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Abstract
Rado constructed a (simple) denumerable graph R with the positive integers as vertex set
with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in
the m’th position of its binary expansion. It is well known that R is a universal graph in the
set Ic of all countable graphs (since every graph in Ic is isomorphic to an induced subgraph
of R).

In this paper we construct graphs which are universal in or for P for different induced-
hereditary properties P of countable graphs. Constructions of universal graphs for the graph
properties containing all graphs with colouring-number at most k+1 and k-degenerate graphs
are obtained by restricting the edges of R. Results on the properties of these graphs are given
and relationships between them are explored. This is followed by a general recursive con-
struction which proves the existence of a countable universal graph for any induced-hereditary
property of countable general graphs. A general construction of universal graphs for products
of properties of graphs is also presented. The paper is concluded by a comparison between
the two types of constructions of universal graphs.
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1 Introduction

For general graph theoretic notions, the notation and terminology of [8] will be used. In partic-
ular, for any two graphs G and H = (V ′, E′), we say that G is a subgraph of H, denoted by
G ⊆ H, if there is a subset V ⊆ V ′ and a subset E ⊆ E′ such that (V,E) is a graph which is
isomorphic to G; G is an induced subgraph of H, denoted by G ≤ H, if G is isomorphic to such
a graph (V,E) of which E contains all the edges xy ∈ E′ for which x, y ∈ V . We shall also write
G ⊂ H (G < H) to denote the fact that G is a subgraph (an induced subgraph respectively) of
H which is not isomorphic to H.

There is (up to isomorphism) clearly only one subgraph induced by a given subset W of the
vertex set V of a graph G = (V,E); this subgraph is denoted by G[W ] and called the subgraph

∗Present address: Department of Mathematics and Applied Mathematics, University of Pretoria;
izak.broere@up.ac.za

1



of G generated (or spanned) by W .
All graphs considered here are countable graphs; we assume the vertex set of a denumerable

graph to be N = {1, 2, . . .} unless stated otherwise. The nature of the vertices, being positive
integers, will play a crucial role in the constructions of the graphs to be considered in Sections
2.2 and 2.3.

For notions related to hereditary graph properties the notation and terminology of [2] will
be used. For ease of reference we formulate some of the basic definitions in this paper too. A
(graph) property is an isomorphism-closed subclass of the class of all graphs. Since we have,
in a graph property, no reason to distinguish between isomorphic copies of a graph, we consider
the class of all (simple) graphs to be a set and we use the notation Ic to denote this set of
(countable) graphs. Two (disjoint) subsets of any property P of countable graphs (P = Pc) are
also important for us and we introduce notation for them too: Pf will denote the set of finite
graphs in P and Pd will denote the set of denumerable graphs in P. In this paper we will often
have occasion to deal with two graphs that are isomorphic and, if they are, we shall refer to any
one of them as a clone of the other.

The symbol E will denote the empty property, i.e., the subset of Ic containing no graphs.
The properties Ic and E are called trivial (properties).

A component of a graph is a ≤-maximal connected induced subgraph of that graph. A
property P is called additive if for each graph G all of whose components are in P we have that
G ∈ P too. This is equivalent to saying that P is closed under taking disjoint unions of graphs.
Suppose � is a partial order on the set Ic. A property P is said to be �-hereditary if, whenever
G ∈ P and H � G, then H ∈ P too. In particular, a property P is induced-hereditary if it is
≤-hereditary with respect to the relation ≤ to be an induced subgraph and P is hereditary if
it is ⊆-hereditary with respect to the relation ⊆ to be a subgraph.

Let P be a set of countable graphs. Following [8], we define a graph U to be a universal
graph for P if every graph in P is an induced subgraph of U ; it is a universal graph in P if
U ∈ P too. Since a universal graph U for P is allowed to be outside P and hence, presumably,
to be uncountable, the existence of at least one such U becomes trivial: take U to be the disjoint
union of one clone from each isomorphism class in P (i.e. of a “skeleton” of P). The fact that
this U (which exudes an aura of lazy brute force) will in general be uncountable follows from
the next lemma; in Section 3 we shall construct a countable U for any induced-hereditary graph
property P.

Consider countable linear forests, i.e., graphs with a countable vertex set which have no
cycles and in which every vertex is of degree at most two. Note that every component of such a
linear forest is a finite path (with no or with two vertices of degree one) or an infinite path (with
no or with one vertex of degree one). Also note that if two such linear forests are isomorphic,
then they have the same number of components of each length, and that linear forests constitute
an induced-hereditary graph property.

Lemma 1 There are uncountably many, in fact at least 2ℵ0, pairwise non-isomorphic countable
linear forests in which every component is a finite path.

Proof:
In order to prove this statement, we construct an injection f from the real numbers in the interval
(0, 1) into the set of all such graphs. Hence let x ∈ (0, 1) and suppose x1x2 . . . is the decimal
expansion of x. Then we define the linear forest f(x) by letting, for each positive integer k, the
number of components of order k in f(x) be xk. By the remark immediately before the lemma
we then have that, if x, y ∈ (0, 1) with x 6= y, then f(x) 6∼= f(y), i.e., f is an injection. 2

From Lemma 1 now follows that most graph properties contain uncountably many pairwise non-
isomorphic graphs. Indeed, if a graph property P is hereditary or additive and contains, for
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every k ∈ N, the path on k vertices (and many do), then all the linear forests used in this
lemma are in P and hence P is uncountable. So, for many (i.a. induced-hereditary) properties
P, the universal graph for P obtained by taking the disjoint union of a skeleton of P will not be
countable – and has, of course, uncountably many components. Therefore the construction of a
countable (usually denumerable) universal graph for P is of interest.

