Disclosure of a putative biosignature for respiratory chain
disorders through a metabolomics approach
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Abstract The diagnosis of respiratory chain deficiencies
(RCDs) is complicated and the need for a diagnostic bio-
marker or biosignature has been widely expressed. In this
study, the metabolic profile of a selected group of 29 RCD
patients, with a predominantly muscle disease phenotype, and
22 controls were investigated using targeted and untargeted
analyses of three sub-sections of the human metabolome,
including urinary organic acids and amino acids [measured by
gas chromatography—mass spectrometry (GC-MS)], as well
as acylcarnitines (measured by electrospray ionization tandem
MS). Although MS technologies are highly sensitive and
selective, they are restrictive by being applied only to sub-
sections of the metabolome; an untargeted nuclear magnetic
resonance (NMR) spectroscopy approach was therefore also
included. After data reduction and pre-treatment, a biosigna-
ture comprising six organic acids (lactic, succinic, 2-hydrox-
yglutaric, 3-hydroxyisobutyric, 3-hydroxyisovaleric and
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3-hydroxy-3-methylglutaric acids), six amino acids (alanine,
glycine, glutamic acid, serine, tyrosine and «-aminoadipic
acid) and creatine, was constructed from uni- and multivariate
statistical analyses and verified by cross-validation. The
results presented here provide the first proof-of-concept
that the metabolomics approach is capable of defining a bio-
signature for RCDs. We postulate that the composite of
organic acids &~ amino acids > creatine > betaine > carni-
tines represents the basic biosignature for RCDs. Validated
through a prospective study, this could offer an improved
ability to assign individual patients to a group with defined
RCD characteristics and improve case selection for biopsy
procedures, especially in infants and children.

Keywords Metabolomics - Respiratory chain disorders -
Urinary organic acids - Urinary amino acids -
Data reduction - Biosignature

1 Introduction

The identification of mitochondrial disorders (MDs) in
patients is still a major clinical and diagnostic challenge in
mitochondrial medicine, especially in view of the extensive
genetic, phenotypic and clinical heterogeneity of these
disorders (Koene and Smeitink 2011). Accordingly, a wide
range of medical specialists, including paediatricians, car-
diologists, gastroenterologists, neurologists and ophthal-
mologists, may first encounter these patients (Wong et al.
2010). As a consequence, various criteria have been
developed from clinical, genetic and biochemical points of
view to direct the diagnosis of the RCDs.

Skeletal muscle provides the key material for histolog-
ical and biochemical analysis of mitochondrial function
and RCD diagnosis. Given the invasive procedure of a



muscle biopsy under general or local anaesthesia in chil-
dren or adults, respectively, distinct clinical and bio-
chemical information is desirable as a directive for a
biopsy. Elevated transaminases and creatine phosphokinase
are generally accepted as non-specific enzymatic indicators
of MDs (Wong et al. 2010). Recently, Suomalainen et al.
(2011) proposed fibroblast growth factor (FGF-21) as a
biomarker for muscle-manifesting mitochondrial respira-
tory chain deficiencies, which needs to be confirmed by a
prospective study, including appropriate patient groups
(Turnbull 2011). An analysis of urinary metabolites
including lactate, alanine, other amino acids, Krebs cycle
intermediates and other organic acids provides the least
invasive indicators of RCDs, but still lacks specificity as
well as selectivity, as pointed out by Koene and Smeitink
(2011). By using metabolic profiling of data generated by
mass spectrometry (MS), plasma creatine was recently
proposed as a specific and sensitive indicator of RCDs
(Shaham et al. 2010). In this regard, it has been suggested
that “omics” approaches, such as metabolite profiling,
might expand the global view of metabolism due to RCD
pathology directly or indirectly (Suomalainen 2011), and
so support the more efficient identification of improved
biomarkers for RCDs. This concurs with the findings of a
metabolomics investigation which disclosed the presence
of 24 organic acid metabolites that were practically and
statistically highly significant for a well-defined group of
RCD patients (Reinecke et al. 2012).

A biomarker is defined as a feature that is objectively
measured and evaluated as an indicator of normal biolog-
ical processes, pathological conditions or pharmacological
responses to a therapeutic intervention (Atkinson et al. 2001).
A profile of combined biomarkers is called a biosignature.
Measuring single markers seems insufficient in dealing with
complex diseases, such as RCDs, as outlined above. It has
been argued that for complex infectious diseases, such as
tuberculosis, a combination of molecular profiles is likely to
have more value than single biomarkers (Jacobsen et al. 2008),
and that a global approach is the analytical route to reveal such
markers. Metabolic profiling using a global approach thus
proved valuable in the search for biomarkers of complex
conditions employing an experimental model for an infectious
condition (Wikoff et al. 2008) as well as for the inherited
RCDs (Shaham et al. 2010). We recently proposed that a
global approach might disclose a metabolite profile with the
potential to define an extended and characteristic biosignature
that can be used as a non-invasive screening instrument for
RCDs (Reinecke et al. 2012).

In the study reported here we have further investigated the
metabolite profile in RCDs by analysis of three sub-sections of
the human metabolome, included in the evaluation by the
Mitochondrial Medicine Society’s Committee on Disease as
different laboratory modalities that can contribute to the

establishment of RCDs (Haas et al. 2008. The three sub-sec-
tions are the organic acids and amino acids [measured by gas
chromatography—mass spectrometry (GC-MS)], and acyl-
carnitines [measured by electrospray ionization tandem mass
spectrometry (TMS)]. MS technologies are highly sensitive
and selective, but also restrictive by applying only to sub-
sections of the metabolome. We therefore also included
untargeted NMR spectroscopy in this investigation. Although
less sensitive than MS analysis, NMR spectroscopy proved to
be highly successful as a complementary technique in studies
of inherited metabolic diseases (Engelke et al. 2004).

