
An access control framework for web services

M. Coetzee
J.H.P. Eloff

M. Coetzee, School of Information Technology, University of Johannesburg,
Johannesburg, South Africa
J.H.P. Eloff, Information and Computer Security Architectures (ICSA) Research Group,
Department of Computer Science, University of Pretoria, Pretoria, South Africa

The financial assistance of the Department of Labour (DoL) towards this research is
hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the
author and are not necessarily to be attributed to the DoL.

[The figures and tables at the bottom of this document]

Purpose – To define a framework for access control for virtual applications, enabled
through web services technologies. The framework supports the loosely coupled manner
in which web services are shared between partners.

Design/methodology/approach – A background discussion on relevant literature, with
an example is used to illustrate the problem that exists. To enable access control
composition, an extension is proposed to authorisation specification language, together
with publication of access control requirements of a web service provider.

Findings – The framework shows that loosely coupled access control can be made
possible by making use of the standard manner in which messages are communicated in
XML, and by composing assertions with the access control policy of the provider in a
consistent manner. Access to web service methods is only granted if permission can be
derived for it, where the derivation step forms a formal proof.

Research limitations/implications – A basic framework has been defined. An
architecture to support it must be defined. Only a very basic level of access control
composition has been illustrated.

Practical implications – The publication of access control requirements in standards
such as WS-Policy can be considered.

Originality/value – This paper offers a practical approach to address access control for
web services.

openUP (March 2007)

Introduction
Advances in the internet have transformed distributed systems into a marketplace of
services that can be shared across organisational boundaries. A recent trend in
information technology is business-to-business collaboration, where business
functionality is supported through virtual applications. Business functionality of
organizations is becoming more digitised, and software characteristics such as virtuality
and real-time operation is exhibited. Virtual applications are enabled by web services
technology (Gottschalk et al., 2002) that allows organizations to exploit software as a
service, through service virtualization. Web services is also recognized as the logical
architecture for the organization of grid services (Myer, 2003). Security would be an
important consideration in the design of such networked services.

Web services are based on a set of XML standards such as simple object access protocol
(SOAP) (Box et al., 2000), web service definition language (WSDL) (Christensen et al.,
2001), and universal description, discover and integration (UDDI) (Atkinson et al.,
2003). A web service is the name of an object with methods that can be invoked through
an internet connection. Web services providers define XML-based interfaces with
WSDL. This enables RPC mechanisms, based on network endpoints, to exchange SOAP
messages with web services requestors. The dynamic assembly of software and
resources, written in different programming languages and tools, residing on different
operating systems can then occur. Assembly is between applications on a machine-to-
machine basis and appears virtual to the human utilising such functionality. Loose
coupling is enabled as web services providers publish well-defined, extensible interfaces,
and web services requestors locate them and submit requests as platform independent,
self-describing, self-contained messages, shown in Figure 1.

The use of web services technology presents new security problems to IT departments of
organizations. A unique characteristic of web services is that they allow business partners
to communicate through human-legible SOAP messages. A partner's secrets may be
exposed in a SOAP response and must be protected from threats such as disclosure to
unauthorized parties. Owing to the fact that XML is text-based, web services invocations
can pass over normal HTTP channels and therefore through firewalls. The applications
that are to process the request contained by these XML messages may then be
endangered by false claims or malicious information.

The distributed, loosely coupled architecture of virtual applications present challenges in
terms of verifying credentials and exercising access control over diversified resources.
Even though access control for web services has been researched (Damiani et al., 2001),
there is not yet a defined architecture for access control when web services are composed
into a virtual application. The focus of this paper is to define a framework for access
control integration for networked web services. Such a framework would need to support
the loosely coupled manner in which these services are shared between business partners.
This paper is structured as follows. Section 2 provides a background to the problem with
an example. Section 3 addresses the access control of a virtual application. Section 4
concludes the paper.

openUP (March 2007)

Background
XML has become a standard for communication between applications. With XML, an
application defines markup tags to represent the different elements of data in a text file so
that the data can be read and processed by any application that uses XML.

