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Introduction
Recent analysis of geodetic data demonstrated that the
oscillatory modes of geophysical signals exhibit self-
similar behaviour (Botai et al., 2008). This scaling
behaviour could be viewed as a manifestation of scale-
invariant non-linear dynamics whose fractal structures
and multi-fractal statistics are typical of a turbulent
atmosphere and the Earth’s variable interior and
complex topography. 

Fundamental geodetic observables (i.e., the Earth’s
shape, the Earth’s gravity field and the Earth’s rotation)
are provided by modern geodesy under the framework
of the Global Geodetic Observing System (GGOS);
reference to Plag and Pearlman, (2009) for further details
on GGOS. These observables contribute to improve
understanding of geodynamics, geo-hazards, the global
hydrological cycle, global change, the dynamics of the
atmosphere and oceans as well as supporting many
societal applications that depend on accurate positions
and reference frames. 

In particular, space geodetic observables derived
from space geodetic techniques such as Global
Navigation Satellite Systems (GNSS), Satellite Laser
Ranging (SLR), Very Long Baseline Interferometry

(VLBI), Lunar Laser Ranging (LLR) and Doppler
Orbitography and Radiopositioning Integrated by
Satellite (DORIS) provide a global picture of the Earth.
This is achieved through observing:
a.  the changes of the surface geometry of the Earth due

to the horizontal and vertical deformation of land
surfaces and variations of the ocean surface and ice
cover;

b.  fluctuations of the Earth (rotation, precession, polar
motion and nutation); and 

c.  variations of the gravity field and centre of mass. 
A summary of geodetic parameters related to the system
Earth reported by Rothacher, (2002) is contained within
Table 1. 

Furthermore, global monitoring of the Earth from
space plays a significant role in understanding the
processes in the complex Earth system. A robust
knowledge of processes could aid in the development of
geophysical models describing past and present events
based on a priori data which would then be used 
to forecast for example future natural hazards. 
In Rothacher et al., (2010), the description and
modelling of geophysical processes in the Earth system
is reported to entail the development of data collection
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ABSTRACT

We investigate the use of distribution functions to characterise the geophysical signals and noise components embedded in the

geodetic Very Long Baseline Interferometry (VLBI) data sets across some of the International VLBI Service (IVS) stations. The

rationale of using α-stable distributions as a tool to model the noise components in geodetic observables is due to the existence

of impulsive signals/noise bursts (which often take the form of excursions with intermittent occurrences) in the data sets suggesting

deviations from Gaussian distribution. A deviation from Gaussian distribution type would therefore suggest that statistical techniques

such as least squares analysis, often used for analyzing the geodetic data (which are often based on Gaussian assumptions) could

not be robust. In this paper, the properties of a long-range α-stable distribution with long tails and infinite moments in geodetic

data are investigated by way of statistically testing their distribution using a family of stable distributions. The choice of stable

distributions is based on the ease with which the statistical properties of the non-Gaussian processes are defined. Results indicate

that the independent geophysical noise components reconstructed from geodetic VLBI baseline data exhibit distributions that have

asymptotic power-law decay (albeit variable power indices) whose underlying process can be modelled as a long-range dependent

process with an α-stable distribution (i.e., the stable varieties have small characteristic exponents).
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and an earth management system as well as robust 
and tractable data analysis strategies. These analysis
methods may provide consistent and near-real time
integrated geodetic time series which are referenced to
an extremely accurate and stable reference frame.

Geodetic measurements are often characterised by
complex and delicate operations that are prone to
numerous problems such as instrumental limitations,
atmospheric biases and poor network geometry. This
leads to systematic deficiencies in sampling, both in time
and space and measurement noises. As a result, the
observables or estimated parameters will rarely show
any smoothness at any scale and therefore any
comparison with theoretical model output would be
difficult. In addition, the inherent noises and irregular
observation space may produce an error spectrum in the
geodetic solutions that have a high degree and order of
dependencies and cross-correlations. 