2 Materials and methods
2.1 Reagents

Reagents and standards for the extraction of the organic acids
were purchased from Merck Chemical Co. (Darmstadt,
Germany) andethylacetate, diethylether and sodium sul-
phate and 3-phenylbutyric acid from Sigma-Aldrich (St.
Louis, MO, USA). All the reagents for the amino acid
analysis, including the standards (200 uM each), GC col-
umn (10 m x 0.25 mm ZB-AAA) and liner were provided
in the EZ:faast™ amino acid analysis sample testing kit by
Phenomenex, Inc., (Torrance, CA, USA). For the carnitine
analysis, acetonitrile, formic acid, and methanol were pur-
chased from Merck Chemical Co., Butanolic HCI (3 N) was
purchased from Sigma-Aldrich Co. The following standards
were obtained from Dr. HJ ten Brink, Free University Medical
Center (VUMC), Amsterdam, The Netherlands: r-carni-
tine-HCI, acetyl-L-carnitine-HCl, propionyl-L-carnitine-HCI,
isovaleryl-L-carnitine-HCl, octanoyl-L-carnitine-HCl, hexa-
decanoyl-L-camitine-HCl, [methyl-d;]-L-camitine-HCI, [ds]-
acetyl-L-camitine-HCl, [3,3,3-d;]-propionyl-L-camitine-HCI,
[do]-isovaleryl-L-camitine-HC], [8,8,8-ds]-octanoyl-L-carni-
tine-HCI, and [16,16,16-d;]-hexadecanoyl-L-carnitine-HCL.

2.2 Subjects and the selection of samples
for the metabolomics analysis

Ethical approval for the study was obtained from the rel-
evant Ethics Committees of the University of Pretoria (No.
91/98 and amendments) and North-West University (No.
02M02). Informed consent was obtained from the parents
of patients and controls for the use of the urine samples and
biopsy material (where applicable) of their children for
research purposes.

The original RCD experimental group consisted of 101
clinically selected patients, including the cohort of South
African patients described by Smuts et al. (2010). Urine
samples were obtained at the Paediatric Neurology Unit of
the Steve Biko Academic Hospital, Pretoria, South Africa,



at the time when the muscle biopsy was performed; the
patients did not receive any specific treatment or supple-
ments often given to patients with MDs. The use of
anti-convulsants, such as valproate, is known to cause
metabolic derangements and mitochondrial toxicity
(Sztajnkrycer 2002), which might lead to biased mito-
chondrial-related markers; its use was not stopped in the
patients, however, because of health risks and attendant
ethical consequences. The controls were selected from
among children referred to the clinic, but for whom no
prevailing disorder was detected. Aliquots of all samples
were stored at —80 °C prior to metabolomics analyses.
This cohort provided the basis for the selection of samples
from patients and controls for these analyses.

Metabolomic investigations are most successfully con-
ducted with control and patient groups which are clearly
distinguished from one another, because sample selection
is one of the most important aspects of any metabolomics
analysis. As mutational analyses of mtDNA and nDNA
were not part of the routine procedures used to diagnose the
present RCD patient group, other available clinical as well
as biochemical parameters were selected to ensure the clear
distinction between controls and patients, while retaining
the intrinsic heterogeneity of the selected RCD group.
Three inclusion criteria were thus formulated to define the
patient and control groups: (1) clinical criteria character-
istic of RCDs [including the intrinsic property of having a
predominantly myopathic phenotype as described in Smuts
et al. (2010)]; (2) a proven deficiency in one or more
complexes of the RC as measured by biochemical enzyme
analyses; and (3) elevated excretion of the total urinary
organic acids in the patient group, to the extent of there
being no overlap of these values for the controls and
patients. Although elevated urinary excretion of organic
acids is not a recognized principle for diagnosis of RCDs, it
was included to ensure separation between the groups used
in unsupervised multivariate analyses for the comparative
metabolomics (Reinecke et al. 2012). Samples from 51
cases (29 patients and 22 controls, designated as Group 1)
satisfied these criteria and were available for the MS
analyses of the organic acids, amino acids and acylcarni-
tines; sufficient urine from only 34 of these cases (20
patients and 14 controls, designated as Group 2), however,
was available for the NMR analyses. The characteristics of
Groups 1 and 2 are shown in Tables 1 and 2.

2.3 Biopsy material and enzyme analyses
from the patient group

Enzyme analyses were performed on muscle biopsies from
the vastuslateralis muscle of all patients complying with
the Mitochondrial Disease Criteria as defined by Wolf and
Smeitink 2002. The analyses were conducted according to

the procedures fully described previously; we also recog-
nized the two criteria used to identify an enzyme deficiency
in this patient group (Reinecke et al. 2012). As summarized
in Table 1, the 29 patients selected thus had a muscle
deficiency of either complex I (CI; five cases), complex III
(CIII; four cases) or several different deficiencies of more
than one RC enzyme (CM; 20 cases).

