_"10-00-- 1000
~ Sum-squared error goal _.,.l 0.0 J_ 0.02

~ Minimum gradient L == J_. le-6

~ Initial value for MU 1 0001 i 0.001
~ Multiplier for increasing "IU ... L l 10 J_., 10

~ Multiplier for decreasing MU ....................... -..,l 071 J_ 0.1

~ Maximum yaluefor MU ........ L N ]. 1810 L lel0
e learning rate for inputtraining ....e................ _l__g_l _\1., 0.1

Figure 9.2 displays default values for the training parameters next to the edit boxes.
These values have proven to work in most cases. If the error goal is not met after
training the first parameter that can be altered is to increase the maximum number of
epochs that will also increase the training time. After the training has stopped, a
message will be displayed in the Matlab workspace indicating the stopping criteria
used to stop the training. If, for example, training was terminated because the
maximum value for mu was exceeded and the user is not yet satisfied with the
performance, this will be an indication that the maximum value of mu needs to be
increased. At this stage no other value except 0.1 for the learning rate will work.



100

MSE : 1043.007

15. The mean squared error of the network so far. This is also displayed via the
graph. This window is updated on intervals specified in the Training Parameters
window (Figure 9.3, Epochs between updating display).

After the training has stopped the interface in Figure 9.4 can be used to simulate the
network. The newly generated nonlinear principal components are used as input and
the original process variables are used as output. This allows the user to visually
inspect the performance of the network.

17. Data name. By default the original data representing normal operation in the
database is used. The user can however test the network performance by using



19.

new unseen data. The name of the variable containing this data can be entered
here. The variable must reside in the Matlab workspace with each column
representing a separate process variable.

Original versus simulated variable. The original process variable and the same
process variable generated from the IT-Net through simulation are displayed to
give a visual comparison between the original and trained data. This normally
gives an indication of the level of network performance, especially in the case of
new (validation) data.
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After the IT-Net has been trained the interface in Figure 9.5 can be used to generate
a mapping model that generates a model between the linear and nonlinear principal
component scores that can be connected to the IT-Net model. This interface is
displayed by using the next button from the NLPCA interface (Figure 9.1) or can be
accessed directly from the Main interface. Its setup and use are identical to Figure
9.1 to Figure 9.4 except for its inputs and outputs and for the fact that this is just a
normal feedforward neural network that is trained using the Levenberg Marquardt
training algorithm.

21. Number of linear principal components. This is automatically displayed according
to the number of linear principal components recorded inthe database.

22. Number of nonlinear principal components. This is automatically displayed
according to the number of nonlinear principal components recorded in the
database.
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“

9.3.2. EXPERIMENTAL

Non-linear PCA was applied to dataset 1 and dataset 2 using the IT-net methodology
to extract the nonlinear correlations between the process variables and to build the
nonlinear multiscale PCA representation.

Here, as in the case of linear principal component analysis, three principal
components were retained in the model for dataset 1 capturing 97.72% of the data
variability and again four for dataset 2 capturing 98.53% of the data variability making
this a 3-4 principal component-model. The discarded principal components were
attributed to process noise. Different network initialisation and neural network
structures were used to train the neural networks to address the local minima
problem. Finally, an IT-net with a 4-13-40 structure and a 40-18-4 feedforward neural
network were built to model the projection of the data onto the nonlinear sub-space
and its inverse, respectively for dataset 2 and a 3-12-8 structure and 8-14-3
feedforward neural network for dataset 1. The training parameters are summarised
in Table 9.1. The shadowed blocks indicate the criteria on which the training was
terminated for each case.

Table 9.1. Training parameters for IT-Net and mapping model

IT-Net Mapping
Training parameter Dataset1 | Dataset 2 | Dataset 1 | Dataset 2
Epochs between updating display | 25 25 25 25
Maximum number of Epochs 1000
Sum squared error goal 002 - 0.02
Sum squared error achieved 0.029 0.032 ‘;).01 «/(#).01
Minimum gradient 1e-6 1e-6 1e-6 1e-6
Initial value for MU 0.001 0.001 0.001 0.001
Multiplier for increasing MU 10 10 10 10
Multiplier for decreasing MU 0.1 0.1 0.1 0.1
Maximum value of MU 1e10 1e10 1e10 1e10
Learning rate for Input Training 0.1 0.1 - -
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Using the combined backpropagation and Levenberg-Marquardt training algorithm
resulted in an average improved convergence rate of 350%. The results showed that
the final nonlinear PCA representation captures 89.5% of the variability in dataset 2
and 93.1% in dataset 1. For the validation data it is 89.9% and 94.4% respectively.
Action and warning limits for the bivariate score and SPE plots were then derived.
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10

ROCESS MONITORING

10.1. Introduction

To be effective, a plant-wide control monitoring and performance assessment system
should have the following properties:

(i) automated background operation, including scheduled remote collection of
control loop data and data integrity checks,

(ii) theoretically sound, efficient, and automated computational procedures,
(iii) decision support (for example, problem reporting by exception),

(iv) technical support, and

(V) a suitable user interface.

