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Abstract

The performance of a model predictive controller depends on the quality of

the plant model that is available. Often parameters in a run-of-mine (ROM)

ore milling circuit are uncertain and inaccurate parameter estimation leads to

a mismatch between the model and the actual plant. Although model-plant

mismatch is inevitable, timely detection of significant mismatch is desirable.

Once significant mismatch is detected the model may be partially re-identified

in order to prevent deteriorated control performance. This paper presents a

simulation study of the detection of mismatch in the parameters of a ROM

ore milling circuit model using a partial correlation analysis approach. The

location of the mismatch in the MIMO model matrix is correctly detected,

and the process model subsequently updated.
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1. Introduction

Grinding mill circuits are still predominantly controlled using single-loop

PI(D) controllers [1] despite the significant advances that a technology such

as model predictive control (MPC) has made in the process industries [2].

Perhaps one of the reasons for this is the fact that the dynamics of milling

circuits can change significantly over time leading to deteriorating controller

performance.

Milling circuits, and mineral processing operations in general, are often

affected by poor modelling [3]. For such processes, it is stated by [3] that

the peripheral control tools (which includes observers, data reconciliation,

soft sensors and model parameter tuners) are as important as the controller

itself. MPC controllers are also known to not produce very good results

in the presence of significant model-plant mismatch [4, 5]. A technology

that may aid the introduction of advanced control in grinding mill circuits is

model-plant mismatch detection ([6, 7]), as described in this paper.

The aim of the mismatch detection strategy is to locate the specific

transfer function element(s) in the model transfer function matrix that con-

tain significant mismatch. Once significant mismatch has been detected,

re-identification of the particular part of the plant model that contains the

mismatch may be done. This partial re-identification would be much less

costly and time-consuming than full process re-identification ([8]). The con-

troller can then be redesigned based on the updated model. These steps could
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be performed either by the control engineer, or via an automatic model up-

date strategy. Care should however be taken when making use of the latter

method.

This paper describes a simulation study of the application of a model-

plant mismatch detection strategy described in [6], to a ROM ore milling

circuit under MPC control. The milling circuit model used is a linear time-

invariant (LTI) approximation of a fundamental milling circuit model de-

scribed in [9]. Model-plant mismatch, motivated from industrial experiments

[10], is introduced in the model and its location in the multivariable matrix

model is correctly detected. The model is then automatically updated and

the controller redesigned. The results will show how the automatic model

update strategy can help to improve controller performance.

2. ROM ore milling circuit

This section gives a brief introduction to the ROM ore milling operation

considered in this work. The discussion is based on a single stage semi-

autogenous mill operated in closed circuit with a hydrocyclone.

Ore bearing some valuable mineral is fed to the milling circuit at about

100 tons/hour. The ore is ground down to product with a particle size of 80%

smaller than 75 µm (P80 = 75µm). A hydrocyclone is used in closed circuit

with the mill to separate the product from the out-of-specification material.

The valuable mineral is then extracted downstream through a leaching or

floatation process.

The feed to the mill (see Fig. 1) constitute the underflow of the cyclone,

feed ore, water and steel balls. Steel balls are usually added in discrete
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quantities by the operator but in this study it will be treated as a continuous

variable. The mill discharges the ground slurry into a sump through an end-

discharge grate. The slurry is diluted with water in the sump and pumped

to the hydrocyclone for classification. The product of the milling circuit is

the overflow of the hydrocyclone.

The controlled variables in the milling circuit are the product particle size

(PSE), the fraction of the mill volume filled with material (LOAD), and the

volume of slurry in the sump (SLEV). The manipulated variables are the feed-

rate of solids into the mill (MFS), the feed-rate of water into the mill (MIW),

the feed-rate of steel balls into the mill (MFB), the flow-rate of water into

the sump (SFW), and the flow-rate of slurry into the hydrocyclone (CFF).

The operating point of the milling circuit and constraints on the variables

are given in the nomenclature table.

2.1. Non-linear mill model

The milling circuit model is based on phenomenological equations and

consists of separate modules for the feeder, mill, sump and hydrocyclone

such that arbitrary circuit topologies may be constructed. The model uses

five states, namely water, rocks, solids, fines, and steel balls to describe the

flow of material through the milling circuit. All the equations that consti-

tute the non-linear model are based on these material classifications. A full

description of these equations can be found in [9]. Here details are only pro-

vided for the mill module that contains the parameters which usually give

rise to model-plant mismatch. These changes in the plant are later detected

by the model-plant mismatch detection algorithm.

