DECENTRALISING THE CODIFICATION OF RULES IN A DECISION SUPPORT EXPERT KNOWLEDGE BASE

by

Erika de Kock

presented in partial fulfilment of the requirements for the degree

Master of Scientiae (Computer Science)

in the

Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Promoter: Professor J.M. Bishop

March 2003

Abstract

Title: Decentralising the codification of rules in a decision support expert knowledge base

Author: Erika de Kock

Promoter: Professor J.M. Bishop

Department: Computer Science

University: University of Pretoria

Degree: Master of Scientiae (Computer Science)

The paradigm of Decision Support Systems (DSS) is to support decision-making, while an Expert System's (ES) major objective is to provide expert advice in specialised situations. Knowledge-Based DSS (KB-DSS), also called Intelligent Decision Support Systems (IDSS), integrate traditional DSS with the advances of ES. A KB-DSS' knowledge base usually contains knowledge expressed by an expert and captured by a knowledge engineer. The indirect transfer between the domain expert and the knowledge base through a knowledge engineer may lead to a long and inefficient knowledge acquisition process.

This thesis compares 11 DSS packages in search of a (KB-) DSS generator where domain experts can specify and maintain a Specific Decision Support System (SDSS) to assist users in making decisions. The proposed (KB-) DSS-generator is tested with a university and study-program prototype. Since course and study plan programs change intermittently, the (KB-) DSS' knowledge base enables domain experts to set and maintain their course and study plan rules without the assistance of a knowledge engineer. Criteria are set to govern the (KB-) DSS generator search process. Example knowledge base rules are inspected to determine if domain experts will be able to maintain a set of production rules used in a student registration advice system. By developing a prototype and inspecting knowledge base rules, it was found that domain experts would be able to maintain their knowledge in the decentralised knowledge base, on condition that the objects and attributes used in the rule base were first specified by a builder/programmer.

Keywords:

Decision Support, Decision Support Systems, Expert Systems, Knowledge-Based Decision Support Systems, Intelligent Decision Support Systems, Knowledge Management, Knowledge Representation, Decision Support Generator, Rule-Based Systems, Knowledge base

Acknowledgements

I thank the following companies, who kindly sent evaluation versions of their software packages:

- Arlington.
- Distributed Computing Sys
- Expert Choice Inc.
- ILOG
- Infoharvest Inc
- Intellix
- Stasoft
- Vanguard
- Rule Machines Corp, and
- The Haley Enterprise

I extend my appreciation to my promoter, Prof Judy Bishop, for her patience and encouragement, and to my friends: Dr Susan van Zweel, Mr James Thackrah and Mrs Alex Koutsouvelis who edited my use of language.

I acknowledge the financial assistance of the National Research Foundation under Grant No 2053401.

Contents

	Page
Abstract	ii
Acknowledge	mentsiii
Contents	iv
List of figures	vi
List of tables.	viii
List of acrony	msix
Chapter 1 – I	ntroduction1
1.1	Background and the state of existing knowledge1
1.2	Motivation2
1.3	Problem definition2
1.4	Research hypothesis and objectives4
1.5	Structure of the thesis4
Chapter 2 - K	nowledge-based Decision Support Systems6
2.1	Knowledge-based Decision Support Systems, Decision Support Systems and Expert Systems
2.2	Decision Support Systems (DSS) and Knowledge-based Decision Support Systems (KB-DSS)7
2.3	Expert Systems (ES)19
2.4	Knowledge-based Systems or Intelligent Support Systems23
2.5	Confirming the Intelligent Systems approach27
2.6	The future of DSS, ES and KB-DSS30
Chapter 3 - C	onstructing a DSS32
3.1	Building the DSS32
3.2	Building an ES37
3.3	Building a KB-DSS37
Chapter 4 - C	onstructing the advice KB-DSS41
4.1	Selecting a suitable KB-DSS generator41
4.2	Software packages evaluated41
4.2	Comparison

