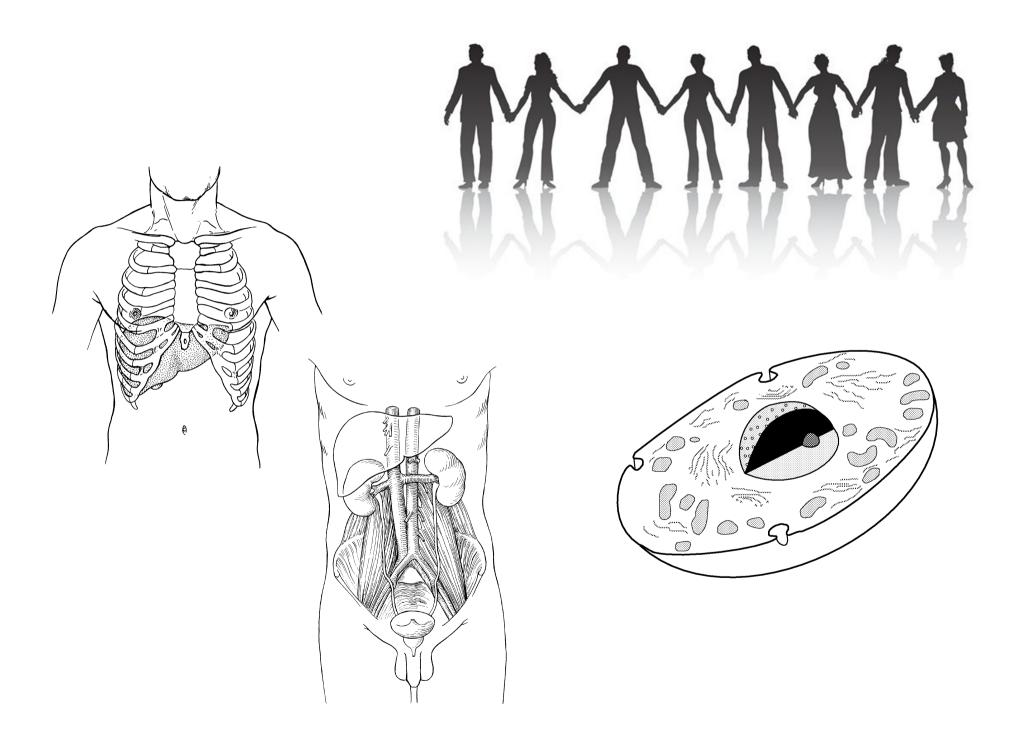


Institute for Cellular and Molecular Medicine (ICMM)

- Initiated in August 2008
- 2011 Faculty Research Theme
- 2012 Funding from UP Executive
- Faculties: HS, NAS, VS, Law, EMS, EBIT, Hum
- 16 groups
 - Pepper group
 - Cell-based therapy
 - Human genome

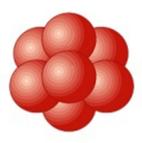
Acknowledgements

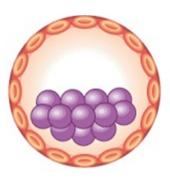
- Funding
 - University of Pretoria
 - National Research Foundation
 - Medical Research Council
 - NHLS Research Trust
 - Ampath Trust


The 2012 Nobel Prize in Physiology or Medicine

For the discovery that mature cells can be reprogrammed to become pluripotent

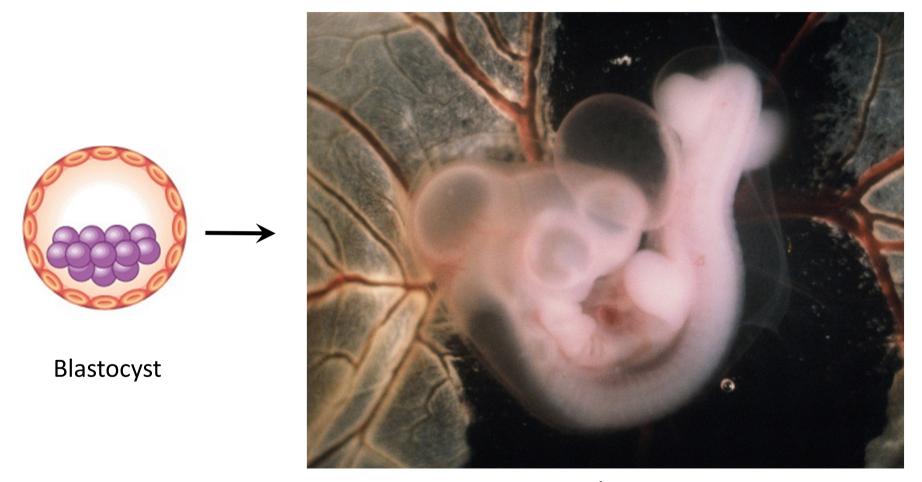
Stem cell principles


- Stem cell definition
- Stem cell differentiation potential
- Induced pluripotent stem cells
- Embryonic stem cells
- Somatic cell nuclear transfer
- Adult stem cells