SOAP allows the structuring of data in XML so that different applications can read and
send messages, generally over HTTP, to each other. SOAP messages contain three
different sections, as shown in Figure 2. Their semantics are defined with associated
XML schemas, which the receiving SOAP processor should be able to interpret. The
SOAP Envelope element defines the start and end of the message. The SOAP Header
element, which is optional, allows data not directly associated with a method request or
response to be passed to a web service. The SOAP Body element contains the web
services method name and associated parameters in either the SOAP request or response.
To secure exchanges, message security can be added to the SOAP message by extending
the SOAP header with security information.

Conceptually, information security is enforced by means of information security services
such as authentication, authorization, confidentiality and integrity. A number of new
specifications have been developed to embed these security services within the SOAP
header, to ensure the security of a message between intermediate and destination security
domains. Security assertion markup language (SAML) (Hallam-Baker et al., 2002) is a
token-passing system to securely exchange authentication and authorization information.
XML Signature (Bartel et al., 2002) and XML Encryption (Imamura et al., 2002)
describe how integrity and confidentiality are enforced for XML documents, while WS-
Security (Atkinson et al., 2002) applies such XML security technologies to SOAP
messages with XML elements describing credential exchange, message integrity and
message confidentiality. XML access control markup language (XACML) (Anderson et
al., 2003) allows fine-grained access control policies to be expressed in XML. To secure
SOAP messages, a combination of XML Signature, XML Encryption, SAML, and
XACML can be used to ensure authentication, authorization, integrity and
confidentiality.

A web service belongs to a specific organization, with its own distinctive access control
policies and models. To allow interoperation between independent security domains, WS-
Policy (Box et al., 2003) provides a grammar for requestors and providers of web
services to communicate their requirements and capabilities. In addition, WS-Trust
(Anderson et al., 2004) describes a framework for managing, assessing and establishing
trust relationships to enable web services to interoperate securely.

Specifications that address authentication and access control are not established to the
extent as those for the integrity and confidentiality of SOAP messages. As application
interfaces are exposed, web services access control is important to implement. Access
control should not only be required for information, but the operations performed by
remote users or applications should be carefully controlled. Because remote users or

openUP (March 2007)

applications will have access to an increasing number of services without human
checkpoints, access control should be actively managed.

eCompany sales – an example

Web services allow virtual application partners to interact with others in an ad hoc
fashion, at distant, independent locations. Consider as an example eCompany sales, a
virtual application shown in Figure 3. eRetailer is a provider of a retail web service.
eCompany, a web service requestor, enables its users to place orders for goods at
eRetailer. eCompany can provide more sophisticated services to their customers and
employees, by integrating the services of eRetailer with its own business functionality. A
benefit to eCompany is that it may receive a percentage of the profit made on the sales
done by its customers and employees.

eCompany sales can only be successful if it allows customers and employees to navigate
easily and securely between the web sites supporting these services. There also needs to
be some relationship of trust between eCompany and eRetailer, as this will form the basis
of all exchanges that may take place between them. This can be defined when eCompany
registers with eRetailer through a register_business service. A designated employee does
this on behalf of the eCompany requestor application. In the open environment in which
eCompany sales exists, an identifying digital certificate may be required, or an
identifying token issued, that will be used when requests are processed. Thereafter,
services are made available to the employees and customers of eCompany such as
searching through products and special offers on to-be-released products, adding selected
products to a shopping basket and placing of orders. To the customers and employees of
eCompany, the eCompany sales virtual application would seem local to their
organisation. To be effective, it would require access control to be enforced across
domains.

Access control for eCompany sales
A virtual application is an environment where both the requestor and provider of the
service may require the ability to influence the access control decisions that are made
when the provider processes a request. Composing access control policies between the
requestor and provider is challenging, as there is no support available to administrators to
address this problem.