The mill module is capable of modelling various mill types e.g. ball, SAG
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Figure 1: ROM ore milling circuit

(semi-autogenous grinding) and AG (autogenous grinding) mills. The model

adds the effects of mill power and slurry rheology (as described by [11]) to

the breakage and power functions.

The mill has five states, which are the holdups of the five classifications

of material in the mill, namely water, rocks, solids, fines, and steel balls. The

5



Nomenclature

Minimum Maximum Nominal %∆ W Description

Variables

MIW 0 100 33.33 - Flow-rate of water to the mill [ m
3

h
]

MFS 0 200 100 0.1 Flow-rate of solids to the mill [ t
h

]

MFB 0 4 2 - Flow-rate of steel balls to the mill [ t
h

]

CFF 400 500 442 0.1 Flow-rate of slurry to the cyclone [ m
3

h
]

SFW 0 400 267 0.1 Flow-rate of water to the sump [ m
3

h
]

PSE 60 90 80 100 Product particle size [% < 75µm]

LOAD 30 50 45 100 Total charge of the mill [%]

SLEV 2 37.5 30 1 Level of the sump [m3]

Internal flows

Vwi, Vwo Flow of water into/out of the mill [ m
3

h
]

Vsi, Vso Flow of solids into/out of the mill [ m
3

h
]

Vfi, Vfo Flow of fines into/out of the mill [ m
3

h
]

Vri, Vro Flow of rocks into the mill [ m
3

h
]

Vbi, Vbo Flow of steel balls into the mill [ m
3

h
]

States

Xmw 0 50 8.53 Holdup of water in the mill [m3]

Xms 0 50 9.47 Holdup of solid ore in the mill [m3]

Xmf 0 50 3.54 Holdup of fine ore in the mill [m3]

Xmr 0 50 20.25 Holdup of rocks in the mill [m3]

Xmb 0 20 6.75 Holdup of steel balls in the mill [m3]

Parameters

αf 0.05 0.15 0.1 50 Fraction of fines in the ore [dimensionless]

αr 0.05 0.15 0.1 50 Fraction of rocks in the ore [dimensionless]

φf 14 42 28 50 Power needed per ton of fines produced [ kW·h
t

]

φr 55 83 69 20 Rock abrasion factor [ kW·h
t

]

φb 89 99 94 5 Steel abrasion factor [ kW·h
t

]

Constants

εws 0.6 Maximum water-to-solids volumetric flow at zero pulp flow [dimension-

less]

VV 40 Volumetric flow per “flowing volume” driving force [h−1]

Pmax 2000 Maximum mill motor power [kW]

δPv 1 Power change parameter for volume [dimensionless]

δPs 1 Power change parameter for fraction solids [dimensionless]

vPmax 0.45 Fraction of mill volume filled for maximum power [dimensionless]

ϕPmax 0.51 Rheology factor for maximum mill power [dimensionless]

αP 0.82 Fractional power reduction per fractional reduction from maximum mill

speed [dimensionless]

vmill 100 Mill volume [m3]

αφf
0.01 Fractional change in kW/fines produced per change in fractional filling

of mill [dimensionless]

χP 0 Cross term for maximum power [dimensionless]
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state equations are given by

Ẋmw = MIW − Vwo (1)

Ẋms =
MFS

Ds

(1− αr)− Vso +RC (2)

Ẋmf = αf
MFS

Ds

− Vfo + FP (3)

Ẋmr = αr
MFS

Ds

−RC (4)

Ẋmb =
MFB

Db

−BC (5)

where each of the feed streams has been replaced by its respective expression;

RC is the amount of rocks consumed,

RC ,
1

Dsφr
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
, (6)

BC is the amount of balls consumed,

BC ,
1

Dbφb
· Pmill · ϕ ·

(
Xmr

Xmr +Xms

)
, (7)

FP is the amount of fines produced,

FP ,
Pmill

Dsφf

[
1 + αφf

(
LOAD
vmill

− vPmax

)] , (8)

and the flows out of the mill are given by

Vwo = VV · ϕ ·Xmw

(
Xmw

Xmw +Xms

)
(9)

Vso = VV · ϕ ·Xmw

(
Xms

Xmw +Xms

)
(10)