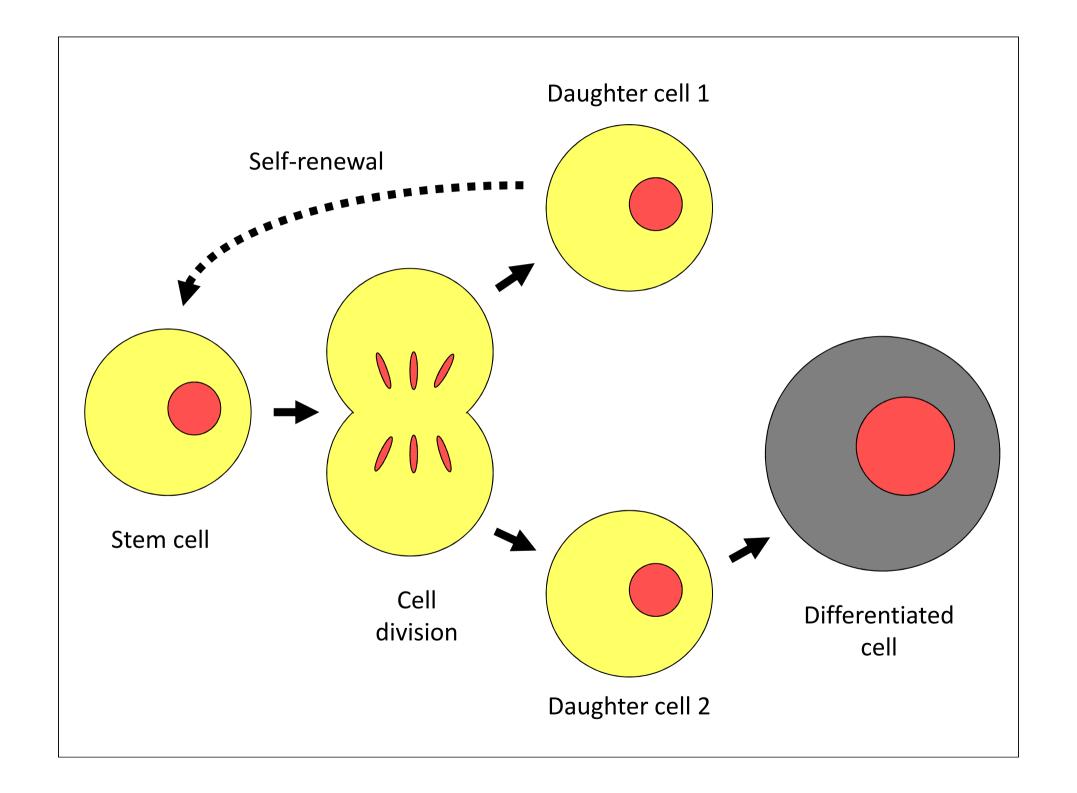

In the beginning...

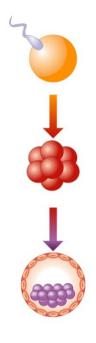
Zygote

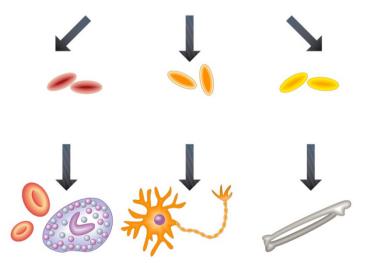
8-cell embryo



Blastocyst





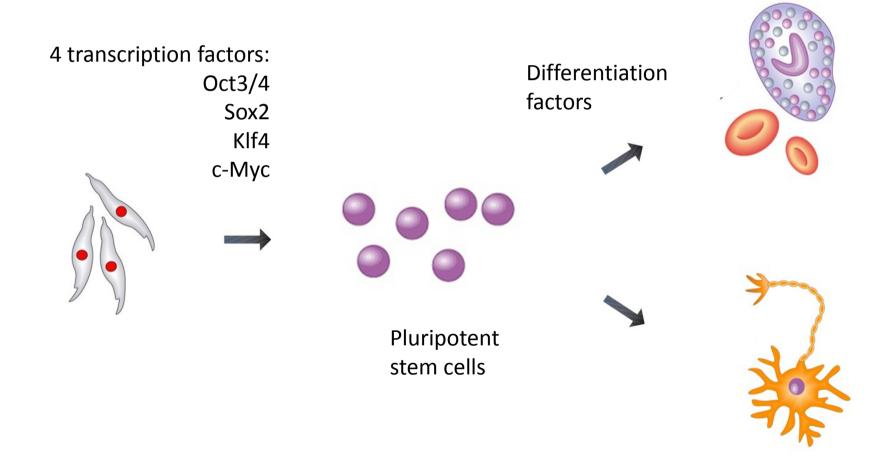


Embryo

Embryo - germ layers: mesoderm, ectoderm, endoderm

Totipotent

- post-fertilization to morula
- all the cells of the human body


Pluripotent

- inner cell mass of the blastocyst
- cells of all three germ layers

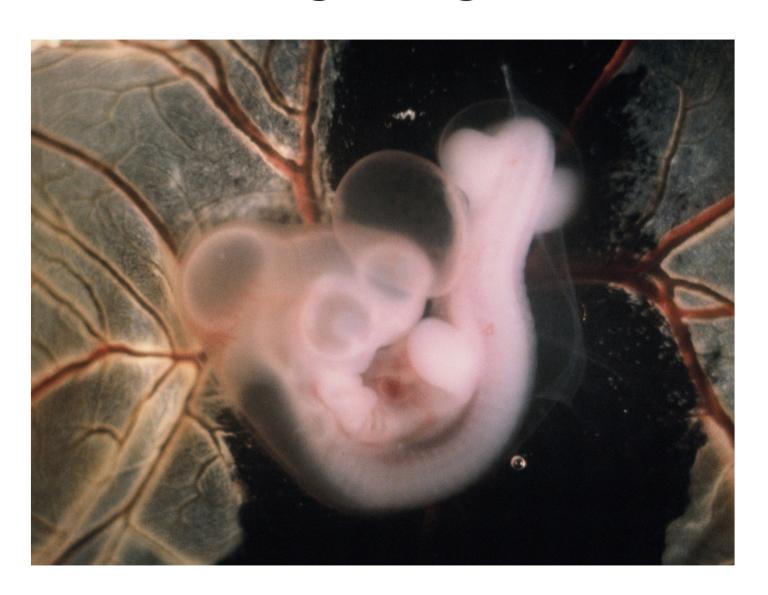
Multipotent

- hematopoietic stem cells neural stem cells mesenchymal stem cells
- various specialized cells in a given tissue