Together, these properties form the basis of a comprehensive control performance
monitoring and assessment system, as shown in Figure 10.1.

‘Decision Technical
Support [ _ Support
User PERFORMANCE MONITORING Automated
Interface AND ASSESSMENT Background
STRATEGY Operation

Computational issues

« Detecting changes in performiance

+ Estimating performance bounds

s Preliminary diagnosis

* Acceptable faise alarm and
detection rates - o

Figure 10.1. Important components of an industrial performance monitoring
assessment, and diagnosis strategy.
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The main aim here is to concentrate on the computational issues part of the industrial
performance monitoring assessment and diagnosis strategy. Complete separate studies
can be conducted on the other issues on their owri and are therefore outside the scope of
this study.

10.2. Interpretation

During the LPCA and NLPCA processes principal scores and loadings are calculated. A
subset of the first few scores, A < N, provides information in a lower dimensional space, the
score space, of the behaviour of the process during the period in which the measurements
were made. This set of scores and the PCA loadings can be used to determine if the
present process operation has changed its behavior relative to the data that were used to
define the scores and loadings (Piovoso et al., 1992a).

There are several ways of interpreting the PCA results. Typical monitoring control charts
include:

e the Q-statistic, a measure of the model mismatch;
e the Hotelling T2-statistic, a measure of the fit of new observations to the model space;
® variance plots, a measure of the samples' variability;

® univariate and bivariate principal component score plots, a qualitative representation of
the process performance, relative to the calibration model in the model space defined by
the calibration model;

® and atime-series plot of the squared prediction error (SPE).

These have been widely used to obtain early warning of the occurrence of nonconforming
operation. Once a NLPCA representation has been built for process performance
monitoring and fault detection, action and warning limits require to be calculated.

Bivariate score plots and the squared prediction error (SPE) were used in the approach
adopted by Dong and McAvoy (1996) for defining the action and warning limits for their non-
linear performance monitoring scheme. However, adopting this approach requires that the
non-linear scores and residuals follow a multivariate normal distribution.
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For multivariate statistical process monitoring by NLMSPCA, the region of normal operation
is determined at each scale from data representing normal operation. For new data, an
abnormal situation is indicated when the current coefficient violates the detection limits. The
actual state of the process is confirmed by checking whether the signal reconstructed from
the selected coefficients violates the detection limits of the PCA model for the significant
scales. This approach is equivalent to adaptively filtering each value of the scores and
residuals by a filter of dyadic length that is best suited for separating the deterministic
change from the normal process variation. The detection limits for the scores and residuals
also adapt to the nature of the signal.

These detection limits consist of action and warning limits. Waming limits are usually 95%
confidence bounds and serve as a warning that the process is approaching an abnormal
condition. Action limits are usually 99% confidence bounds indicating that an abnormal

operation is occurring and that action needs to be taken.
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However, for non-linear PCA the assumption that the non-linear scores and residuals follow
a multivariate normal distribution cannot be guaranteed. Although it is possible to define the
region of normal operation without any underlying assumption concerning the probability
distribution of the measurements, an assumption is still required to apply hypothesis-based
statistical tests to identify when the process is moving outside the action or warning limits.
The assumption of a normal distribution is incorrect as illustrated in Figure 10.2, which gives
the histogram plots of the eight variables representing normal operation used in the
application. Except for the last variable they do not closely resemble a normal distribution.
Therefore, using this assumption will introduce a significant error. An alternative approach
that effectively deals will this problem is introduced in Section 10.4.

10.4. Non-parametric bounds

An alternative approach to defining the action and warning limits is based upon non-
parametric density estimation. Non-parametric bounds for process performance monitoring
have previously been developed (Martin and Morris, 1996), using kernel estimation. Density
estimation is the construction of an estimate of the density function from the observed data.
A muttivariate product kermnel estimator can be constructed based upon the m -dimensional

random samples x,, X,, ..., X, from adensity /' (Scott, 1992):

n

1 X — X,
f“*nmmzK(;,) _ (10.1)

i=1

where £ is the window width, also called the smoothing parameter or bandwidth, and X is
the kernel function which satisfies the conditions

K(x)>0, and LK@&;I (10.2)

The shape of the density estimate is determined by the choice of the smoothing parameter
h, and to a lesser extent by the choice of the kernel (Scott, 1992; Bowman, 1984). An
automatic procedure for determining the optimal window width was used, the minimisation
of the mean integrated squared error cross validation (Bowman, 1984). When using the
density estimation-based approach to define the action and warning limits for the monitoring
charts, the density function of the non-linear principal component scores and squared
prediction error are calculated for the nominal (reference) data. Depending upon the
confidence level required, 95% for the warning limits and 99% for the action limits, the
contour or value can be calculated to define the control limits for the non-linear principal
component scores plot and the SPE. Action and wamning limits based upon kernel density
estimation are theoretically more appropriate in the development of a non-linear PCA
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monitoring scheme. However, if the underlying distribution is normal, similar results to those
obtained from the conventional approaches are obtained.