Rado [18] constructed the following (simple) denumerable graph on N: For given m and n
with m < n, m is adjacent to n if n has a 1 in the m’th position of its binary expansion. We shall
denote this graph by R. It is well known that R is a universal graph in the induced-hereditary
property Ic of countable graphs. A very useful and, in fact, a characteristic property of R is that
it has the extension property: For every two finite disjoint sets U and V of vertices of R there
is a vertex not in U ∪ V which is adjacent to every vertex of U and to no vertex of V .

In Section 2 we discuss examples and constructions of universal graphs for (and in) some
well-known induced-hereditary properties of simple graphs and develop some properties of these
universal graphs. In Section 3, dealing with general graphs, i.e., no longer simple graphs, a differ-
ent type of construction delivers countable universal graphs for all induced-hereditary properties
at one fell swoop. We compare and contrast features of the constructions in Sections 2 and 3 in
the last Section 4.

2 Universal graphs for induced-hereditary properties

2.1 Background

The following table summarises some of the published results for some induced-hereditary prop-
erties of countable graphs. (There is more on (induced-)hereditary properties in [2].) Throughout
this table, k is a positive integer.

Property Description U ∈ Pd? Characterisation of U? Reference(s)
Ic All graphs Yes, the Rado C ∼= R iff C has the [18]

graph R ∈ Ic extension property
Pfin Graphs with Does not [18] (accredited

all vertices of exist in Pfin to N.G. de Bruijn)
finite degree

Lk Directed label- Yes, the graph C ∼= Lk iff C has the [4]
led graphs Lk ∈ Lk k-extension property

−{Kk+2} Kk+2-free Yes, the graph C ∼= Gk iff C has an [10] and [13]
graphs Gk ∈ −{Kk+2} adapted extension property

−{Km,n} Km,n-free Exists if and only [14]
graphs if m = 1 and n ≤ 3

−{C3} C3-free Yes, the graph Same as K3-
graphs G1 ∈ −{C3} free graphs above

−{C4} C4-free Does not exist [12]
graphs in −{C4}

−{Cn}, Cn-free Does not exist [6]
n ≥ 5 graphs in −{Cn}
−S Limited cycle- Exists in −S if [7]

free graphs and only if S = Sk

→ H Hom-property Known to exist [17]
for finite H in → H
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In this table, S denotes a finite set of cycles and Sk denotes the set of odd cycles {C3, C5, . . . , C2k+1}.
Furthermore, for a given finite graph H and a given set of connected finite graphs T , the (additive
and) induced-hereditary graph properties → H and −T are defined by

→ H = {G ∈ If : there is a homomorphism from G into H}
−T = {G ∈ If : for each T ∈ T , T is not an induced subgraph of G}.

In [11] it is also shown that there is no universal graph in any set Forb(G) of countable graphs
obtained by taking a finite, 2-connected graph G which is not complete and requiring that the
graphs in Forb(G) are exactly those not containing G as a subgraph.

In Section 3 we shall construct a countable universal graph for every induced-hereditary
property of countable graphs (even without restricting us to simple graphs); this result includes
each of the properties in the above table and many of the well-known properties mentioned in
[2].

2.2 A universal graph in graphs with colouring-number at most k + 1

Definition 1 [9] For a given cardinal number α, we say that a countable graph G has colouring-
number α if the vertices of G can be labelled as v1, v2, . . . in such a way that for each positive
integer ` ≥ 1 the degree of v` in the subgraph of G induced by {v1, v2, . . . , v`} is less than α, and
α is the least cardinal number with this property.
In our use of this concept we will restrict ourselves to a finite cardinal (usually by taking α = k+1
where k is a positive integer). But our definition contains a further restriction when compared
to the one given by Erdős and Hajnal in [9]: Our insistence on the existence of a labelling in
the definition above is more restrictive than their requirement that the set of vertices has some
well-ordering with certain properties (since ours corresponds to the least ordinal with the same
properties).

Definition 2 The set of countable graphs with colouring-number at most k+ 1 is denoted by Ck,
i.e.,

Ck = {G ∈ Ic : the colouring-number of G is at most k + 1};

it is an induced-hereditary property of graphs.
It is easy to prove (by an inductive argument using the labelling of the vertices of such a graph)
that each graph with colouring-number k + 1 has chromatic number at most k + 1, explaining
its naming. We shall discuss the relation between this concept and the concept of k-degenerate
graphs in the next subsection. Erdős and Hajnal prove in [9] for a graph G that, if the colouring-
number of every finite subgraph of G is at most k+ 1, then G has colouring-number at most 2k.
They also provide an example which shows that this result is best possible, i.e., for every k ≥ 1
there is a graph of which every finite subgraph has colouring-number at most k + 1 but which
does not have colouring-number 2k − 1 or less.

We now construct a universal graph in Ck and discuss its properties. We denote this graph
by Ek and remark that it is obtained by keeping all the vertices but restricting the choice of
edges of the Rado graph R. A corresponding construction of a universal graph for the property
of k-degenerate graphs and a discussion of its properties is contained in the next subsection.
Throughout these subsections, we assume that k is a given positive integer. In the (finite) power
series n =

∑∞
i=0 ni2i we shall refer to ni−1(i ≥ 1) as the entry in the i’th position of the binary

expansion of the positive integer n; ni−1 ∈ {0, 1}.