Induced pluripotent stem cells

Induced pluripotent stem (iPS) cells

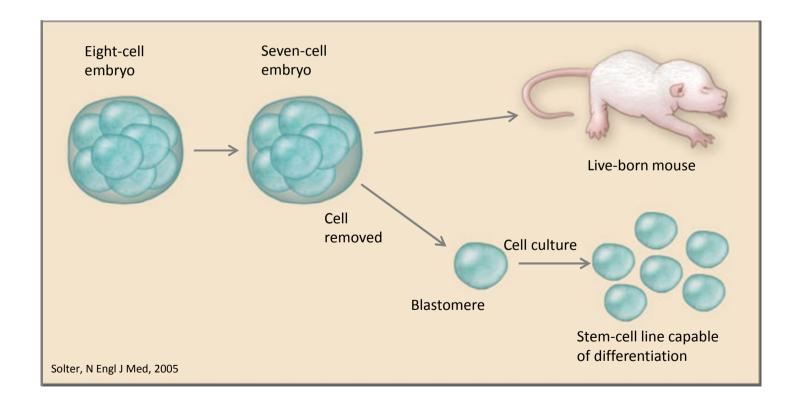
- Somatic cells reprogrammed (dedifferentiated) to a pluripotent state using 4 transcription factors
 - Oct3/4, Sox2, Klf4, and c-Myc
- Done with cells from all 3 germ layers (e.g. fibroblasts, lymphocytes, liver, stomach, pancreatic β cells, neural stem cells, melanocytes, adipose stem cells and keratinocytes)
- Involves demethylation of pluripotency genes
- Sperm and egg cells generated from mouse iPS cells used to generate mouse pups
 - primordial germ cells (precursors to sperm and eggs) generated from human iPS cells derived from human skin


Embryonic stem cells

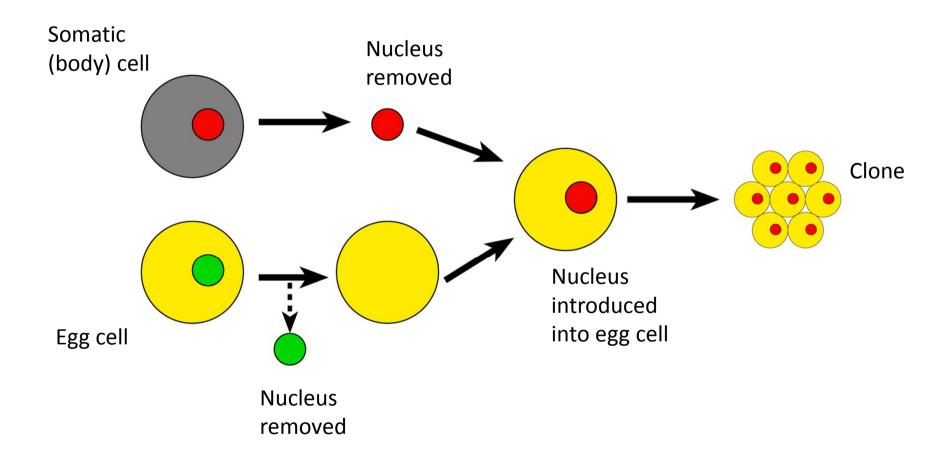
Method of obtaining ES cells:

- Blastocyst
 - 5 day old embryo
 - approx 100 cells
- Remove inner cell mass
- Cultured cells = ES cells

The beginning of life

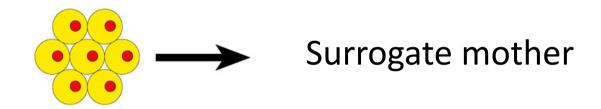


Life begins...

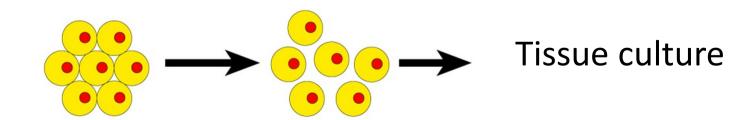

- at the moment of fertilisation
- with the development of the first organ system (heart and blood vessels)
- at the moment of perceived consciousness
- from the moment the foetus is able to survive outside the uterus (22 - 24 weeks)
- •

A solution to the ethical debate?

