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Abstract We investigate the zeros of a family of hypergeometric polynomials
Mn(x;β, c) = (β)n 2F1(−n,−x;β; 1 − 1

c ), n ∈ N, known as Meixner polyno-
mials, that are orthogonal on (0,∞) with respect to a discrete measure for
β > 0 and 0 < c < 1. When β = −N , N ∈ N and c = p

p−1 , the polynomials

Kn(x; p,N) = (−N)n 2F1(−n,−x;−N ; 1
p ), n = 0, 1, . . . N , 0 < p < 1 are re-

ferred to as Krawtchouk polynomials. We prove results for the zero location
of the orthogonal polynomials Mn(x;β, c), c < 0 and n < 1 − β, the quasi-
orthogonal polynomials Mn(x;β, c), −k < β < −k + 1, k = 1, . . . , n − 1 and
0 < c < 1 or c > 1, as well as the polynomials Kn(x; p,N) with non-Hermitian
orthogonality for 0 < p < 1 and n = N + 1, N + 2, . . . . We also show that the
polynomials Mn(x;β, c), β ∈ R are real-rooted when c→ 0.
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1 Introduction

Polynomials that are real-rooted are of interest in various branches of math-
ematics, including combinatorics and approximation theory. Real-rootedness
is used to prove the log-concavity and unimodality of the sequence of coeffi-
cients of a polynomial which otherwise demands cumbersome combinatorial
manipulations (see e.g. [33] and [7]) and is useful in establishing convergence
properties of rational approximants (cf. [16]).

The real-rootedness of a given polynomial is a classical problem and various
tools are available to prove that the zeros are real, for example, in [6] and
[17], Pólya frequency sequences are used to show that some hypergeometric
polynomials have only real roots. One of the standard ways to prove real-
rootedness of polynomials, is to use their relation to orthogonal polynomials.

A sequence of polynomials {Pn}Nn=0, N ∈ N∪ {∞} is orthogonal with respect
to some positive Borel measure dφ, if∫

S

Pn(x)Pm(x) dφ(x) = d 2
n δmn, m, n = 0, 1, . . . N (1)

where S is the support of the measure and δmn is Kronecker’s symbol. It is a
well-known classical result that the n zeros of Pn are real, distinct and lie in
the convex hull of supp(φ) (cf. [35]).

If the measure dφ is discrete and (ρi) are the values of the weight at the distinct
points {xi}N−1i=0 , then (1) becomes (cf. [5])

N−1∑
i=0

Pn(xi)Pm(xi) ρi = d 2
n δmn, m, n = 0, 1, . . . N

and the sequence {Pn}Nn=0 is discrete orthogonal.

The classical orthogonal polynomials of a discrete variable are used exten-
sively and have many applications in various fields including combinatorial
analysis, theoretical and mathematical physics, group representation theory
and stochastic processes. For example, Meixner polynomials have been used
to analyse discrete stochastic processes in the context of spectral analysis in
the Laplace domain (cf. [18]) and close relationships have been found link-
ing generalised spherical harmonics for SU(2) with a special class of Meixner
polynomials known as Krawtchouk polynomials [25].

In this paper we make a comprehensive study of the zero location of Meixner
and Krawtchouk polynomials, in particular for parameter values where (some
of) the zeros are real.

Meixner polynomials are defined in terms of the 2F1 hypergeometric function
(cf. [24, (9.10.1)])

Mn(x;β, c) = (β)n 2F1

(
−n,−x;β; 1− 1

c

)
= (β)n

n∑
k=0

(−n)k(−x)k(1− 1
c )k

(β)kk!
, β, c ∈ R, c 6= 0 (2)
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where β 6= −1,−2, . . . ,−n+ 1 and ( )n is Pochhammer’s symbol defined by

(α)n = (α)(α+ 1).....(α+ n− 1) for n ≥ 1

(α)0 = 1 when α 6= 0.