Definition 3 The denumerable (simple) graph Ek on N has the following edges: For given
positive integers m and n with m < n, m is adjacent to n if n has at most k + 1 ones in its
binary expansion and has, in particular, a one in position m and a one in position x for some

4



x > m of its binary expansion.

The role of the one in position x will become clear in the proofs of the results to follow.
It is easy to see that the sequence of subgraph relations E1 ⊆ E2 ⊆ · · · ⊆ R holds. However,

no two of these graphs are isomorphic, as can be deduced from the following lemma.

Lemma 2 Let k be a positive integer. Then
1. Kk+1 ⊆ Ek

2. Kk+2 6⊆ Ek

3. K∞ ⊆ R
4. K∞ 6⊆ Ek

Proof:
1. Consider the following recursive construction of a clone of the complete graph Kk+1 in Ek:
Take an arbitrary vertex m1 ≥ 3 of Ek. Construct m2 as the vertex with a one only in positions
m1 and m1 + 1 of its binary expansion. Then m1 < m2 and the two are adjacent in Ek.
More generally: If m1,m2, . . . ,mi−1 are already constructed, define mi to be that integer with
ones precisely in positions m1,m2, . . . ,mi−1 and mi−1 + 1 of its binary expansion; and stop the
construction after the construction of mk+1. It is then clear that the choices of the mi−1 + 1’s
can play the role of the x required in the definition of Ek to ensure that each mi is adjacent to
each of the previously constructed vertices, i.e., {m1,m2, . . . ,mk+1} induces a subgraph of Ek

which is a clone of Kk+1.
2. If Kk+2 ⊆ Ek, say with {m1,m2, . . . ,mk+2} as vertex set with m1 < m2 < · · · < mk+2, then
mk+2 has at least k + 2 ones in its binary expansion.
3. R is a universal graph for, in fact in, the set of countable graphs.
4. This follows immediately from 2. above. 2

For E1 one can also see that if E1 contains a cycle, then the largest vertex n of this cycle
is adjacent to two smaller vertices on this cycle. There is, however, no vertex n in E1 which is
adjacent to both ` and m if these two vertices satisfy n > `,m. Hence E1 contains no cycles, i.e.,
E1 is a forest. Also, every vertex of each Ek is of infinite degree; in fact, for each k ≥ 2, every k
vertices of Ek have infinitely many common neighbours.

In our next two results we describe some properties of the set of graphs Ck and the graph
Ek.

Theorem 1 Let k be a positive integer. Then Ek is a universal graph in Ck and has colouring-
number k + 1.

Proof:
We first prove the inclusion Ek ∈ Ck: Consider the labelling of the vertices of Ek given by their
natural well-ordering as positive integers, i.e., let vm = m for each positive integer m. Then,
for each ` ≥ 2, each vertex of the subgraph induced by {v1, v2, . . . , v`} which is adjacent to v`

corresponds to a one in the binary expansion of v`. But, if there is at least one such adjacency,
then v` has at most k+ 1 ones in its binary expansion of which at most k correspond to vertices
adjacent to v`; hence the degree of v` is at most k in that subgraph. Hence Ek ∈ Ck. That Ek

has colouring-number k + 1, no less, no more, follows from its definition, its universality in Ck,
and Lemma 2 parts 1. and 2.

Next we shall prove by complete induction on the cardinality of its vertex set that every
(finite or denumerable) graph G with colouring-number at most k+ 1 is an induced subgraph of
Ek. This is clearly true for a graph with only one vertex; assume that it is true for all graphs
with colouring-number at most k + 1 with at most p − 1 vertices and let G be a graph with
colouring-number at most k+1 with p vertices. Consider the vertex v of G with the largest label
index and suppose it is of degree ` in G. Then ` ≤ k and G−v is a graph with colouring-number
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at most k + 1 with p − 1 vertices. Hence G − v is an induced subgraph of Ek; assume that
m1,m2, . . . ,m` are the vertices of Ek corresponding to the ` neighbours of v in G. Then we
construct a number n by choosing `+ 1 ones in its binary expansion in positions m1,m2, . . . ,m`

and in some position x which is large enough to ensure that x > mi for each i, that n > mi for
each i, and that n is not a vertex of Ek corresponding to any vertex of G− v; there are zeros in
all the other positions of the binary expansion of n. Clearly, this vertex n can correspond to v in
an isomorphism between G and an induced subgraph of Ek, completing the induction step. 2

Corollary 1 Let k be a positive integer. Then
1. E1 < E2 < · · · < R.
2. If C is universal for Ck then Ek ≤ C.
3. If C is universal in Ck then C ≤ Ek.

Proof:
1. It follows immediately from our definition of graphs with colouring-number k+1 that Ck−1 ⊆ Ck
for every k ≥ 2. Hence the sequence of relations E1 < E2 < E3 < · · · follow by Theorem 1 and
the remark (already made) that no isomorphism holds between any two of them. Finally, Ek < R
is true for each k since R is a universal graph for Ic and Ek is not isomorphic to R, by 3. and 4.
of Lemma 2.
2. If C is universal for Ck, then Ek ≤ C by Theorem 1.
3. If C is universal in Ck, then C has colouring-number k + 1 too, hence C ≤ Ek by Theorem 1.

