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ABSTRACT

We present a historical and theoretical overview of the more complicated and less used G/M and M/G
queueing processes, which allow for non-specific arrival and service time distributions. Such a model
provides a more general setting for model fitting of real data for which the Markov property may not hold.

1. INTRODUCTION

In real-life situations we often have to deal with queues, such as service in a bank or supermarket, airplanes
waiting for permission to approach a runway, websites receiving requests from internet users, payment
requests generated from EFT points in a supermarket, patients waiting in a hospital emergency room and
traffic waiting at a traffic light, stop sign or roundabout. A queueing theory models these real-life queueing
situations so that the behaviour of the queue can be studied mathematically (Gross & Harris, 1985). The
application of queueing theory is quite diverse and includes telecommunications (Daigle, 2005), traffic
engineering (Drew, 1968), computing (Menascé et al., 2004), factory shops, offices and hospital design
(Graves, 1982; Green et al., 2006; Saaty, 1961) and even emergency evacuation planning (Smith, 1991),
with the aim of optimizing resources. From the customer’s point of view we would like to minimize the
waiting time. The service provider in turn would like to prevent customers from getting frustrated and
would also like to make the best possible use of resources in order to minimize costs and maximise profit.

A queueing system consists of three distinct parts namely, the service facility being, the arrival of
customers to be served as well as the service process. Some of the characteristics we are interested in are
the queue input, the service mechanism, queue discipline (the order in which customers are served) and
the number of queues in the system (Bocharov et al., 2004; Gross & Harris, 1985). It is generally assumed
that arrivals and services are independent. In 1953, David G. Kendall (1953) suggested the first and now
well-used notation, known as Kendall’s notation, for describing the characteristics of a queueing model.
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It was first suggested as a three-factor A/B/C notation where A represents the arrival process distribution,
B the service time distribution and C the number of servers. This system was extended by Lee (1966) to
include factors K and D and by Taha (1971) to include a factor N. Here factor K represents the capacity
of the system (those in the queue as well as in service), N the calling population (from which the arrivals
originate) and D the queue’s discipline. Therefore we describe a queue as A/B/C/K/N/D or just A/B/C (if
K=∞, N =∞ and D = FIFO (First In First Out)). We will only look at interarrival and service times
that are exponentially distributed (M) or have general distributions (G or GI). Although G usually refers
to independent service or arrival times, some authors use GI to be more explicit.

Although the first paper on queueing theory, ‘Waiting times and number of calls’ by Johannsen (Bhat,
1969), was published in 1907, it is generally accepted that queueing theory was invented by A.K. Erlang
(Brockmeyer et al., 1948), a Danish mathematician, statistician and engineer who joined the Copenhagen
Telephone Company as scientific collaborator and head of the newly established physico-technical labo-
ratory in 19081. He published his first work in 1909 in which he proved that telephone calls distributed at
random followed a Poisson distribution (Erlang, 1909). Erlang (1917) is his most important work. This
article contained Erlang’s formulae for loss and waiting time developed on the basis of the statistical equi-
librium principle. Erlang went on to develop and publish many more works on the theory of telephone
traffic before his early death in 1929 at the age of 51. Almost all his works were first published in Danish
but the most important were later translated into English, French and German. (Brockmeyer et al., 1948)

Erlang’s work and the work done by others (Fry, 1928) in the early thirties was motivated by practical
problems. One of the greatest contributors at this time, Aleksandr Khinchin, referred to queueing theory
as mass-service theory. His interest in queueing theory was a result of his connection with workers of
the Moscow telephone exchange. He was particularly interested in the general study of incoming calls
(Khinchin, 1932, 1933). He had a great influence in the development of probability theory by investigating
stationary stochastic processes and the formulations of the foundational theory leading to the application
in various fields of natural science including statistical physics, queueing problems and information theory.
The general study of incoming calls was also the subject of Khinchin’s final monograph (Khinchin, 1955)
and his last mathematical papers , where he gave the probability of k events in an interval of length t given
an event at the start of the interval. (Cramér, 1962; Doob, 1961; Gnedenko, 1961)

In the following two decades, many theoreticians became interested in these and more general models
to be used in more complex situations. Unfortunately this led to a wide gap between the practical and
theoretical developments in the field (Bhat, 1968). The first solutions of the time-inhomogeneous problem
were given by Ledermann & Reuter (1954) using spectral theory and by Bailey (1954) using generat-
ing functions. Laplace transforms have also been used on this problem but even though this is a useful
technique and powerful analytically, the mathematical manipulation becomes technical. Kendall (1964)
remarked that much of the detail of the queue-theoretic scene had been obscured by the Laplacian curtain.