4.4	An advice system for student registration	53
4.5	The application prototyped	61
Chapter 5 - A	broader perspective to Decision Support Systems	74
5.1	Introduction	74
5.2	Decision-making and models	81
5.3	Understanding Decision Support Systems	83
5.4	Architecture of a DSS	90
5.5	Integrating the DSS in the organisation	101
5.6	A more comprehensive view of organisational decision-making	102
5.7	The future of DSS	103
Chapter 6 - Ex	xpert Systems and knowledge acquisition	107
6.1	Expert System definitions	107
6.2	Architecture of ES	112
6.3	ES and expert shells	121
6.4	Knowledge acquisition and knowledge base construction	122
6.5	Summary	124
Chapter 7 - E	valuating the prototype	126
7.1	Evaluating DSS	126
7.2	ES quality and validation	129
7.3	Testing and evaluation of the KB-DSS	134
7.4	Evaluating the prototype	137
7.5	Summary	139
Chapter 8 - C	onclusions and final remarks	140
Bibliography.		142
Appendix A –	Sample rules	146
Externa	al rules file generated from the syntactic editor used as input to the application	146
The syr	ntactical mode of the syntactic editor: rules from data/F02133221.ilr.	158

List of figures

Figure 1-1 A conceptual model of Decision Support Systems (Turban 1995)
Figure 2-1 The Decision-making/Modelling Process (Turban 1995; Turban et al 2001)
Figure 2-2 Computerised support (MSS) for decision-making. IA - Intelligent Agents, ES= Expert Systems, EC = Electronic Commerce, DSS = Decision Support Systems, EIS = Executive Information Systems (Turban et al 2001)
Figure 2-2 Computerised support (MSS) for decision-making. IA - Intelligent Agents, ES= Expert Systems, EC = Electronic Commerce, DSS = Decision Support Systems, EIS = Executive Information Systems (Turban et al 2001)
Agents, ES= Expert Systems, EC = Electronic Commerce, DSS = Decision Support Systems, EIS = Executive Information Systems (Turban et al 2001)
Decision Support Systems, EIS = Executive Information Systems (Turban et al 2001)
(Turban et al 2001)
Figure 2-3 The characteristics and capabilities of DSS (Turban 1995)13
•
et al 2001)
Figure 2-5 The DSS decision-making process (Shim et al 2002)14
Figure 2-6 Structure and process of an expert system (Turban et al 2001)21
Figure 2-7 Expert shell architecture (Beynon-Davies 1991)
Figure 2-8 Data flow diagram of a generic DSS (Mallach 1994)23
Figure 2-9 Functional analysis of a KB-DSS application (Klein & Methlie 1995)26
Figure 2-10 Interaction between the user and the KB-DSS resources (Klein &
Methlie 1995)26
Figure 2-11 Transfer of information between resources and the application file
(blackboard) (Klein & Methlie 1995)27
Figure 2-12 IS decision support spectrum (Mallach 1994)30
Figure 3-1 Phases in building a Decision Support System (Turban 1995)34
Figure 3-2 The development process of a DSS constructed by end-users (Turban
1995)36
Figure 3-3 Methodology for the KB-DSS implementation process (Klein & Methlie
1995)40
Figure 4-1 Developing the business rules (Business Rule Studio1998)44
Figure 4-2 ILOG Builder's Agenda51
Figure 4-3 The ILOG Builder51
Figure 4-4 Interrelating Real World Example Fragments with model components
(Haumer et al 1998)55
Figure 4-5 Context of the advice system56
Figure 4-6 Initial prototype of the student advice system in Delphi60
Figure 4-7 The user interface prototype after consulting the rules subsystem61
Figure 4-8 Working prototype of the advice system using ILOG JRules and Java62
Figure 4-9 "What if" future semesters/years: Adding courses passed to results63

Figure 4-10	Selection and Options after new "what-if" results64
Figure 4-11	Using the textual mode of the syntactical editor68
Figure 4-12	Using syntactic mode of the syntactical editor68
Figure 4-13	A rule from the student advice prototype for a required course that has a
	prerequisite course69
Figure 4-14	The textual mode of an example rule for the student advice system70
Figure 4-15	Textual mode rule for a maximum number of 100 credits for level 100.70
Figure 5-1	A knowledge model of planning and control (Finlay 1994)77
Figure 5-2	Levels of information Requirements (Finlay 1994)77
Figure 5-3	Relationships between Decision Support Systems (Finlay 1994)86
Figure 5-4	Types of DSS (Finlay 1994)87
Figure 5-5	A new decision paradigm for DSS (Courtney 2001)102