The sequence {Mn(x;β, c)}∞n=0 satisfies the discrete orthogonality relation (cf.
[24, (9.10.2)])

∞∑
x=0

cx(β)x
x!

Mm(x;β, c)Mn(x;β, c) =
(β)nn!

cn(1− c)β
δmn (3)

when 0 < c < 1 and β > 0, and hence the zeros are real, distinct and lie in
(0,∞) for these values of the parameters β and c. It can also be shown that,
for the same parameter values, the Meixner polynomials have a non-standard
orthogonality property defined in terms of a discrete inner product involving
difference operators (cf. [1]).

When c > 1 and β > 0 the orthogonality relation (3) can be written as (cf.
[10, p.177 (3.7)])

∞∑
k=0

(β)k
ckk!

Mm(−k − β;β, c)Mn(−k − β;β, c) =
(β)nc

βn!

cn(c− 1)β
δmn

by an application of the Pfaff-Kummer transformation (cf. [24, (1.7.2)]) and
therefore the zeros of the polynomials {Mn(x;β, c)}∞n=0 are distinct and in
(−∞,−β).

A non-Hermitian orthogonality with respect to a complex weight function for
Meixner polynomials Mn(x;β, c) when β, c ∈ C, c /∈ [0,∞) and β /∈ Z− is
discussed in [12, Proposition 9]. The standard orthogonality for a finite number
of Meixner polynomials Mn(x;β, c) when c < 0 and β is equal to a negative
integer, say β = −N , N ∈ N is that of the Krawtchouk polynomials defined
by (cf. [24, (9.11.1)])

Kn(x; p,N) = (−N)n 2F1

(
−n,−x;−N ;

1

p

)
, n = 0, 1, . . . , N. (4)

The orthogonality relation for Krawtchouk polynomials is given by

N∑
x=0

w(x; p,N)Km(x; p,N)Kn(x; p,N) = 0

when m < n ≤ N ; m,n,N ∈ N and 0 < p < 1 where

w(x; p,N) =

(
N

x

)
px (1− p)N−x

is positive at the mass points x = 0, 1, . . . , N of the discrete measure. This
implies that for 0 < p < 1 and n ≤ N , n,N ∈ N, the zeros of Kn(x; p,N) are
real, distinct and in the interval (0, N). Furthermore, by an argument due to L.
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Fejér there is at most one zero of Kn(x; p,N) in between any two consecutive
mass points (cf. [22]) and in the particular case where n = N , the zeros of
Kn(x; p, n), denoted by xi, i = 1, 2, . . . , n in ascending order, interlace with
the mass points as follows

0 < x1 < 1 < x2 < 2 < · · · < xn < n. (5)

The zero asymptotics of normalised Krawtchouk polynomials when the ratio of
parameter n/N → α as n, N →∞ was investigated in [14] and [15] by finding
the support and density of the constrained extremal measure for all possible
values of the parameter α and the asymptotic zero distribution of Meixner
polynomials has also been studied by various authors (cf. [2], [21] and [26]).
The distribution of the zeros of multiple Meixner polynomials is discussed in
[32].

Since (β + k)n−k =
(β)n
(β)k

, (4) can be rewritten as

Kn(x; p,−β) =

n∑
k=0

(−n)k(−x)k(β + k)n−k
k!pk

(6)

which is valid for every n and can be used to define Krawtchouk polynomials
for any n ∈ N and β ∈ R.

For β 6= 0,−1, . . . , 1− n we obtain

Mn(x;β, c) = Kn

(
x;

c

c− 1
,−β

)
(7)

= (β)n 2F1

(
−n,−x;β; 1− 1

c

)
= (β)n

(
1

c

)n
2F1 (−n, x+ β;β; 1− c) (cf. [24, (1.7.2)]) (8)

=

(
1

c

)n
Mn

(
−x− β;β,

1

c

)
, (9)

a general symmetry property of the Meixner polynomials, since by continuity
it holds for β ∈ R. Special cases of this symmetry property were proved for
β = N , N ∈ N and x = 0, . . . , N (cf. [9], [20]) using the generating function
for Krawtchouk polynomials (cf. [24]) and for x = 0, . . . , n in [10].