Generally, many problems in the field of geodetic-
geophysical research reduce to decomposing the
geodetic record and separating weak geophysical
components embedded in the geodetic data. As a result,
isolating the noise components in geodetic data is
critical for the interpretation and modelling of
geophysically interesting signals embedded in the data
(Beavan, 2005). For example, in the studies reported by
Riva et al., (2009), it was demonstrated that separation of
geophysical signals (i.e., the Glacial Isostatic Adjustment
Signal (GIAS) associated with the meltdown of the Late-
Pleistocene ice sheets and other geophysical signals
such as gravity and crustal deformation) embedded in
geodetic data was problematic.

In order to extract information from geodetic data,
application of appropriate models and robust
mathematical statistical methods are required. 
In particular, the procedure used to compute geodetic
parameters such as tropospheric delay, station
coordinates, baseline lengths and Earth Orientation
Parameters (EOPs) ought to be formulated in a tractable
manner. Furthermore, the algorithms used for processing
the parameters should be quantitatively characterised by
use of robust probabilistic models (including
characteristic and distribution functions).

To date, research problems in space geodesy are
mostly dominated by Gaussian assumptions during
parameter estimation and this could be attributed to the,
a.  validity of the Gaussian model for a large number of

data sources based on the Central Limit Theorem;
b.  well known and mature procedures of designing

algorithms based on Gaussian assumption; and
c.  simple linear functional form of the resulting

algorithm. 
While the use of simple models in parameter estimation
from geodetic data has been satisfactory in many
applications to date, future accuracy requirements 
(Niell, 2005) make it necessary to quantitatively examine
the contribution of complex models (which take into
account non-linear and nonstationary structure in
geodetic data) during parameter estimation.

Concerns regarding the suitability of linear/Gaussian
models emerged due to certain factors, including the
increase in the spatial-temporal span of geodetic data
sets. In particular, several geodetic data sets have
provided evidence for error sources that introduce large
temporal correlations into the data (Williams, 2003). 
For example, the analysis of the characteristic temporal
correlations based on noise models in time series of 
236 GPS receiver position changes for data spanning
between 3.5 and ten years operating in Southern
California and Southern Nevada was reported by
Beavan, (2005). Results reported in Beavan, (2005)
demonstrated that the geodetic record exhibits either
and/or flicker, random walk, power law, Gauss-Markov
and seasonal noise. In addition, Amiri-Simkooei et al.,
(2007) used Least Squares Variance Component
Estimation (LS-VCE) and determined that the noise
components in the time series of all components of
position estimates could best be characterised by a
combination of white and flicker noise. 

Mao et al., (1999) assessed the noise characteristics in
time series of daily position estimates for 23 globally
distributed GPS stations with three years of data, using
spectral analysis and Maximum Likelihood Estimation
(MLE). From their analysis, a combination of white and
flicker noise appear to be the best model for the noise
characteristics of all three position components. 
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Table 1. Geodetic parameter groups related to system Earth as reported in Rothacher (2002).

Parameter type VLBI GPS SLR DORIS LLR

CRS Quasar positions X

Orbits (satellites, moon) X X X X

Nutation X X

Nutation rates X X X X X

EOP UT1-UTC X

LOD X X X X X

Polar motion X X X X X

TRF Station positions X X X X X

Geocentre X X X

Gravity field Low degree X X X X

Atmosphere Troposphere X X X

Ionosphere X X X
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Both white and flicker noise amplitudes were found to
be smallest in the north component and largest in the
vertical component. The white noise part of the vertical
component was higher for tropical stations (±23°
latitude) compared to mid-latitude stations. These
observations were confirmed by Williams et al., (2004)
who used MLE analyse for the noise content present in
a total of 954 GPS position time series from 414
individual sites in nine different GPS solutions.