2

Note that the labelling vm for the vertex m of Ek used in the proof of Theorem 1 adds no value
whatsoever. Henceforth, when working with Ek as a graph with colouring-number k+1, we shall
use the name m of a vertex instead of some label vm and thus consider the labelling function to
be the identity function.

We remark that Ek, unlike R, is not self-complementary since Ek contains arbitrary large
edgeless subgraphs so that Ek contains arbitrary large complete subgraphs, which is incompatible
with having colouring-number k+1. There are, however, some properties of Ek which are similar
to properties of the Rado graph R; we now bring two of these into focus.

Definition 4 We say that a graph C has the k-adjoining property if for every two finite
disjoint sets U and V of vertices of C with |U | ≤ k there is a vertex not in U ∪ V which is
adjacent to every vertex of U and to no vertex of V .

The graph E1 is not homogeneous and, for k ≥ 2, Ek does not seem to be homogeneous (in
the sense defined in [13]), i.e., not every isomorphism between two finite, isomorphic, induced
subgraphs of Ek can be extended to an automorphism of Ek. It does, however, possess a lesser
property which we now define.

Definition 5 We say that a graph C allows iso-extensions if C is denumerable and every
isomorphism between two finite induced subgraphs of C has an extension to an isomorphism
between two (not necessarily different) denumerable induced subgraphs of C.

Note that every denumerable homogeneous graph allows iso-extensions, but not conversely.

Lemma 3 The graph Ek has the following properties:
1. Ek has the k-adjoining property.
2. For any two finite, isomorphic, induced subgraphs F and G of Ek with vertex sets X and Y
respectively, any vertex m of Ek not in F which is larger than each vertex of F to which it is
adjacent and any isomorphism α from F onto G, there is a vertex n of Ek which is not in G
such that the function α ∪ {(m,n)} is an isomorphism from Ek[X ∪ {m}] to Ek[Y ∪ {n}].
3. Ek allows iso-extensions.
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Proof:
1. Consider any two finite disjoint sets U and V of vertices of Ek with U = {u1, u2, . . . , u`}
and with ` ≤ k. Then we construct a vertex n by choosing ` + 1 ones in its binary expansion
in positions u1, u2, . . . , u` and one position x which is large enough to ensure that x > ui for
each i, that n > ui for each i, and that n is not a vertex of V ; there are zeros in all the other
positions of the binary expansion of n. Clearly, this vertex has the required properties to prove
the k-adjoining property for Ek.
2. Consider any two finite, isomorphic, induced subgraphs F and G of Ek with vertex sets X
and Y respectively, any vertex m of Ek not in F which is larger than each vertex of F to which
it is adjacent and any isomorphism α : X → Y from F onto G.

Consider the partition of the vertex set X of F into the disjoint subsets U and V , which are,
respectively, the subsets containing the vertices of F adjacent to and not adjacent to m in Ek.
Then the required vertex n of Ek not in Y can be constructed using the k-adjoining property
of Ek by letting n be a vertex of Ek which is adjacent to each vertex of α(U) and to no vertex
of α(V ). Then, clearly, n is the required vertex with which we can extend the domain of the
isomorphism α to include m.
3. Consider any two finite, isomorphic, induced subgraphs of Ek. The required extension of any
isomorphism between them can now clearly be built through a recursive process using part 2. of
this lemma. 2

We remark that, in Definition 4 of the k-adjoining property, the existence of denumerably
many vertices n could have been specified with preservation of part 1. of Lemma 3. Also, from
2. and 3. of Corollary 1 we see that, if C is universal in Ck then Ek ≤ C and C ≤ Ek. If the
graphs involved were finite graphs, then this implies that C is isomorphic to Ek. One wonders if
it can be shown in this situation, with denumerable graphs, that these graphs are isomorphic too.
There could well be graphs which are universal for, even in, Ck which neither allow iso-extensions
nor have the k-adjoining property, and hence are not isomorphic to Ek.

2.3 Universality for k-degenerate graphs

We now investigate, similarly to what was done in the previous subsection, universality for k-
degenerate graphs and start with the definitions we need.

Definition 6 [15] A finite graph G is defined to be k-degenerate if the minimum degree δ(H)
of each induced subgraph H of G satisfies δ(H) ≤ k.

There is a strong relationship between the properties of a graph G “to have colouring-number
at most k+ 1” and “to be a k-degenerate graph” and they are, in fact, equivalent if G is a finite
graph. This is now recorded as

Lemma 4 A finite graph has colouring-number at most k + 1 if and only if it is k-degenerate.

Proof:
Let G be a finite graph with colouring-number at most k + 1 and suppose the vertices of G are
labelled as v1, v2, . . . , vn in such a way that for each positive integer 1 ≤ ` ≤ n the degree of v` in
the subgraph of G induced by {v1, v2, . . . , v`} is at most k. Then, for each induced subgraph H
of G, it follows that δ(H) ≤ k since the vertex vm of H with the largest label m will have degree
at most k in H.

For the converse, suppose that G is a finite k-degenerate graph of order n. We define
a labelling v1, v2, . . . , vn of the vertices of G inductively (starting with the largest index and
working downwards) by labelling any vertex of G with degree at most k as vn – it exists by the
definition of k-degenerate since G is an induced subgraph of itself. Now suppose that the labels
vn, vn−1, . . . , vm have been allocated in such a way that each vj has degree at most k in the
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subgraph induced by vj and the then as yet unlabelled vertices. Then, if m > 1, we consider the
subgraph induced by the as yet unlabelled vertices and choose a vertex of degree at most k from
it; this vertex is then labelled vm−1. This process clearly produces the desired labelling which is
needed to prove that G has colouring-number at most k + 1. 2

We now turn our attention to countable graphs.