2.4 Acquisition of metabolite data

2.4.1 Untargeted metabolic analysis using nuclear
magnetic resonance spectroscopy

Proton nuclear magnetic resonance ("H-NMR) spectros-
copy was included in this investigation for its high selec-
tivity, provision of unambiguous information about a
metabolite and the direct analysis of samples that did not
require any prior sub-fractionation for metabolite selection.
This work was conducted at the Laboratory for Genetic,
Endocrine and Metabolic Diseases, Department of Labo-
ratory Medicine, Radboud University Nijmegen Medical
Centre according to standard procedures used there (Eng-
elke et al. 2007). Urine samples from 34 cases of Group 2
were used in the 'H-NMR study. These urine samples were
analysed using one-dimensional (1D) "H-NMR spectros-
copy. One millilitre of urine was centrifuged at 3,000 rpm
for 10 min and 700 pL supernatant was transferred into a
clean test tube. To this, 70 pL. of 20.2 mM standard tri-
methylsilyl-2,2,3,3-tetradeuteropropionic acid sodium salt
(TSP) in 'H,O was added, the pH adjusted to 2.5 £ 0.05
with concentrated HCI, and 650 pL. was transferred to a
5-mm NMR tube. Each sample was analysed in a 500 MHz
Bruker DRX spectrometer at 256 scans with a pulse of 7 us
and a delay of 4 s. The resulting free induction decay (FID)
was converted into frequency domain by Fourier transfor-
mation, thereby vyielding a 'H-NMR spectrum. The
instrument was equipped with a sample changer and each
urine sample’s "H-NMR spectrum was analysed individu-
ally. The dominant metabolites typically present in urine
were detected in all samples. Six notable metabolites
were identified based upon their chemical shift resonances
at pH 2.5, namely, alanine [1.51 ppm (doublet)], betaine
[3.26 ppm (singlet)], creatinine [3.13 ppm (singlet)], cre-
atine [3.05 ppm (singlet)], lactic acid [1.41 ppm (doublet)]
and succinic acid [2.66 ppm (singlet)]. Each of the above
peaks was manually selected and the area under the peak
was calculated using a software program (BrukerAmix).
Each selected metabolite was quantified relative to creati-
nine, using the integral and the number of protons with
respect to each peak. Interference from medication made
the selection, and thus the quantification, of certain
metabolites (particularly alanine) impossible for some
urine samples. The creatine and betaine values obtained for
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Nd

Nd

0.12
0.01
0.15

Data 6
Creatine
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mol Cr)
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Nd
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0.21
0.02

Data 5
0C344/
342
11.29
0.33
0.67
0.16
0.18

Data 4
DC372/
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1.25
0.14
10.22
0.12
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1.25
841
5.94
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mol Cr)
9.

Data 3
Carnitine
{mmol/

30.93

Data 2
Acetyl-
Car
(mmol/
mol Cr)
6.39
31.15
3.29
12.30
10.01

Total
{(mmol/
mol Cr)
1,054
1,739
4,222
980
3,186

AA

Criterion 3 Data 1

Total OA

{(mmol/
mol Cr)

746
2,297

1,762
580

1,416

11, 65, 76, 39

CI, CIII, CII + III, CIV:
CII + III: 86

Criterion 2

RC enzyme

defect: Percentage

of the lowest

control value

CI, CIII, CIV: 28, 38, 54
CI, CIII, CIV: 72,70, 65
CIII, CIV: 65, 93

Criterion 1
L/P

16.25
24.00
16.40
18.50
11.20

Criterion 1
Pyruvate
{(mmol/l)
0.08
0.15
0.14

20
0.17

0.

Criterion 1
Lactate
(mmol/l)
1.30

3.60

2.30

3.70

1.90

Criterion 1
score?
5

8
8

ye, G,
ye, Skin,

BE, DD, DR

DD, DYS
P87_1_A M, CNS, E

Criterion 1
Clinical
profile’
ENT, DD
P83.1_A M, CNS, End, G,
P86_1_A M, CNS, G, End,
DD, DR

P82.1_A M, CNS, E

! Clinical profile includes M muscle involvement, CNS central nervous system involvement, Eye vision involvement, DD developmental delay, DR developmental regression, Dys dysmorphism (minor and major), BE

behaviour and emotional abnormalities, ENT sensori-neural deafness, PNS peripheral neuropathy, G gastro-intestinal tract involvement, R renal involvement, Car cardiac involvement, End endocrine abnormalities, AID

auto-immune disorder, L liver involvement, S skeletal involvement

2 MDC score: Mitochondrial Disease Score (Wolf and Smeitink 2002). AA amino acids, AcCar acylcarnitines, CI-IV complexes I-IV, CAR carnitines, Crea creatine, Cr creatinine, L/P lactate:pyruvate ratio, nd not done,

OA organic acids, RC respiratory chain, SD standard deviation, nd: not determined

Table 1 continued
P78.1_A M, CNS, L, S, DD

Number

Patients

14 controls and 20 patients are included in Table 2, where
applicable.

2.4.2 Analyses of organic acids using gas
chromatography—mass spectrometry

The organic acids were isolated from the urine, derivatized
and separated by gas chromatography according to a pro-
cedure described previously (Reinecke et al. 2012). The
volume of urine used for organic acid analysis was based
on urinary creatinine values, transferred to salinized glass
tubes (Kimax) and the internal standard (3-phenylbutyric
acid) was added to a final concentration of 180 mmol/mol
creatinine. The samples were acidified with 5 N HCl to a
pH less than 2, followed by the addition of 6 ml of ethyl
acetate to each sample which was then shaken on a rotary
wheel for 20 min. After centrifugation of each mixture for
2 min at 1,300xg, the upper ethyl acetate phase was
transferred to a clean glass tube; 3 ml of diethylether was
added to the water phase, shaken for a further 10 min and
centrifuged at 1,300x g for 10 min. The upper phase was
removed and added to the ethylacetate. A small amount of
sodium sulphate (BDH) was added to the ethylacetate/
diethylether mixture to remove any residual water. After a
subsequent centrifugation step, the organic phase was
transferred to a clean glass tube. The organic solvents were
evaporated to dryness under nitrogen at 37 °C.