The presence of a mixture of noise (white and/or
coloured noise) in geodetic data sets suggests that a
power-law process may be used to describe a statistical
model for the geophysical signals (and noise), see
Williams, (2003). Such models appear in a large number
of applications in finance (Mantegna and Stanely, 2000),
traffic network (Abery and Veitch, 1998), geophysics
(Davies et al., 1999) and atmospheric science (Varotsos
et al., 2009). Furthermore, several geodetic data sets
have evidenced power-law scaling behaviour (Botai 
et al., 2008; Botai et al., 2010). As a result, the decaying
dependence (long memory) observed in geodetic
parameters may not  be adequately characterised in
terms of the traditional models such as the Gaussian
model and auto-regressive moving average models
because of their inability to capture the characteristics of
space-time evolution.

While models for long memory (and therefore self-
similarity) processes (which have infinite variance) have
been reported in the literature, applying these models to
real data is still lacking. In order to explore the
characteristics of the underlying geophysical signals and
noise components in the geodetic data, assessing the
stability of the inherent frequency distribution is often
required. In the present research, the properties of a
long-range -stable distribution with long tails and
infinite moments that characterize the noise components
in geodetic data are investigated by way of statistically
testing their distribution. A notable example of
application of Lévy distributions has been in the field 
of geomagnetism where the frequency of geomagnetic
reversals seemed to follow a Lévy distribution.
Furthermore, Scafetta and Bruce, (2008) linked the
statistical structure (the Lévy distributions) evident in 
the intermittency of solar flare data to the intrinsic
fluctuations in the Earth’s temperature.

In particular, sequences of long-range dependent
geodetic data time series whose distributions exhibit a
power decay i.e., {q, α}-stable distributions are studied;
here q controls the dependence. Long-range dependent
{q, α}-stable distributions often arise in non-linear and
nonstationary processes. The purpose of the present
paper is to present a generalised methodology of
describing the probability distributions of independent
noise components embedded in geodetic data.
Emphasis is on establishing properties of -stable
distributions which describe the noise components
embedded in geodetic data. The outline of this paper is
as follows; some aspects of α-stable distribution and
statistical methods of testing for α-stable distribution are

presented in Section 2. Analysis method and data set
utilised are presented in Section 3. In Section 4, results
from the α-stable distribution model fit into the
independent components in each of the seven 
VLBI derived global baseline data are presented 
and discussed. Concluding remarks are given in 
Section 5.

Statistical testing for α-stable distributions
The α-stable distribution or generally stable distribution
was developed by Paul Lévy (see Borak et al., 2005 and
others therein). The α-stable distributions are often
suited for modelling impulsive phenomena. Many
physical phenomena are non-Gaussian and in cases
where the observed data have frequently occurring
extreme values; they could be modelled as a realisation
of a random process with an α-stable distribution.
Simple 1-D α-stable distributions are typically heavy-
tailed distributions with characteristic functions (this is
because their densities and distribution functions are not
known in closed form) given by Equation (1).

(1)

In Equation (1), the stable distribution is specified by the
parameter set Sα {α, β, υ, γ}. Here, the stable
characteristic exponent (0 < α ≤ 2) characterises the tail
of the distribution (the lower the value of α, the heavier
the tail and the greater the probability of extreme values
or ‘spikes’), the skewness parameter (-1 < β < 1) is also
called the symmetry parameter or index of distribution.
If β=0, the distribution is symmetric (Symmetric α-Stable:
SαS), otherwise the distribution is positively (to the
right) and/or negatively (to the left) skewed. The spread
(υ > 0) and location (-∝ < < ∝) parameters measure
dispersion (determines the spread of the density) around
its location parameter. For a normal distribution, γ is
equivalent to the mean while the dispersion agrees with
the variance of the Gaussian density: it equals to half the
variance when α = 2. 