Vfo = VV · ϕ ·Xmw

(
Xmf

Xmr +Xms

)
(11)
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where ϕ is the rheology factor

ϕ ,

√√√√max
[
0,
(
Xmw −

(
1
εws
− 1
)
Xms

)]
Xmw

. (12)

No rocks or steel balls can exit the mill as they are restricted by the discharge

grate. Two other important expressions contained in the milling equations

are the total charge in the mill (LOAD) and the power drawn from the mill

motor (Pmill) given by

LOAD = Xmw +Xms +Xmr +Xmb (13)

Pmill = Pmax · {1− δPvZ2
x

−2χpδPvδPsZxZr − δPsZ2
r}, (14)

where Zx is the effect of the load on the power consumption defined as Zx ,

(Xmw + Xms + Xmr + Xmb)/(vPmax · vmill − 1) and Zr is the effect of the

rheology on power consumption defined as Zr , (ϕ/ϕPmax) − 1. All the

other parameters and constants in the milling equations are listed in the

nomenclature table.

2.2. Linearized milling circuit model

The milling circuit is controlled by a linear model predictive controller,

which is described in the next section. The controller requires a linear model

of the plant that is obtained through applying a standard system identi-

fication (SID) procedure as described by [12], to the milling circuit model

described by [9]. Step tests were performed around the operating point of

the milling circuit. Operating data for 60 hours were collected and models
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were fitted for all 9 elements of the transfer function matrix. The final model

for control is then given by:
∆PSE

∆LOAD

∆SLEV

 =


g11 g12 g13

g21 g22 g23

g31 g32 g33




∆CFF

∆MFS

∆SFW

 (15)

where g1j is in the form

g1j =
k1j

s+ α1j

e−θ1js (16)

with k11 = −2.4×10−4, k12 = −5.99×10−4, k13 = 1.45×10−3; α11 = 0.5882,

α12 = 1.353, α13 = 2.216; and θ11 = 0.0111, θ12 = 0.0639, θ13 = 0.0111.

The other 6 transfer functions are in the form

gij =
kij

s+ 10−6
(17)

with k21 = 7.15× 10−4, k22 = 7.22× 10−3, k23 = −1.39× 10−3, k31 = −0.60,

k32 = 0.0097, and k33 = 0.774. Here we have used the form gij =
kij
s+ε

where

ε → 0 to approximate an integrator with a first order model. The models

were derived in time units of hours with a sampling time of 10 seconds.

The model does not contain reference to the manipulated variables MIW

and MFB. In this study the value of MFB is kept constant at its nominal

value (as reported in the nomenclature table). The value of MIW is derived

from the value of MFS through a constant water to solids ratio into the mill

as discussed by [13].

3. Controller design

The controller for the milling circuit is a linear model predictive controller

based on the linearized plant model discussed in the previous section. At each

9



sampling instant the objective of the controller is to minimize some scalar

performance index

min
u

V (u, x0) (18)

s.t. x ∈ X, u ∈ U (19)

θc(x, u) ≤ 0 (20)

where x : R → Rnx is the state trajectory, u : R → Rnu is the control

trajectory, x0 is the initial state and θc(x, u) is the constraint vector. The

solution to the optimization problem provides a set of optimal control moves,

the first of which is implemented and the optimization problem is again solved

at the next sampling instant.

At each sampling instant the controller calculates the required values

for the manipulated variables CFF, SFW and MFS. The prediction horizon

should be chosen large enough to capture the dynamics of the model, but

small enough such that the control action calculation is not too computation-

ally expensive. The control horizon should be chosen small enough such that

the controller is not too aggressive, but large enough such that a sufficient

part of the prediction horizon contains control action. The controller uses a

prediction horizon of 800 (covering 2.22 hours which is close to the longest

time constant in (16)) and a control horizon of 100 to cover a sufficient part

of the prediction horizon. In order however to ensure that the controller is

not too aggressive blocking is used by only allowing the controller to change

its output every fifth step. With these parameters sufficient performance is

attained (see Fig. 2) and the aforementioned conditions are satisfied. The

constraints imposed by the controller, as well as the weights given to each

controlled and manipulated variable are as shown in the nomenclature table.
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Figure 2: Nominal operation data

The Model Predictive Control toolbox in MATLAB ([14]) is then used to

define the controller.