Definition 7 The set of k-degenerate countable graphs is defined by

Dk = {G ∈ Ic : the minimum degree of every finite induced subgraph H of G satisfies δ(H) ≤ k}.

Note that Dk is also an induced-hereditary set of graphs. The inclusions between Ck and Dk

next deserve our attention.

Lemma 5 C1 = D1 and, for k ≥ 2, the strict inclusions Ck ⊂ Dk ⊂ C2k−1 hold.

Proof:
The inclusion C1 ⊆ D1 follows immediately from Lemma 4. In order to prove that D1 ⊆ C1 too, we
only need to prove, taking Theorem 1 into account, that every 1-degenerate graph is an induced
subgraph of E1. But each 1-degenerate graph is a forest consisting of countably many countable
trees as its components, and E1 consists of denumerably many clones of the denumerable tree in
which every vertex has denumerable degree: This can be seen by remarking that each positive
integer p, of which the binary expansion does not have exactly two ones, determines an induced
subgraph of E1 which is a clone of this tree and that these trees are exactly the components of
E1. Each of these trees can be viewed level by level, starting with such a p on the first level, by
remarking that p is adjacent to the denumerably many vertices on the next level with two ones
in their binary expansions, one in position p and one in some position x with x > p. The vertices
on the next level adjacent to each such x are then described similarly. It is clear that every one
of the different tree-components of a given 1-degenerate graph G is embeddable as an induced
subgraph of a different component of E1. Hence the whole G is so embeddable in E1.

If k ≥ 2 we consider, for the first inclusion, the vertex with the largest label index of a graph
with colouring-number at most k+ 1 and use it again to show that every finite induced subgraph
has a vertex of degree at most k. The fact that it is a strict inclusion follows by remarking that a
graph (as mentioned in Section 2.2, see [9]) of which every finite subgraph has colouring-number
at most k + 1, certainly is k-degenerate by Lemma 4, but has colouring-number at most 2k and
that this result is best possible. Hence there is a graph in Dk but not in Ck, since 2k > k + 1
when k ≥ 2.
This remark also proves the second inclusion. The fact that this inclusion is strict too follows by
remarking that the complete graph K2k+1 has colouring-number 2k but is not k-degenerate. 2

We now discuss a universal graph Fk for Dk and its properties. It is again obtained by
keeping all the vertices but restricting the choice of edges of the Rado graph R.

Definition 8 The graph Fk on N has the following edges: For given positive integers m and n
with m < n, m is adjacent to n if n has at most k + 1 ones in its binary expansion and has, in
particular, a one in position m.

It is easy to see that the graph Ek discussed in subsection 2.2 is a proper subgraph of Fk, since
it has fewer edges, and that F1 ⊆ F2 ⊆ · · · ⊆ R; in part 2. of Lemma 6 we shall prove more.

In our next three results we describe some properties of the set of graphs Dk and the graphs
Ek and Fk.

Theorem 2 Let k be a positive integer. Then
1. Fk is a (k + 1)-degenerate graph, i.e., Fk ∈ Dk+1.
2. Fk is a universal graph for Dk.
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Proof:
1. Consider any finite induced subgraph H of Fk and take the largest natural number n which is
a vertex of H. If there is a vertex m of H which is adjacent to n in H, then n has at most k+ 1
ones in its binary expansion and only those vertices corresponding to the positions of these ones
can be adjacent to n, i.e., n is of degree at most k+ 1 in H. But then δ(H) ≤ k+ 1 as required.
2. We shall prove by complete induction on the cardinality of its vertex set that every countable
k-degenerate graph G is an induced subgraph of Fk. This is clearly true for a graph with only
one vertex; assume that it is true for all k-degenerate graphs with at most p− 1 vertices and let
G be a k-degenerate graph with p vertices. Then δ(G) ≤ k so that G has a vertex v of degree
at most k, say it is of degree `. But then G− v is a k-degenerate graph with p− 1 vertices and
hence G − v is an induced subgraph of Fk; assume that m1,m2, . . . ,m` are the vertices of Fk

corresponding to the ` neighbours of v in G. Then we construct a number n by choosing ` ones
in its binary expansion in positions m1,m2, . . . ,m` and a one in some position x which is large
enough to ensure that
(i) x is not one of the vertices of Fk corresponding to vertices of G− v;
(ii) x > mi for every i (which also ensures that n > mi for every i); and
(iii) n is not a vertex of Fk corresponding to any vertex of G− v;
there are zeros in all the other positions of the binary expansion of n. Clearly, this vertex n can
correspond to v in an isomorphism between G and an induced subgraph of Fk. This completes
the induction step. 2

Lemma 6 Let k ≥ 2. Then
1. Ek is a k-degenerate graph but Fk is not.
2. Ek < Fk but Fk 6< Ek.
3. Fk 6≤ Ek+1.