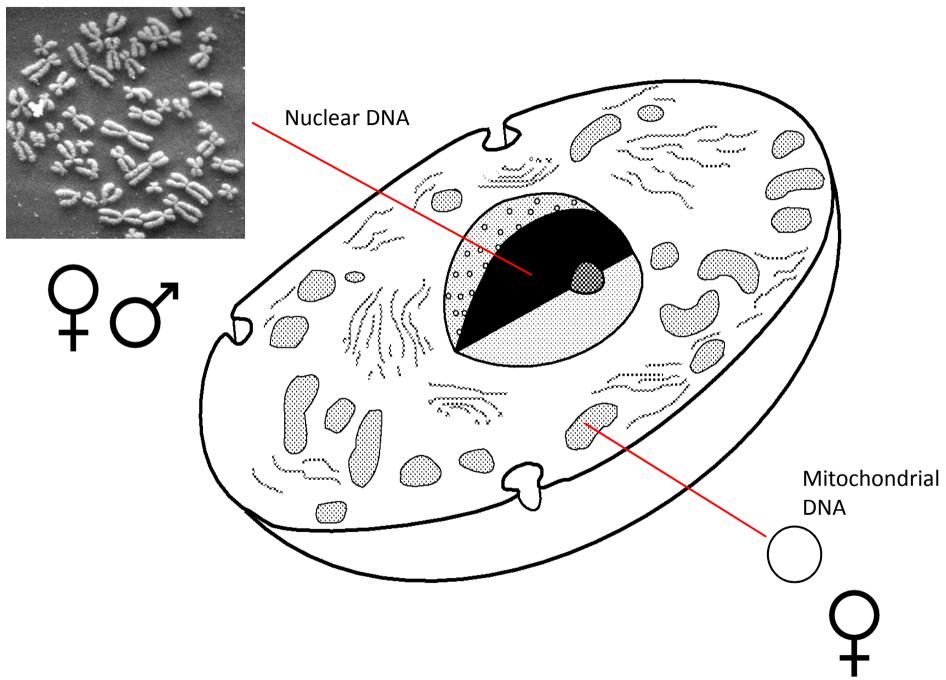
Chung et al., Nature 2006; Klimanskaya et al., Nature 2006

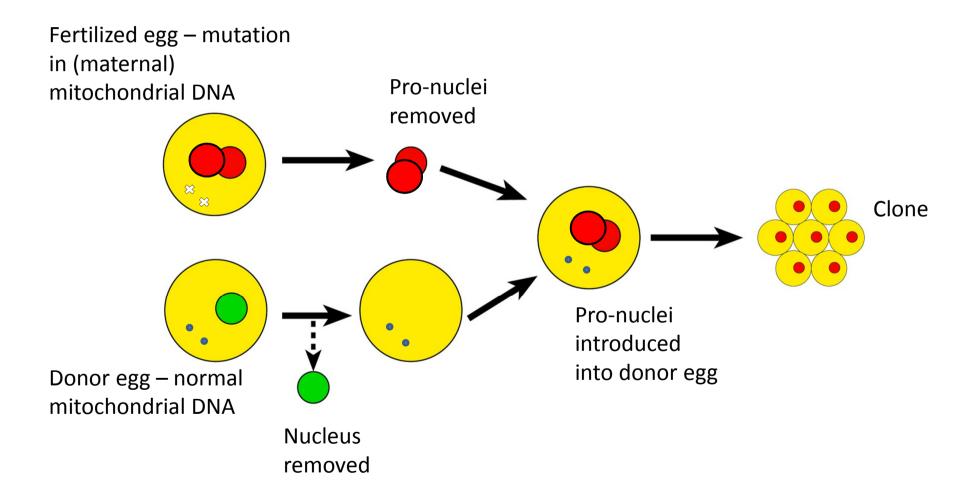


Somatic cell nuclear transfer

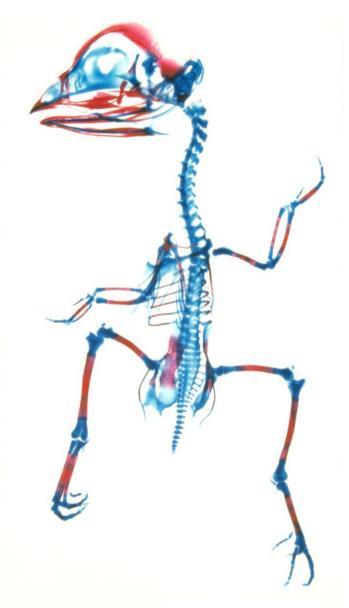


Cloning


Reproductive cloning


Therapeutic cloning

http://missinglink.ucsf.edu/lm/genes_and_genomes/

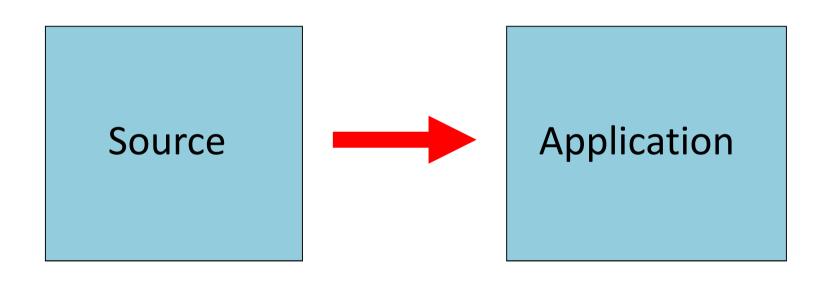


Mitochondrial disorders

Tissue-specific adult stem cells

- bone marrow
- gastrointestinal tract
 - liver, pancreas
- tooth
- skin, hair
- central nervous system
- kidney
- muscle (satellite stem cells)