The simulation results in Fig. 2 show the nominal operation (without

any parameter mismatch in the plant) of the controller over 5 hours. A set-

point change is made for the LOAD from 45% to 50% at time 1 hour. This

set-point change is rather large and would typically not be made during the

normal operation of the milling circuit. This is similar to the set-point change

later employed to ensure sufficient excitation for the model-plant mismatch

detection algorithm. The set-points are indicated with dashed lines in the

figure.

The values of the manipulated variables for nominal operation are shown

in Fig. 3.
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Figure 3: Manipulated variables for nominal operation

4. Model-plant mismatch detection

A model-plant mismatch identification technique is applied to the ROM

ore milling circuit to detect differences between the available model and the

actual plant. Recently [6] proposed a method for model-plant mismatch

(MPM) detection in MPC applications based on a partial correlation analysis

between the model residuals and the manipulated variables. Partial correla-

tion analysis helps in detecting hidden correlations as well as inhibiting the

detection of spurious correlations.

Consider the closed-loop internal model control (IMC) structure repre-

sented in Fig. 4 (from [15]). Here G is a n×m MIMO plant, Ĝ is the model

representing G and Q is a multivariable controller. The plant and model

outputs are y(k) and ŷ(k) respectively, r(k) is the vector of references, u(k)

the manipulated variables and v(k) the vector of disturbances.
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Figure 4: Closed-loop IMC structure

The residuals (e(k)) are given by

e(k) = y(k)− ŷ(k) = ∆u(k) + v(k) (21)

where (∆ = G − Ĝ) is the mismatch between the plant and the model.

Correlation analysis between the signals e(k) and u(k) indicates the amount

of mismatch ∆. The following relations are obtained from Fig. 4:

e(k) = [I + ∆Q]−1 ∆Qr(k) + [I + ∆Q]−1 v(k) (22)

u(k) = Q [I + ∆Q]−1︸ ︷︷ ︸
Sru

r(k)−Q [I + ∆Q]−1︸ ︷︷ ︸
Svu

v(k) (23)

where Sru and Svu are the input sensitivities from r and v respectively.

At each sampling instant the values of the manipulated variables are cal-

culated based on the difference between the output and the reference vectors.

Depending on the interactions in the model and the design of the controller,

correlation may exist between manipulated variables. This may lead to the

detection of spurious correlation or to the non-detection of hidden correlation

between residuals and manipulated variables. This would in turn obscure the

correct identification of the location of significant MPM. To overcome this

[6] proposed the use of partial correlation analysis.
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Data for analysis should be chosen from a period of time where there

is sufficient set-point excitation. Since models are fitted to the sensitivity

functions Sru and Svu, the set-points should be sufficiently exciting to ensure

estimation accuracy. In order to ensure that MPM is not incorrectly identified

due to the presence of disturbances, the disturbance free components of the

manipulated variables are required. These are the components of the MVs

needed to react to set-point changes and not for disturbance rejection. The

disturbance free components of the MVs are represented as ûr(k) and may

be obtained as described by [6].

Next the component of each MV that is uncorrelated with all other MVs

is computed. Each MV may be represented as

ûri (k) = Guiũ
r(k) + εui(k) (24)

where Gui is a model identified between uri and all the other MVs, ũr contains

all the other MVs except for ui and εui is that component of ui that is

uncorrelated with all other MVs. The estimate of εui is then given by:

ε̂ui(k) = ûri (k)−Guiũ
r(k) (25)

A similar procedure is applied to calculate the component of each residual

that is uncorrelated with all other MVs except ui.

ej(k) = Gej ũ
r(k) + εej(k) (26)

Here Gej is the model identified between residual ej and all other MVs except

ui. The estimate for εej is then given by

ε̂ej(k) = ej(k)−Gej ũ
r(k) (27)
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Non-zero correlation between ε̂ej and ε̂ui indicates the presence of model-plant

mismatch in the ui − yj channel. This model-plant mismatch identification

technique is applied to the ROM ore milling circuit to detect mismatch be-

tween parameters in the model and the actual plant.

5. Model-plant mismatch detection for the milling circuit

When the parameter φf (see equation (8)), which is an estimate of the

hardness of the ore being fed into the mill, is changed from its nominal value

to some perturbed value in the plant (G) while the nominal value is main-

tained in the model (Ĝ), there is a discrepancy between the actual hardness

of the ore in the mill and the estimate of the hardness. The hardness of the

ore entering the mill is a variable that commonly varies during operation of

the milling circuit.