Proof:
1. Consider any finite induced subgraph H of Ek. Then H clearly has colouring-number at most
k+ 1 (since Ek has colouring-number k+ 1 by Theorem 1) and hence δ(H) ≤ k by Lemma 4, as
required.
To see that Fk is not k-degenerate, we need to remark that the complete graph Kk+2, which is not
k-degenerate, can be embedded into Fk in a recursive way: choose (similar to the proof of Lemma
2 part 1.) the vertices as the positive integers m1,m2, . . . by taking m1 ≥ 3, constructing each
further mi with ones in positions m1,m2, . . . ,mi−1 and stopping the construction after choosing
mk+2.
2. The fact that Ek < Fk follows immediately now since Ek ≤ Fk (Ek is a k-degenerate graph
and, by Theorem 2, Fk is universal for Dk), while by 1. they are not isomorphic. On the other
hand, Fk 6< Ek since every (induced) subgraph of Ek is k-degenerate but Fk is not.
3. A graph such as the one mentioned in Section 2.2 (see [9]) of which every finite subgraph
has colouring-number k+ 1 certainly is k-degenerate by Lemma 4 but has colouring-number 2k.
Hence such a graph is an induced subgraph of Fk but not of Ek+1. So Fk 6≤ Ek+1. 2

Our next result is less satisfying than the corresponding result, Corollary 1, for graphs with
colouring-number at most k + 1.

Corollary 2 Let k be a positive integer. Then
1. F1 < F2 < · · · < R.
2. If C is universal for Dk+1 then Fk ≤ C.
3. If C is universal in Dk then C ≤ Fk.

Proof:
1. It follows immediately from our definition of countable k-degenerate graphs that Dk−1 ⊆ Dk
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for every k ≥ 2. Hence the sequence of relations F1 < F2 < · · · follow by 1. and 2. of Theorem
2 and the remark (already made for the graphs Ek but equally true for the graphs Fk) that no
isomorphism holds between any two of them. Finally, Fk < R is true for each k since R is a
universal graph for Ic and Fk is not isomorphic to R.
2. If C is universal for Dk+1, then Fk ≤ C by 1. of Theorem 2.
3. If C is universal in Dk, then C is k-degenerate too, hence C ≤ Fk by 2. of Theorem 2. 2

The following result for (k+ 1)-degenerate graphs is very similar to the corresponding result
for graphs with colouring-number k + 1, Lemma 3. We leave the proof to the reader.

Lemma 7 The graph Fk has the following properties:
1. Fk has the k-adjoining property.
2. For any two finite, isomorphic, induced subgraphs F and G of Fk with vertex sets X and Y
respectively, any vertex m not in F which is larger than each vertex of F to which it is adjacent
and any isomorphism α from F onto G, there is a vertex n of Fk which is not in G such that the
function α ∪ {(m,n)} is an isomorphism from Fk[X ∪ {m}] to Fk[Y ∪ {n}].
3. Fk allows iso-extensions. 2

We remark (again) that, in the definition of the k-adjoining property, the existence of de-
numerably many vertices n could have been specified with preservation of part 1. of Lemma 7
too. In the light of Lemma 4, it would be of interest to prove or to disprove that there exists a
universal graph in Dk similar to Ek ∈ Ck.

3 Constructing universal graphs for general graphs

We describe in this section uniform recursive constructions of universal graphs for induced-
hereditary properties of general graphs and for products of such properties. The classes of
countable graphs under consideration are general in the broadest sense: they may sport any
combination of your favourite prescriptions and proscriptions of features. They may have loops
or not; finitely many multiple edges between pairs of vertices or not; directed edges or undirected
edges; edges or vertices (or both) labelled with labels from any prescribed finite set or not; etc.

3.1 Constructing a universal countable graph
for any induced-hereditary property

Let P be any property, or class, of graphs in the above very general sense with the following
characteristics:
• every member of P has a countable vertex set;
• P is an induced-hereditary graph property, i.e. every induced subgraph of a member of P is a
member of P (where definitions of induced subgraphs, isomorphic graphs, etc. can be generalised
from [4], where directed edges and labels are considered).
We shall now prove, by a recursive construction, that a countable graph which is universal for P
exists. Before we do so, some notation is useful.

If G1 < G2 < . . . is a countable sequence of finite graphs with V (G1) ⊆ V (G2) ⊆ . . ., then
the limit of this sequence of graphs is the graph with vertex set

⋃
i V (Gi) (with loops, if any are

in the Gi’s) and edge set the union of the edge sets of these graphs (with their directions, labels,
etc. that may be in the Gi’s).

Let F be a skeleton of the class of finite members of P: every isomorphism class of finite
members of P therefore has exactly one representative in the set F . Then F has a countable
partition

F = F1 ∪ F2 ∪ . . . ∪ Fn ∪ . . .

10



where Fn is the set of members of F with an n-element vertex set. Note that, since P is induced-
hereditary, if Fn+1 6= ∅, then Fn 6= ∅; so from any non-empty level downward all levels are
non-empty. |Fn| denotes the number of graphs in the n’th level set Fn. Also note that G ∈ Fn

sometimes means that G ∼= G′ ∈ Fn.
Remember that if G ∈ Fn+1 (meaning, more precisely, that G is a clone of an element of

Fn+1), then every proper induced subgraph of G is (isomorphic to) an element of F1∪F2∪. . .∪Fn.
In particular, every induced subgraph of G obtained by removing one of its vertices is in Fn.
Conversely, if H ∈ Fn and G has property P and one more vertex than H, then G ∈ Fn+1.

We shall, using this notation, construct a sequence of graphs U1, U2, . . . by recursion on the
indices 1, 2, . . . such that
• U1 < U2 < · · ·, i.e. each is (really in this instance, not just isomorphic to) a proper induced
subgraph of the next one;
• if G ∈ F1 ∪ F2 ∪ . . . ∪ Fn, then G < Un (now meaning that G is isomorphic to an induced
subgraph of Un);
• the vertex set of Un has cardinality |F1|+ |F2|+ · · ·+ |Fn| (since each vertex of Un will owe its
existence to precisely one graph in F1 ∪ F2 ∪ . . . ∪ Fn);
• the limit U of the sequence U1, U2, . . . is universal for P.

