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Abstract

The Sterile Insect Technology (SIT) is a nonpolluting method of control of the
invading insects that transmit the disease. The method relies on the release
of sterile or treated males in order to reduce the wild population of anopheles
mosquito. We propose two mathematical models. The first model governs the
dynamics of anopheles mosquito. The second model, the SIT model, deals with
the interaction between treated males and wild female anopheles. Using the
theory of monotone operators, we obtain dynamical properties of global nature
that can be summarized as follows. Both models are dissipative dynamical
systems on the positive cone Ri. The value R = 1 of the basic offspring
number R is a forward bifurcation for the model of the anopheles mosquito,
with the trivial equilibrium 0 being globally asymptotically stable (GAS) when
R <1, whereas 0 becomes unstable and one stable equilibrium is born with well
determined basins of attraction when R > 1. For the SIT model, we obtain a
threshold number \ of treated male mosquitos above which the control of wild
female mosquitos is effective. That is, for A > \ the equilibrium 0 is GAS. When
0 < A < )\, the number of equilibria and their stability are described together
with their precise basins of attraction. These theoretical results are rephrased
in terms of possible strategies for the control of the anopheles mosquito and
they are illustrated by numerical simulations.

Keywords: sterile insect technology, compartmental modeling, mosquito
control, monotone operators.
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1. Introduction

Malaria is one of the most prevalent vector-host diseases, whereby the dis-
ease is not transmitted directly from host to host, but through a vector. Malaria
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is caused by a protozoa of the genus plasmodium and is transmitted by the fe-
male anopheles mosquito (vector). According to the World Health Organization
(WHO), approximately one to three million people die of malaria every year,
the vast majority of which are pregnant women and children who live mostly in
Africa and in South America. Moreover, it is now acknowledged that northern
countries and in particular those in the South of Europe such as France and
Italy could become infected again by malaria. Therefore, the control of anophe-
les mosquito, the vector responsible for the transmission of diseases, is a major
prevention strategy.

Chemicals have been and are still extensively used all over the world to con-
trol wild mosquito populations. However, on a long run mosquitos can develop
resistance to chemical products. Besides, the WHO only allows a limited number
of insecticides in view of polluting disasters. As a viable alternative, nonpollut-
ing methods also known as biological control tools are more and more studied,
with a special focus on the ecology and behavior of the involved species. One
of the most promising such method is the Sterile Insect Technique/Technology.
The SIT is indeed a nonpolluting method of insect control, which relies on the
release of sterile males. Mating of released sterile males with wild females leads
to nonhatching eggs or to reducing drastically the number of hatching eggs and
this drives slowly the wild population to decline. Thus, releasing sufficiently
many sterile males and /or doing this over a sufficiently long period of time can
lead to local reduction or elimination of the wild population.

The SIT has been known for more than half a century [26, 1]. It was first used
in 1954 on the Island of Curaao in the Netherlands Antilles in order to control the
new world screwworm fly (Cochliomyia hominivorax (Coquerel)). Sterile males
were released for six months after which, the pest was completely eliminated
[4]. Among regions where other releases were done, we can mention Southern
USA, Mexico, Central America [41], and Lybia [30]. Since then, the SIT has
been used successfully to almost eradicate various insect populations ranging
from pest species (eg Mediterranean fruit fly), Ceratitis capitata Wiedeman
[22], codling moth Cydia pomonella (L.) [9, 35], tsetse fly Glossina austeni [35],
Culex quinguefasciatus to the vector of Bancroftian filariasis [36]. The book [18]
provides a comprehensive overview on the SIT and its applications.

As far as the anopheles vector is concerned, the largest SIT release pro-
gramme against specifically the anopheles albimanus took place in El Salvador
in the 1970s [31], over a 5-month period. About 4.3 million mosquito pupae
were mass-produced, sterilized, and released around Lake Apastepeque. The
analysis of the data of the anopheles albimanus population [11] from the release
and the nearby control area demonstrated how effective the sterile males were
in preventing a normal seasonal rise in the vector density. Subsequently, a more
extensive trial took place from 1977 to 1979 on the Pacific coast of El Salvador
[32] with up to 0.5 million sterile males or 1.25 million sterile male pupae being
released every day. Recently (2007) in Italy, Bellini [10], released sterile males,
which contributed to reduce the wild population of aedes albopictus and to fight
the Chikungunya virus [17] (see [15, 16] for further details about Chikungunya).
Furthermore, mosquitos genetically modified by using the RIDL (Release of



Insects carrying a Dominant Lethal) Technique, were released in the Calman
Island and in Malaysia, by the Oxitec Company to fight Dengue Fever (see [25]
for an overview on RIDL approach for Aedes aegypti).

Since the first field releases, various modelling and/or mathematical works
have been done on SIT using either discrete models [12, 29], or continuous
temporal models with continuous release (see for instance [5, 6, 19, 20, 28, 29, 38|
and references therein), with pulsed releases [17, 42], or spatio-temporal models
with one dimensional spatial component and continuous (proportional) releases
[20, 34, 39]. See also [7] for an overview on SIT mathematical modelling.