To describe the problem of access control composition, consider the following: eRetailer
hosts a very generic retail service to accommodate any number of service requestors.
eRetailer can provide more flexibility to service requestors, by giving them limited
control over the type of interaction that would occur. For instance, special offers may be
made available to customers on to-be-released products. This is a benefit that a service

openUP (March 2007)

requestor may pass on to their customers when orders for selected products are processed,
but which will negatively impact the percentage of profit made by the service requestor.
Even though this is a choice made by the management of a service requestor, it has to be
applied by the service at eRetailer. eCompany may decide to provide this benefit to their
employees, but not to their customers. If Jill, an employee of eCompany is given this
benefit, she should have permission to execute the remote list_specials method of the
service at eRetailer. John, a customer of eCompany will not be given this benefit. John
would only be able to execute the product_search method. John and Jill are not known to
eRetailer. eRetailer would only be able to differentiate between their requests, if
additional information is provided by eCompany. As eCompany and eRetailer each have
their own authentication mechanisms, costly investments could be avoided by allowing
eCompany to do its own authentication, but to provide loose coupling of authentication
with assertions, defined in XML. eRetailer may also not be interested in the real identity
of John or Jill, but rather in their ability or role requested on their behalf by eCompany,
as the request is processed. Such an assertion is a claim, statement or declaration of fact
made by eCompany, and is not necessarily signed (Bonatti and Samarati, 2002).

Access control information such as credentials (Samarati, 2002) and assertions that are
passed to the eRetailer service provider, must be composed with its access control
decision-making process. This can be achieved if policies are defined in a declarative
manner that is machine-readable. Logical languages are attractive as policy specification
languages, as a good compromise between expressiveness and simplicity can be achieved
(Bonatti and Samarati, 2003). Access control permissions need to be defined, with
access control logic that would be able to infer consistent decisions over objects, to which
more than one policy applies. It could be argued that all such decisions should rather be
left to the requestor, to be decided before a request is sent, and that interactions should be
made as simple as possible, as to ensure a very generic service that could be used by
various types of client applications. In simple cases this may be true. But, when the
components of a virtual application are coupled, it may become necessary to enable
flexible decisions through the composition of access control information and policies
from different sources.

When considering the composition of access control policies across organisational
boundaries, role-based access control (RBAC) can be useful as it reduces the
administration burden (Sandu, 1996). RBAC requires access permissions to be assigned
to roles, rather than individual users, and users obtain permissions by virtue of being
assigned appropriate roles. Recently, the composition of independent role-based access
control policies between organisations has been addressed (Lischka and Wedde, 2003).
Such composition leads to tight intersystem coupling, as there should be agreements
between web services requestors and providers, to define which role can use which web
service and to what extent. Loose coupling and late binding are concepts central to web
services. If access control is implemented by implementing access control policies at both
the provider and requestor, and these policies require substantial development effort for
each new change made to the policies, it would become the antithesis of loose coupling.
Access control information should also not be made part of the interface of a particular
web service, but should be defined in a standard manner, that would ensure re-use of

openUP (March 2007)

access control semantics across participants of a virtual application. Here, loosely
coupled access control is enabled, by publishing the web services provider roles that can
be activated by a requestor. In addition, role membership or privileges can dynamically
be adapted by the requestor, as is made possible by the provider. The next two paragraphs
will discuss how this can be implemented.

Loosely coupled access control through publicly defined roles

WSDL is a mechanism that supports loose coupling and late binding for web services.
But, as WSDL does not support security, it does not provide a complete solution. A web
service provider belongs to a specific organization, with its own distinctive access control
policies and models. Its security expectations should also be made available to allow
interoperation with web services requestors. WS-Policy (Box et al., 2003) provides a
grammar for requestors and providers of web services to communicate their requirements
and capabilities in a machine-readable XML format. A policy is defined to be a collection
of one or more policy assertions. The XML representation of a policy is referred to as a
policy expression, and is bound to a web service provider through a policy attachment.
WS-Policy defines the security requirements related to authentication, integrity and
confidentiality of SOAP messages, and can be attached to the WSDL service interface to
describe security expectations. No expectations in terms of access control are currently
described.