1This paper was not mathematically exact and therefore Erlang’s first paper on the subject is seen as historically more important.
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A result of this was that many researchers took the easiest way out of a complex situation by assuming
steady-state from the start or by taking both interarrival and service times as exponentially distributed
without significant information loss. This situation is not adequate for modeling most real-world situa-
tions (Bhat, 1969). Other methods of dealing with the loss of the Markov property include the method of
supplementary variables (Kendall, 1964; Wishart, 1961), Kendall’s regeneration point technique (Kendall,
1951, 1964) and approximation methods, each with their own merits and difficulties. A comprehensive
bibliography on queueing theory up to 1957 can be found in Doig (1957).

Examples of articles dealing with communications applications are Keshavamurthy & Chandra (2006),
Shankar (2007) and Iftikhar et al. (2008). The theory can also be applied to insurance problems (Boxma
et al. 2011b, Postan & Balobanov, 2011, Löpker & Perry, 2010). The active research field of traffic
planning is discussed in Cheah & Smith (1994), Jain & Smith (1997), Vandaele et al. (2000), van Woensel
& Vandaele (2006) and van Woensel et al. (2006). Also recently employed is the development of a planning
model for manpower allocation to after-sales field support (Tang et al., 2008).

2. THEORY: M/G AND G/M MODELS

We no longer have a Markov process in these models but within lies an imbedded Markov chain, allowing
for the use of some Markov chain theory. The results and some of the proofs for M/G and G/M queues
can be found in Gross & Harris (1985); Kleinrock (1975); Giffin (1978). Let E(N) denote the expected
number of customers in the system, E(W ) (E(W + S)) the expected waiting time of a customer in the
queue(system) and pn the steady-state probability of n customers in the system at any point in time.

M/G Models In the M/G/1 queue, we assume a single server process with arrivals determined by a Poisson
process with parameter λ and service times independently generally distributed with mean µ and variance
σ2
s . We look at the system at the points in time when a customer departs the system therefore the next

customer enters service at that instant and remaining service time will not depend on the length of time
already in service. The process therefore only depends on the number of customers in the system at these
time points. This is known as the regeneration point technique. However in the M/G/s queue, at a service
completion a customer leaves the system, but other servers will still be busy serving customers so that
the remaining service times need to be considered. This can be eliminated by only looking at the size of
the queue instead of system size. Let wq(t) denote the density function of the waiting time distribution
in the queue, Q(t) denote the number of customers in the system at time t, Y (t) the number of service
completions up to time t, Nq the steady-state number of customers in the queue at departure points, Wq the
waiting time of a customer in the queue, πn the steady-state probability of n customers in the system at a
departure point and πqn=P (n in the queue just after a departure). We note that, for M/G models, πn = pn.

The main results for the M/G/1 queue are E(N) = ρ +
ρ2+λ2σ2

S

2(1−ρ) , ρ=
λ
µ

; E(W + S) = 1
λ

(
ρ+

ρ2+λ2σ2
S

2(1−ρ)

)
;

E(W )=
λ(µ−2+σ2

S)

2(1−ρ) ; E(no. cust waiting for service)= ρ2+λ2σ2
S

2(1−ρ) ; πi=π0ki +
∑i+1

j=1 πjki−j+1, i = 0, 1, 2, . . .

where kn = P (n arri. during a service S = t); and E(length of the busy period) = 1
µ−λ . For the M/G/s
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queue we have that E (Nq) = λE (Wq), πqn=
´∞
0

e−λt(λt)n

n!
wq(t)dt, and E(Nq(Nq − 1) · · · (Nq − k + 1))

= λk
´∞
0
tkwq(t)dt = λkE

(
W k
q

)
. In the case of the M/G/s/s queue we have that pn = e−ρρn

n!
, ρ = λ

µ

and for the M/G/∞ queue we have P (Q(t) = n) = e−λtq(λtq)n

n!
, pn = e−ρρn

n!
, ρ = λ

µ
and P (Y (t) = n) =

e−λt(1−q)(λt(1−q))n
n!

where q =
´ t
0
P (service time exceeds t− x|arrival at time x)× P (arrival at time x)dx.