The mathematical models investigated in this work are designed according
to the approach in [13], [14], where the transmission of malaria is modelled
by including variability in population in such a way that both the human and
the anopheles mosquito populations follow the logistic growth law. Though
having the same compartmental structure as the SIT study in [19] regarding the
control of aedes aegypti, also investigated in [38], the differential equations in
our model are constructed differently. Furthermore, the equation for the sterile
males is much simpler (for other models, see for instance [29]). The purpose
of this work is twofold. Firstly, for the dynamical systems under consideration,
we are interested in properties of global nature, including the dissipativity of
the system, the global asymptotic stability of the trivial equilibrium and the
precise description of the basins of attraction of multiple stable equilibria. This
goal is achieved by an alternative approach, namely, the theory of monotone
operators [37], [40], which unlike many classical studies is not subjected to any
Lyapunov function. The major advantage of the obtained global properties of
dynamical systems is translated into the second purpose of the work. That is
to systematically analyse the impact of the SIT, as a measure for the control
of the anopheles mosquito population. We identify efficient strategies that lead
to the reduction of the mosquito population below a certain threshold, which is
epidemiologically relevant.

The rest of paper is organized as follows. In the next section, we give the
properties of monotone operators that are relevant to our study. This is followed
(Section 3) by the presentation of the basic mathematical model of wild anophe-
les mosquito population and by the discussion of its global dynamical properties.
Section 4 is devoted to the study of the SIT mathematical model, where the key
finding is the identification of a threshold number of treated male mosquitos or
sterile mosquitoes above which the control of wild female mosquitos is effective.
The theoretical results are discussed and supported by numerical simulations in
Section 5. The decrease of the wild population of female mosquitos upon the
release of sterile male mosquitoes is further characterized in Section 6 in terms
of the so-called yield number of the SIT, which is a certain measure of the re-
duction of the wild population. Concluding remarks as to how this work fits in
the literature and can be extended are given in Section 7. For convenience, we
have included an appendix for the proofs of the three main results, which as
indicated earlier, are based on the theory of monotone operators [2].



2. Preliminaries on monotone operators

Consider the system of ODEs

dz
5 = 9), (1)
where D C R™ and ¢ : [0, +00) x D — R™ is continuous. Typically D is assumed
open to avoid complications. However, in view of the models in this paper we
assume only that D C closure(interior(D)) and that for some 6 > 0 the vector
fields defined by ¢(¢,-), ¢t € [0,0), are all directed inwards at the points of dD.
This is enough to ensure that for every a € D there exists T, > 0 such that the
system (1) has a solution z(a, t) on the interval [0, T, ) which satisfies z(a, 0) = a.
We further assume that g is such that the solution initiated at a is unique. To
avoid new notations we assume that [0, T;,) is the maximal (nonnegative) interval
of existence of z(a,t).

Definition 1. The system (1) is called cooperative if for every i, j € {1,2,...,n}
such that i # j the function ¢;(t, 21, ...,xy,) 18 monotone increasing with respect
to x;j.

If g is differentiable and the domain D is convex then, equivalently, the

system is cooperative if the Jacobian % is a Metzler matrix for every
t € [0,+00) and x € D. Let us recall that a matrix is called Metzler if its
nondiagonal entries are nonnegative [8].

The following theorem is often referred to as Kamke’s theorem, see e.g [23].
Theorem 2. Let system (1) be cooperative. Then for every a,b € D
a<b= z(at) <xz(bt), t €[0,min{T,,T,}).

The condition on ¢ in Definition 1 is sometimes called quasimonotonicity
with respect to z. It is linked in [40] to the monotonicity of differential operators.
Kamke’s theorem follows from a more general inequality given in [40].

Theorem 3. If g is quasimonotone with respect to x then for any two differ-
entiable functions y,z : [0,T) — D we have

y(0) < 2(0) }
y'(t) —gtyt) <2'(t) —g(t,2(t)), t€[0,T)

The inequalities between vectors are considered here in their usual coordinate-
wise sense, that is, for any a,b € R",

= y(t) < z(t), t €10,T).

a<b < a;<b;, i=1,....n.
In addition, we use the relations

a<b < a<b, a#b,
aKb <= a;<b;, i=1,..,n.



Most of the theory for cooperative systems is developed for the case of au-
tonomous systems
dr_ 2
), (
where the right hand side is independent of ¢. In this case, Theorem 2 equiv-
alently means that the evolution semi-group operator ¢; : Dy — D defined by
@t(a) = z(a,t) is monotone increasing on its domain Dy = {a € D : T, > t}
for every t > 0. Hence also the name monotone systems [37]. A system of

the form (2) is called irreducible if its Jacobian — is an irreducible matrix for

i
every x € D. For cooperative irreducible systems the Kamke’s theorem admits
a stronger form as stated below, see [37, Theorem 4.1.1].

Theorem 4. If the system (2) is cooperative and irreducible then for every
a,be D
a<b= z(a,t) < x(bt), t €0,min{T,,Tp}).

The next theorem characterizes monotone solutions of cooperative systems
and is part of [37, Proposition 3.2.1].

Theorem 5. Assume (2) is cooperative, and let a € D such that f(a) > 0
(f(a) < 0) then the solution x(a,t) is monotone increasing (decreasing) function
of t € [0,T,).

The combined application of the monotonicity of the evolution operator
¢ given in Theorems 2 and 4 and the monotonicity of the solutions given in
Theorem 5 is an efficient tool for studying dynamical systems. Let us recall
that (1) defines a dynamical system on D if z(a,t) is defined for all ¢ > 0 and
z(a,t) € D. In terms of the notation introduced earlier, this means that T, = oo
for all @ € D. Using the monotonicity theorems stated here, one can prove, for
example, stability and attractiveness of equilibria without using the Jacobian
of the right hand side. Furthermore, this approach provides a method for char-
acterizing the basins of attraction and addressing other related issues. As usual
we call an equilibrium asymptotically stable if it is both stable and attractive.
An asymptotically stable equilibrium is called globally asymptotically stable if
the basin of attraction is the whole domain D. Basins of attraction are often
represented as n-dimensional intervals: given a,b € R™ with a <b

[a,] = {z € R" : a < x < b}.