The polynomials Mn(x;β, c) have the standard orthogonality of Meixner and
Krawtchouk polynomials for the parameter ranges

0 < c < 1, β > 0, n = 0, 1, 2, . . . ;
c > 1, β > 0, n = 0, 1, 2, . . . and
c < 0, β = −N , N ∈ N, n = 0, 1, 2 . . . N ,

hence our discussion will focus on the zeros of polynomials Mn(x;β, c) for
parameter values
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(i) c < 0, β < 0, n < 1− β, n ∈ N;
(ii) 0 < c < 1, β < 0, n ∈ N;
(iii) c > 1, β < 0, n ∈ N;
(iv) c < 0, β = −N , n = N + 1, N + 2, . . . ;
(v) c < 0, β > 0, n ∈ N and

(vi) c→ 0, β ∈ R, n ∈ N.

We begin with case (i) in Section 2 where we extend the conclusion following
from the discrete orthogonality of Krawtchouk polynomials Kn(x; p,N) for
integer values of the parameter N , N + 1 > n, 0 < p < 1 to prove that, for
c = p

p−1 , the zeros of the polynomials Mn(x;β, c) are real, distinct and lie in

the interval (0,−β) for all real values of the parameter β, n < 1−β and c < 0.

In Section 3 we consider cases (ii) and (iii), proving that the Meixner poly-
nomials Mn(x;β, c), are quasi-orthogonal of order k for −k < β < −k + 1,
k = 1, . . . , n− 1 and 0 < c < 1 or c > 1.

We discuss case (iv) and (v) in Section 4. Results obtained in [3], [4], [19],
[34] and [35] for the zeros of Krawtchouk polynomials Kn(x; p,N), 0 < p < 1
of degree n = N + 1, are extended to polynomials of degree n = N + 2 and
n = N + 3. We make use of the product decomposition (cf. [12])

Kn(x; p,N) = KN+1(x; p,N)Mn−N−1

(
x−N − 1;N + 2,

p

p− 1

)
(10)

for p 6= 0, 1, n > N ∈ N which also shows that for case (iv) it suffices to study
polynomials Mn(x;N, c) for c < 0, N = 1, 2, . . . (case (v) for integer values of
β).

In the last section we prove that the polynomials {Mn(x;β, c)}∞n=0 are real-
rooted for all β ∈ R when c→ 0 (case (vi)).

We observe that for the special case when c→∞, the polynomials Mn(x;β, c)
tend to

(β)n 2F1(−n,−x;β; 1) = (x+ β)(x+ β + 1).....(x+ β + n− 1)

which vanishes when x = −β,−β − 1, . . . ,−β − n + 1, whereas when c → 1
the polynomial Mn(x;β, c) tends to

(β)n 2F1(−n,−x;β; 0) = (β)n

and has n zeros at infinity if it is considered as a polynomial of degree n in x
(cf. [35, (6.72.3)]).

2 The zeros of Mn(x;β, c), c < 0 and n < 1− β

The three term recurrence relation (cf. [24, (9.10.3)]) for the Meixner polyno-
mials is

xMn(x;β, c) = AnMn+1(x;β, c) +BnMn(x;β, c) + CnMn−1(x;β, c). (11)



6 A Jooste et al.

where An = c
c−1 and Cn = n(β+n−1)

c−1 . This relation holds true for all β, c ∈
R, c 6= 0, 1 and n ∈ N, because it follows from a contiguous relation for
hypergeometric functions (cf. [31, p.71 (6)]). For the particular case when
β, c < 0, we will have An−1Cn > 0 when n < 1− β.
It follows from a theorem often attributed to Favard (cf. [10]) that there is at
least one positive measure dα(x) so that, for β, c < 0∫ ∞

−∞
Mn(x;β, c)Mm(x;β, c)dα(x) = 0, m 6= n, n = 0, 1, . . . ,−bβc

and hence {Mn(x;β, c)}−bβcn=0 has n real, distinct zeros when β, c < 0. However,
the set containing the real zeros does not follow immediately.