We are now ready for the proof of

Theorem 3 Let P be any induced-hereditary property of countable general graphs. Then there
exists a countable universal graph U for P.

Proof:
Let U1 = tF1, the disjoint union of the finite set of graphs (there may be more than one since
loops or finite vertex labellings are allowed) in F1. Note that thus far there are no edges, except
possible loops, in sight.

Suppose now that U1, U2, . . . , Un has been constructed. Then we construct Un+1 as follows:
Suppose |Fn+1| = k. Then we take k new vertices v1, v2, . . . , vk (not ocurring in Un), each vi

linked by its index i to some element Gi of Fn+1. The vertex set V (Un+1) of Un+1 is then
defined (with preservation of vertex labels and loops on V (Un), if applicable) to be V (Un+1) =
V (Un) ∪ {v1, v2, . . . , vk}.

Next we define the edge set E(Un+1) of Un+1. All the edges of Un (with their multiplicities,
directions, labels, etc. preserved, if applicable) are edges of Un+1, i.e., E(Un) ⊆ E(Un+1). Fur-
thermore, in Un+1 there are no edges between any vi and vj for i 6= j. Describing the new edges
in Un+1 requires some preliminary work:

Consider any fresh vi ∈ V (Un+1) and its (unique) corresponding Gi ∈ Fn+1 with n + 1
vertices. Take any v ∈ V (Gi). Then the induced subgraph H ′i = Gi − v of Gi has property P
and hence is isomorphic to some Hi ∈ Fn. But, by the construction of Un, the latter is universal
for Fn, and hence there exists an induced subgraph Li of Un which is isomorphic to Hi and to
H ′i = Gi − v. Consider αi : Li

∼= H ′i = Gi − v. Now we decorate vi of Un+1 with everything that
it needs for us to be able to extend αi to α+

i : Un+1[Li ∪ {vi}] ∼= Gi, as follows:
• Should v have a vertex-label in Gi, we assign that label to vi in Un+1.
• Should v have a loop in Gi, vi gets a loop (perhaps labelled) in Un+1.
• Whenever v has an edge (or multiple edges) to w in Gi, we prescribe an edge (or multiple
edges of the same multiplicity) between vi and α−1(w) ∈ V (Un) − the latter edge(s) decorated,
if applicable, with the corresponding decoration(s) from Gi.
Doing what we have just described for each vi and Gi, i = 1, 2, . . . , k, separately, completes the
construction of Un+1 from Un and Fn+1.

We still need to prove that for every graph G ∈ P we have that G is an induced subgraph
of U , the limit of the sequence U1, U2, . . . to prove that U is universal for P. Hence consider any
G ∈ P.
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• If G is finite, say |V (G)| = n, then G ∼= G′ ∈ Fn and G′ < Un < U , so G < U (since < is
transitive).
• If V (G) is denumerable we may assume that V (G) = N. For any positive integer n we can
then prove (like in the finite case) that the subgraph Gn of G induced by [n] = {1, 2, . . . , n},
which is in P since the latter is induced-hereditary, is an induced subgraph of Un. Hence
G =

⋃
nGn <

⋃
n Un = U .

It is immediate to see that U is countable since each of the countably many steps in the con-
struction of U involves a finite number of new vertices. 2

3.2 Constructing universal graphs for products of properties

We start by defining, in a similar way as was done for example in [2] for finite graphs, a product
of properties.

Definition 9 Let P and Q be any induced-hereditary properties of (simple, for now) countable
graphs. The product of P and Q, denoted by P ◦Q, is the property consisting of all (countable)
graphs G for which there is a partition of the vertex set V (G) into two parts X and Y such that
the subgraph G[X] of G induced by X is in P and the subgraph G[Y ] of G induced by Y is in Q.

We remark that this definition can clearly be extended to products of more than two prop-
erties of graphs and that these products are induced-hereditary properties of countable graphs.
By the construction in the previous subsection, there is a countable universal graph U(P ◦ Q)
for P ◦ Q.

The question arises whether the universal graphs U(P) and U(Q) (for P and Q separately)
can somehow be employed in the construction of another universal graph, say W (P ◦ Q), for
P ◦ Q. We now describe such a construction which gives a universal graph for the finite graphs
in P ◦ Q and denote the graph we construct by W for short.

Besides U(P), we need a denumerable set of pairwise disjoint, triply indexed clones of U(Q),

U(Q)ijk, ijk ∈ N3, with each U(Q)ijk
∼= U(Q).

The role of the three indices will become clear as we proceed. Every U(Q)ijk is also disjoint from
U(P).

We are now ready to describe the vertex set, V (W ), of W :

V (W ) = V (U(P)) t V (tU(Q)ijk),

where V (tU(Q)ijk) = tijkV (U(Q)ijk) is the disjoint union of the vertex sets of the different
U(Q)ijk.