Theorem 6. Let a,b € D be such that a < b, [a,b] C D and f(b) <0 < f(a).
Then (1) defines a (positive) dynamical system on [a,b]. Moreover, if [a,b]
contains a unique equilibrium p then p is globally asymptotically stable on [a, b].

Proof :  Under the stated assumptions it follows from Theorem 5 that
z(a,t) and x(b,t) are respectively monotone increasing and monotone decreas-
ing. Moreover, Theorem 2 implies that z(a,t) < x(b,t), t € [0, min{Ty,T}).



Therefore, at least one of the solutions remains in [a,b] in its maximal interval
of existence. Then the compactness of [a, b] implies that T, = T} = oo so that
for any z € [a, b] we have T, = oo and

a<z(a,t) <z(z,t) <z(bt) <b, t €0,00).

Therefore, (1) defines a (positive) dynamical system on [a, b]. The global asymp-
totic stability of a unique equilibrium p € [a, b] follows from a general theorem
[27], but in this setting it also admits an elementary proof. Due to the mono-
tonicity of system (2), both solutions converge to points of [a, b] as t — co. Since
these limits are equilibria of the dynamical system and p is the only equilibrium
in [a,b] N D, it follows that lim; ,oc z(a,t) = limy_,oo z(b,t) = p. It remains
to show the stability of p. Assume first that ¢ < p < b. Let V be an open
neighborhood of p in [a,b]. Then there exists ¢; > 0 such that z(a,t) € V and
xz(b,t) € V for all t > ¢;. Clearly the set W = (x(a,t1),z(b,t1)) is an open
neighborhood of p. An application of Theorem 2 yields

z(a,t1 +1) < z(z,t) <z(bt; +1t), 2 € W.

Therefore, x(z,t) € W C V for every z € W, which proves the stability of p.
When a = p and b = p, a simplified version of the arguments above can be used.
]

3. Population dynamics of anopheles mosquito

The life cycle of a mosquito consists of two main stages: aquatic (egg, larva,
pupa) and adult (with males and females). After emergence from pupa a female
mosquito needs to mate and get a blood meal before it starts laying eggs. Then
every 4-5 days it will take a blood meal and lay 100-150 eggs at different places
(10-15 per place). For the mathematical description, we will consider two stages
[6]: the aquatic stage and the adult stage. Furthermore, we split the adult
stage into three sub-compartments, with females and males, which leads to the
following compartments:



A - population in aquatic stage births
Y - young females, not yet laying eggs A
F - fertilized and eggs laying females

M - number of males deaths
. : . (IT—r)y Y
The life cycle is described through the
flow chart on Fig. 1. The mathematical
model is the system of ordinary differ-
. . M Y
ential equations (3)—(6).
deaths
%—¢F(++A)A (3)
dt TR 2 ’ deaths p
dy
L ryA—(B+ )Y, (4)
F
dF
dt = BY —prF, (5) deaths
dM
— = (1-=-r)yA—puuM. 6
dt ( " Hat (©) Fig 1. Wild mosquito flow chart

Note that Eq. (3) can be considered as a logistic population with immigra-
tion. Following [13], [14], it is formulated by using density dependent mortality
rate, —ppA?, rather than carrying capacity. A female needs to mate success-
fully only once. The eggs are laid in the so-called gonotrofic cycle. It consists
of taking a blood meal, maturation of the eggs and oviposition. Before a female
begins laying eggs, two essential events need to take place, mating and taking
a blood meal, occurring in varying order. We consider a female to be in the
Y compartment from its emergence from pupa until her gonotrofic cycle has
began, that is the time of mating and taking the first blood meal, which takes
typically 3-4 days. The death rate during that period reflects essentially only
death from predators and adverse climatic conditions. Therefore, it is generally
lower than the death rate for the F' compartment. Typically the male mosquitos
are (depending on the temperature) about half or at least 40% of the total pop-
ulation. In the model the fraction of the emerging female mosquitoes is denoted
by r, with 1 — r being the fraction of emerging male mosquitoes. Mating is
a complex process that is not fully understood [24]. The male mosquito can
mate practically through all its life. A female mosquito needs one successful
mating to breed its lifelong. It is admitted that mosquitoes locate themselves
in space and time to ensure they are available to mate [24]. Therefore, it is
reasonable to assume that in any case the immature female will mate and, thus,
move to compartment F, or die. Thus 1/(8 + py) represents the mean time
a female stays in compartment Y. Mathematically this means that equation
(5) can be decoupled from the system. Sometimes § is referred to as ”mating
rate”, which, as explained above, can be a bit misleading and does not define
well the boundary between compartments Y and F: the terminology contact
rate would be better for 5. We clearly fixed this boundary at the beginning
of the first gonotrofic cycle of a female, that is immediately after the mating



and first blood meal. Then the rate (per day) of laying eggs in the breeding
sites is ¢F', where ¢ is the average amount of eggs laid per fertilized female per
day. In the model, we use density a dependent death rate for the aquatic stage
since anopheles larvae are density sensitive, which imply an additional density
mortality rate. In [19], the size of the population is also restricted only in the
aquatic stage but in a different way by an explicit carrying capacity beyond
which no eggs are laid. In equation (3) the parameters pq and po denote, re-
spectively, the density independent and the density dependent death rates of the
aquatic stage. In equations (4), (5), and (6), p with respective index refers to
the death rate for the specific compartment (which is density independent). The
system (3)—(6) has two equilibria: the origin 0 and the nontrivial equilibrium
x# = (A* ) Y# F# M%) given by

¥ _ Ytmo v _ MmO tm) oo
A* = o (R—1), Y uﬂﬁ-%uy)a% 1), o
F# = M(R—l), M* = M(R—l),

papr (B + py) Yy

where

PPy
(B+ py ) (v + p1)pr

is the basic offspring number. The nontrivial equilibrium z# is nonnegative,
that is, it has a biological meaning if and only if R > 1.