The family of α-stable distributions is extensive.
Three notable subclasses of interest are: 
a.  Gaussian distribution, N{μ,σ2} which are often

characterised by the parameter set Sα{2, 0, 2-0.5σ, μ}; 
b.  a Cauchy distribution with parameter set Sα{1, 0, υ, γ };

and
c. α-stable Lévy distribution by the set Sα{0.5, 0, υ, γ}.

Note also that α-stable distributions lack moments of
order larger than α; for α < 2, there are no second-
order statistics. For further details on the theory of

Φ(ρ) =Ε [e {jθx }]

{jθν –IμθIα (1–jβ tan( ))}
e                                          if α ± 1.

=
{jθν –IμθIα (1–jβ 1nIθI)}

e                                          if α = 1.

θ
IθI

2
π

πα
2

θ
IθI



stable distributions, refer to Samorodnitsky and
Taqqu, (1994) and Nikias and Shao, (1995) 
and references therein. In the present research, we
focus on the α-stable distributions: especially, the 
α-stable Lévy distribution. This particular distribution
is a continuous-time stochastic process Γt|t≥0 which
exhibits unique properties such as having
independent and stationary increments (or
independent and identical distribution) and admits
cadlag (right continuous with left finite limits)
modification, see for example Cont and Tankov,
(2004) and references therein. Figure 1 depicts
probability density functions for typical simulations
of symmetric 

a.  and asymmetric 
b.  α-stable distributions for different values of α. 

From Figure 1, it can be observed that the simulated –
stable distribution exhibits irregularities that are quite
different from a Gaussian process. While the densities of
the SαS maintain similarities to the Gaussian probability
density functions, specific differences among the family
of α-stable distributions are evident in the rate of the
decay of the tails. In particular, the Gaussian density
decays exponentially at its tails while non-Gaussian
stable distributions decay algebraically.

Data and analysis procedure
Data sets and data pre-processing
Geodetic baseline data increments from seven
International VLBI Service (IVS) stations, with relatively
high quality and a long history of data sets spanning
between 1990 and 2010 were considered in the present
study. As depicted in Figure 2 the IVS stations were
selected to ensure that there are good geometrical and
global distributions. The geodetic baseline data sets
were filtered using a modified adaptive filtering method
described in Wessel et al., (2000). The purpose of using
the adaptive filtering is to exclude possible artefacts
from the baseline (often caused by inherent systematic
differences in the solutions). Furthermore, polynomial
trend (degree 1) and the seasonal components 
(period 4) were removed based on the moving average
technique reported in Weron, (2007).

Extracting high energy-noise components in
geodetic data
In the present study, we propose a combination of
Empirical Mode Decomposition (EMD) and Independent
Component Analysis (ICA) to isolate the frequency
components in geodetic baseline data (hereafter BL).
Firstly, the data are decomposed into spectrally
independent oscillatory modes called the Intrinsic Mode
Functions (IMFs) based on the Ensemble EMD (EEMD)
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Figure 1. SαS (a) and asymmetric (b) α-stable probability density function (P) with varying characteristic exponent. SαS (c) and

asymmetric (d) α-stable cumulative density function (CDF).
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Figure 2. Global distribution of International VLBI Service (IVS) stations and some baselines.

Figure 3. VLBI baseline lengths (determined with geodetic Calc/Solve analysis software) obtained from the Goddard Space Flight Center,

Marryland, USA; an IVS analysis centre.



algorithm which has been recently introduced by
Zhaohua and Huang, (2009). This is a more robust
noise-assisted version of the EMD algorithm developed
by Huang et al., (1998) and is available online at
http://www.rcada.ncu.edu.tw/. This MATLAB algorithm
defines the IMFs for an ensemble of trials, each one
obtained by applying EMD to the BL with an
independent, identically distributed (iid) for the same
standard deviation (σiid) where σiid=λ σ0. Here, the ratio
between the BL (σ0) and iid is referred to as the noise
parameter (hereafter, λ). The resulting IMFs are assumed
to be the noise components of interest which are
generally associated with high frequency IMFs. As a
result, only those IMFs with high noise contamination
ought to be used in the following ICA step. Two
methods of selecting a physically significant IMF to be
used in the ICA are employed. In the first method, the
IMFs are selected based on the level of noise
contamination in the sample. If the IMF1 is assumed to
be highly contaminated, then, its amplitude could be
used as a reference of the amplitude of the noise
contaminated IMFs. Statistically independent IMFs are
extracted by selecting only those IMFs whose global
energy is at most 50% of the energy of IMF1. In the
second criteria, ICA reduces the dimensionality of 
the IMFs adaptively. 