10.5. Detection limit adjustment for on-line monitoring

For on-line monitoring, the MSPCA algorithm is applied to measurements in a moving
window of dyadic length. The use of a moving window makes the on-line wavelet
decomposition algorithm equivalent to wavelet decomposition without downsampling,
causing a signal of length n to result in a total of n(L +1) coefficients, where L is the

depth of the wavelet decomposition. This increase in the number of coefficients
requires on-line monitoring by MSPCA to increase the detection limits at each scale to
maintain the desired confidence limit for the reconstructed signal. For example, for
normally distributed uncorrelated measurements in a window length of 128,
approximately one sample will lie outside the 99% confidence limits. The off-line
wavelets transform will also result in 128 uncorrelated coefficients, and approximately
one coefficient will violate the 99% limits. In contrast, the on-line wavelet transform of
these data will result in 128 coefficients at each scale, and approximately one
coefficient will violate the 99% detection limits at each scale. Thus, if the signal is
decomposed to four detail signals and one scaled signal, that is, for L =4 as in this
case, application of the 99% confidence limit at each scale will result in an effective
confidence of only 95% for the reconstructed signal, since the coefficients violating the
detection limits at each scale need not be at the same location. Consequently, the
detection limits at each scale for on-line monitoring by MSPCA need to be adjusted to
account for the overcompleteness of the on-line wavelet decomposition by the following
equation:

1
C, =100—-——(100-C 10.3
’ L+1( ) (10.3)

where C is the desired overall confidence limit, C, is the adjusted confidence limit at

each scale at present, and L is the number of scales to which the signal is
decomposed, resulting in L detail signals and one scaled signal.

Another effect of the on-line wavelet decomposition approach is that the wavelet
coefficients retain more of the autocorrelation in the signal due to the use of
overlapping windows for the decomposition. Fortunately, the performance of monitoring
by NLMSPCA is not adversely affected by the autocorrelated coefficients in adjacent
windows, since the confidence limits at each scale are increased by equation 10.3, and
even relatively small deterministic features are captured by large wavelet coefficients.
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10.6. Residual analysis

Another interesting property of PCA is the fact that the equation
z=U'[x-X] (10.4a)

may be inverted so that the original variables may be stated as a function of the
principal components, viz.,

x=X+Uz (10.4b)

because U is orthonormal and hence U™ = U'. This means that, given the z-scores,
the values of the original variables may be uniquely determined. However, x will be
determined exactly only if all the pc's are used. If k< p pc's are used, only an

estimate x of x will be produced, viz.,
x=X+Uz (10.5)
where U isnow pxk andzis kx1. Iéquation 10.4b can be rewritten as
x=X+Uz+(x-X) (10.6)

a type of expression similar to those often found in other linear models. In this case, the
first term on the right-hand side of the equation represents the contribution of the
multivariate mean, the second term represents the contribution due to the pc’s, and the
final term represents the amount that is unexplained by the pc model - the residual.

Gnanadesikan and Kettenring (1972) divided multivariate analysis into
1. The analysis of internal structure.
2. The analysis of superimposed or extraneous structure.

There are outliers associated with each of these and it is important to keep their
identities distinct. (Hawkins refers to them as Type A and Type B outliers.)

The Type A outiier refers to a general outlier from the distribution form one wishes to
assume. Usually this assumption will be multivariate normal and these outliers will be

detected by large values of T2 and/or large absolute values of the z-scores. The
important thing about this type of outlier is that it would be an outlier whether or not
PCA has been employed and hence could be picked up by conventional multivariate
techniques without using PCA. However, the use of PCA might well enhance the
chance of detecting it as well as diagnosing what the problem might be.
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Here we will be concerned with the Type B outlier, the third term in equation 10.6,
which is an indication that a particular observation vector cannot be adequately
characterized by the subset of pc's one chose to use. This result can occur either
because too few pc’'s were retained to produce a good model or because the
observation is, truly, an outlier from the model. It is also possible in repetitive
operations, such as quality control, that the underlying covariance structure and its
associated vector space may change with time. This would lead to general lack-of-fit by
the originally defined pc's.

10.7. Biplots

When most of the variance of the variables is summarized by only two principal
components, then we can express the results as a biplot. Although biplots are originally
meant two-dimensional plots, they may be used for any number of dimensions. For
two-dimensional plots it means that for the singular value decomposition we are
summarizing a lot of the information in only two dimensions. Two-dimensional plots are
very popular because they are easy to work with but should always include some
statement with regard to the proportion of the total variability explained by the first two
characteristic roots. Unless this quantity is sufficiently large, the interpretation of the
plot is suspect.