Denoting = = (A,Y, F, M)’ the system (3)—(6) can be written in the form
(2) where the function f is defined via the right hand side of (3)—(6). It is easy
to see that the system is cooperative on D = Ri. Moreover, f is continuous on
D and the vector field defined by f is directed inwards on 0D. Hence Theorems
2, 5 and 6 are applicable.

The essential properties of the model (3)—(6) as a dynamical system are
summarized in the following theorem. A major point that differentiates this
theorem and its proof from those in the literature (e.g. [19]) are the global
nature of the properties and the irrelevance of the Lyapunov function.(For an
alternative approach see [19])

R =

(8)

Theorem 7. The set of ODEs (3)—-(6) defines a dissipative dynamical system
on D =R} = {z € R* : 2 > 0}. Moreover,

(i) If R <1 then 0 is globally asymptotically stable on D.

(ii) If R > 1 then the system has two equilibria 0 and x# on D where z¥ is
stable with basin of attraction D\ {z = (A,Y,M,F) e R} : A=Y = F =0}
and 0 is unstable with the nonnegative M -azis being a stable manifold.

Proof :  The inequality

v+ pr A+ p2A

> 4R (9)
Rl It



holds for all sufficiently large A. Let m > 0 and let A,, be so large that in
addition to (9) the following inequalities also hold:

A, > m, (10)
B, = Qtmtmedndn (11)
2¢
Hr
= —F, > ,
Yy QBF > m (12)
2(1 — A
M, = 2(1 = r)yAm > m. (13)
12373

Let by, = (Ap, Y, Frny, My,)'. Then
_¢Fm

_ ytpatpe A
Y Am (1 4R(v+p1) )

76Ym

Applying Theorem 6 with a = 0 and b = b,,, we obtain that (2) defines a
dynamical system on [0,b,,]. However, b,, can be selected larger than any
z € RY. Hence, (2) defines a dynamical system on D = R%.

(i) In this case the only equilibrium in D is the origin 0. It follows from
Theorem 6 that 0 is globally asymptotically stable on [0, b,,] for any m > 0.
Hence it is globally asymptotically stable on D.

(ii) Since R > 1 the inequality

W <VR (15)
1

holds for all sufficiently small values of A. Let € > 0 and let A. be so small that
in addition to (15) the following inequalities also hold

A < g (16)

Fo= yROTM J;“ME)AE < e (17)

Y. = é/E%FFE < e, (18)

M. = (1_%" < e (19)
1238



Let a. = (A, Y:, F., M.)". Then
1
(1 - 4—@) OF.

T'YAE (1 _ ’Y+H1+M2As)

flas) = VROm) > 0. (20)
npe
(VR — D)puar M.

Hence it follows from Theorem 6 that z# = (A% Y# F# M%) is globally
asymptotically stable on [ac,by,]. Since a. can be selected to be smaller than
any x > 0 and b,, can be selected to be larger than any x > 0 we have that z#
is asymptotically stable on D = Ri with basin of attraction at least the interior
of D. We prove that the basin of attraction is D = D\ {z = (A,Y, M, F) € RY
A=Y = F = 0} by using that the system is irreducible on D, which can be seen
easily. Let z € D. Then z > 0 and it follows from Theorem 4 that z(z,t) > 0
for t > 0. Hence by what has been proved already lim; o 2(z,t) = z#.
Moreover, on the M-axis equation (5) is reduced to a decreasing equation. Hence
all solutions converge to 0. Therefore, the basin of attraction of z# is precisely
D. This also implies that 0 is unstable with the M-axis being a stable manifold.
]

Note that the basic offspring number R does not depend on po while the
equilibrium values of all compartments are inversely proportional to us. Having
o > 0 is essential for the dissipativity of the system. For R > 1 the equilibrium
x# has also the role of a carrying capacity although it does not appear explicitly
in the formulation of the model.

4. The SIT model

The SIT is a nonpolluting method of insect control that relies on the release
of sterile insects. Mating of released sterile males with wild females leads to
nonhatching eggs. Thus, if males are released in sufficient numbers and/or over
a sufficiently long period of time, it can lead to the local reduction or elimination
of the wild population. Typically the aim is to lower this population under a
certain threshold so that the entomological risk is low. Thus SIT can be also
used as a preventive tool, or after a standard vector control campaign, with
adulticide, larvicide or/and mechanical control. The success of the SIT is based
on the fact that the sterile mosquito are in many ways the same as the wild ones,
most importantly, they will mate with wild females. Nevertheless there are some
differences. One for example is their distribution. Since they are distributed
manually, the place of release depends on available roads and resources as well as
on the level of knowledge about the distribution of wild mosquitoes (breeding
sites, feeding grounds). Therefore we assume that only a fraction p of the