A new extension to WS-Policy can be included that would provide all or some of the
access control policy requirements to potential requestors so that they can make decisions
regarding if and how they can use methods of the service. An optional
�AccessControlPolicy� element can include some authorization information of the
provider that can be used to facilitate access control composition. For instance, eRetailer
may publish a list of roles, with their descriptions such as Standard_Customer and
Gold_Customer as shown in Figure 4. Such published roles may provide generic
functionality with associated privileges that are described in the �RoleDescription�
element in Figure 4. To enable this, a request from eCompany must be accompanied with
an assertion stating the role that must be activated for the employee or customer. It may
consist out of two name-value pairs such as: Attribute name=“Role”, Attribute
value=“Standard_Customer” that can be standardised by a provider defined schema at
www.eRetailer.com.

As role information is published, no formal interactions or agreements are required with
eRetailer. eCompany is thus given more control over the access control decisions that
will be made when the services of eRetailer are processed. Other access control
information that can be published is, for instance, attributes such as the limit that may be
spent by the user. As the manner in which policy assertions are to be formulated is
published, the web service requestor can define assertions that would be understood by
the provider. Such assertions need to be pushed to the web service provider, to simplify
the processing of access control decisions and to avoid unnecessary communication with

openUP (March 2007)

the requestor. This would require a mechanism that would allow such access control
information to pass between services. Security assertion markup language (SAML) may
be well suited for this purpose, as it can be used to securely exchange authentication and
authorization information.

Dynamic composition of access control information from independent authorities

A loosely coupled, distributed environment enables dynamic access control composition
by sending assertions between participants of a virtual application. A transaction can only
be processed if the defined access control decision-making process can compose the web
service provider's policy with the requestor's assertions. Currently, the composition of
such access control communication is beyond the scope of existing access control
mechanisms. It would therefore, be entirely up to the web services developer to enforce
access control policies with the appropriate logic in application code. This could result in
error-prone implementation, as an omission or misinterpretation of a communication
from another security domain may lead to improper access to resources.

In contrast, a logic-based access control system has the formal foundation of logical
reasoning, to enable the enforcement of consistent access control decisions over resources
of the virtual application. A virtual access control policy can be created, that has the
ability to dynamically adapt to changes passed to it from independent policy sources. It is
an access control policy that can be understood and applied by the authorization manager
of a virtual application. The authorization semantics of the policy are defined
independently of the policy representation and implementation mechanisms. It consists of
a set of facts such as the permission assigned to roles, and rules on how roles may be
activated. In logic programming, an assertion is defined as a new fact or rule that is added
to the program at run time (Foldoc, 2003). Assertions that are sent across from other
domains can therefore be logically composed with the existing virtual policy as additional
facts or rules. In this process, new assertions are formally proven to be valid, before
access control decisions are made, that are based on these assertions.

Logical composition of assertions

There have been a number of attempts to declaratively define access control policies in
first-order logic. Most of these approaches are based on some variant of Datalog
(Elsmari and Navathe, 2000). Authorization specification language (ASL) (Jajodia et
al., 2001) is a formal logic language for specifying access control policies. ASL supports
a variety of access control models, but was not originally designed to enable dynamic
policy composition. Policies are expressed by forming rules that use the described
predicates. For instance, cando(o, s, sa) defines the signed authorization (sa) explicitly
inserted by the security officer for a subject (s) on an object (o); dercando(o, s, sa) defines

openUP (March 2007)

signed authorization derived by the system using logical rules of inference; and active(u,
r) defines the role active for a subject.