O-bis(trimethylsilyl)trifluoroacetamide (BSTFA):tri-
methylchlorosilane (TMCS):piridine (5:1:1, and volume
added based on the creatinine values) was used for deriva-
tization. The volume of urine used gave a creatinine con-
centration equivalent to 21 pmol/ml derivatization reagent.
The samples were derivatized at 85 °C for 45 min in a sand
bath. The derivatized mixture was transferred toa 1.5 ml vial
for GC-MS analysis. The Agilent GC-MS system used in
this study consisted of a model 7890A gas chromatograph, a
model 5975C mass selective detector, an HP 5970C MS and
Agilent Chemstation (Revision E.02.00), and the GC-MS
analysis was done as previously described (Reinecke et al.
2012). Peak identification and feature annotation was done
by using AMDIS software (Version 2.66) linked to NIST
Mass Spectral Search Program for the NIST/EPA/NIH Mass
Spectral Library (Version 2.0F, built Oct 8, 2008). The semi-
quantitative identification of the organic acids was con-
ducted according to Chen et al. (2009). All organic acids
identified above the detection limit of the equipment used
were expressed as mmol per mol creatinine.

2.4.3 Analyses of amino acids using gas chromatography—
mass spectrometry

GC-MS analysis of the amino acids was conducted on an
Agilent Technologies (Chemetrix, Midrand, South Africa)



Table 2 Summary of the urinary parameters for the respective controls (22/12) and patients (29/22)

Organic acids Amino acids Acylcarnitines  Carnitines DC372/ 0OC344/ Creatine Betaine
(mmol/mol Cr) (mmol/mol Cr) (mmol/mol Cr) (mmol/mol Cr) 370 342 (mmol/mol Cr) (mmol/mol Cr)
Patients
Minimum 579 694 1.80 0.5 0.06 0.07 0.02 0.01
Mean 1,366 2,479 9.83 24.2 0.62 1.33 1.08 0.15
Maximum 3,217 9,719 31.15 74.9 10.22 12.51 33 1.44
SD 724 2,006 7.73 224 1.86 3.02 1.01 0.31
Controls
Minimum 164 246 0.59 0.26 0.05 0.08 0.02 0.01
Mean 348 494 3.96 6.5 0.19 0.26 0.12 0.02
Maximum 565 882 20.54 10.6 041 0.72 0.5 0.03
SD 123 164 4.05 5.8 0.09 0.17 0.15 0.01
P value >0.0001 >0.0001 >0.001 >0.001 0.232 0.070  >0.0001 0.047

SD standard deviation, DC372/370 decanoyl-carnitine:decenoyl-carnitine, OC344/342 octanoyl-carnitine:octenoyl-carnitine

6890 series GC system with an Agilent Technologies 5973
Mass Selective Detector and a 7683 series dual tower and
autosampler, all controlled by the MSD ChemStation
E.02.00 (Palo Alto, CA, USA). The amino acid standards
and urine were prepared as prescribed by the suppliers of
the EZ:faast™ amino acid analysis sample testing kit. One
hundred microlitres of internal standard (norvaline at
200 pM) and amino acid standards (10, 25, 50, and 100 pL
of each standard at 200 pM) or 100 pL urine were com-
bined in a glass vial and further procedures were conducted
according to the method supplied with the testing kit. Two
microlitres of the extracts prepared according to the pre-
scribed method was injected into the GC-MS for analysis
and also analysed according to the prescribed method. The
standard range analysis was used to calibrate the identifi-
cation and quantification of the amino acids, using the
MSD ChemStation E.02.00 software with a linear regres-
sion curve fit.

2.5 Analyses of carnitines using tandem mass
spectrometry

The electrospray ionization TMS method was used to quantify
urinary acylcarnitines. Ten puL. of urine was added to a 1.5-ml
centrifuge tube before 400 pL of the deuterated acylcarnitines
(internal standard solution) with the following concentra-
tions was added: [methyl-d;]-L-camnitine-HCl (3045 pM),
[ds]acetyl-L-camitine-HCl (20.83 uM), [3,3,3-d;]propionyl-
r-carnitine-HCl (19.69 uM), [dolisovaleryl-L-carnitine-HCI
(17.73 uM), [8,8,8-d;]octanoyl-L-carnitine-HCl (1543 puM)
and [16,16,16-d;]hexadecanoyl-L-carnitine-HCI-(11.47 pM).
After the samples were evaporated to dryness under a gentle
stream of nitrogen (55 °C), the remaining procedures were
followed as described by Mels et al. (2011). Acylcarnitines

were quantified by comparing the signal intensities of carni-
tine and acylcamitines against those of the corresponding
deuterated analogues. The concentrations of carnitine and
acylcarnitines analysed were expressed as mmol per mol
creatinine.

2.6 Statistical analysis

Variables with no variation (e.g. the internal standards) were
removed from the original data sets for the organic acids,
amino acids and carnitines and each of these data sets was
initially analysed separately to identify their role as potential
biomarkers. In addition, a data filter, based on the approach
of Bijlsma et al. (2006), was applied to each variable to
eliminate those that contained more than 40 % zero values
(“60 % rule”) for the control and patient groups. Standard
univariate analyses, including ¢ tests and the Mann—Whitney
U test, were applied to all the remaining variables after
application of the 60 % rule to assess the statistical signifi-
cance of those variables that would eventually be considered
as components of a putative biosignature. The subsequent
data pre-treatment, in the first instance, consisted of zero
replacement, where the zero values represented the detection
limit of the analytical equipment. The zeros were replaced by
a random sample of values from a Beta (0.1;1) distribution
bounded between zero and the detection limit. Thereafter, a
shifted logarithmic transformation with a shift parameter set
at one was performed, ensuring that the scales of the various
metabolite concentrations were more comparable, after
which the transformed data were centred prior to further
statistical analyses.