10



released mosquito can join the wild mosquito population. Further difference
is some change in the biology, like the mating competitiveness of the sterile
male mosquito, due to irradiation [21]. In general, this can be captured by
a ratio ¢, representing the mean mating competitiveness of the sterile males
[24]. Note that g could be less or greater than 1 [10, 24]. We denote by My
the number of ”wild mosquitoes equivalent” of sterile mosquitoes. This means
that the actual number of sterile mosquitos is —Mz. The death rate pur also
depends on the procedure. Given that the sterile mosquitos are released at
a rate of 1(t) at time ¢, the population of treated males My is modeled by
equation (26). Under the assumption that, after the stated adjustments, the
mosquitos in the compartments M and My are equally likely to mate, a female
mating female mosquito has probability #]WT to be with wild mosquito and
probability #]TVIT to be with a sterile mosquito. Hence the transfer rate S

BM
M+Mr

from the compartment Y splits into transfer rate of

Nf%@T to compartment U of females that would be
BM

laying sterile (not hatching) eggs. Note that the total mating rate T

Mﬁ JIFMATIT = [ remains unchanged by the introduction of the sterile mosquito. We

should remark that the different strategy used in [19] results in the biologically
unrealistic situation of lowering the mating rate due to the introduction of the
sterile mosquitos. A modified flow diagram involving also sterile males is given
in Fig. 2. Then the mathematical model is represented as the system of 6
differential equations (21)—(26). Note that, in contrast to the model (3)—(6),
neither M nor M7 can be decoupled. The effect of the introduction of the
sterile mosquitos is in the reduction of the Y to F' transfer rate from f to Miﬂl/\[h .
The females fertilized by sterile mosquitos also lay eggs, but these eggs do not
hatch. Therefore they have no effect on the aquatic stage of the population.
Other techniques, like RID, lead to eggs which hatch and the larvae die only
later, having further negative impact on the wild larvae population by competing
with it for resources, i.e. reducing the carrying capacity of the breeding sites.
This is not the case with the SIT technique. Only the wild mosquito develop
in the breeding sites. Let us note that in some previous models, e.g. [33], the
sterile mosquito population is assumed to have a direct impact on the available
carrying capacity for the wild population, which is biologically incorrect.

to compartment

F' and a transfer rate of

11



births
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M+M

BM
deaths M+M deaths
F U
death: deaths

Fig 2. SIT control of mosquito flow chart

% = QF — (v + p1 + p2A) A, (21)
O A B4, (22)
% - %Y — urF, (23)
Cilit] = ]\f—i—L]T/[TY — uyU, (24)
% = (1= r)yA— M, (25)
% =pqy — pr Mr. (26)

The model (21)—-(26) can be simplified in the following way. First, the equa-
tion for U can be decoupled from the system. Secondly, the size of Myp is
controlled by human intervention and independent from the rest of the popula-
tion. Indeed, given a continuous function 1 (t) the linear equation (26) has the
solution

() = (32 0)+ | t () ). (21)

12



Then, the mathematical model is a nonautonomous system of four differential
equations as follows:

dA

o = F- (v + p1 + p2A)A, (28)
dy

’ = rmA-(B+ )Y, (29)
dM

e = (1—=r)vA—puuM, (30)
dF BM

TR vy v R (31)

In addition to having fewer equations, a major advantage of the system (28)—
(31) is that its right hand side is quasi-monotone. This fact in turn explains
why the badly needed global properties in Theorem 8 and Theorem 9 below are
obtained at low cost i.e. “no Lyapunov function”.

Theorem 8. Assume that ¥ (t) is a continuous nonnegative valued function of
t € [0,00) so that My = Mrp(t) in (27) has the same property. Then the system
of ODEs (28)—(31) defines a dissipative dynamical system on D = Rﬁ_.

Proof : We use the notation as in the proof of Theorem 7. The system
(28)—(31) is nonautonomous. Denoting its right hand side by g¢(t, z) it assumes
the form (1). The function g depends on t via Mrp(t), that is, it can be written as
g(t,x) = ®(Mr(t),z). It is easy to see that g(t,z) = ®(Mr(t),z) < &(0,z) =
f(z) where f is the right hand side of (3)—(6). Let z € D. Denote by x(z,t) and
xo(z,t) the solutions of (28)—(31) and (3)—(6), both initiated at z. As shown in
Theorem 7, zo(z,t) is defined for all ¢ > 0. Let [0,7) be the maximal interval
of existence of z(z,t). We have

(1) = Jlalz,1) < Salent) - glt,2(z,1) = 0 = Lro(,t) = Flao(z1)

Then it follows from Theorem 3 that x(z,t) < x¢(x,t), t € [0,T%). Furthermore,
using that 0 is an equilibrium of (28)—(31) we obtain by Theorem 2 that z(z,t) >
0, ¢t € [0,T,). Now using the dissipativity of (3)—(6) as obtained in Theorem 7,
it is easy to obtain that T, = +oo and that z(z,t) is eventually absorbed into
a neighborhood of either 0 or [0, z%]. m

The dynamical system (28)—(31) is not autonomous. The right hand side
depends directly on ¢ via the function Mz(¢). In order to characterize the
behavior of the solutions more specifically than in Theorem 8 we need further
knowledge about the function M. In what follows we assume that the manual
intervention () is such that the function in (27) satisfies:

tli}m Myp(t) = X\ for some X € (0,400). (32)

For sufficiently large values of ¢ equation (31) can be replaced by the simpler

equation
ar M

At M+ )