A discussed in section 2, the hardness of the ore entering the mill affects

the hold-up time of ore in the mill. In the linear model, the hold-up time

is approximately equal to the time constants in the transfer functions of

LOAD/CFF (g21) and LOAD/SFW (g23). It has been shown ([10]) that

the time constant is given by τ = RC where C is the volume of material

inside the mill and R is the inverse of the slurry discharge rate. The relative

uncertainties of the time constants in the linearized transfer function has been

investigated by [10]. The relative uncertainty matrix for the time constants

in the linearized model was found to be:

τij :


18% − 19%

40% − 60%

− − −

 . (28)
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With reference to this result the time constants for the transfer functions

of LOAD/CFF and LOAD/SFW in the plant model are increased by 30%.

The model-plant mismatch detection algorithm is now expected to detect

this parameter mismatch in the perturbed transfer functions.

A simulation run is initially performed with the nominal plant over 5

hours. The model-plant mismatch algorithm correctly identifies no mismatch

as no partial correlation between the residuals and the manipulated variables.

This result is shown in Fig. 5. The model (Ĝ) is then kept constant while

the actual plant in the simulation (G) is perturbed. The time constants are

increased in the transfer function elements g21 as well as g23 and a simulation

run is performed (once again over a period of 5 hours). The model-plant

mismatch detection algorithm is applied and the partial correlation plots

are shown in Fig. 6. The 99 % confidence intervals for the correlations are

shown in blue. For an industrial application the confidence intervals are not

necessarily the best method of judging that significant mismatch is present.

This is because it is often difficult to model the interactions perfectly in

order to identify the correlation free components of each signal. A more

appropriate way is to define a threshold value (e.g. ±0.4) and only if the

correlation exceeds this value is the mismatch judged to be significant.

From Fig. 6 it is seen that the mismatch in both (g21) and (g23) are

correctly detected with clear non-zero correlation. More details about the

models determined in calculating the component of each MV that is uncor-

related with all other MVs can be seen in Appendix A [7].

In order to ensure sufficient excitation in the generation of these results,

which is one of the requirements for applying the MPM detection algorithm
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Figure 5: Partial correlation plots between the MVs and the LOAD residual with no

mismatch
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Figure 6: Partial correlation plots between the MVs and the LOAD residual for time

constant mismatch in g21 and g23
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of [6], the reference value for LOAD was changed from 45% to 50% at time

1 hour. The models Gui and Gej determined by the model-plant mismatch

detection algorithm were based on the output error (OE) structure. The OE

models were both specified with orders equal to 3.

Craig and MacLeod ([10]) reported the relative uncertainty matrix for

the gains in the linearized model to be:

kij :


31% 14% 35%

65% 11% 16%

− − −

 . (29)

From the relative uncertainty matrix it is noted that a the LOAD/CFF trans-

fer function has a relatively large uncertainty. With reference to this result

another simulation run is performed in which the gain of the LOAD/CFF

transfer function is perturbed. The gain of g21 is increased by 50% and the

partial correlation plots are shown in Fig. 7.

From Fig. 7 it is clear that the significant mismatch is correctly identified

to be in channel g21. For this simulation run a reference change was once

again made for the LOAD in order to ensure sufficient excitation. The OE

model structure with order 3 was once again used to determine Gui and Gej .

In practice a set-point change for LOAD is not very realistic. This is

because the LOAD needs to be maintained at a specific value in order to

achieve maximum throughput in the mill. Here the set-point change was

made to ensure sufficient excitation in order to employ the model-plant mis-

match algorithm.

A power peak-seeking throughput optimizer is sometimes employed ([16])

which should ensure sufficient excitation in the LOAD signal. If load set-point
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Figure 7: Partial correlation plots between the MVs and the LOAD residual for gain

mismatch in g21

changes are not common, sufficient excitation might result from parameter

variations. Otherwise the control engineer may have to introduce set-point

changes in the mill load when model-plant mismatch is suspected in order to

generate data for the algorithm.

The presence of large non-stationary disturbances, which may be found

in actual milling circuits, will also affect the accuracy of the MPM detection

algorithm. The way [6] deal with disturbances is by firstly finding the dis-

turbance free components of each signal before applying the MPM detection

algorithm. This method is proven sufficient in the presence of large distur-

bances by [6], and once the disturbance free components of the signals are

known, these may simply be used in the model update algorithm as discussed

next.