List of tables

		Page
Table 2-1	Phases and Stages according to Finlay's (1994) model for problem	
	tackling9	
Table 2-2	Concepts underlying DSS definitions (Turban 1995)12	
Table 2-3	Information System Characteristics (Mallach 1994)28	
Table 4-1	Software Vendors and Decision Support packages42	
Table 4-2	Summary of software selection criteria	
Table 4-3	Pre-registration rule categories	
Table 4-4	BSc Computer Science requirement rules58	
Table 4-5	Rules governing the courses	
Table 4-6	Course characteristics	
Table 5-1	Preferred decision-making techniques for personality types: (Dean 1992	
	in Mallach 1994)80	
Table 5-2	Different decision-making styles and their preferred technique to	
	decision-making (Sauter 1999)81	
Table 5-3	Representative Structured Management Science Problems and Tools	
	(Turban et al 2001)	
Table 5-4	The emphasis associated with types of DSS (Finlay 1994)88	
Table 5-5	DSS risk factors and integration process (Sprague & Carlson 1982)101	
Table 7-1	Examples of measures for DSS Evaluation (Sprague & Carlson 1982) 126	
Table 7-2	A framework for KB-DSS (Klein & Methlie 1995)135	
Table 7-3	Examples of measures for DSS Evaluation (Sprague & Carlson 1982) 137	

List of acronyms

4GL Fourth Generation Languages
AHP Analytical Hierarchy Process

AI Artificial Intelligence

API Application Programming Interface

BAL Business Action Language
BOM Business Object Model
BRS Business Rule Studio

CBIS Computer Based Information Systems

CBR Case Based Reasoning

CDSS Customer Decision Support Systems

COM Component Object Model
CSF Critical Success Factors

DB Databases

DBMS Database Management System

DGMS Dialogue Generation Management Software

DLL Dynamic Link Library
DSS Decision Support Systems
DTD Document Type Definition

EC Electronic Commerce

EDI Electronic Data Interchange
EIS Executive Information Systems

ES Expert Systems

GDSS Group Decision Support Systems

GSS Group Systems Support GUI Graphical User Interface

IA Intelligent Agents

IDDS Intelligent Decision Support Systems
IRD Information Requirement Definition
IRS Information Reporting Systems

IS Information Systems
ISP Internet Service Provider
ISS Intelligent Support Systems
IT Information Technology
JESS Java Expert System Shell
JVM Java Virtual Machine

K-T method Kepner-Tregoe method/process

KB Knowledge Base

KB-DSS Knowledge-based Decision Support Systems

LAN Local Area Network

LHS Left-hand-side

MBMS Model Base Management Software
MINTS Management Intelligent Systems
MIS Management Information Systems
MSS Management Support Systems

NL Natural Language

NLP Natural Language Processing PIM Personal Information Systems

OAV Object Attribute Values

OCX ActiveX control

ODBC Open Database Connectivity
OIS Office Information Systems
OLAP Online analytical Processing
OLE Object Linking and Embedding

OOSM Object-Oriented Structured Modelling

OOSML Object-Oriented Structured Modelling Language

PRL Production Rule Language
R&D Research-and-Development

RDBMS Relational Database Management Systems

SDLC Systems Development Life Cycle SDSS Specific Decision Support System

SGML Standard Generalised Mark-up Language

SIS Storage Information Systems

SM Structured Modelling

SQL Structured Query Language

TD Approval of Dean

TDH Approval of Head of Department
TPS Transaction Processing Systems
RAD Rapid Application Development

RBR Rule-Based Reasoning
RMI Remote Method Invocation

RWE Real world Example

UIMS User Interface Management System

URL Uniform Resource Link
VRS Visual Rule Studio

WA Work Area

Web World Wide Web WM Working memory

XML Extensible Mark-up Language