Y — [LFF. (33)
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Moreover, in addition to providing approximation to (28)—(31) for large ¢ the sys-
tem (28)—(30), (33) has the same invariant sets and respective stability. Hence,
we carry out our further analysis on the autonomous dynamical system (28)—
(30), (33). Equating the right hand side to zero we obtain that at any equilib-

rium of this system the ratio a = Y satisfies the equation

= (R-=XQ —1)a+2Q =0, (34)
where R is the basic offspring number (8) of the wild mosquito population and

K2t

MR Crond o
In view of Theorem 7 we are only interested in the SIT model (28)—(30), (33)
. . . < (VR-1)?
when R > 1 which we assume in the sequel. It is easy to see that A = ————
is a threshold value of A determining the number of positive roots of equation
(34). More precisely, if A < A the equation has two positive roots a* and
o (o > a*), if A = X it has one positive root &, and if A > X there
are no positive roots. Let T = (A,}A’,M,F)’, x* = (A Y*, M*, F*) and
= (A, Y™, M**, F**) be the equilibria of the dynamical system (28)—
(30), (33) corresponding to &, a* and o™*, respectively. It is easy to see that
0 < Z, 0 < z* < z** whenever these equilibria exist (see Appendix for de-
tailed computations). The properties of the model as a dynamical system are

summarized in the next theorem.

Theorem 9. The equations (28)-(30), (33) define a dissipative dynamical sys-
tem on D = Ri for any X\ € (0,400). Moreover, we have that:

(a) If X > X then 0 is globally asymptotically stable equilibrium.

(b) If X = X the system has two equilibria O and &. The set {z €R*:0 < z < &}
is in the basin of attraction of O while {x €R*:x > 1} is in the basin of attraction
of Z.

(¢) If 0 < XA < X the system has three equilibria 0, z* and x**. The set {x € R
0 < x < x*} is in the basin of attraction of 0, while {x € R*: x> x*} is in the
basin of attraction of x**.

Proof : In the notation used in the proof of Theorem 8, the system
(28)—(30), (33) can be written as

dx
i D(A, x). (36)

Denote by xx(z,t) the solution of (36) satisfying zx(z,0) = z. Consider the
point by, as given by (10)—(13). Using (14) we have
D(A, by) < D(0,b,,) = f(b) <O

Then it follows from Theorem 6 that (36) defines a dynamical system on [0, b, ].

14



a) Let A > A. In this case the system (36) has only one nonnegative equilib-
rium, namely 0. Therefore, by Theorem 6, 0 is globally asymptotically stable
on [0,b,,]. Since by, can be selected to be larger than any point in R%, this
implies that 0 is globally asymptotically stable on Ri.

¢) In this case A < A and the dynamical system (36) has three equilibria 0,
x* and **. For an arbitrary 0 < § < o™ — o™, let ¢5 = (As, Ys, Ms, Fs)' where

A
Ms = ———
o a* — 4§’ (37)
25,78
As = ———M,
) (1—7")’7 d (38)
al Yk
Y; = ——A5 = Ms, 39
T B T Grm—m (39)
BMs Brypm
= — P70 vy — Ms. (40
T LN T Tra =B —ny e 10
Substituting in the expression for ® we have
o(a* — a™ —0)
(@ =01 +a -0
B\, cs) = 0 . (41)
0
0

Let 6 > 0. Then ®(A,cs5) > 0 and ¢5 > z*. Applying Theorem 6 with a = ¢5 and
b = by, we obtain that for m sufficiently large equation (36) defines a dynamical
system on [cs5,b,,] and that a** is globally asymptotically stable on [cs, by, ].
Using the fact that

A )
A
a*(a* —0) — Q’
it is easy to see that for any point z > x* one can find § > 0 so that ¢5s < z (see
Appendix for detailed computations). In addition, b,, can be larger than any
point in Ri. Therefore, z** is a stable equilibrium and {z € R‘_‘._ cx > x*}isin
its basin of attraction. Using that the system (36) is irreducible one can replace
> with > by an application of Theorem 4 as in the proof of Theorem 7.

For 6 < 0 we have ®(\,¢s5) < 0 and ¢s < z*. Then following the same
method we prove that 0 is stable and {z € R% : 2 < z*} is in its basin of
attraction.

The proof of b) is similar to ¢) with respective modification to take into
account that a =a¢=a* =a*". =

M(;:M*—F

5. Discussion and simulations

It follows from Theorem 9(a) that sufficiently large output of sterile mosquito,
namely Mr(t) = XA > A, is an effective control of the mosquito population. The
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threshold number \ can be written in the form

@M#.
VR+1

Hence for large values of R, as in the case of anopheles, we have \ ~ M#. This
indicates that for effective control using only the SIT method the output of
sterile male mosquito need to be of similar magnitude as the equilibrium value
of the male mosquito as determined by the environment. Further, we note that
the qualitative behavior of the solutions of the model presented in Theorem 9
is independent of the values of the parameters of the model as long as R > 1.
Moreover, the threshold number A depends on the parameters only via R and
M#, where both quantities are directly measurable in a practical setting. In
the simulation presented on Figs. 3, 4 and 5, we use the parameter values in
Table 1 obtained from [14].