In a web services environment, the provider cannot mandate any particular access control
models or mechanisms at the requestor. It would also be impractical to encode all access
control rules from each domain into a centralized ASL program that would make
centralised decisions for the virtual application. Here, a policy is defined in ASL for the
web service provider. The specific subjects, objects and actions to be defined are:

• Objects. The WSDL service description of a web service contains all methods that
can be executed. Methods belong to objects, which can be grouped together to
form virtual applications. Other objects that could be considered would be the
server that the web service resides on, the IP address, or the URL of the web
service.

• Subjects. A distinction exists between the subjects with specified permissions and
the active subjects requiring access to objects. For instance, a user of a virtual
application is an authorization subject whereas a requestor method, acting on
behalf of users is an active subject (Bertino et al., 2000). Here an active subject is
referred to as a requestor.

• Actions. Remote users or applications would generally be allowed to execute a
web services method, or access a server hosting a number of web services objects.
A requirement of such an environment would be to dynamically revoke
permissions when needed.

A simple list of role-based access control permissions for the product_search and
list_specials methods of the eRetailer service may exist as follows: Equation 1,
Equation 2 and Equation 3 The first and second rule assigns the permission to execute
the product_search method to the Standard_Customer and Gold_Customer roles. The
third rule assigns the permission to execute the list_specials method to the
Gold_Customer role.

ASL is extended with predicates to enable dynamic composition. An assertion can only
be imported if there exists a relationship of trust between the web service requestor and
provider. This is a fact that is added as trust (Requestor), as shown by statement 4 below.
An identifying token or public key can identify the web service requestor. Such a fact is
added when the business registration process is done. If the provider loses trust in the
requestor, the statement can immediately be removed from the set of facts, and no
assertions sent by the requestor would successfully be derived as new facts. Equation 4
If Jill, an employee of eCompany wishes to list all specials, eCompany sends an assertion
to eRetailer, requesting that the list_specials method be executed as a Gold_Customer.
eRetailer imports the assertion by converting the XML assertion into a logical statement
with the request predicate, to distinguish it from local facts. R request f means that the
requestor r requests formula f to be added as a new fact or rule. Each request made to the
provider in an assertion should also include the identifying token or certificate. The XML
assertion is programmatically converted into a logical fact as: Equation 5 Roles active
for a requestor are derived by: Equation 6 Permissions that include imported facts can be

openUP (March 2007)

derived by: Equation 7 Jill is granted permission to execute the list_special method, as
eCompany is trusted by eRetailer, and permission can be derived for the activated role.

An important consideration would be the management of the lifespan of an imported fact.
Imported facts can be evaluated based on the time associated with it, and can be removed
when expired.

Conclusion
Here, an access control framework was defined, to address the loosely coupled manner in
which virtual applications are created. As such applications may exist for very limited
time periods, or have a limited number of transactions, they should be composed quickly,
with embedded flexibility. The framework makes use of the standard manner in which
messages are communicated in XML between disparate applications, but composes such
assertions with the access control policy of the provider in a consistent manner. Access to
web service methods is only granted if permission can be derived for it, where the
derivation step forms a formal proof. A very simple example of composition was
illustrated. Future research would include the composition of the provider access control
policy, with authorization assertions from other domains, and default rules that may apply
to the virtual application.

Equation 1

Equation 2

Equation 3

Equation 4

openUP (March 2007)

Equation 5

Equation 6

Equation 7

Figure 1 Tightly coupled vs loosely couple integration

Figure 2 A SOAP message with authentication information defined with WS-security

openUP (March 2007)

Figure 3 A virtual application

Figure 4 An extension of a WS-policy requirements description in XML

References

Anderson, A., Anderson, S., Adams, C., Beznosov, K., Brose, G., Crocker, S. (2003),
Extensible Access Control Markup Language (XACML) 1.0 Specification, available at:
www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml, .

Anderson, S., Bohren, J., Boubez, T., Chanliau, M., Della-Libera, G., Dixon, B. (2004),
Web Services Trust Language (WS-Trust), available at:
www.ibm.com/developerworks/library/ws-trust/index.html, .