We prove that the zeros of Mn(x;β, c) for n < 1− β, β, c < 0 are in (0,−β),
by using a generalised Sturmian sequence argument applied to solutions of
difference equations (cf. [30]), as was done in [28] for Hahn polynomials. We
begin by proving that if r denotes a zero of Mn(x;β, c) in (0,−β), then r − 1
and r+ 1 cannot be zeros of Mn(x;β, c) and, in addition, there will be an odd
number of zeros of Mn(x;β, c) in the interval (r − 1, r + 1).

Lemma 1 Let β ∈ R, n ∈ N, n < 1−β and c < 0. If r is a zero of Mn(x;β, c)
and r ∈ (0,−β), then Mn(r − 1;β, c)Mn(r + 1;β, c) < 0.

Proof Let β ∈ R, n < 1 − β and c < 0. Consider the difference equation (cf.
[24, (9.10.5)])

A(x)Mn(x+ 1;β, c) + C(x)Mn(x− 1;β, c) = B(x)Mn(x;β, c) (12)

where A(x) = c(x + β), B(x) = n(c − 1) + x + (x + β)c and C(x) = x. Note
that A(x) > 0 and C(x) > 0 when x ∈ (0,−β) and c < 0.

Suppose r is a zero of Mn(x;β, c) in the interval (0,−β), then

A(r)Mn(r + 1;β, c) + C(r)Mn(r − 1;β, c) = 0. (13)

Assume that
Mn(r + 1;β, c) = 0. (14)

Letting x = r+ 1 in (12) we obtain A(r+ 1)Mn(r+ 2;β, c) = 0 and if r+ 1 ∈
(0,−β), it follows that A(r+ 1) > 0 and Mn(r+ 2;β, c) = 0. By repeating this
argument we can prove that

Mn(r + i;β, c) = 0 for all i such that 0 < r + i− 1 < −β. (15)

Under our assumption (14), it also follows from equation (13) that
C(r)Mn(r − 1;β, c) = 0 if r ∈ (0,−β) and since C(r) > 0 for these values of
r, we have that Mn(r − 1;β, c) = 0. In the same way as before we can prove
that

Mn(r − j;β, c) = 0 for all j such that 0 < r − j + 1 < −β. (16)

In short, it follows from results (15) and (16) that Mn(x;β, c) has as zeros all
numbers r+ i, i ∈ Z with −1 < r+ i < 1−β. This means that Mn(x;β, c) has
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a total of at most b1− β − (−1)c = 1 + b1− βc ≥ n+ 1 > n zeros unless both
β and r are integers. In this case Mn(x;β, c) has 1−β− (−1)− 1 = 1−β > n
zeros. In both cases, the number of zeros is greater than the degree of the
polynomial and we have a contradiction. This means Mn(r + 1;β, c) 6= 0.

The proof that Mn(r − 1;β, c) 6= 0 is analogous. Now (13) implies that

Mn(r + 1;β, c) = −C(r)

A(r)
Mn(r − 1;β, c) and clearly Mn(r + 1;β, c) and

Mn(r − 1;β, c) differ in sign. ut

Theorem 2 Let n be a positive integer. For any real number β, n < 1 − β,
and c < 0, the zeros of Mn(x;β, c) lie in the open interval (0,−β).