Given that the number of statistically independent
IMFs is now less than the original IMFs, ICA generally
merges the statistically dependent components into the
same group and therefore reduces the dimensional
space of IMFs. Thus ICA is a statistical technique that
decomposes a series of observations into a linear
combination of non-Gaussian random variables that are
highly independent (Hyvärinen, 1999). Nonlinear
components imbedded in BLs were extracted adaptively
as described in Botai et al., (2010) and references
therein. 

Results and discussion
Raw geodetic parameters exhibit power-scaling (their
autocorrelation function decays rapidly) and therefore
poses infinite variance. A plot of the 11 VLBI BL data
sets (see Figure 3) depicts the presence of spikes
suggesting that the underlying process is driven by non-
Gaussian processes. The sampling density of the VLBI
BL data varies between 150 and 500 data points
spanning the period between 1998 and 2010.

The statistical properties of the BL as derived from
Calc/Solve and OCCAM software contributed to the IVS
by Goddard Space Flight Center (GSCF), VLBI analysis
centre are tabulated in Table 2. The BL are determined
using the 2000.0 as the reference epoch. From Table 2,
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Table 2.  Statistical properties of Very Long Baseline Inteferometry derived baselines 

Number of Data points WRMS [mm] Slope [mm/yr]

C/S OC C/S OC C/S OC

Gilcreek-HartRAO 343 304 18.23 21.08 3.19 ± 0.55 2.58 ± 0.74

Westford-HartRAO 514 460 17.51 18.22 11.23 ± 0.18 11.34 ± 0.22

Tsukub32-HartRAO 171 157 13.62 16.44 10.82 ± 0.43 -10.84 ± 0.53

Westford-Tsukub32 263 241 12.44 9.85 0.52 ± 0.30 -1.19 ± 0.26

Gilcreek-Hobart26 221 185 20.89 24.4 -38.74 ± 0.51 -38.55 ±0.69

Tsukub32-Hobart26 125 111 10.9 13.01 -46.12 ± 0.47 -46.65 ± 0.54

HartRAO-Hobart26 264 195 21.63 27.59 33.04 ± 0.25 33.20 ± 0.38

HartRAO-Wettzell 469 419 11.26 12.16 -3.41 ± 0.12 -3.01 ± 0.15 

Wettzell-Hobart26 240 212 19.19 21.36 -8.69 ± 0.40 -8.30 ± 0.55

Westford-Hobart26 190 167 12.64 9.85 -9.22 ± 0.64 -9.56 ± 0.42

Gilcreek-Tsukub32 164 146 6.6 6.34 4.82 ± 0.58 4.91 ± 0.53

Statistical calculations use Calc/Solve (C/S) or OCCAM (OC) software

Table 3. . α-Stable distribution parameters in highly fluctuating components in VLBI baselines