Atkinson, A., Bellwood, T., Cahuzac, M., Clément, L., Colgrave, J., Corda, U. (2003),
UDDI Version 3.0.1, available at: http://uddi.org/pubs/uddi-v3.0.1-20031014.htm, .

Atkinson, B., Della-Libera, G., Hada, S., Hondo, M., Hallam-Baker, P., Kaler, C. (2002),
Web Services Security (WS-Security) Version 1.0, available at:
www.verisign.com/wss/wss.pdf (accessed 5 April), .

openUP (March 2007)

Bartel, M., Boyer, J., Eastlake, D., Fox, B., LaMacchia, B., Simon, E., Solo, D. (2002),
XML Signature, available at: www.w3.org/TR/2002/REC-xmldsig-core-20020212/, .

Bertino, E., Pagani, E., Rossi, G.P., Samarati, P. (2000), "Protecting information on
the web", Communications of the ACM, Vol. 43 No.11, pp.189-99.

Bonatti, P., Samarati, P. (2002), "A unified framework for regulating access and
information release on the web", Journal of Computer Security, Vol. 10 No.3, pp.241-72.

Bonatti, P., Samarati, P. (2003), "Logics for authorizations and security", in Chomicki, J.,
van der Meyden, R., Saake, G. (Eds),Logics For Emerging Applications of Databases
LNCS, Springer-Verlag, Heidelberg, .

Box, D., Curbera, F., Hondo, M., Kale, C., Langworthy, D., Nadalin, A. (2003), Web
Services Policy Framework (WS-Policy), available at:
www.ibm.com/developerworks/library/ws-policy/index.html, .

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D. (2000), Simple Object Access Protocol (SOAP) 1.1, available at:
www.w3.org/TR/SOAP/, .

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (2001), Web Services
Description Language (WSDL) 1.1, available at: www.w3.org/TR/wsdl, .

Damiani, E., De Capitani Di Vimercati, S., Paraboschi, S., Samarati, P. (2001), "Fine-
grained access control for SOAP e-services", Proceedings of the 10th International World
Wide Web Conference, Hongkong, 1-5 May, .

Elsmari, R.A., Navathe, S. (2000), Fundamentals of Database Systems, Addison-Wesley,
Milano, .

Foldoc (2003), Free, Online Dictionary of Computing, Supported by the Department of
Computing Imperial College, available at: http://0-
foldoc.doc.ic.ac.uk.innopac.up.ac.za:80/foldoc/foldoc.cgi?query=assertion&action=Searc
h, .

Gottschalk, K., Graham, S., Kreger, H., Snell, J. (2002), "Introduction to web services
architecture", IBM Systems Journal, Vol. 41 No.2, .

Hallam-Baker, P., Hodges, J., Maler, E., McLaren, C., Irving, R. (2002), SAML 1.0
Specification, available at: www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security, .

Imamura, T., Dillaway, B., Eastlake, D., Reagle, J., Simon, E. (2002), XML Encryption,
available at: www.w3.org/TR/xmlenc-core/, .

openUP (March 2007)

Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S. (2001), "Flexible
support for multiple access control policies", ACM Transactions on Database
Systems, Vol. 26 No.2, pp.214-60.

Lischka, M., Wedde, H.F. (2003), "Composing heterogenous access policies between
organizations", Proceedings of the IADIS International Conference e-Society, Lisbon, 3-
6 June, .

Myer, T. (2003), Grid Computing: Conceptual Flyover for Developers, available at:
www-106.ibm.com/developerworks/library/gr-fly.html, .

Samarati, P. (2002), "Enriching access control to support credential-based specifications",
paper presented at the Workshop-Credential-Based Access Control in Open,
Interoperable IT-Systems, Dortmund, 2 October, available at: http://ls6-www.cs.uni-
dortmund.de/issi/cred_ws/, .

Sandu, R. (1996), "Access control: the neglected frontier", Proceedings of the 1st
Australian Conference on Information Security and Privacy, Wollongong, 23-26 June,
pp.23-36.

openUP (March 2007)