Proof Let n < 1− β, c < 0 and let n and N be integers, such that N = d−βe
where dae denotes the least integer larger than or equal to a. In the sequence

Mn(0;β, c),Mn(1;β, c), ......,Mn(N ;β, c) (17)

each term can be considered as a polynomial function of the parameter β with
c < 0 fixed. When a numerical value is assigned to β, we denote the number
of variations in sign in the resulting sequence by V (β). We want to determine
V (β) for N − 1 < −β ≤ N.
When −β = N , it follows from (5) and (7) that the sequence of polynomials
in (17) will have n sign changes since Kn(x; c

c−1 , N) is orthogonal for c < 0.
This means that V (−N) = n.

If −β is assigned any value in the interval (N − 1, N ], then Lemma 1 implies
that in the resulting sequence

Mn(0;β, c),Mn(1;β, c), ......,Mn(N ;β, c)

no two consecutive terms are zero and also that if Mn(i;β, c) = 0 for i =
1, 2, . . . N − 1, then the two adjacent terms: Mn(i− 1;β, c) and Mn(i+ 1;β, c)
differ in sign. Moreover, it follows directly from (2) that

Mn(0;β, c) = (β)n (18)

and the first term can never be zero for −β in the interval (N − 1, N ]. The
last term does not change sign on (N − 1, N ] since by (8)

Mn(N ;β, c) = (β)n

(
1

c

)n n∑
i=0

(−n)i(β +N)i(1− c)i

(β)ii!
> 0

for all −β ∈ (N − 1, N ].

These conditions are sufficient to ensure that the sequence (17) forms a gener-
alised Sturmian sequence and therefore V (β) remains constant as −β increases
through the interval (N − 1, N ]. Hence V (β) = n for all −β ∈ (N − 1, N ].

Thus for n < 1− β, Mn(x;β, c) changes sign n times for x in (0, N) and since
the degree is n we conclude that Mn(x;β, c) has n distinct roots in (0, N).

If r is a root of Mn(x;β, c), then 0 < r < N and it follows from relation (9)
that −β − r will be a zero of Mn(x;β, 1c ) with 0 < −β − r < N , i.e. r < −β.
We conclude that the zeros of Mn(x;β, c) are in the open interval (0,−β). ut



8 A Jooste et al.

3 Quasi-orthogonality of Mn(x;β, c), β < 0 and 0 < c < 1 or
β < 0 and c > 1

A polynomial Pn of exact degree n ≥ r, is quasi-orthogonal of order r on [a, b]
with respect to a weight function w(x) > 0, if (cf. [8, p.159])∫ b

a

xjPn(x)w(x)dx

{
= 0, for j = 0, 1, . . . , n− r − 1

6= 0, for j = n− r.

A more general definition of quasi-orthogonality is given in [10, p.64] for order
1 and in [11] for any order. We say that a polynomial Pn of exact degree n ≥ r,
n = 0, 1, . . . , N, where N may be infinite, is discrete quasi-orthogonal of order
r with ρi being the values of the weight at the points xi, i = 0, 1, . . . , N − 1, if

N−1∑
i=0

(xi)
jPn(xi)ρi

{
= 0, for j = 0, 1, . . . , n− r − 1

6= 0, for j = n− r.

The Meixner polynomials Mn(x;β, c) are orthogonal on (0,∞) for 0 < c < 1,
β > 0 and as β decreases below 0, the zeros of Mn(x;β, c) depart from the
interval of orthogonality (0,∞). We prove the quasi-orthogonality of these
polynomials in the following theorem.

Theorem 3 The polynomials Mn(x;β − k, c) with 0 < c < 1, 0 < β < 1 and
k = 1, 2, . . . , n − 1 are quasi-orthogonal of order k with respect to the weight

function
cx(β)x
x!

on (0,∞).

Proof The recurrence relation (cf. [31, p.71 (2)])

Mn(x;β, c) = nMn−1(x;β, c) +Mn(x;β − 1, c) (19)

shows thatMn(x;β−k, c) can be expressed as a linear combination ofMn(x;β, c),
Mn−1(x;β, c), . . . ,Mn−k(x;β, c) and, since β > 0, it follows from (3) that

∞∑
x=0

xjMn(x;β − k, c)c
x(β)x
x!