The effect size of each individual variable was measured
to ascertain the importance of the single variables (Ellis
and Steyn 2003). An effect size of d> 0.5 can be



considered as being of medium practical importance,
whereas an effect size of d > 0.8 can be considered as
highly practically significant. Descriptive statistics, such as
minimum and maximum values, means and standard
deviations, were included as applicable.

Multivariate analyses used for the identification of
important variables were principal component analysis
(PCA), as an unsupervised pattern recognition method
(Johnson and Wichern 1998), and a partial least squares
discriminant analysis (PLS-DA) as a supervised method
(Barker and Rayens 2003). Variables listed by the PCA
with a modelling power greater than 0.5 were regarded as
potential biomarkers (Brereton 2003); and for variables
important in projection (VIPs) from PLS-DA, the ‘greater
than one rule’ was used as the criterion for variable
selection (Chong and Jun 2005). The primary criterion for
selection of important metabolites was that identified by
PLS-DA, based on a VIP > 1.0 for each variable in the
three data sets. The specificity and sensitivity estimates of
the outcomes of the PLS-DA approach were evaluated by
cross-validation as described below. Fit statistics of the
PCA and PLS-DA models were reported as the percentage
variance explained for the metabolites (R*X), the percent-
age variance for the group membership of the patients and
controls (RZY), and the predictive R?Y values (Qz).

A putative biosignature was derived from a consolidated
data set, consisting of the important metabolites identified
by the PLS-DA of the three MS-based analyses and the two
important variables from the "H-NMR analysis. Because
the scales of these four data sets were quite different, we
compared various approaches of scaling for normalization,
from which we selected the scale function provided in the
R-statistical program, expressed as Z = log[X/\/ {l/(n — 1)
ZXZ}]. The scaled variables were then further transformed
by using a shifted logarithmic transformation (¥ = log
[Z + 1]). The transformed data were subsequently centred
prior to PLS-DA analysis, and the important variables
identified and validated as described below.

A generic description of the cross-validation, which was
constructed on the outcomes of the applicable PLS-DA
models, includes the following aspects. A data set was con-
structed which included only the important metabolites that
were identified. Next, a PLS-DA model was built for this data
set and an appropriate cut-off point was determined by cal-
culating the Youdin index (Fluss et al. 2005). Then, we let
Pcon and Ppat be the observed occurrence probabilities of
a control and a patient, respectively, and let « be the fraction
of cases to be removed in the cross-validation. Next, 10,000
unique stratified samples of size n-y = [«-n], withn = total
number of controls and patients, were selected from the data,
stratified according to the observed occurrence probabilities,
thatis, ney = ne + np, where ne and np are the sample sizes
from the controls and patients, respectively. For each of the

10,000 samples, the ney cases were withheld, a PLS-DA
model was built using the remaining cases and the group
membership of the withheld cases was predicted. For this, the
sensitivity and specificity as well as the percentage of mis-
classified cases were recorded. Lastly, the standard deviation
and the average of the recorded information were calculated
over the 10,000 samples and reported as cross-validated
estimates of sensitivity, specificity and percentage of mis-
classifications, as well as the respective values for o and the
cut-point.

3 Results and discussion
3.1 Profile of the control and patient groups

Table 1 summarizes the inclusion criteria and selected
metabolomics data of the 29 RCD patients investigated.
With regard to criterion 1 (5 aspects), assessmentswere based
on a detailed history and clinical examination of all patients
(Smuts et al. 2010), indicating that an intrinsic property of the
selected patients was their predominant myopathic pheno-
type. Original baseline investigations included lactate (L),
pyruvate (P), creatine kinase (CK), and ammonia (NH3)
determinations. Lactic acidosis was present in five (17 %)
and araised pyruvate and lactate:pyruvate ratio (>18) in nine
(31 %) cases of the selected group. All patients had a defi-
ciency in one or more complexes of the RC (criterion 2),
established by enzyme assays of biopsy material; and no
patients with a deficiency in the pyruvate dehydrogenase
complex (PDH) were included in the group. The total
excretion of organic acids (criterion 3) of the patients was
statistically significantly increased relative to the controls
[mean value of the 22 controls was 348.9 (SD = 123.5) and
1336.6 (SD = 724.5) mmol per mol creatine for the 29
patients with P < 0.0001 for the ¢ as well as the Mann—
Whitney U tests]. No patients (minimum = 579 mmol/mol
creatinine) or controls (maximum = 565 mmol/mol creati-
nine) were included in the group with an overlap in the total
organic acid content, as shown in Table 2. With regard to the
7 sets of metabolomics data shown, statistically significant
differences between the patients and controls were also
found for the total amino acid excretion (P < 0.0001), total
acylcarnitines (P < 0.001), free carnitine (P < 0.001), cre-
atine (P < 0.0001) and betaine (P < 0.047). Although the
mean values for the ratios of octanoyl-carnitine:octenoyl-
carnitine and decanoyl-carnitine:decenoyl-carnitine were,
respectively three times and five times higher than the con-
trols, these differences were not statistically significant (the
P values from the robust Mann Whiney U test were 0.424 and
0.246 for these two ratios, respectively), which coincides
with the view that high values for the ratio of certain
acylcarnitine esters may in certain cases be useful in



supporting specific diagnosis (Haas et al. 2008). It has also
been suggested that the severity of symptoms observed in
mitochondrial fatty acid f-oxidation defects may correlate
with the concentrations of accumulating acyl carnitines, with
possible application in newborn screening programmes
(Giak-Sim et al. 2002). We therefore, finally, made a cluster
and conducted other univariate analyses to investigate a
possible correlation between some distinct clinical and other
phenotypes of the patient group and the metabolite profiles
described above. Comparison between phenotypes and
metabolite profiles did not reveal any meaningful relation-
ships. A way of improving genotype, phenotype and
metabolite interrelationships might be to classify phenotypes
in greater depth by also including transcriptional information
as reported for genetic networks in liver metabolism (Ferrara
et al. 2008).