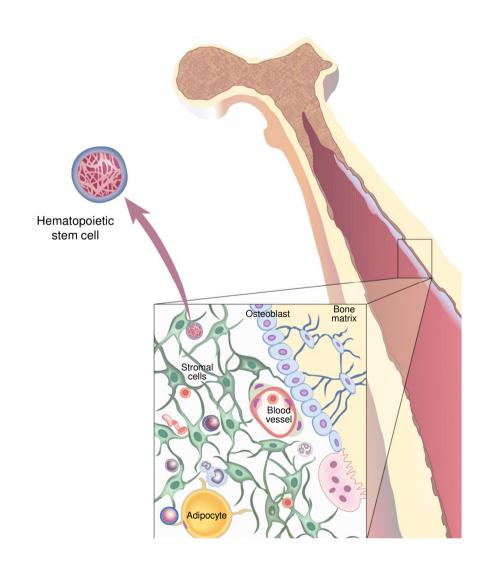
Pluripotent vs. adult stem cells


Pluripotent

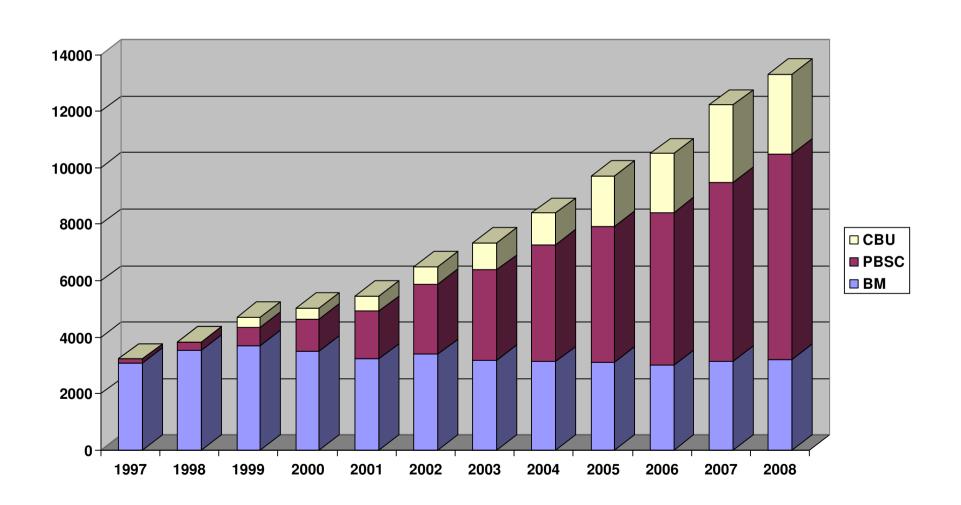
- Differentiation potential = all of the body's cell types
- Ethical issues
- Technically more difficult to obtain
- Potential for tumorigenesis
- Therapeutic value remains to be determined
- Value: understanding disease processes, drug screening

Adult

- Differentiation potential limited to cells of tissue in which they reside
- No ethical issues
- Readily available
- No evidence for tumorigenesis
- Therapeutic value well demonstrated:
 - HSCs for bone marrow transplantation
 - MSCs: approx 200 registered clinical trials


Therapeutic applications

Source

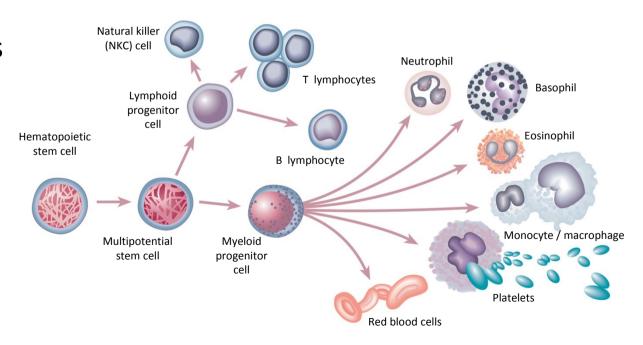

- Current
 - -Bone marrow
 - Peripheral blood
 - -Cord blood

http://www.newbornbabyzone.com/baby-care/caring-for-your-babys-umbilical-cord/

Sources of stem cells for unrelated bone marrow transplantation worldwide

Source

- Future
 - -ES cells
 - -iPS cells
 - Adipose tissue
 - -Other



Application

- Current
 - Bone marrow transplantation
 - Fractures, chronic wounds, burns
- Future
 - Myocardial infarction and heart failure
 - CNS disease (incl. spinal cord injury)
 - Diabetes (beta-cells)
 - Other

Bone marrow transplantation

- Universally employed and approved
- Autologous or allogeneic
- Indications
 - cancer
 - blood disorders
 - genetic disorders

Hematopoietic stem cell transplant – indications

Leukemias

- Acute Leukemia
- Acute Lymphoblastic Leukemia (ALL)
- Acute Myelogenous Leukemia (AML)
- Acute Biphenotypic Leukemia
- Acute Undifferentiated Leukemia
- Chronic Leukemia
- Chronic Myelogenous Leukemia (CML)
- Chronic Lymphocytic Leukemia (CLL)
- Juvenile Chronic Myelogenous Leukemia (JCML)
- Juvenile Myelomonocytic Leukemia (JMML)

Lymphomas

- Hodgkin's Lymphoma
- Non-Hodgkin's Lymphoma Burkitt's Lymphoma

Plasma Cell Disorders

- Multiple Myeloma
- Plasma Cell Leukemia
- Waldenstrom's Macroglobulinemia

Other cancers (Not originating in the blood system)

- Neuroblastoma
- Retinoblastoma

Inherited Red Cell (Erythrocyte) Abnormalities

- Beta Thalassemia Major (also known as Cooley's Anemia)
- Blackfan-Diamond Anemia
- Pure Red Cell Aplasia
- Sickle Cell Disease

Myelodysplastic Syndromes

- Refractory Anemia (RA)
- Refractory Anemia with Ringed Sideroblasts (RARS)
- Refractory Anemia with Excess Blasts (RAEB)
- Refractory Anemia with Excess Blasts in Transformation (RAEB-T)
- Chronic Myelomonocytic Leukemia (CMML)