We now begin the description of the edge set of W :

E(W ) ⊃ E(U(P)) ∪ E(tU(Q)ijk),

i.e., all the edges of U(P) and of all the copies of U(Q) are edges of W – but there are more
edges in W . To describe these extra edges in W we shall use the index-triples ijk, but we also
need some more notation. Let

F(P) = {G1, G2, . . .}

be any enumeration of the (countable, most likely denumerable) skeleton of the class of finite
members of P used in the construction of U(P). Each element Gi of F(P) has a canonical
occurrence as (a clone of) an induced subgraph of U(P). Similarly, for Q we have

F(Q) = {H1, H2, . . .}
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with Hi occurring canonically in U(Q). The canonical clone of Gi in U(P) or of Hj in U(Q) or
in U(Q)ijk will be denoted by the same symbol, Gi or Hj .

When Gi ∈ F(P) has m vertices and Hj ∈ F(Q) has n vertices, then there are mn potential
edges between vertices of Gi and vertices of Hj . Hence there are 2mn different potential sets of
edges between the vertices of Gi and the vertices of Hj . Each of these possibilities represents a
finite graph in P ◦ Q (not all of them necessarily non-isomorphic).

Now U(Q)ij1, U(Q)ij2, . . . , U(Q)ij2mn are 2mn clones of U(Q). We can write U(Q)ijk, 1 ≤ k ≤
2mn, implying that within U(P) we have |V (Gi)| = m and within U(Q) we have |V (Hj)| = n.
In W we now add the following edges: For each Gi ∈ F(P) and each Hj ∈ F(Q) and each
possibility k of the 2mn possibilities of edge sets between V (Gi) and V (Hj) we add to the edges
of W those edges between V (U(P)) and V (U(Q)ijk) which correspond to the k’th set of edges
between V (Gi) (in V (U(P))) and V (Hj) (in V (U(Q)ijk)). That completes the description of
the edge set of W . Each finite graph in P ◦ Q has now a canonical occurrence in W , and the
following theorem holds.

Theorem 4 W (P ◦ Q) is universal for (P ◦ Q)f . 2

What can we say about a possible universal graph for the denumerable ones? In Lemma 1
we saw how playing with disjoint unions of denumerable graphs tends to propel us to the dizzy
heights of uncountability. May it help if P and Q are of finite character?

4 Concluding remarks: Contrasting the two constructions

We have now encountered two approaches, styles of constructing universal graphs in and for
induced-hereditary graph properties:
A: the construction of a universal graph U in some properties P as found in, e.g., [3], [4], [17]
and [18], and Sections 2.2 and 2.3 of this paper.
B: the construction of a universal graph U for any induced-hereditary property P as found in
Section 3 of this paper.

Some contrasts between A and B are salient:
(a) Symmetry: A-constructed universal graphs have extremely large automorphism groups. For
instance: R has 2ℵ0 conjugacy classes of cyclic automorphisms, i.e., automorphisms for which the
vertices of R can be labelled by the set of integers Z so that the automorphism is the cyclic shift
x 7→ x + 1 ([5], slide 18). But one imagines that B-constructed ones have, relatively speaking,
very small automorphism groups.
(b) Thrift: Related to their great symmetry, A-constructed universal graphs are prodigal (as
elaborated on as “abundance” in [3]), while B-constructed universal graphs are frugal in com-
parison, missing the “non-locality” and ubiquity of an extension or adjoining property or homo-
geneity. An A-constructed homogeneous universal graph “looks the same” from the viewpoint
of any of its vertices. This is so since, by homogeneity, any two isomorphic finite induced sub-
graphs, and in particular any two vertices, can be interchanged by an automorphism of the
whole graph. Intuitively speaking, you can “pick up” the graph by any of its vertices, “shake
it out”, and “downward” from that vertex it unfolds all the way in exactly the same pattern.
For A-constructed universal graphs which are not homogeneous, but have the somewhat weaker
property of allowing iso-extensions (like Ek and Fk in Section 2), any two vertices (or finite iso-
morphic induced subgraphs) still have isomorphic induced denumerable supergraphs within the
graph. By contrast, in a B-constructed U for P, every finite graph in P has one “canonical”
occurrence within U , apart from possible other accidental occurrences. This canonical occurrence
is even anchored to the specific vertex of U for the existence of which it is responsible.
(c) Definition: In A the universal graph is established in Rado style by fiat, a definition need-
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ing an argument to show that it harbours every graph from P. In B the universal graph is
built incrementally in recursive steps, showing directly how the elements of P of growing size
are incorporated. The induced finite subgraph Un of the universal graph U accommodates all
those graphs in P with no more than n vertices. It is not immediately clear whether anything
similar can be explicated elegantly for an A-constructed universal graph. For instance, can one
easily define a finite induced subgraph of R which accommodates (maybe even tightly) all simple
graphs with at most n vertices?
(d) Features of hereditary properties: It seems intuitively as if B may be more illuminating
than A in the study of certain features such as the “speed” and the “boundedness of clique-width”
(as discussed in [1]) for induced-hereditary properties. A similar remark holds with respect to
finding universal graphs with a minimum number of vertices for a finite number of finite graphs
(as discussed in [16]). We remark that, when few vertices is the thrifty issue, the recursive step
constructing Un+1 from Un in the proof of Theorem 3 can be made more parsimonious: Add a
new vertex vi to Un only for those Gi ∈ Fn+1 which are not, accidentally, already isomorphic to
some induced subgraph of Un.
(e) Generality: Constructions of stripe A deliver a universal graph in P. Some induced-
hereditary properties P do not contain universal graphs, as seen in the table in Section 2.1. B
always creates a universal graph for P.
(f) Complexity: For a given P there is the question of the computational complexity of gener-
ating the B-sequence U1, U2, . . .. No analogous question for A springs to mind.
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