= 0 for j = 0, 1, . . . , n− k − 1.

ut

Remark 4 By a change of variable, the result in Theorem 3 can be written
as that the polynomials Mn(x;β, c) are quasi-orthogonal of order k on (0,∞),
for 0 < c < 1 and −k < β < −k + 1, k = 1, 2, . . . , n − 1 with respect to the

weight function
cx(β + k)x

x!
.

The zeros of quasi-orthogonal polynomials are not necessarily all in the interval
of orthogonality, but we can say the following from [8, Theorem 2].

Corollary 5 The Meixner polynomials Mn(x;β, c), with 0 < c < 1,−k < β <
−k + 1 have at least n− k zeros in (0,∞) when k = 1, 2, . . . , n− 1.
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In order to specify the location of the remaining single zero of Mn(x;β− 1, c),
0 < c < 1, 0 < β < 1 where we have quasi-orthogonality of order 1, we consider
the monic polynomials M̃n(x;β, c) =

(
c
c−1
)n
Mn(x;β, c).

Theorem 6 If 0 < c < 1 and 0 < β < 1, then the smallest zero of
Mn(x;β − 1, c) (or equivalently M̃n(x;β − 1, c)) is negative.

Proof The recurrence relation (19) can be written as

M̃n(x;β − 1, c) = M̃n(x;β, c)− n
( c

c− 1

)
M̃n−1(x;β, c) (20)

and according to [23, Theorem 4] we have to show that

n
( c

c− 1

)
<

M̃n(0;β, c)

M̃n−1(0;β, c)
< 0 which follows immediately from (18). ut

Joulak’s results (cf. [23, Theorems 8, 9]) also gives some information about
the location of the zeros when we have quasi-orthogonality of order 2.

Theorem 7 If 0 < c < 1, 0 < β < 1 and n > β−2
c−1 then all the zeros of

Mn(x;β − 2, c) are nonnegative and simple.

Proof Iterating (20) we obtain

M̃n(x;β − 2, c) = M̃n(x;β, c)− 2n
( c

c− 1

)
M̃n−1(x;β, c) + bnM̃n−2(x;β, c)

where bn = n(n− 1)

(
c

c− 1

)2

. Replacing n by n− 1 in (11) yields

M̃n(x;β, c) = (x−Bn−1)M̃n−1(x;β, c)−
( c

c− 1

)
Cn−1M̃n−2(x;β, c).

From [23, Theorem 8] all the zeros of M̃n(x;β − 2, c) are real and simple if

bn <

(
c

c− 1

)
Cn−1 which gives the condition n >

β − 2

c− 1
. Furthermore, the

smallest zero (and hence all of the zeros) of Mn(x;β − 2, c) is nonnegative if
and only if (cf. [23, Theorem 9])

M̃n(0;β, c)

M̃n−2(0;β, c)
− 2n

( c

c− 1

)M̃n−1(0;β, c)

M̃n−2(0;β, c)
+ n(n− 1)

( c

c− 1

)2
≥ 0.

It follows from (18) that the left-hand side simplifies to
(

c
c−1
)2

(1− β)(2− β),
which is positive by the assumptions. This completes the proof. ut
Analogous results can be obtained for the polynomials Mn(x;β, c), β < 0 and
c > 1.
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4 The zeros of Kn(x; p,N), 0 < p < 1 and n = N + 1, N + 2, . . .