Although biplots will be used, they will only be used indirectly. Another technique will be
introduced for viewing the information contained in a biplot.

Since the data contained in samples when the process was not operating normally,
applying PCA as a simple outlier detector revealed which data could be classified as
such. Score biplots of the first few principal components can be used to visually detect
these outliers (Piovoso et al., 1992).

10.8. Hotelling's T? statistic: An overall measure of variability

Hotelling's T?statistic measures unusual variability within the calibration model space. That
is, if the calibration model data represent process operation at one operating condition, and
the process has shifted to a different one, then the T2-statistic will show that data at this
operating condition cannot be classified with the calibration data. The T2-statistic is
proportional to the sum of the squares of the scores on each of the principal components
(Piovoso et al., 1992).

The T2 statistic can be applied (Johnson and Wichen, 1992) to the principal component
scores to calculate the control limits. It is based upon the assumption that the limits of the
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control charts are calculated assuming that the original data X follows a multivariate
normal distribution. Under these assumptions, the principal component scores and residuals
obtained from linear PCA will also exhibit normality since PCA is a linear transformation and
a linear combination of a normal distribution is itself normally distributed.

The T'*-quantity can be calculated as follows:
T? =y'y (10.7)

which is a quantity indicating the overall conformance of an individual observation
vector to its mean or an established standard. This quantity, due to Hotelling (1931), is
a multivariate generalization of the Student ¢-test and does give a single answer to the
question: “Is the process in control?”

The original form of T2 is
T? =[x-X]'S7'[x-X] (10.8)

which does not use PCA and is a statistic often used in multivariate quality control.
Substituting S™ = WW' and y, =w,[x—X] in equation10.8 results in

T? =[x-X]'S"'[x-X]
=[x-XIWW'[x-X]=y'y

(10.9)

so equations 10.7 and 10.8 are equivalent. The'important thing about T is that it not
only fulfills Condition 1 for a proper multivariate quality control procedure as listed in
Chapter 7, Section 7.9.2, but Conditions 2 and 3 as wel!. The only advantage of
equations 10.7 over 10.8 is that if W has to be obtained, the computations are
considerably easier as there is no matrix to invert. In fact, y'y is merely the sum of

squares of the principal components scaled in this manner (T = 3 + y; for the two-

variable case) and demonstrates another advantage in using W -vectors. If one uses
U -vectors, the computations become, essentially, a weighted sum of squares:

T’ =z'L'z : (10.10)
and the use of V -vectors would produce a similar expression.

Few books include tables for the distribution of 7> because it is directly related to the
F -distribution by the relationship

2 p(n—1) '
Tp,n,a —————Fp,n_p,a (10.11)

n-p
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In this example, p =8, =900, Fy g, 05 = 33,8056, s0
T8?900,0.05 =8,187

An observation vector that produces a value of T greater than 8,187 will be out of
control on the chart.

However, the traditional approach to calculating action and warning limits for
multivariate process performance monitoring based on Hotelling’s T?, is inappropriate
in the non-linear case since a non-linear mapping does not necessarily guarantee that
the generated data will follow a normal distribution as discussed earlier. This problem
was addressed by calculating the control limits using the non-parametric technique of
kernel density estimation in Section 10.4. This approach has the advantage that no a
priori assumption of normality is required.

An alternative method of plotting T is to represent it in histogram form, each value of
T? being subdivided into squares of the y -scores. This is sometimes referred to as a

stacked bar-graph, and indicates the nature of the cause of any out-of-control
situations. However, the ordinate scale would have to be arithmetic rather than
logarithmic.

Process monitoring can also be referred to as a form of multivariate quality control. The
procedure or guidelines for monitoring a multivariate process using PCA is as follows:

1. For each observation vector, obtain the y -scores of the principal components and

from these, compute T2. If this is in control, continue processing.

2. If T? is out of control, examine the y -scores. As the pc's are uncorrelated, it would

be hoped that they would provide some insight into the nature of the out-of-control
condition and may lead to the examination of particular original observations.

The important thing is that 7> is examined first and the other information is examined
only if 7% is out of control. This will take care of the first three conditions listed in
Section 7.9.2 and, hopefully, the second step will handle the fourth condition as well.
Even if T2 remains in control, the pc data may still be useful in detecting trends that
will ultimately lead to an out-of-control condition.
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10.9. The Q-statistic

The residual term of Equation 10.6 can be tested by means of the sum of squares of
the residuals:

O=(x-%)(x-x%) (10.12)

This represents the sum of squares of the distance of x—% from the k-dimensional
space that the PCA model defines.

To obtain the upper limit for Q, let:

6

>

i=k+1

14
0,=>1

i=k+]

14
6,= >0

i=k+]

26,6,
36?