A distinct difference between the biochemical profile of
the patients and the controls, as shown in Table 2, is an
important point of departure for metabolomics investiga-
tions. This was substantiated by a PCA conducted on the 29
patients and 22 controls for all the original 291 variables
measured in the organic acid, amino acid and acylcarnitine
(including free carnitine) analysis (Fig. 1). The outcome of
the PCA, shown as a two-dimensional (PC1 and PC2) score
plot for all the cases, indicates that the patient group was
distinguished from the controls. This reveals that the
metabolic profiles of the two groups were distinctly dif-
ferent due to the perturbation induced by the respective CI,
CIII or CM deficiencies. Moreover, the heterogeneity,
which is characteristic of RCDs, was retained in the patient
group, as shown by the spread of these cases in the PCA.
These observations already had the potential to identify
biomarkers that could distinguish RCDs, but required data
reduction for this identification.

3.2 Identification of important metabolites

The work-flow followed to identify important metabolites
is shown schematically in Fig. 2. NMR-based metabolic
profiling enables the simultaneous examination of a com-
plex mixture of metabolites in a biological sample and
requires only a limited knowledge of sample composition
prior to analysis. NMR metabolomics may thus be regarded
as an untargeted mode of analysis. By contrast, MS-based
analyses are mostly semi-targeted as they distinguish a
specific sub-section of the metabolome, extracted from a
biofluid by an appropriate analytical procedure. Thus, as
shown in Fig. 2, we included both these analytical
approaches in our metabolomics investigation to optimize
the detection of possible biomarkers for RCDs.

As indicated, urine samples from only 20 patients and
14 controls, which included information on the urinary

organic acids, amino acids and acylcarnitines, were avail-
able for the 'H-NMR analysis. Although these cases were
fewer than the 51 cases of the total group, the clinical
profile of the 34 cases strongly resembled that of the group
of 51 patients. Alanine, lactic acid, succinic acid, creatine
and betaine were found to be the important variables that
distinguished the patient and control groups. As the first
three of these are included in the MS-based analysis, only
the values obtained for creatine and betaine were consid-
ered for the final consolidation of all important variables
identified by the different analytical approaches.

Identification of important metabolites from GC-MS
and TMS data required preprocessing to generate a data
matrix of variables and cases of an operational size, to be
followed by multivariate analyses to identify only the rel-
evant analytical information. The total number of features
in the original data set of the 51 cases, generated by an
untargeted analysis in each of the three metabolite groups,
yielded 291 substances that could be annotated as metab-
olites, namely, 189 organic acids, 51 amino acids, 50
acylcarnitines and free carnitine. Using the data filter, these
compounds were reduced to 120 metabolites: 39 organic
acids, 36 amino acids, 44 acylcarnitines and free carnitine.
With regard to the long-chain acylcarnitines, it should be
noted that they are strongly protein-bound in the plasma
and thus escape excretion into the urine, as do the free fatty
acids. Their presence in the urine in appreciable amounts
may thus be due to renal malfunctioning or damage
resulting in proteinuria and the relatively elevated amino
acid excretion found in the RCD patients.

The subsequent data pretreatment first included zero
replacement and logarithmic scaling. Mean values, as well
as the standard deviation of all variables for the controls
and patients, were determined on the unscaled data, fol-
lowed by t-test and Mann—Whitney analyses. The two
traditional methods of multivariate analysis chosen (PCA
and PLS-DA) proved to be valuable for selection of vari-
ables and were subsequently applied to all three data sets,
followed by effect size analyses. All variables with a
VIP > 1.0 and/or a power value >0.5 and an effect size
>0.8 were designated as important metabolites due to the
RCDs in the patient group. A total of 26 metabolites was
identified by this selection method, and included 11 organic
acids (adipic, fumaric, homovanillic, lactic, suberic, suc-
cinic, vanilmandelic, 2-hydroxyglutaric, 3-hydroxyisobu-
tyric, 3-hydroxyisovaleric, and 3-hydroxy-3-methylglutaric
acids), 13 amino acids (alanine, asparagine, aspartic acid,
glutamic acid, glutamine, glycine, lysine, proline, serine,
threonine, tyrosine, ¢-amino adipic acid and pf-alanine),
acetyl camitine and free carnitine. Thus, from the "H-NMR-
based and the MS-based analyses a total of 2 + 26 = 28
metabolites were identified as important indicators of RCDs,
from which a final list of biomarkers was selected and
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Fig. 1 Two-dimensional principal component analysis of the controls
(indicated by a C and the case number) and patients (indicated by a
P and the case number). This analysis was based on all 291 variables
present before data reduction. The circles were drawn to indicate a
50 % probability level and the averages of the group scores are
indicated by the solid dots. Owing to the density of the data references
of the controls, the corresponding dot and most of the circle are
obscured (see grouping in left-hand side of figure). Principal
component 1 explained 35.7 % of the total variance whereas principal
component 2 explained 10.58 % of the variance

validated according to the cross-validation procedure
described in the statistical methods section.