We now turn our attention to the zeros of the polynomialsKn(x; p,N), 0 < p <
1 and n, N ∈ N for degrees higher than what follows from orthogonality, i.e. for
n = N+k, k ∈ N. Note that in this case the coefficient Cn = n(1−p)(N−n+1)
in the three term recurrence relation (cf. [24, (9.11.3)])

xKn(x; p,N) = pKn+1(x; p,N) +BnKn(x; p,N) + CnKn−1(x; p,N)

K0 = 1, K−1 = 0,

becomes nonpositive, thus the polynomials are non-orthogonal on the real line.
In the case n = N + 1 we have Cn = 0 and a degenerate version of Favard’s
theorem ensures a non-standard (∆-Sobolev) orthogonality (cf. [13, Theorem
2.2]). This case is also related to Sylvester type determinants, first studied by
J. Sylvester (cf. [34]) and more recently by R. Askey and G. Wilson (cf. [3])
in connection with the q-Racah polynomials. The connection of orthogonal
polynomials, specifically Krawtchouk polynomials, with tridiagonal matrices
whose entries come from the recurrence coefficients of discrete orthogonal poly-
nomials is made explicit in [4] and [19].

Lemma 8 (cf. [35, p.36]) Let 0 < p < 1 and N a positive integer, the poly-
nomials KN+1(x; p,N) = (x)(x − 1) . . . (x − N)( 1

p )N+1 and have N + 1 real
zeros x = 0, 1, . . . , N.

Corollary 9 For 0 < p < 1 and N a positive integer, the polynomial
KN+2(x; p,N) has N + 2 real zeros

x = 0, 1, . . . , N,N + 1− p(N + 2).

Proof Letting n = N + 2 in (10) we obtain

KN+2(x; p,N) = KN+1(x, p,N)

(
N + 2 +

x− (N + 1)

p

)
which yields the stated result. ut

Corollary 10 For 0 < p < 1 and N a positive integer, the polynomial
KN+3(x; p,N) has at least N + 1 real zeros x = 0, 1, . . . , N . Furthermore, the
remaining two zeros will be real and distinct when

0 < p <
1

2

(
1−

√
N + 2

N + 3

)
or

1

2

(
1 +

√
N + 2

N + 3

)
< p < 1.

Proof It follows from (10) that KN+3(x; p,N) = KN+1(x; p,N) p2(x), where

p2(x) =
1

p2
(x2 + (6p+ 2Np− 3− 2N)x+ (N + 3)(N + 2)p2 −

2(N + 1)(N + 3)p+ (N + 1)(N + 2)).
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The zeros of the quadratic p2(x) are real and distinct when the discriminant
1

p4
(
1− 4p(N + 3) + 4p2(N + 3)

)
is positive and this yields the stated result.

ut
It is difficult to determine the exact location of the zeros in the general case
Kn(x; p,N), n = N + k, k ∈ N. There are only N + 1 or N + 2 real zeros,
but one can use (10) to consider the polynomials Kn(x; p,−N) for 0 < p < 1,
N ∈ N instead.

In general, it suffices to investigate the zeros of Mn(x;β, c) for β > 0 when
−1 ≤ c < 0 (or c ≤ −1), because it follows from the symmetry relation (9)
that if x is a zero of Mn(x;β, c) then −β − x is a zero of Mn(x;β, 1c ). Taking
into consideration the complex conjugate pairs, geometrically it means that
the zeros of Mn(x;β, 1c ) are the mirror image of the zeros of Mn(x;β, c) with
respect to the axis Rex = −β/2 when β > 0 and c < 0.

Figure 1 shows the zeros of Mn(x;β, c) when n = 10, β = 8.2 for different
values of c < 0, clearly illustrating the symmetry with respect to Rex = −4.1.
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Fig. 1 The zeros of M10(x; 8.2,−4), M10(x; 8.2,−0.25), M10(x; 8.2,−15.667) and
M10(x; 8.2,−0.064) clockwise.