G/M Models In the G/M/1 queue, we have a single server with interarrival times independently generally
distributed with mean e λ and variance σ2

a, and service times exponentially distributed with parameter µ.
We follow the same regeneration point technique approach as above but instead look at time points just
before a customer arrives. Generalising from 1 to s servers, everything remains the same except for bn, the
probability of n service completions during an interarrival time. The mean service rate per unit of time t
will change from µ to nµ or sµ depending on the state of the system, therefore bn will depend on the state
of the system. We note that, pn 6= qn where qn is the steady-state probability of having n customers in the
system at an arrival point. The main results for the G/M/1 queue are given by qn = (1 − r0)rn0 forn≥
0, ρ < 1 where r0, 0 < r0 < 1, is the only root of the function β(z) = z where β(z) =

∑∞
n=0 bnz

n and
bn = P (nservice completions during an interarrival time) and W (t) =

{
1−r0e−µ(1−r0)t, t≥0 . For the

G/M/s queue we can find the limiting probabilities by solving for qn numerically in C =
1−

∑s−1
n=0 qn

rs0(1−r0)−1 . We

can also find W (t)=C
(

1
C
− rs0

1−r0 e
−µs(1−r0)t

)
with r0 defined as in the G/M/1 case.

Further research into M/G/1 and G/M/1 queues has also been done. See Adan & Haviv (2009); Bae & Kim
(2010); Boxma et al. (2011a, 2009, 2010); Haviv & Kerner (2011); Kahraman & Gosavi (2011); Taylor &
van Houdt (2010); Wang & Huang (2009).

3. MODEL SELECTION

Arguably, the most important step in modelling using queueing theory is selecting the most appropriate
distributions for the services and arrivals in the model. To do this we need to know as much as possible
about the characteristics of potential distributions and the situation being modelled. We consider the
service process as an example. The exponential distribution may be appropriate in a case where there is a
wide variation in service required from customer to customer but it is clearly not appropriate in the case
where a customer’s remaining service time depends on his expended service time.

A good starting point for selecting an appropriate distribution is to make use of graphical methods. One
possible option is to make use of probability plots. Probability plots compare ordered values of a variable
with percentiles of a specified theoretical distribution. If the data distribution matches the theoretical
distribution, the points on the plot will form a linear pattern. We should also plot the interarrival and
interservice times to see whether there are non-random effects present in the data. A formal method of
determining this involves the sampling distribution of ‘runs’ (Duncan, 1986). Once we have decided on
an appropriate distribution, we can then use a test such as the χ2 goodness-of-fit test to see if the chosen
distribution fits our situation. This is however not the only available test. Other tests include the F-test, the
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Kolmogorov-Smirnov test, the Anderson-Darling test and the Cramér-von Mises criterion.

Once we know which distribution fits our situation, it is important to know whether the process is time-
homogeneous or not. If the process is not, we will need different arrival or service rates for different times.
An example of this would be traffic on a highway. During peak hours we would expect more arrivals
per time unit than during off-peak hours. One possible test for this is Bartlett’s test (Bartlett, 1934, 1937;
Epstein, 1960a,b).

It is important to realise it is not realistic to expect a chosen distribution to be in exact agreement with a
real-life situation. A system that exactly models the situation is bound to be overly complex and it may not
be possible to gain usable insight into the process. We therefore need to find a distribution that reasonably
approximates the situation we are looking at. The exponential distribution is often used to model the
service system since it is a conservative choice. When examining the expected waiting time for alternative
choices for the service distribution, the exponential distribution will always lead to a longer waiting time
as long as the coefficient of variation of the other distribution is less than one. This includes the family
of gamma distributions which is often used to model the service process. If the exponential distribution
is used in these circumstances, even if the service process is not exponential, we will be on the safe side
when predicting the number of customers waiting to be served and their waiting times. (Giffin, 1978)

4. CONCLUSION

We have provided a historical and theoretical overview of the lesser known G/M and M/G queues allowing
for general arrival and service distributions, instead of imposing a specified distribution. In addition model
fitting in discussed for use in practice.
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