Then the quantity

o) _Ght -1 _
6, o
1 J20,1

is approximately normally distributed with zero mean and unit variance (Jackson and
Mudholkar, 1979). Conversely, the critical value for Qis

(10.13)

1/h,
J20, 12 -
0, =e1[ca ks +92h°g;° 1)+1} (10.14)
1

where ¢, is the normal deviate cutting of an area of o under the upper tail of the

distribution if 4, is positive and under the lower tail if 4, is negative. This distribution
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holds whether or not all of the significant components are used or even if some
nonsignificant ones are employed.

In Section 2.6, it was suggested that the last two characteristic roots in the example
were not significantly different from each other and hence the last two pc's were
deleted. If only the first two pc’s were retained, what would be the limit for Q ? The last

two roots were 29.33 and 16.41. From these, 6, =4574, 6,=1129.54,
0, =29650.12, and from these A, =0.291. Letting o = 0.05, the limit for Q, using

equation 10.14 is

1/0.291

(1.645),/(2)(1129.54)(0.291)? , (1129.54)(0.291)(-0.709)

=45.74
Onos 45.74 C(45.74)?

=140.45

Values of O higher than this are an indication that a data vector cannot be adequately

represented by a two-component model.

10.10. Contribution plots

When a new observation moves outside the control limits, it is assumed that an unusual
process event or equipment malfunction has occurred and operator personnel need a tool
to identify which variables, or combination of variables, are responsible for, or indicative of,
changes in the process. One approach is through the implementation of a process variable
contribution plot (Miller et al., 1993). Consequently, for the identification of variables
indicative of non-conforming operation, differential contribution plots based upon model
residuals and non-linear principal component scores are used.

By comparing the contribution plot of a sample taken from the calibration set with one that is
outside the confidence limits, differences in the expected variables' magnitude may provide
an indication of which variables have exceeded their expected limits, and a possible
compensation to correct the problem.

Contribution plots describe the change in the magnitude of the variables for the new
observation relative to the average value calculated from the nominal linear PCA
model. It decomposes the scores into their summation operands and graphs them
versus the contributing variable. The summation operands are the products of the
loadings of variable j and the corresponding value of variable j. A large product
associated with a particular variable implies a correspondingly large contribution
(Piovoso et al., 1992)
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Using a similar argument, a contribution plot can be derived and applied in a non-linear
situation. The contribution of the process variables to the SPE can be calculated in a similar
way to that for linear PCA. However, since the mapping function between the process
variables and their non-linear principal scores is non-linear, the relationship between the
variables and the non-linear principal scores is not as straightforward as in the linear case
where the scores can be decomposed as a weighted sum of the process measurements.
An alternative approach is based upon the assumption that the partial derivative of a
function with respect to a specific dimension can indicate the relative influence of the
‘corresponding variable on that function. If the first-order partial derivatives of a multivariate
function are known for a specific variable space coordinate, then these derivatives can be
used to compare the relative influence of the individual variables on the function at a
particular location in variable space. Thus a differential contribution plot which describes the
difference between the contribution of the process variables to its non-linear scores can be
defined by comparing the influence of the first-order partial derivatives of the non-linear
scores to each process variable for a specific sample or time point. The differential
contribution plot that indicates the contribution of the process variables at a specific time

point (x,) to a non-linear score ¢,, can then be examined by calculating the individual

components of the vector product

ot

k% ] (10.15)
ax t=t;

x|

where 0t/ 0x is the first-order partial derivative function between t and x . The relationship
between the non-linear principal scores t to the process variables x is given in Equation
9.3. This approach is also suitable for linear PCA since linearity can be viewed as a special
case of non-linearity. In the linear case, the first-order partial derivatives of t relative to x
become constant which in practice are the principal component loadings, P . Thus Equation
10.15 can be simplified to x |x=x, ‘P, Which is .the same expression as that for the

contribution plot to the scores proposed by Miller et al. (1993).

10.11. Bivariate summary plots

Figure 10.3 illustrates the traditional biplots with detection limits for the normal linear
case (a) and based on the kernel density estimation (b). The contours represent normal
operation detection limits. If an observation moves outside these detection limits it will
indicate that an abnormal condition has occurred. With a new observation we are
actually just interested in how far from abnormal the condition is. This can be
calculated using the methodology illustrated in Figure 10.4.