IMF1 IMF1 IMF1 IMF1 IMF2 IMF2 IMF2 IMF2

α β γ ν α β γ ν

Wettzell-Hobart26 2 0.01 0.01 0 1.92 0.42 0.01 0

Wettzell-HartRAO – – – – 1.62 -0.05 0 0

Westford-Tsukub32 2 0.6 0.01 0 1.74 0.43 0 0

Westford-Hobart26 2 -0.5 0.01 0 1.63 -0.03 0.01 0

Westford-HartRAO – – – – 1.53 -0.03 0.01 0

Tsukub32-HartRAO 1.69 -0.24 0.01 0 1.34 -0.17 0.01 0

Hobart26-Tsukub32 2 1 0.01 0 2 -0.23 0 0

Horbart32-HartRAO 1.98 -1 0.02 0 1.72 -0.03 0.01 0

Gilcreek-Tsukub32 2 -1 0 0 2 0.63 0 0

Gilcreek-Hobart26 2 -1 0.02 0 2 -0.76 0.01 0

Gilcreek-HartRAO – – – – 1.4 -0.08 0.01 0
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there are noticeable differences in the Weighted Root
Mean Square (WRMS) values, which could be attributed
to systematic differences in the sampling interval and
individual observations as well as differences in the
theoretical models used in computing the geodetic
observation. Furthermore, the WRMS vary across the
analysis software in all the stations. These differences
could be attributed to the differences in data quality
checks between the two IVS analysis centres as well the
different geophysical model parameterisations during
VLBI data analysis. In general, the statistics show close
correlation and this suggests that the methodology of
computing the BL results is robust (i.e., minima
systematic differences in solutions from the different
analysis software and the IVS analysis centres).  

In order to infer whether the distribution of the noise
component(s) in geodetic data is consistent with 
α-stable distribution, a p-p (probability-probability) plot
is fitted to the data. In this analysis, the p-p plot is used 
to effectively describe the tail distribution of data relative
to the simulated α-stable distribution. The p-p plot
(based on the Cauchy distribution) in Figure 4 shows
that the BL data closely fit the theoretical line, suggesting
that the BL data fit the α-stable distributions including
the tails. 

To validate the results of the p-p plot, the sample
characteristic function method is used to estimate the
α-stable distribution parameters in all the VLBI derived
BLs considered in the present study. Table 3 contains the 
α-stable distribution parameters of the noisy
independent components (IMF1) across all the BLs.
Though the α-stable distribution parameters vary across
all BLs as per Table 3, all their values lie within the limits

of the α-stable distribution and are therefore consistent.
Based on these results, it can be concluded that the
independent noise components in all VLBI BLs could be
described by the α-stable distribution.

Conclusion
Geodetic data archives have continued to increase
owing to availability of data from various space geodetic
techniques over the years. The available data have been
utilised by the scientific community for various research
applications. One area of research is in the analysis of
the geophysical signal structure embedded in the
geodetic data sets. Analyses of these data have 
however revealed that geodetic data sets often show
excursions as well as self-similar or scaling properties. 
The observed unevenness could be associated to the
independent statistical properties of the geophysical and
noise components present in the data. One of the best
approaches to explore the nature of individual
components inherent in geodetic data is to model the
statistical properties of the individual components. 

One way to model the noise components embedded 
in geodetic data is by using the distribution function. 
In order to describe an appropriate distribution function
of data, the first step is to assess the nature of the
distribution function by use of proxy parameters. 
For instance, α-stable processes are known to exhibit
scaling behaviour, are heavy tailed and are long-range
dependent; all these statistical features have been
observed in geodetic data and have been reported in the
literature. As a result, using α-stable distribution to
characterise the nature of the geophysical and noise
components in geodetic data could be appropriate. 

Figure 4. The p-p plot of the empirical (Cauchy) -stable distribution and the independent noise components (e.g., IMF1) in the Wettzell-

Hobart baseline data. Noise components derived from other baselines exhibit similar shape but with α-stable distribution members varying

between Lévy and Cauchy distributions.



In the present contribution, the properties of α-stable
distribution with long tails and infinite moments in
geodetic data have been investigated by means of
statistically deducing the underlying distribution. 
The main contribution of the current analysis in terms of
geodetic data analysis is assessing whether the
frequency distribution of the geophysical components in
geodetic data is stable. If the stability is inferred, then the
noise characteristics present in the data would be
modelled. Our results generally demonstrate that the
independent noise components in geodetic data are 
α-stable distributed.
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