A= (42)

Parameters Description Value
¢ Number of eggs at each deposit per capita (per day) 50
ol Maturation rate from larvae to adult (per day) 0.1
Q1 mortality rate of the aquatic stage ~ 0.25
n2 density mortality rate of the aquatic stage 10—°
1/ur Average lifespan of sterile male (in days) 7
1/pm Average lifespan of male mosquitoes (in days) 7
1/pr Average lifespan of female mosquitoes (in days) 10
1/(8 + py) Average time in compartment Y (in days) 3.33

Table 1: Entomological parameters [14]

The dynamics of all compartments are very similar to each other. Hence,
only the graphs of the total flying mosquito population, that is, Y + M + F' are
presented on these figures. For these values of the parameters we have that A
is about 78% of M#. In absolute terms it may turn out that A is so large that
it may not be practical to implement SIT with A > A and/or to sustain it for
sufficiently long time. As demonstrated on Fig. 4, for sterile insect release

5x10°

2

Yéemtp#

1 i 1 L 1 L *‘
0 20 40 60 80 100 120 140 160 180 200
Time (in days)

Fig. 3. A =1.2)
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A < A the equilibrium z** attracts all trajectories with initial value higher than

*

x*. Thus, SIT is reducing the mosquito population from the wild equilibrium
z# to a new equilibrium z** < z#.

el
L e

Y/(t)+M(t)+F(t)

e
0 s
MF /Y +M +F
% 50 100 150 200

Time (in days)

Fig. 4. A = 0.8}, 2(0) > z*

A possible control strategy when \ < \is suggested by point (c¢) in Theorem
9. It shows that even a small continuous release of sterile males makes 0 a
locally asymptotically stable equilibrium. Hence if the mosquito population has
not grown yet sufficiently or it has been reduced by some other measures, e.g.
destroying the breeding places, it can be controlled by release of sterile males,
see Fig.5.

3.57

250 300

Time (in days)

o 50 100 150 200

Fig. 5. A = 0.8}, z(0) < z*

6. The yield of SIT

Our aim in this section is to quantify the controlling effect SIT has on the
mosquito population. Without human intervention the wild mosquito popula-
tion settles around its natural equilibrium z#, which has coordinates
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(A#, Y# M#, F#)’. If a sterile male mosquito is released, this results in certain
decrease of the wild population. To quantify this decrease we need to make the
basic assumption that the sterile mosquitos are released at the same rate until
the population settles around a new equilibrium. Then the reduction from z# to
the new equilibrium describes the effect of SIT. Assume first that A < A. Then
the new equilibrium is z** = (A**,Y** M**, F**)'. Explicitly the equilibrium
x** is given by

o A
M* = (43)
j7Y;
e e 44
(1 —=r)y o
sk rYy sk TN ok
Y = A = —— = M 45
Ty Gt )17 45)
BM** Brua
(T + Nar Tt a e (0 4yt 10
where 1
ot =5 (R-1-2Q- VE-T-2Q7 - 1\Q).

It is easy to see from (7) that the coordinates of z# can be represented in
similar terms. More precisely, we have

R-1

# _ bl
M o (47)
o 123,78
A* = 7(14)71\4#, (48)
#  _ rHM #
U= Grma M 49)
F# = Brim M*. (50)

pr(B+py)(1—r)
Now one can see that the relative reduction of the compartments A,Y, M be-
tween the two equilibria is the same, that is
M#  A* Y#

It is easy to see that F#};f** #* M#]V;ﬁ/[** . However, we have to recall that with

the SIT application the wild female mosquito is divided into the compartments
F and U. It follows from (24) that
B)‘ *k a**ﬁT,U/M M**.

U= (M= + )x),uFY - I+ a*)up(B+ puy)(1 —1)

Thus we obtain

F#_F**_U** - M#_M**
F# - M#
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Then the number

- M# A% Y#E F#

(Y23

describes the reduction of the wild mosquito population both in its totality and
per compartment. We call the number ¢ shortly SIT yield. Using (43) and (47)
we obtain

1 _)\R—l—AQ+\/(R—1—>\Q)2—4>\Q
art 20Q

(M# A+ \/(M# S R41M#>

#
%(1—5#(1—5)2—;51)7

A
where £ = UF is the release of sterile males as a fraction of the wild male

natural equilibrium. Then we derive an explicit expression for ¢ as follows

CMF-M 1 4¢
SO—W—z(”f‘\/“‘f)Q‘R_l)’

This is valid when A < A or equivalently

A VR-1
M#  VR+1

For & > é the mosquito population decreases to 0. So its relative reduction from
x# to the new equilibrium 0 is 1 so that the SIT yield is

;<1+5\/<1£)21f_51> it e<é,

1 it &>¢.

M** — )\

DN | =

§<é=

p(§) =

One should note that ¢ as a function of £ depends on the parameters of the
model only through the basic offspring number R. It particular, it is independent
of the density dependent death rate us of the aquatic stage. Hence qualitatively
the response of the mosquito population to SIT is independent of its size. The
yield function for various values of R is graphically presented on Fig. 6.
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Fig. 6. SIT yield function

Sterile male release such that A < ;\, or equivalently & < é , results in sup-
pressing the mosquito population towards extinction only if at the beginning
of the release process this population is relatively small, namely, less than y*.
The equilibrium y* is obtained similarly to (43)—(46) with a* instead of a**.
Then a sterile male mosquito release of A = éM# can suppress a population
not exceeding y = ny# where

TEMFT AR T YE T FE

Further, n can be obtained as a function of ¢ in the form

n=;<1—§—\/(1—§)2—;_£1>-

The graph of the function 1 = n(€) is presented on Fig. 7 for several values of R.
One can observe that for the mosquito population for large R, as it is typically
the case for mosquito, the population size needs to be relatively quite small to
be controlled via release & < f . For example if R = 40, release of £ = 60% can
only control a mosquito population of about 4% of the wild equilibrium.
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Fig. 7. SIT controlled population size