10-12
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(@) (b)

Figure 10.3. Traditional bivariate plot

We are interested in the in the shortest tangent line to the warning limit which can be
extended to find the shortest tangent line to the action limit. In Figure 10.4(a) there
exist two tangent lines with one (d,) being the shortest line to any position on the
warning limit contour. Figure 10.4(b) contains more than two such tangent lines. Thus,
for a new observation we just need to calculate all the possible tangent lines from the
observation point to the warning limit contour and select the shortest as an indication of
how far the process is from a nonconforming condition. This can be calculated for
different biplot combinations and summarized as illustrated in Figure 10.5 where the
first bar is based on Figure 10.4(b). The warning limit line forms the baseline. d,, is a
non-tangent line and thus will not be considered. :

(a) (b)

Figure 10.4. Bivariate summary plot calculation
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Warning alarm Action alarm

Action limit
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Warning limit

1-4 | 2-3|2-4 | 3-4

PC score combination

Figure 10.5.  Bivariate summary plot for 6 biplots at one time instance

10.12. Application

10.12.1. SOFTWARE SETUP

Figure 10.6 is used to set up the bivariate contour plots. Its sole purpose is to choose
the confidence limits for the action and warning limits. It shows the linear and nonlinear
limits for comparison. The different combinations of scores can be viewed. The
summary bivariate plots are automatically generated from the bivariate plots and thus
do not need to be set up separately.

Figure 10.6 Tags:
1. Dataset number slider

2. Dataset number display. In this case one will first set up' the bivariate plots for
dataset one and then for dataset two.

3. Y-axes principal component number slider.

4. Y-axes principal component number display. For this application one will have a
choice between three principal components for dataset one and four for dataset
two.
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6, X-axes principal component number display, For this application one will have a
choice between three principal components for dataset one and four for dataset
two,

7, Confidence Iimit for the bivariate principal component score plot As one changes
the confidence limit the contour plot on the interface will change accordingly.

8. Application button to save the parameters to the database. The fist one accepted
will be the warning limit and the second one will be the action limit After the second
limit has been applied one can advance to the next pair of principal component
scores for a new bivariate plot.



Figure 10.7 is used to set up the action and warning limits for the SPE plot and works
in a similar way to Figure 10.6.



Up to this point all previous software was just used to set up the NLMCPCA model and
is not used again except when changes to the model need to done. All the relevant
information is stored in the database. Figure 10.7 is the actual process monitoring
interface which is used to monitor new process data. This interface can be accessed by
using the next button in Figure 10.6 or can be accessed directly via the Main
interface.

This interface shown in Figure 10.8 allows the user to choose between the following
plots:
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Only one of these plots can be viewed at a time. One would normally use the bivariate
summary plot and only view the SPE and contribution plots when an abnormal operation is
detected. While viewing the bivariate summary plot, the SPE is also calculated. In an event
of an abnormal operation first being detected by the SPE the SPE plot will automatically
replace the bivariate summary or contour plot.

Figure 10.8 Tags:

15.

16.

17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

27.

Name of the variable containing the new data for investigation purposes. The
NLMSPCA model will be applied to this data in order to detect the existence of
abnormal behavior in the data. This variable must reside in the matlab workspace
and contain the data of each variable in a separate column.

Load the data into the NLMSPCA model.

Start the NLMSPCA monitoring process using the parameters selected during the
setup/training of the NLMSPCA model with normal data.

Bivariate contour plot. Only one bivariate contour plot can be plotted at a time. By
default, principal component one is plotted versus principal component two. Other
combinations can be selected using 5 and 6. If dataset 1 contains four principal
components and dataset contains six, principal component one to four will refer to
dataset 1 and five to ten to dataset 2.

Select principal component number for the x-axes.
Select principal component number for the y-axes.

Summary bivariate plot. All possible combinations for dataset 1 and dataset 2 are
plotted.

View the SPE-plot.

View the contribution plot.

Stop the monitoring process.

Close the current window (exit the monitor interface).

Warning alarm. This alarm is shown as soon as the warning limits of the bivariate or
SPE plots are violated. This alarm will remain for three time intervals before being
cleared automatically.

Action alarm. This alarm is shown as soon as the action limits of the bivariate or
SPE plots are violated. This alarm will remain for three time intervals before being
cleared automatically.
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28. The current time-interval.
10.12.2. EXPERIMENTAL DATA

First a calibration model was developed based upon 900 one-minute samples taken of
the eight monitored variables according to the preceding chapters. To test the new
methodology, data representing abnormal operation had to be collected. Figure 10.9
shows typical variable traces taken of 830 process data points at one minute intervals
and gives a plot of the nonconforming or abnormal operation data used in the
assessment and validation of the methodology.

Figure 10.9. Data representing abnormal operation
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The aim is not just to show that the algorithm works, but also to satisfy the 3™ stated
objective in terms of the critical assessment and validation of the methodology so that
the comparative advantages that each of the elements of the NLMSPCA approach
offers, becomes clear. This is the main objective of this section. It sets a standard to
which the NLMSPCA methodology can be compared. Inthe end this should enable one
to answer the question: How much better is the NLMSPCA approach?

The two methodologies that follow were assessed using the set of unseen data in
Figure 10.9 through both the SPE and principal component scores plot. In both cases
the action and warning limits were calculated using kernel density estimation.