The outcome of the cross-validation for the two exper-
imental groups (51 or 34 cases, respectively) is shown in
Table 3. The cut-off points for the metabolite groups were
determined for each group separately; the differences relate
to the numerical characteristics of the data sets for these
variables. The sensitivity refers to the percentage of
patients in the experimental group who were correctly
classified as such by using the important metabolites
identified from the organic acids (11), amino acids (13),
carnitine (2) and creatine plus betaine, respectively. The
specificity relates to the ability of the selected metabolites
to identify the controls. The percentage misclassification
includes the results obtained for the patients and controls
taken together. The value of 100 obtained for the selec-
tivity and the specificity for the organic acids clearly
relates to the selection of the control and patient groups on
the basis of a complete separation of the total urinary
organic acids excreted by the groups (criterion 3). From the
misclassification outcome it is clear that the ranking of
importance of the metabolite groups is organic acid-
s &~ amino acids > creatine and betaine > carnitines, with
the respective percentage of misclassifications being 0,
3.08, 16.58 and 26.64 %, respectively. A comparable
ranking was obtained for the outcome of the sensitivity and
specificity measures. The final conclusion from these cross-
validations is that all 26 important metabolites from

the three MS-based analyses should be included in a con-
solidated matrix, with the two metabolites identified by 'H-
NMR analysis. From this matrix a biosignature for the
group of RCD patients could then be constructed.

3.3 Identification of a biosignature for the RCD patient
group

First, the consolidated data set of 28 metabolites was
formed, followed by data pretreatment as described above.
Subsequently, a PLS-DA model was constructed for this
data set to identify the metabolites that could qualify for a
biosignature for the group of RCD patients. Sixteen
metabolites with a VIP > 1.0 were identified as possible
components of a biosignature, of which 13 are eventually
summarized in Table 4, following exclusion of three of the
original 16 as indicated below.

The RC is essentially involved in cellular reduction/
oxidation (redox) status and energy (ATP) production;
deficiencies in any component of this supramolecular
complex inevitably affect a wide array of metabolic and
other processes (Reinecke et al. 2009; Elstner and Turnbull
2011). Eight of the organic acids could accordingly directly
be related to a consequence of RCDs and were included in
the biosignature. Vanilmandelic acid (VMA) and homo-
vanillic acid (HVA) were excluded from the biosignatur-
ebecause of their properties as indicators of neurological
stress conditions (Frankenhaeuser et al. 1986; Rauste-von
Wright and Frankenhaeuser 1989), rather than being spe-
cifically related to RCDs. Betaine, the final component,
was not included into the biosignature, because of a
P value (P = 0.047) on the borderline between significant
and not significant. Thus, 13 components can be related to
RCDs, and are shown in Table 4 as part of the putative
biosignature for RCD.

An important consequence of RCDs is a relative
increase in levels of NADH (NADH/NAD™ ratio) and
FADH,, as well as decreased ATP production, which may
result from a defect at any site within the RC and lead to
the well-established elevations in lactic acid and the
lactate/pyruvate ratio. Increased succinic acid, 3-hydroxy-
isobutyric acid, 3-hydroxyisovaleric acid, 3-hydroxy-
3-methylglutaric acid and 2-hydroxyglutaric acid were all
reported in a metabolomics investigation on global changes
in organic acid metabolism (Reinecke et al. 2012).

Amino acids and solutes such as bicarbonate, phosphate
and glucose are transported across the apical membrane of
the proximal renal tubular cells. This transport is driven by
the sodium gradient, which is established by the basolateral
ATP-dependent sodium pump. A disruption of the ATP
supply in the kidney is therefore likely to occur in a mul-
tisystem disease, such as RCD (Martin-Hernandez et al.
2005), or might even occur owing to a single enzyme
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Fig. 2 Metabolomics work-flow and cross-validation of metabolite groups and the biosignature

defect, asin methylmalonyl-CoA mutase (EC 5.4.99.2)  profile seen in these metabolic diseases. A related pertur-
deficiency (Morath et al. 2008). Disrupted ATP supply  bation might exist in the present patient group, reflected by
leads to renal dysfunction as part of the pathophysiological ~ the presence of carnitine as well as the increased



Table 3 Cross-validation of individual metabolite groups and of the biosignature

Number of cases Metabolite class (number) Cut-off Sensitivity Specificity % Mis-classification
(validation size) points mean (SD) mean (SD) (SD)
Cross-validation of individual groups of metabolites

51 Organic acids (11) 0.11 100 (0) 100 (0) 0O
(ne="17np=9)

51 Amino acids (13) 0.17 96.19 (6.67) 97.83 (5.67) 3.09 (4.02)
(ne="17np=9)

51 Carnitines (2) 0.06 73.78 (14.19) 72.79 (16.30) 26.64 (9.25)
(nc="7np=9)

34 Creatine and betaine —0.01 72.95 (16.11) 97.39 (6.26) 16.58 (9.01)
(nc = 6, np = 8)
Cross-validation of the biosignature

34 Organic acids (6), amino 0.23 98.12 (4.88) 97.96 (6.40) 1.95 (3.67)

(e = 6, np = 8) acids (6) and creatine

nc and np are respectively the sample sizes from the controls and patients used for validation

aminoaciduria, which resembles a Fanconi-Bickel excre-
tion pattern of these metabolites (Odiévre et al. 2002).
However, some amino acids may also increase as a
response to other primary and secondary abnormalities due
to RCDs. These amino acids include alanine, which fol-
lows from an increase in pyruvate and its consequent
transamination, as well as glutamic acid that results from
elevated amino acid catabolism (indicating also the possi-
ble hyperammonemia in RCD disorders) and tyrosine due
to underlying liver damage (Levine and Conn 1967).
Among the amino acids, a-aminoadipic acid has not been
described for RCDs before, and clearly reflects a deficiency
in lysine catabolism due to high FADH concentrations.