Other Disorders of Blood Cell Proliferation

- severe Aplastic Anemia
- Congenital Dyserythropoietic Anemia
- Fanconi Anemia (Note: the first cord blood transplant in 1988 was for this disease)
- Paroxysmal Nocturnal Hemoglobinuria (PNH)
- Pure Red Cell Aplasia
- Amegakaryocytosis / Congenital Thrombocytopenia
- Glanzmann Thrombasthenia
- Acute Myelofibrosis
- Agnogenic Myeloid Metaplasia (Myelofibrosis)
- Polycythemia Vera
- Essential Thrombocythemia

Inherited Immune System Disorders

Severe Combined Immunodeficiency (SCID)

- SCID with Adenosine Deaminase Deficiency (ADA-SCID)
- SCID which is X-linked
- SCID with absence of T & B Cells
- SCID with absence of T Cells, Normal B Cells
- Omenn Syndrome

Neutropenias

- Kostmann Syndrome
- Myelokathexis

Other

- Ataxia-Telangiectasia
- Bare Lymphocyte Syndrome
- Common Variable Immunodeficiency
- DiGeorge Syndrome
- Leukocyte Adhesion Deficiency
- Lymphoproliferative Disorders (LPD)
- Lymphoproliferative Disorder, X-linked (also known as Epstein-Barr Virus Susceptibility)
- Wiskott-Aldrich Syndrome

Phagocyte Disorders

- Chediak-Higashi Syndrome
- Chronic Granulomatous Disease
- Neutrophil Actin Deficiency
- Reticular Dysgenesis

Group projects

- Effect of HIV on hematopoiesis in vitro
 - Madelein-Meissner-Roloff (PhD student)
- HSC expansion and engraftment
 - Carlo Jackson (PhD student)
- AML diagnostic microarray
 - Dr Marco Alessandrini (post-doc)
- Leukemia & lymphoma immunophenotyping
 - Dr Chrisna Durandt (clinical research co-ordinator)

Current situation in South Africa

Bone marrow transplantation (BMT)

- practiced successfully for many years
- many South Africans requiring a BMT remain untreated

SA Bone Marrow Registry

- established in 1991
- >65,000 donors registered
- >250 transplants (matched unrelated donor)
- Donors: 25% local; 75% international
- majority of donors are Caucasian

Cord blood banking - public

Donor Patient

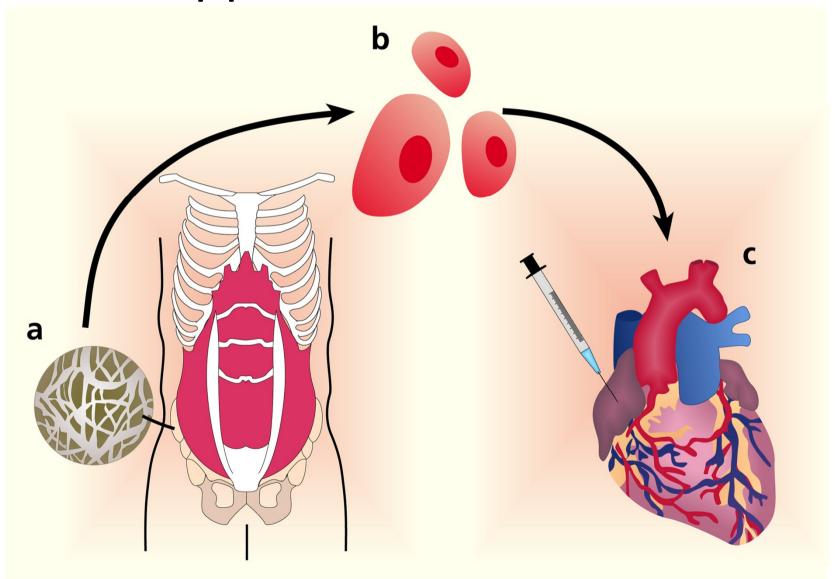
Public UCB Bank

Donation (not renumerated) Anonymous Universal Payment Anonymous Universal

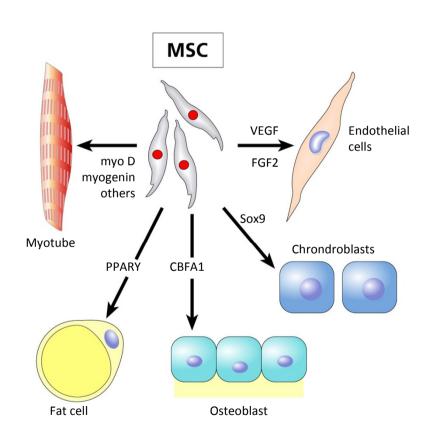
Cord blood banking in SA

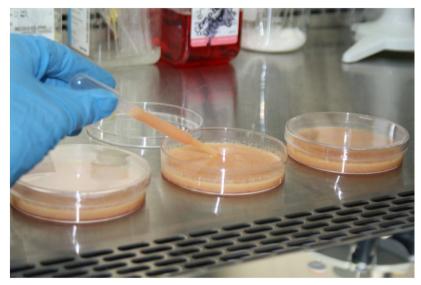
Public cord blood bank

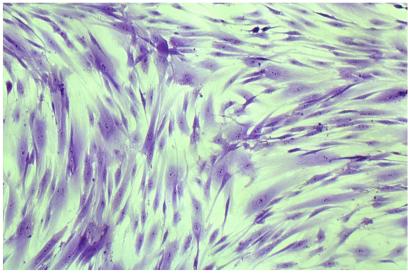
- none at present
- genetically-diverse population
- feasibility study
 - Mandated by DoH and SANBS
 - Funded by the MRC


Private cord blood banks

• 2 in South Africa


Public bank feasibility study


- Survey of public opinion
 - Madelein Meissner-Roloff (PhD student)
- Composition of the bank
 - Juanita Mellet (MSc student)
- HIV testing
 - Madelein Meissner-Roloff (PhD student)
- Flow cytometry
 - Dr Chrisna Durandt (clinical research co-ordinator)
- Economic model (incl. sustainability)
 - Dr Marco Alessandrini (post-doc)
 - Isabella Rangaka (PhD student)