IWARNINGI_~ 1ime ~ om
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Figure 10.10. SPE plots for the test data based on the 4-3 LMSPCA model with 95%
and 99% non-parametric limits

In Figure 10.10 and Figure 10.11 a similar methodology to NLMSPCA was applied
except that, instead of using NLPCA, a classical linear PCA was used. The whole
process of using neural networks was thus omitted. This will be referred to as the
LMSPCA methodology. Using linear principal scores results in different action and
warning limits as compared to nonlinear principal scores. Furthermore, using LPCA
resulted in six and five principal components to be retained for dataset 1 and dataset 2
respectively to describe the same degree of variability, compared to four and three in
the case of NLPCA. As can be se~n from the results, this methodology was unable to



effectively detect the point of nonconforming operation. This is to be expected, since
the data used was highly nonlinear.

Time | 20 L

Figure 10.11. Scores plots for the non-conforming test data based on the 4-3
LMSPCA-model.

In the next exercise, again the same methodology was applied to the data in Figure
10.9 except that, instead of using a multiscale methodology, a singlescale methodology
was used. This will be referred to as the NLPCA methodology. The processes of
multiresolution analysis and wavelet thresholding were thus omitted. This also resulted
in only one dataset to be used instead of two. Figure 10.12 and Figure 10.13 gives the
results after applying this methodology. As can be seen, it was able to detect the point
of nonconforming operation three time intervals earlier than the current alarm system.
However, it continued giving false alarms after the process returned to normal

operation.
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Figure 10.12. SPE plots for the test data based on the 4-3 NLPCA model with 95%
and 99% non-parametric limits

Figure 10.13. Scores plots for the non-conforming test data based on the 4-3 NLPCA-
model.



In the industrial application indications of failure are difficult to identify, due to the large
number of monitored variables, large interactions and nonlinearities as illustrated
through Figure 10.10 and Figure 10.11. Current alarm limits as well as the number and
type of alarms also have a tendency to conceal the development of abnormal
situations. In some cases, for the process under investigation, what was thought to be
a failure mode turned out to be a false alarm with no evidence of failure as was partly
illustrated in Figure 10.12 and Figure 10.13. It is under these circumstances that one
can appreciate a process monitoring scheme, like the one developed here, that is able
to overcome these problems and limitations.
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Figure 10.14. SPE plots for the test data based on the 4-3 NLMSPCA model with 95%
and 99% non-parametric limits

The nonlinear multiscale PCA scheme introduced in Chapter 8 and 9 was assessed
using the set of unseen data in Figure 10.9 through both the SPE and nonlinear
principal component scores plot. Figure 10.14 illustrates the results for the SPE for the
nonconforming test data set. Also shown are the action and warning limits calculated
using kernel density estimation. In this application, the non-parametric control limits are
wider than the corresponding limits calculated based upon the assumption of normality.
Figure 10.15 shows the nonlinear bivariate scores plot of principal component one



versus two of dataset 1 of the test data with non-parametric control limits, indicating 39
points violating the action limits with the first indication of nonconformance at sample
289.

Figure 10.12 shows the summary plot of the bivariate scores plots for dataset 1 and
dataset 2 of the testdata. It can be seen that the process disturbance could be
identified from the SPE and bivariate scores plots. The advanced monitoring system
was able to detect the process disturbance seven time intervals earlier than the current
alarm system. The number of false alarms are also reduced. This illustrates its
superiority over the methodologies in Section 10.12.3 and can thus be assumed to be a
better methodology.

After a process deviation is identified, the next step is to investigate the cause. In
Figure 10.17, a differential contribution plot for non-linear principal component two of
dataset 1 and a residual contribution plot were calculated for sample 289, respectively.
From both figures, process variable two has the largest contribution, therefore
reflecting the possible cause of the process deviation, which gave a positive indication
in this case.

Figure 10.15. Scores plots for the non-conforming test data based on the 4-3
NLMSPCA-model.



Figure 10.16. Summary plot of the bivariate sores plots based on the 4-3 NLMSPCA-
model

J WARNING . (Time 1 280 -

Figure 10.17. Differential ( ) and residual ( ) contribution plots to investigate the
cause of process deviation in the non-conforming data
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From the differential contribution plot, it is interesting to observe that not only is variable
two flagged up, but a large number of other variables appear to contribute to the out-of-
control signal. This scenario has been discussed by a number of researchers including
Dunia et al. (1996) and Tong and Crowe (1995) and has been identified to be due to
the contribution analysis to the SPE being based upon reconstruction. As a
consequence, the effect of the changes in the original set of non-conforming variables
can propagate to other variable estimates, increasing the chance of erroneous
identification. In this respect, interrogation of the contribution plot for the non-linear
principal component score is more reliable for the diagnosis step than the linear case.
From this industrial application, it can be seen that the nonlinear multiscale PCA model
achieves good fault detection results which is also better than using classical LPCA or
singlescale analysis.
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11 ONCLUSION