Table 4 The proposed biosignature

We did not compare biomarkers that discriminate
between mitochondrial and other myopathies. Urinary
glycine (P < 0.001), creatine (P < 0.0001) and betaine
(P = 0.047) were significantly elevated in our patient
group relative to controls, and were reported also to be
significantly increased [in the case of glycine (P < 0.01),
creatine (P < 0.001) and betaine (P = 0.001)] in juvenile
idiopathic inflammatory myopathy patients relative to
control subjects (Chung et al. 2005). Elevated creatine in
plasma was recently described for RCDs, by using the
phosphocreatine shuttle, as a consequence of tissues in a
low energy state (Shaham et al. 2010). Furthermore, sev-
eral of the metabolites that can be attributed to increased

Metabolite VIP ES C[mean] SD P[mean] SD P/IC t Value P value
Lactic acid 1.15 2.2 32 2.7 65.1 95.2 20 +3.51 <0.001
Succinic acid 1.29 2.1 6.0 5.9 97.5 108.6 16 +4.53 <0.001
2-OH-glutaric acid 1.26 2.6 1.5 1.3 15.3 13.1 10 +5.65 <0.001
3-OH-isobutyric acid 1.39 2.3 2.8 29 26.8 17.5 10 +7.27 <0.001
3-OH-valeric acid 1.35 2.5 3.7 2.8 42.1 51.1 11 +4.03 <0.001
3-OH-3-me-glutaric acid 1.18 1.8 14 24 17.8 17.4 13 +5.02 <0.001
Alanine 1.05 1.9 229 11.3 196.9 213.4 9 +4.38 <0.001
Glycine 1.06 1.9 93.6 45.6 638.8 622.1 7 +4.70 <0.001
Glutamic acid 1.01 1.8 4.7 1.9 38.7 39 8 +4.69 <0.001
Serine 1.00 2 35.9 11 216 188.1 6 +5.14 <0.001
Tyrosine 1.04 2 14.5 5.6 64.8 45.6 4 +5.89 <0.001
o-aminoadipic 1.04 1.7 2.5 1.5 34.6 427 14 +4.04 <0.001
Creatine 1.11 0.94 0.12 0.15 1.08 1.02 9 +4.11 <0.001

P/C designates P[mean]/C[mean], that is, the mean values per metabolite for the patients and controls, respectively; ES effect sizes. VIP variables
important in projection, derived from the partial least-square discriminant analyses. The P values of the ¢ test are shown in the table; all P values
of the Mann—Whitney analyses for the metabolites of the biosignature were below 0.0001 and are not included in the table



catabolism of fatty acids and amino acids share a bioen-
ergetics-sensing (hormone-modulated) induction pathway
with FGF-21, which is also associated with a muscle dis-
ease phenotype response (Suomalainen et al. 2011).

From the metabolomics and statistical analyses, as well
as from the biochemical considerations discussed here, the
proposed biosignature for our experimental group consisted
of 6 organic acids, 6 amino acids and creatine, as shown in
Table 4.

3.4 Specifications for a biosignature

It has been proposed that the specification for a single
metabolite (a biomarker), or a combination of metabolites
(a biosignature), is the requirement to assign an individual
patient to a unique group with defined characteristics
(Jacobsen et al. 2008). The evaluation of a biosignature
thus requires the use of a data set to validate the capacity of
a putative biosignature to classify individual samples cor-
rectly. The data set from which a biosignatureis defined
may also be used for the validation, but an independent
data set should preferably be used for this purpose. For an
inherited metabolic disease, the latter can be generated
only over a period of time or by the creation of a data set
through information gathered from participants at several
medical centres, as was recently reported for FGF-21 as a
potential biomarker for an RCD (Suomalainen et al. 2011).
In our investigation the original data sets had to be used to
validate the RCD biosignature, as an independent data set
was not available for this purpose.

The cross-validation procedure described in the statistical
section was used for the validation of the biosignature, and
the outcome is summarized in Table 3. This validation was
conducted for the data set consisting of the 13 metabolites
(Table 4) and the 20 patients and 14 controls used in the
"H-NMR analysis. The cut-off point for the cross-validation
of the biosignature shown in Table 3 was determined for the
consolidated set of variables. The cross-validation of the
biosignature indicates its advantage as an indicator of an
RCD compared with the use of a limited number of metab-
olite markers. Using the biosignature for the larger group of
patients, a separation between the controls and patients with
a CI, CIII or CM-deficiency could be obtained by unsuper-
vised PCA as well as comparison of supervised PLS-DA.
Thus, the results presented here give proof-of-concept that
metabolomics investigations can include inherited metabolic
diseases in their field of investigation.

3.5 From metabolomics to the clinic
According to Mancuso et al. (2009), the requirements for

an ideal biomarker for a metabolic disorder such as an
RCD are that it should improve the timing and accuracy of

diagnosis, minimize the invasive procedure needed for the
final diagnosis, and be useful to monitor disease progres-
sion and efficacy of treatment. They concluded, however,
“that to date, no one can bet on this, but we are all looking
forward to find it”. The translation of research findings into
clinical practice is not straightforward (Hu, 2011) but the
criteria to be satisfied for a biomarker or biosignature of an
inherited metabolic disease to become a practical and
useful instrument in a clinical setting are clear, although
complex (Tumbull 2011). For RCDs, the inductive
approach (Kell 2004) to define a biosignature for the
present experimental group, and its successful validation
through the method of cross-validation opens up the pos-
sibility of formulating a hypothesis for the further devel-
opment of a biosignature for RCDs. We postulate that
the composite of organic acids &~ amino acids > crea-
tine > betaine > carnitines represents the basic biosigna-
ture for RCDs. The experimental approach to test the
hypothesis and define the suite of organic and amino acids
of a validated and consistent/specific biosignature could be
the subject of a future study that includes a cohort of more
cases than those used in the present study, as well as
additional controls of related but different mitochondrial
disorders. The development of a sensitive and specific
biosignature may well prove to be an essential step in
selecting patients for more invasive and complex diag-
nostic procedures, and the availability of such a biosigna-
ture could influence or even eventually change clinical
practice with regard to RCD diagnosis and monitoring of
treatment.
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