Another common occurrence on industrial milling circuits is measurement
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biases. As far as these may be seen as external disturbances they may also

be handled as [6] does with other external disturbances. This is because they

will not be correlated with the set-point changes made to ensure sufficient

excitation.

6. Model update

The next question that arises is regarding the course of action to take once

the model elements containing significant mismatch have been detected. One

logical option is to re-identify the elements containing significant mismatch

via an open-loop step test of the plant. It is however common for at least

one of the model elements to be open-loop unstable which prompts additional

consideration in the experiment design. This drawback can, among others,

be eliminated through the use of a closed-loop identification procedure. The

advantages of using closed-loop identification, as listed by [17], includes a

reduction in the disruption of process operation and eliminating the need for

manual control action.

The use of manual step tests to re-identify the model does require some

effort on the part of the control engineer, but due to safety concerns such a

supervised method is often advisable.

Irrespective of the way in which the new model is found, the objective

is to minimize the magnitude of the residuals produced over the duration of

the experiment. Given that the residual is the difference between the plant

and model output, the modelling objective can be written as

min
Ĝ

∑
k

∣∣∣y(k)− Ĝu(k)
∣∣∣ (30)
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s.t. Ĝ ∈ G (31)

θc(Ĝ) ≤ 0 (32)

k1 , 0 (33)

kf , T (34)

where y(k) and Ĝu(k) (with k ∈ [0, . . . , T ]) are the plant and model outputs

respectively. θc(Ĝ) is the set of inequality constraints on Ĝ (as described

later) and G is the set of allowed model transfer functions. A discussion on

the constraints for the allowed models will be given later in this section. The

sum given in (30) will then tend to zero as Ĝ → G. This statement is how-

ever not free from consideration of disturbances. If unmeasured disturbances

affect the plant output during the model re-identification an incorrect model

could result.

Open and closed-loop model identification is well documented in [18, 19].

These methods can be implemented with the knowledge of the model ele-

ments containing significant mismatch, prompting only the need for partial

re-identification. Another, possibly more intuitive, way of solving equation

(30) is to directly employ a constrained minimization algorithm such as se-

quential quadratic programming [20]. Constrained minimization algorithms

may not be as mathematically robust as open or closed-loop system identifi-

cation techniques, but may be more easily employed with sufficient reliability

if the number of model elements containing mismatch is small.

As open and closed-loop identification is broadly discussed elsewhere

([18, 19]), an explicit constrained minimization algorithm approach is pur-

sued here. Such a solution will explicitly identify the new model based on
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minimizing (30) where the parameters produced by the algorithm depend on

the transfer functions containing mismatch and the structures of these trans-

fer functions. Take for example the first illustration of MPM detection in

the previous section where the time constants of g21 and g23 were increased.

Here both transfer functions are in the form gij =
kij

s+αij
so the minimization

algorithm should produce the values of k21, k23, α21 and α23 such that (30)

is minimized. In the second instance shown, where the gain of g21 was in-

creased, the minimization algorithm need only supply the values of k21 and

α21 that causes (30) to be at a minimum.

Certain constraints on the parameters supplied by the minimization al-

gorithm are imposed to ensure that reasonable results are obtained. When

the parameters for a transfer function containing a time delay have to be

calculated, it is logical to constrain the minimization algorithm to produce

a time delay value that is non-negative. This is because the time delay can

only be equal to or greater than zero. The constraint for the gain can be

given as k∗ · k > 0, where k∗ is the newly identified gain. This constraint

will ensure that the new gain has the same sign as the original gain. This

is done because it is not expected, at least not for this plant, that an input

should suddenly start affecting an output in a different direction. The same

constraint can be defined for time constants as stable poles are not expected

to become unstable.

The overall MPM detection and model re-identification process is shown

in Fig. 8. The detection of significant mismatch is firstly done based on

the partial correlation analysis. Should the model contain significant MPM

the model is re-identified through the model update algorithm. The control
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Figure 8: MPM detection and model re-identification procedure

engineer should then inspect the re-identified model to verify it’s adequacy

before the controller may be redefined with the new model.

The application of the minimization algorithm for partial re-identification

will now be illustrated for the case where the gain of g21 was increased by 50%.