The numerical examples show that the zeros of polynomials Mn(x;β, c), β > 0,
c < 0 seem to lie on rays starting from the x axis and for the special case c =
−1, all the zeros of polynomials Mn(x;β, c), β > 0 lie on the line Rex = −β/2.
This special case when c = −1 is illustrated in Figure 2.
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Fig. 2 The zeros of M10(x; 8.2,−1)

The asymptotic distribution of the zeros of Mn(x;β, c), β > 0, c < 0 as n→∞,
(after the necessary rescaling) could possibly be proved using the complex
orthogonality (cf. [12]) and potential theoretical methods or a Riemann-Hilbert
approach, as was done in the case of Jacobi polynomials for non-standard
parameters (cf. [27], [29]).

Remark 11 Letting a = −n, b = −x, c = −N−1 and z = 1
p in the contiguous

relation (cf. [31, p.71 (3)])(
a+ (b− c)z

)
2F1(a, b; c; z)

= a(1− z) 2F1(a+ 1, b; c; z)− (c− a)(c− b)z
c

2F1(a, b; c+ 1; z)

we obtain

(x−N − 1)Kn(x; p,N)

= n(n−N − 2)(1− p)Kn−1(x; p,N + 1) + (x+ np−N − 1)Kn(x; p,N + 1).

Using this it is easy to show by induction that

(x−N −1)(x−N −2) . . . (x−N − j)Kn(x; p,N) =

j∑
i=0

qi(x)Kn−i(x; p,N + j),

where qi(x) are polynomials of degree j− i. From this it follows (cf. [8, p.160])
that (x − N − 1)(x − N − 2) . . . (x − N − k)Kn(x; p,N) (with n = N + k) is
quasi-orthogonal of degree N + 2k and order 2k. However, unlike in Section 3
this does not lead to new information about real zeros, since these are already
guaranteed by formula (10) and Lemma 8.

Remark 12 For the sake of completeness we note that similarly one can prove
that for c < 0 and 0 < −β < n − 1, where β is non-integer, the polynomial
(x+β−1)(x+β−2) . . . (x+β−(n−b−βc−1))Mn(x;β, c) is quasi-orthogonal
of degree 2n− b−βc − 1 and order 2n− 2b−βc − 2.
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5 The zeros of Mn(x;β, c), c→ 0 and β ∈ R

Next, we consider Mn(x;β, c) when β ∈ R and prove that when c→ 0 all the
zeros of Mn(x;β, c), n = 1, 2, . . . approach non-negative integer values. Note
that this theorem holds for any β ∈ R which implies that when −β = N ,
N ∈ N and c < 0, the zeros of the Krawtchouk polynomials Kn(x; c

c−1 , N)
approach the mass points of the weight function as c→ 0.

Theorem 13 For n ∈ N and β ∈ R, the n zeros of the polynomial Mn(x;β, c)
approach the points x = 0, 1, . . . , n− 1 when c→ 0.

Proof

Mn(x;β, c)

= (β)n + (β + 1)n−1(−n)(−x)(1− 1

c
) + · · ·+

(β + n− 1)(−n)n−1(−x)n−1(1− 1
c )n−1

(n− 1)!
+ (x)(x− 1) . . . (x− n+ 1)

(
1− 1

c

)n
.

For any n ∈ N the function

cnMn(x;β, c) = cn(β)n + · · ·+ c(β + n− 1)(−n)n−1(−x)n−1(c− 1)n−1

(n− 1)!

+ (x)(x− 1) . . . (x− n+ 1)(c− 1)n

regarded as an nth degree polynomial in x with real parameters β and c has
the same zeros as Mn(x;β, c). Since

lim
c→0

cnMn(x;β, c) = (x)(x− 1) . . . (x− n+ 1)(−1)n,

the zeros of cnMn(x;β, c) and hence the zeros of Mn(x;β, c) tend to the zeros
of x(x− 1)(x− 2) . . . (x− n+ 1), which is to say x = 0, 1, 2, . . . , n− 1. ut
This theorem implies that for sufficiently small c all the zeros of Mn(x;β, c)
are real. An analogous result can be proved for Charlier polynomials.
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