Remark 10. In [16, 17] the authors have considered mechanical control as an
additional vector control tool for the Chikungunya Disease. Mechanical control
consists in reducing the breeding sites, that is in reducing eggs deposit. In our
model, mechanical control would modify the parameter ¢. Indeed, let ¢ € [0,1]
be the parameter that represents the mechanical control: when ¢ =1, there is no
mechanical control, and when ¢ = 0, the mechanical control is total (elimination
of all breeding sites). Then the time evolution of the aquatic stage becomes

dA
— = cpF — (v + 1 + p24),

dt
such that the new basic offspring number is given by R,, = cR. Thus following
Figs. 6 and 7, it is also clear, that a combination of SIT and Mechanical Control
can be helpful to improve the yield of the Control.

7. Conclusion

By establishing a relevant and simple mathematical model, we studied,
through it, the life cycle of mosquitos (from the aquatic stage to the adult
stage that includes the female vectors). We establish, in terms of the basic off-
spring number, properties of global nature such as the stability of the equilibria
and their basins of attraction. We added to this initial model a compartment
of treated or sterile male mosquitos in order to get the SIT model. We ob-
tained a threshold number and established theoretically and computationally
that the control of wild female mosquitos is effective provided that the number
of released sterile male mosquitos is above this threshold number. Furthermore,
below this number, we determined properties of global nature for the equilibria
of the system.

Our study reveals that the success of the SIT depends on the entomological
parameters of the wild anopheles mosquito as well as on parameters related
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to the sterile males, i.e. p, ¢, ¥, and pr, which determine the said threshold
number. This leads us to being interested in future work in combining the SIT
with Mechanical Control, in order to improve the control. Comparing the SIT
approach with standard chemical vector control is also of interest. Another
possible extension would be to couple our SIT model with the epidemiological
model studied in [3].
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pendix: Computations

Equilibria of the model (28)—(30), (33)
When equating the right hand side of the considered system of ODEs, from

equations (33) and (29) we have

BM BM 7y
(M + Npr (M + Npr B+ py

Substituting into the right hand side of (28) we obtain

BM Ty

¢(M+>\)upﬂ+uy

A= (y+m+p2A)A=0
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Excluding the trivial case A = 0 the equation simplifies to

oBryM oy — A= 0
e (B + py ) (M + A)

. par M C . .
Using (30), we have A = m, which implies the following equation about
M

oBryM =y M
prE (B + py ) (M + N) (1—7)y
A
Substitution a = i leads to
ory L kel A
pr(B+py) 1+ a (1-r)ya
or equivalently
ppry 1 M2t n A

—1- —=0. 51
R [ R T (R ETC AT oy
The coefficient of p%a is exactly the basic offspring number R. Denote the

coefficient of % by Q. Then (51) is equivalent to the following quadratic equation
with respect to o
= (R-1-XQ)a+XQ =0 (52)

As mentioned earlier it is assumed that R > 1. The discriminant is
A = (R—1-XQ)*—4XQ = (R+1-XQ)?>—4R = (WVR—-1)2-)Q)((VR+1)>=)Q).

The equation two real positive roots iff A > 0 and R —1— AQ > 0. Then using
that (VR —1)2 < R—1 < (VR +1)? and in view of the expression for A,
equation (52) has two positive roots iff (VR —1)2 — AQ > 0 or equivalently

. (VR-1)
A< hoi= 20
= Q
In this case the roots are
o = %(R—l—)\QJr\/(R—l—)\Q)?—AL)\Q)
o = %(R—l—)\Q—\/(R—l—)\QP—AL)\Q)

Further, if A = A equation (52) has one positive root & = v/R — 1 and it has no
positive roots when A > A.
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Equilibria:

w o A
«

A = 130 M*
(1—r)y

O BT rypa .
B+ py B+ py)(1 =)y

oo BM* o _ B e
(M* + Npr (I+a*)ur B+ py

(I +a*)up(B+py)(1 —1r)y

For z** and & one uses the above formulas with o** and &.

B. Inequalities in the proof of Theorem 9

The first coordinate of the function ® is

Or 1 A
Dy (N x) = obry —’Y—Ml—%a

pr(f+py)l+a

o’ —(R-1-AQ)a+AQ _ (¢ —a)(a—a*)
ala+1) N ala+1)

Using that 0 < § < o* — o™ we obtain

o0(a* =6 —a™)
Dy (A = >0
) = o S —5 4 1)
The inequality c5 > z* is derived as follows:
Ms = A > A = M*
ar —§ a*
127 12 * *
Ay = ———Ms > ————M*" = A
(L—=r)y (L—=r)y
™y ry * *
Ys = As > A* =Y
T Bam T By
BMs B
Fs = ——YV; = —— Y,
’ (Ms+Npr °— (T+a"—d)ur °
. B By
1+ a*)pr (14 a*)ur
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Further, we also have

e a*(a/\*a_ 5 = - %
As; —AY = (lliAj")y(M‘s_M*)
B s BTMY (45 = 47)
nr s m a*ﬂ_ D0 i*)up v
) <(1+a*ﬁ— Npr (1+§*)NF)Y6+ (1+§*)uF(Y5_Y*)
B T Yo+ (Vs —Y*).

I+ o)1+ a*)pr (14 a*)pr

Therefore c¢s is arbitrary close to x*.
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