The original transfer function and the new transfer function are respectively

given by (35) and (36) to be

g21 =
7.15× 10−4

s+ 10−6
(35)

g∗21 =
1.073× 10−3

s+ 10−6
. (36)

With the model changed and the controller still defined according to the

23



0 1 2 3 4 5
44

45

46

47

48

49

50

51

Time (hours)

L
O

A
D

 (
%

 F
u

ll)

Figure 9: Controller performance with model-plant mismatch present.

original model, the response to a step in the LOAD is as shown in Fig. 9.

Clearly the mismatch causes deteriorated controller performance as the 2%

settling time has increased to about four and a half hours. Usually a gain

mismatch causes the model predictive controller to have this sluggish type

of response. The form of the initial response depends on whether the gain

was over- or underestimated, and thereafter it usually takes relatively long

to achieve the desired set-point.

Next the sequential quadratic programming algorithm is used to deter-

mine the parameters (k21 and α21) which minimize the difference between

the plant and model outputs (as given by (30)). The parameters obtained

from the minimization algorithm are

k̂∗ = 0.00107; α̂∗ = 1× 10−6. (37)

These values are very close to the actual plant as was shown in (36). Should
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Figure 10: Controller performance with the re-identified model.

the controller now be redefined with the newly identified parameter values,

the step response to a LOAD change is now as shown in Fig. 10. This step

response is very similar to the original nominal performance which was shown

in Fig. 2.

Although this example shows how the automatic model update algorithm

handles a transfer function element that contains large uncertainty, it does

not show the full potential of the algorithm. This is because the algorithm

is basically only required to find the correct gain to minimize (30). A more

stringent test on the algorithm is performed by changing

g11 =
−2.4× 10−4

s+ 0.5882
e−0.0111s (38)

to

g∗11 =
−2.88× 10−4

s+ 0.4706
e−0.0122s (39)

which is a 20% increase in the gain, a 20% decrease in the pole location value
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and a 10% increase in the time delay. The sequential quadratic programming

algorithm is now used to determine the parameters k11, α11 and θ11 which

minimize (30). The result supplied by the algorithm is

k̂∗ = −2.879× 10−4; α̂∗ = 0.4704; θ̂∗ = 0.0121 (40)

which is again very close to the true plant parameters.

Sufficiently exciting signals are once again required for the correct oper-

ation of the re-identification strategy.

7. Conclusion

This paper describes a simulation study of the application of model-plant

mismatch detection and model re-identification to a ROM ore milling circuit

under MPC control. The milling circuit model used is a linear time-invariant

approximation of a fundamental milling circuit model. Model-plant mis-

match, motivated from industrial experiments, is introduced in the model

and its location in the multivariable matrix model is correctly detected. Next

the new model is re-identified by making use of a sequential quadratic pro-

gramming algorithm to explicitly minimize the residuals. For the MPM de-

tection and re-identification strategies to work adequately, sufficiently exited

signals are required – if this does not occur during normal plant operation,

setpoint changes in the relevant outputs may have to be introduced. This

study shows how the re-identification strategy can be automated, but it is not

recommended that this procedure be applied blindly. Due to safety concerns

the process engineer should firstly inspect the re-identified model before the

controller is redefined therewith.
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Appendix A. Input models fit for time constant mismatch detec-

tion

The models used to find the component of each MV that is uncorrelated

with all other MVs in the time constant mismatch detection step are listed

here. They are all in the form

y(t) =

[
B(q)

F (q)

]
u(t− nk) + e(t) (A.1)

with

B(q) = b1 + b2q
−1 + b3q

−2 (A.2)

and

F (q) = 1 + f1q
−1 + f2q

−2 + f3q
−3. (A.3)
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Finding the uncorrelated component of each MV requires fitting two models

to the other MVs. The coefficients obtained when fitting the models are

listed in Table A.1.
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Table A.1: Coefficients for models fit while detecting time constant mismatch in g21 and

g23

Model Coefficients

Gui b1 b2 b3

f1 f2 f3

Gu1,2 0.005194 -0.009707 0.004515

-2.922 2.845 -0.9228

Gu1,3 5.152 -9.321 4.268

-0.7825 0.1088 -0.204

Gu2,1 40.36 -76.64 36.30

-1.539 0.3329 0.2431

Gu2,3 107 -213.3 106.3

-0.9127 0.3225 -0.409

Gu3,1 -0.5847 1.402 -0.7865

-1.692 0.5728 0.144

Gu3,2 -0.01034 0.02483 -0.01447

-2.652 2.308 -0.656
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