Future applications

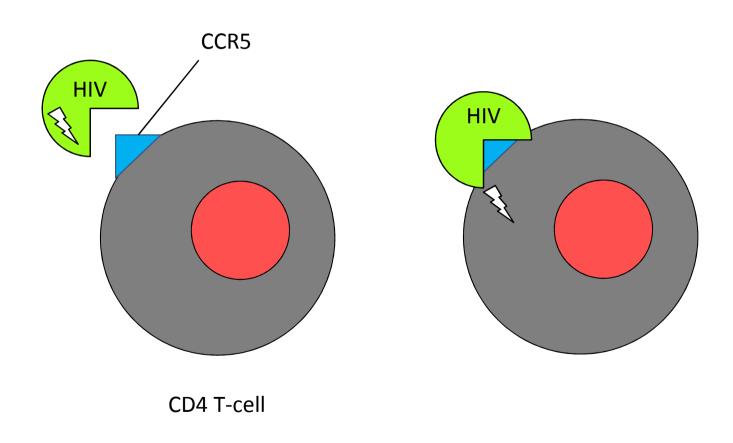
Mesenchymal stem cells

MSC clinical trials

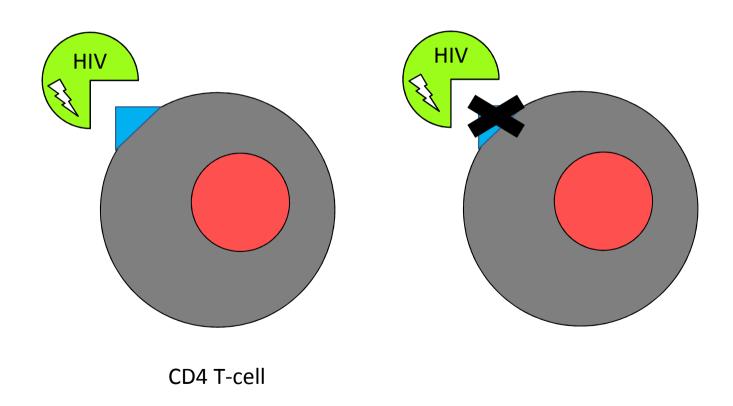
- ClinicalTrials.gov
- December 2011
 - 188 registered MSC clinical trials
 - 80 completed
 - 108 on-going
- Almost 100 new trials initiated in 2010 and 2011 alone

MSC clinical trials: indications

Indications (72 in total)	Completed*	Ongoing	Total
Diabetes (Type 1 and 2)	7	10	17
Liver cirrhosis	7	6	13
Graft vs host disease	7	5	12
Osteoarthritis	4	7	11
Myocardial infarction	3	6	9
Crohn's disease	2	5	7
Ischaemic stroke	0	7	7
Spinal cord injury	2	4	6
Heart failure	3	3	6
Multiple sclerosis	1	6	6
Organ transplantation	2	4	6
Other (4 or less)	42	45	88 *Prior to 2012

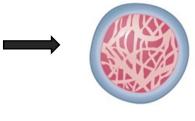

Group projects - MSCs

- Routine isolation and characterization
- Homing to sites of injury/inflammation
- Effect of ROS and hypoxia
- Clean room facility and clinical trials
- Team:
 - Dr Marnie Potgieter (post-doc)
 - Dr Marco Alessandrini (post-doc)
 - Dr Chrisna Durandt (clinical research co-ordinator)
 - Fiona van Vollenstee (MSc student)
 - Karlien Kallmeyer (MSc student)
 - Danielle de Villiers (MSc student)
 - Carla Dessels (MSc student)
 - Candice Honing (laboratory assistant)


Stem cells in SA

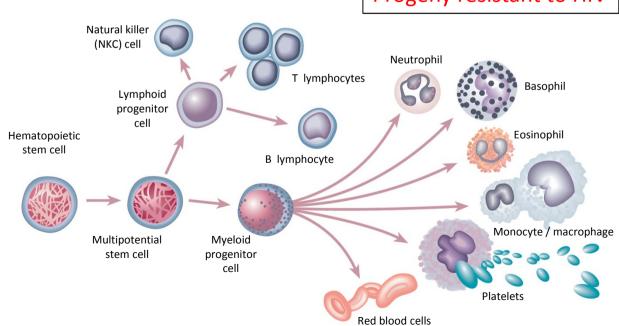
- Stem cell therapy and research are in their infancy in South Africa
 - potential to alleviate heavy burden of disease
 - communicable and non-communicable
- Role in cancer, hematological and inherited metabolic disorders well established but unable to meet demand
- Role in heart disease, spinal cord injury and others being assessed globally but not in SA
- Role in infectious diseases totally unexplored

Gene-therapy for HIV



Gene-therapy for HIV

Harvest haematopoietic stem cells


HIV-resistant hematopoietic stem cells

CCR5 gene therapy

Progeny resistant to HIV

Transplant HIV-resistant hematopoietic stem cells

HIV gene-therapy team

- University of Pretoria
 - Renier Myburgh (PhD student)
 - Carlo Jackson (PhD student)
 - Madelein Meissner-Roloff (PhD student)
 - Fatima Barmania (MSc student)
- University of Geneva
 - Prof Karl-Heinz Krause
 - Dr Patrick Salmon
- University of Zurich
 - Prof Roberto Speck
 - Renier Myburgh (PhD student)