11.1. Summary

In this study an online multiscale nonlinear PCA approach was derived for process
monitoring and fault detection and its performance validated on unseen test data from a
nonlinear industrial process. The advantage of this method is that both linear and nonlinear
correlations can be extracted from the process data to obtain a more parsimonious
description of the original data. The data was first decomposed into different levels of detail
and approximations through multilevel wavelet decomposition. Heavy high-frequency noise
and sharp data spikes in the industrial data sets were then eliminated through wavelet
thresholding. The thresholded level coefficient vectors that contained important information
were reconstructed to form reconstructed details and approximations containing the most
important information of the data at different levels. Thus, in applying the discrete wavelet
transform the underlying process trend was preserved in the approximation and detail
coefficients. This was then used to develop a linear and nonlinear principal component
model. All the scales were also combined for deriving a combined principal component
model. Using wavelet coefficients in the derivation of the nonlinear PCA model significantly
reduces the computational burden without impacting upon the predictive ability of the
process representation. Moreover, the possibility of the input-training network to overfit the
data is greatly reduced and the generalisation properties of the network enhanced.
Fortunately, the last MSPCA steps of selecting the scales that indicate significant events,
reconstructing the signal to the multilevel time domain, and computing the scores and
residuals for both the thresholded and non-thresholded reconstructed signals, improve the
speed of detecting abnormal operation and eliminate false alarms after a process returns to
normal operation. Using the multilevel methodology also greatly enhances the ability of the
monitoring system to detect different types of abnormal conditions. Data-driven, nonlinear
control limits and modified contribution plots were derived to facilitate the comprehensive
and robust monitoring and fault detection.

The results of the application of the conjunction of the multilevel wavelet decomposition,
wavelet thresholding technique and nonlinear PCA algorithm to an industrial process
demonstrates the advanced performance for fault detection and isolation. According to the
results it should be possible to determine the development of an abnormal situation in the
steam distribution system early enough in order to reduce the consequences of the
abnormal event. Here the methodology was only applied to one specific case. The accuracy
and reliability of the methodology needs to be validated on more scenarios.

Keeping the process in mind it should be clear at this stage that it is not yet possible to apply
this methodology in real time since the factory currently lacks the infrastructure. At this stage
it is not possible to access or monitor all the variables throughout the factory from a single
point. It is only possible to access a“specific unit's variables from that unit’s control room.
However, this infrastructure will be implemented over the next two years. The only way to
currently gain access to all the variables from a single point is through the




Chapter 11 Conclusi_on

History Module which is a central database. This database only saves data at a
minimum sampling rate of one minute and access to the database is not very
reliable.

Apart from this industrial application, it can be seen that the NLMSPCA model achieves
good fault detection results. Moreover, the non-parametric control limits are statistically
more valid for non-linear, on-line, process performance monitoring.

The use of the summarised plots allows enhanced global visualisation capabilities
and interpretation and reduces the space taken up by conventional multivariate
statistical plots. It can be concluded that the advanced monitoring system
architecture is qualified for further development.

11.2. Further development

The next step would involve the development of an application to create plans to
recover from malfunctions and threatened goals. It should be capable of replanning
in real time, and use knowledge of the process represented in blackboards to carry
out planning without the need for human planners to exhaustively explore every
possible scenario. This function should assess the success of the plan and be
capable of closed loop control of the process if so authorized.

11.3. Practical implications

In process monitoring and fault detection the major issue becomes that of practical
implications.

Common to all approaches described as intelligent fault detection, is that they derive or
synthesize higher order statements-about the plant from lower order information, e.g.
process measurements, event information, alarms. They must all be seen as add-ons
which complement an existing good quality basic process alamm system. They will
produce results if the basic information system is sound. None of the approaches will cure
fundamental faults in the basic alarm system, and should not be considered as doing so.

The major problem with all the computerized fault detection techniques is that, even
with sufficient implementation tools, they require considerable engineering analysis of
plant behavior. Some of this can be done ‘on paper from the plant design
information, but generally considerable post-commissioning tuning is also required.
Applying these techniques also demands some ‘failure mode analysis’' to be
performed to ensure missing or incorrect input data not causing false conclusions.
Questions also remain with artificial intelligence and expert systems techniques
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about demonstrating that a procedure that is developed on a limited range of plant
transients will be effective in unexpected situation.

The development and application of this technique would require specialist
knowledge. Unfortunately the reports of large scale practical applications on working
plants are few and far between. Priority should be given to applying other more basic
methods to eliminate the simple problems, and only then to invest in the more
advanced methods. So why develop more advanced technology? By the time the
more basic problems have been addressed, advanced methods like the one
developed here should be ready for application since the experimental stage, and
especially the period up to general acceptance and reliability, for new and advanced
technology is much longer.
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