Human tissue legislation in South Africa

- Legislation incomplete and flawed
 - increasingly litigious society
 - importance of global standards
- Regulations
 - Redundancy/overlap
 - Lack of regulations
 - transplantation
 - cell-based therapy
- Definitions
 - not harmonized (NHA and regulations)

Regulations: definitions

- Cell: "the basic structural and functional unit in people and all living things and is a small container of chemical and water wrapped in a membrane"
- Transgenic cells: cells derived from a species other than human
 - universally accepted definition of cells derived from other species is "xenogeneic"

Human tissue legislation: towards self-regulation

Area	Professional body	Guidelines		
Transplantation	Southern African Transplantation	Yes		
	Society (SATS)	http://www.sats.org.za/Guidelines.asp		
Assisted reproductive	Southern African Society of	Yes		
technology	Reproductive Medicine and	http://www.fertilitysa.org.za/Treatment		
	Gynaecological Endoscopy (SASREG)	Guidelines/ReproductiveMedicine.asp		
Blood and blood products	National Blood Committee	Yes		
	(not in operation since 2008)	SANBS and WPBTS websites & other		
Cell-based therapy	South African Stem Cell	Yes; none on website		
	Transplantation Society (SASCTS)	http://www.stemcell.org.za/index.htm		
Genetic Services	Southern African Society of Human	Yes		
	Genetics (SAHGS)	http://www.sashg.org/documents.htm		
Tissue banks	South African Tissue Bank Association	Newly formed; in progress		
	(SATIBA)			
Forensic pathology and	National Forensic Pathology Services	Yes		
medicine Committee		No website		
	National Clinical Forensic Committee	In progress		

Why legislation

Reason no. 1

- Work involving material that will be (re)introduced into patients must be conducted in an accredited institution under strictly controlled conditions
 - to maximize normal structure and function of the material that is to be (re)introduced
 - to avoid the unintentional transfer into patients of harmful material (infectious and otherwise)

Why legislation

Reason no. 2

- To ensure that pre-clinical studies and well controlled clinical trials have been conducted prior to introduction of cells into patients
 - to ensure that the purported therapeutic effect is real
 - to ensure that there are no serious side effects

Amariglio N. et al. PLoS Med, 2009

- Patient: 9 yr old boy with ataxia telangectasia
- Parents took him to Moscow
- 8-week human neural stem cells (aborted foetus?) harvested and expanded in culture for 2 weeks
- 50-100 million cells administered via intracerebellar and intrathecal injection
- 3 treatments over several years 2001/2/4
- 2005 recurrent headaches (Tel-Aviv)
- Developed a multifocal brain tumour
 - 2006: tumor removed surgically from cauda equina nerve roots
 - 2008: infratentorial tumour had doubled in mass
 - Patient stable and treated conservatively

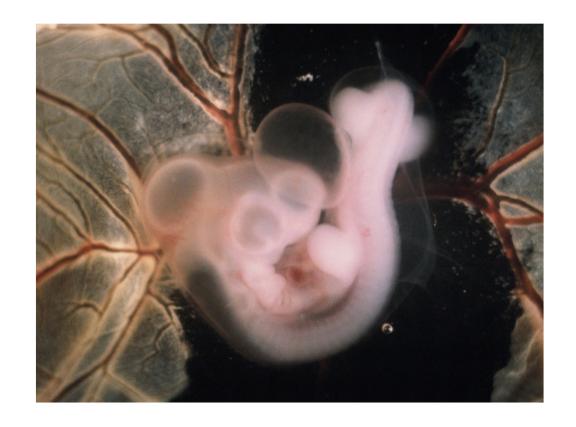
Why legislation

Reason no. 3

 The absence of regulations permits (and even encourages) the emergence of medicallyunsound and unethical practices that may be associated with the exploitation of emotionally vulnerable patients

"Stem cells" for spinal cord injury

Melanie Skeen – MCs student


Patient Level of injury	Nature of stem cells Route of administration	Time after injury to Rx Type of injury	Treatment location	Cost Treatment (stem cells)	Travel and accomm.
Male, 47 yr T7 para	Autologous LP	10 mo Gunshot	India	R 231 000	R 36 000
Male, 32 yr T1 quad	Sheep SC (weekly x 6 mo) Orally (tds x 6 mo)	8 yr Gunshot	SA (Bloemfontein)	0	0
Male, 35 yr T8 para	Rabbit Subdural during spinal surgery	14 d Gunshot	Cells from Germany Given in SA at the time of surgery	R 200 000	0
Female, 38 yr C6/7 incomplete	Rabbit SC and LP	1 yr MVA	Germany	R 169 000 R 80 000	R 89 000
Male, 34 yr Locked-in syndrome	Rabbit SC and LP	3,5 and 5,5 yr MVA followed by CVA	Germany and SA	R 174 000 First procedure in Germany	R 54 000
Male, 34 yr C4/5 quad	Rabbit SC and LP	6 yr Fall	Germany	R 179 000 R 65 000	R 114 320
Female, 43 yr C5/6 incomplete	Sheep IM back or neck (x 8 mo)	7 yr MVA	SA (Bloemfontein)	R 8 000 (R 1 000 per treatment)	R 11 200
Male, 38 yr C6/7 quad	? type (not autologous) IV	27 mo MVA	Netherlands	R 142 000 R 76 000	R 66 000

Current reality vs. future promise

- Currently only a few well-established indications for stem cell therapy
- Future applications provide a great source of hope for many patients
 - exploitation of emotionally-vulnerable patients
- Ethical considerations in pluripotent cells

... it is tempting to wonder if this twisted sugar string of purine and pyrimidine base beads is, in fact, God James Watson

